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Notice

This primer is a revision of an earlier one for MCNP5 and is intended for for use by students in
our course NE690, Radiation Protection and Shielding, who are introduced to MCNP for the first
time. Thus, this primer is mainly oriented towards fixed-source, steady-state applications involving
neutrons and photons. The authors acknowledge that this primer presents only a tiny fraction of
the vast capabilities of MCNP6.

Although this primer is the property of the authors, we give permission for others to freely copy
and distribute it provided no changes are made to it. We would appreciate receiving error corrections
or suggestions for improvements so that future versions of this primer are enhanced.

A sporadically updated errata for this primer, as well as the primer itself, can be found on the
world wide web at http://www.mne.ksu.edu/~jks/books.htm. Revised versions, when created,
will also be made available on this web site.
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A Primer Presenting

AN INTRODUCTION
TO THE MCNP6 CODE

J. Kenneth Shultis and Amir A. Bahadori

Introduction

The MCNPR© Code, developed and maintained by Los Alamos National Laboratory (LANL), is the
internationally recognized code for analyzing the transport of neutrons and photons. The current
MCNP6 code can simulate the transport of many other radiation particle, namely nine elementary
particles (γ, e−, e+, µ−, µ+, νe, νm, ν̄e, ν̄m), 16 composite particles (n, p, Λ0, Σ+, Σ−, Ξ0, Ξ−, Ξ+,
Ω−, π+, π−, π0, K+, K−, K0

S , K0
L), seven composite antiparticles (n̄, p̄, Λ 0, Σ +, Σ−, Ξ 0, Ω−),

four complex particles (d, t, 3He, α) and several hundred heavy ions (Z = 3 to 92). MCNP is one
of the most popular Monte Carlo radiation transport codes.

Brief Code History The MCNP series of codes has perhaps the longest history of any Monte Carlo
radiation transport code. In the 1950s and 1960s, a number of special purpose Monte Carlo codes,
such as MCS, MCN, MCP, and MCG, were developed at LANL. MCS, MCN, and MCG were merged
in 1973 to create MCNG, which was merged with the photon code MCP in 1977 to create the first
version of MCNP. In 1983, MCNP3 was released for public distribution. Between 1986 and 2011, 19
versions of MCNP were released, each adding additional capability to the code. MCNP6 Beta2 was
released in 2012. This version merged MCNP5 with MCNPX (a variant of MCNP5 for high-energy
applications). Besides the merging of MCNP5 with MCNPX, 21 new features were incorporated
into MCNP6. As a result, MCNP6 has five times the 100k coding lines of MCNP5 and took 12
person-years of effort. In 2023, MCNP 6.3 was released.

Some of the terminology used in the MCNP documentation betrays the code’s historical origins.
For example, the term card, originally an actual punched card, is now just a line of an electronic
input file, which is still sometimes referred to as an input deck.

Code Documentation The documentation for the MCNP6.3 code is contained in several Parts.
The current version is MCNP6.3 and Parts I through IV are contained in the technical report Theory
& User’s Manual [Kulesza et al., 2022]. Part I of this report (Chs. 1 and 2) gives the theory behind
MCNP6.3. Part II (Chs. 3–8) is the User’s Manual: Chs. 3 and 4 present, respectively, an overview
of MCNP6 and the input to the program. Chapter 5 defines all the commands and options that
can be used in the code input; it is essential for both the novice and expert user. Part II ends
with Chs. 6–8 which cover advanced features of geometry and tally plotting, a new (to MCNP6.3)
alternative plotting capability, and unstructured meshes, respectively. Part III of the Manual (Chs. 9
and 10) contains, respectively, a much more detailed Primer than this humble offering and a large
series of examples of the many features of MCNP6.3. These examples are extremely helpful to gain
experience with the myriad capabilities of the code. Finally, Part IV comprises six Appendices
describing different file formats, utilities, and useful data.

There is another important part of the MCNP6 documentation that is now available only with
the MCNP6.3 source code package, namely the MCNP Developer’s Guide.1 This restricted manual
gives many of the technical details of code; however, it is needed by only MCNP experts who want
to alter the code and there is no need for it in this primer.

1This restriction is a result of Export Control rules.
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The 1078-page MCNP6.3 Theory & User’s Manual is very comprehensive; thus, it is difficult
for new users of the code to distinguish between information vital for learning how to use the code
and information needed to use the many hundreds of code options. For this reason, this tutorial
document was prepared to introduce the novice with the more basic (and essential) aspects of the
MCNP code.

A novice user should first peruse Ch. 1 of the Theory & User’s Manual to gain an overview of
MCNP that summarizes the code’s features. Then, a careful reading of this primer describes the
preparation of input files, the execution of the code, and the interpretation of results. Here the
focus is on so-called steady-state fixed-source problems, in which some property of the radiation field,
produced by a specified radiation source, is sought at locations or regions of phase space (r, E,Ω).2

After gaining some experience with MCNP, the beginning user should periodically browse through
Chapter 2 of the Theory & User’s Manual to gain a better understanding of the theory behind the
many features of MCNP6. Likewise, by periodic skimming Chs. 3–5, an MCNP pupil will become
more familiar with all the commands and options that make MCNP such a powerful radiation
transport code. In this primer there are several margin notes indicating the page or section in the
MCNP6.3 Theory & User’s Manual (or, for simplicity, the Manual) that discuss in more detail the
subject being summarized in the primer.

1 Structure of the MCNP Input File

An input file consists of a problem title card and a max-
imum of five blocks of input cards (lines) arranged as
shown to the right. The first and last blocks are optional
and often omitted. A single blank card separates each
block. The input file must not begin with a blank card
nor should it end with one. Block 0 contains options
(see §3.3.2.3 of the Manual) that are added to the MCNP
execution line. The message block starts with the string
MESSAGE:. The message block ends with a blank line
delimiter before the single required problem title card.
Blocks 1 and 2 define the problem geometry. Block

1 defines all the regions or cells of Cartesian (x, y, z)
space. Every point (x, y, z) must be in one cell or on a cell
boundary. Block 2 defines the surfaces used to form the
boundaries of the cells. Block 3 specifies what MCNP is
to do in the simulation. Finally, block 4 contains com-

Block 0: exec. options
· · ·

blank delimiter line

}

optional

Problem title card
Block 1: cell cards
· · ·

blank delimiter line







required

Block 2: surface cards
· · ·

blank delimiter line

}

required

Block 3: data cards
· · ·

}

required

blank delimiter line
Block 4: unused cards
· · ·

}

optional

mand or data cards that are ignored by MCNP but the user wants to keep with the input file. For
example, to analyze different shield materials, it is a simple matter to swap material cards between
blocks 3 and 4 to analyze a different shield material.

Input Cards Input cards (or lines) have a maximum of 128 columns and command mnemonics§4.4
begin in the first 5 columns. Free field format (one or more spaces separating items on a line) is
used and alphabetic characters can be upper or lower case. A continuation line must begin with five
blank columns, unless a blank followed by an & is placed at the end of the card to be continued.
Tabs are allowed and replaced by blanks to reach the next tab stop (eight columns between tab
stops). However, the authors recommend that users refrain from use of tabs for simplicity.

1.1 Annotating the Input File

It is good practice to add comments liberally to an input MCNP file so that it is easier for you and
others to understand what problem is addressed and how it was solved. A comment line begins with
C or c followed by a space. Such a line is ignored by MCNP. Alternatively, anything following a $

sign on a line is ignored. See Fig. 8 on page 35 for a well-annotated MCNP input file.

2Criticality or transient problems, which MCNP6 can also address, are not considered here.
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1.2 Units Used by MCNP

The units used by MCNP are (1) length in cm, (2) energy in MeV, (3) time in shakes (10−8 s),3 (4)
temperature in MeV (kT), (5) atom density in atoms b−1 cm−1, (6) mass density in g cm−3, (7)
cross sections in b, and (8) deposited energy in jerks g−1.4

2 Geometry Specifications

The cards in Blocks 1 and 2 of the input file define, respectively, the region(s) of 3-D Cartesian space
contained in each cell and the surfaces used for the boundaries of the cells. All dimensions are in
centimeters (cm). Each of the infinite number of points in the Cartesian space must be in one and
only one cell (or be on a boundary surface), i.e., the cells are contiguous and collectively contain all
points (x, y, z), x, y, z ∈ (−∞,∞) in the infinite Cartesian space. There can be no “holes” in the
geometry with points that are in no cell. A simulated particle that reaches such a point becomes
lost. If many particles become lost, then it is likely that there are errors in the MCNP geometry.
This is a problem encountered frequently when developing a geometric model, especially by those
first learning to use MCNP.

Cells are defined in terms of surface regions that lie to one side of first and second degree surfaces.
Each surface thus has two surface regions which are often infinite in size. Specifically, cells are defined
by Boolean intersections, unions, and compliments of these surface regions. Each cell is filled with a
user-defined materials. The union and intersection of two regions A and B are shown by the shaded
regions in Fig. 1.

The union operation may be thought of as a logical OR, in that the union of A and B is a
new region containing all space either in region A OR region B. The intersection operation may
be thought of as a logical AND, in that the result is a region that contains only space common to
both A AND B. The complement operator # plays the roll of a logical NOT. For example # (A:B)
represents all space outside the union of A and B.

A:B A B

Figure 1. Left: the union A:B or “A OR B”. Right: the intersection A B or “A AND B”.

Developing a geometric model for a particular application is usually the most difficult part of
preparing the input file and, for a novice, a source of great frustration. After reading the deceptively §1.3, §2.2,

§10.1simple presentation that follows, the introductory discussion in §1.3 should be read. Then to learn
more about geometric models study §2.2. Finally, as experience is gained in the development of
geometry models, there are many examples provided in §10.1 worthy of careful study.

Table 1, taken from the MCNP manual, lists the surfaces used by MCNP to create the geometry

3The shake is a convenient small time interval (10 ns) used by bomb designers in the once top secret Manhattan
Project for use in their experiments and calculations. For example, the time needed to complete one step in a
bomb’s chain reaction (or, in nuclear parlance, the prompt neutron lifetime) is about 10−8 s. The name shake comes
from the vernacular idiomatic expression “two shakes of a lamb’s tail” to denote a very small time interval.

4The jerk is another Manhattan Project made-up name defined as 1 jerk = 109 J = 1 GJ. One jerk equals 6.241×1021

MeV or the explosive energy released by the detonation of 0.238 tonnes of TNT. It should be noted that this nuclear
jerk has nothing to do with the jerk of classical mechanics that is a vector and equals the rate of change of the
acceleration of an object and so has units of cm/s3. Why the bomb designers recycled the name jerk is a mystery
to the authors.
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Table 1. MCNP Surface Cards [after page 262 of MCNP6.3 Theory & User’s Manual].

Mnemonic Type Description Equation Card Entries

P plane general Ax+By + Cz −D = 0 A B C D

PX normal to x-axis x−D = 0 D

PY normal to y-axis y −D = 0 D

PZ normal to z-axis z −D = 0 D

SO sphere centered at origin x2 + y2 + z2 −R2 = 0 R

S general (x−x̄)2+(y−ȳ)2+(z−z̄)2−R2 =0 x̄ ȳ z̄ R

SX centered on x-axis (x− x̄)2 + y2 + z2 −R2 = 0 x̄ R

SY centered on y-axis x2 + (y − ȳ)2 + z2 −R2 = 0 ȳ R

SZ centered on z-axis x2 + y2 + (z − z̄)2 −R2 = 0 z̄ R

C/X cylinder parallel to x-axis (y − ȳ)2 + (z − z̄)2 −R2 = 0 ȳ z̄ R

C/Y parallel to y-axis (x− x̄)2 + (z − z̄)2 −R2 = 0 x̄ z̄ R

C/Z parallel to z-axis (x− x̄)2 + (y − ȳ)2 −R2 = 0 x̄ ȳ R

CX on x-axis y2 + z2 −R2 = 0 R

CY on y-axis x2 + z2 −R2 = 0 R

CZ on z-axis x2 + y2 −R2 = 0 R

K/X cone parallel to x-axis
√

(y−ȳ)2 + (z−z̄)2 − t(x−x̄) = 0 x̄ ȳ z̄ t2 ± 1

K/Y parallel to y-axis
√

(x−x̄)2 + (z−z̄)2 − t(y−ȳ) = 0 x̄ȳ z̄ t2 ± 1

K/Z parallel to z-axis
√

(x−x̄)2 + (y−ȳ)2 − t(z−z̄) = 0 x̄ȳ z̄ t2 ± 1

KX on x-axis
√

y2 + z2 − t(x− x̄) = 0 x̄ t2 ± 1

KY on y-axis
√
x2 + z2 − t(y − ȳ) = 0 ȳ t2 ± 1

KZ on z-axis
√

x2 + y2 − t(z − z̄) = 0 z̄ t2 ± 1

±1 used only for 1-sheet cone

SQ ellipsoid axis parallel A(x− x̄)2 +B(y − ȳ)2 +C(z − z̄)2 A B C D E

hyperboloid to x-, y-, or z-axis +2D(x − x̄) + 2E(y − ȳ) F G x̄ ȳ z̄

paraboloid +2F (z − z̄) +G = 0

GQ cylinder, cone axis not parallel Ax2 + By2 + Cz2 +Dxy + Eyz A B C D E

ellipsoid to x-, y-, or z-axis +Fzx+Gz +Hy + Jz +K = 0 F G H J K

paraboloid

hyperboloid

TX elliptical or (x−x̄)2/B2 + (
√

(y−ȳ)2 + (z−z̄)2 −A)2/C2 − 1 = 0 x̄ ȳ z̄ A B C

circular torus.

TY Axis is (y−ȳ)2/B2 + (
√

(x−x̄)2 + (z−z̄)2 −A)2/C2 − 1 = 0 x̄ ȳ z̄ A B C

parallel to x-,

TZ y-, or z-axis (z−z̄)2/B2 + (
√

(x−x̄)2 + (y−ȳ)2 −A)2/C2 − 1 = 0 x̄ ȳ z̄ A B C

XYZP surfaces defined by points – see §5.3.2 and §5.3.3 of the Theory & User’s Manual

Revised April 30, 2024 An MCNP Primer 4



of a problem.5All surfaces are defined in a Cartesian coordinate system. A surface is represented
functionally in the form of an equation, as f(x, y, z) = 0. For example, for a cylinder of radius R
parallel to the z-axis is defined as f(x, y, z) = (x− x̄)2 + (y − ȳ)2 − R2 , where the cylinder’s axis
is parallel to the z-axis and passes through the point (x̄, ȳ, 0). The MCNP input line for such a
surface, which is denoted by the mnemonic C/Z (or c/z, since MCNP is case insensitive), is

1 C/Z 5 5 10 $ a cylindrical surface parallel to z-axis

defines surface 1 as an infinitely long cylindrical surface parallel to z-axis with radius of 10 cm and
whose axis passes through the point (x = 5 cm, y = 5 cm, z = 0). Note that the length of the
cylinder is infinite. Note also the in-line comment, introduced by the $ symbol.

Every surface has a “positive” side and a “negative” side. These directional senses for a surface
are defined formally as follows: any point at which f(x, y, z) > 0 is located in the positive sense
(+) to the surface, and any point at which f(x, y, z) < 0 is located in the negative sense (−) to
the surface. These are the two surface regions associated with every surface. For example, a region
within a cylindrical surface is negative with respect to the surface and a region outside the cylindrical
surface is positive with respect to the surface.

2.1 Cells – Block 1

We illustrate how surfaces and Boolean logic are used to define cells by considering a simple example
of a cylindrical storage cask whose wall and ends are composed of iron 1-cm thick. Inside and outside
the cask are void regions. Suppose the outer cylindrical surface is that used in the illustration in
the previous section. The geometry for this problem is shown in Fig. 2.

y

x

z
z=40

z=41

z=59

z=60

99

9

9

7

8

1

2

3

4

5

6

Figure 2. Geometry for a simple cylindrical
cask. Numbers in triangles are surface identifi-
cation numbers and the triangle points to the (+)
side of the surface. Numbers in circles define the
cell identification number. The axis of the cask
passes through the point (x = 5 cm, y = 5 cm)
and the cask outer radius is 10 cm.

To define the inside surface of the cask, we need another cylinder inside and concentric with the
first cylinder but with a radius smaller by 1 cm. We shall call this smaller cylindrical surface number
4, so that the surface definition lines in the input file for these two cylinders are

1 C/Z 5 5 10 $ outer cylindrical surface

4 C/Z 5 5 9 $ inner cylindrical surface

To define the base and top of the cask, planes perpendicular to the z-axis are needed at locations
z = 40 cm and z = 60 cm, respectively. Similarly, to define the base and top of the inner cavity

5Because surfaces must be defined before the cells can be specified in terms of the bounding surfaces, we discuss
Block 2 before Block 1. Why MCNP requires the input of cell definitions before the bounding surface definitions is
unknown to the authors. In practice, one creates block 2 before block 1.
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of the cask two more planes perpendicular to the z-axis are needed at z = 41 cm and z = 59 cm.
These four planes are defined by

2 PZ 40 $ base of cask

3 PZ 60 $ top of cask

5 PZ 41 $ base of inner cavity

6 PZ 59 $ top of inner cavity

The surface definition cards (or input lines) can appear in any order in Block 2 of the input file.
Each surface must have a unique positive integer identifier (< 108). Here the surface numbers are 1,
2, 3, 4, 5, and 6. They need not be ordered as in this example but they must begin in columns 1–5.

With the problem surfaces defined, we now begin to define the volumes or cells which must fill
all (x, y, z) space. These cell definition cards comprise the content of Block 1 of the input file. First,
we define the inner void of the cask as cell 8. This volume is negative with respect to surface 4,
positive with respect to the plane 5, and negative with respect to plane 6. Thus, cell 8 is defined as

8 0 -4 5 -6 IMP:N=0 IMP:P=1 $ inner cask void

The first number on a cell definition card is the cell identifier (any positive integer < 108) and must
begin in columns 1–5. Here the second entry 0 denotes that the cell is filled by a void, and -4 5 -6
indicate that all points in cell 8 are inside the cylinder 4 AND are above plane 5 AND are below
plane 6. region. The last two IMP specifications define the importance of this region to neutrons (N)
and (P). Neutrons in this cell have zero weight and photons have unit weight (i.e., we assume only
photon sources are stored in the cask). We’ll discuss importances later. The order of surfaces in an
intersection string is arbitrary. Thus, we could have defined cell 8 by intersection of surfaces -6 -4 5.

Now consider the iron shell of the cask. Suppose this cell is given 7 as its id number and consists
of material 5, as yet to be defined, with density 7.86 g cm−3. Space within this cell is negative with
respect to surface 1, positive with respect to surface 2 and negative with respect to surface 3 AND
also cannot be inside the void or cell 8. This cell can thus be defined as

7 5 -7.86 -1 2 -3 #8 IMP:N=0 IMP:P=1 $ iron cask shell

Although the complement operator # (for NOT) is often a convenient way to exclude an inner region,
this operator often reduces the efficiency of MCNP. In fact, theoretically one never has to use #.
The region outside cell 8 can be defined by the union string (4:6:-5) and the definition of cell 7
can be equivalently defined as

7 5 -7.86 -1 2 -3 (4:6:-5) IMP:N=0 IMP:P=1 $ iron cask shell

Now suppose that cells 7 and 8 describe all space of interest for radiation transport. In other
words, suppose that all photons passing outside the outer surface of the finite cylinder may be killed,
i.e., their path tracking can be ended. One still needs to assign this space to a cell. Further by setting
the photon importance in this cell to zero, any photon entering is killed. This “graveyard” cell, say
cell 9, is the union of all regions positive with respect to surfaces 1 and 3 and negative with respect
to surface 2. Hence the graveyard is defined by

9 0 1:3:-2 IMP:N=0 IMP:P=0 $ graveyard

The graveyard could also be defined by using the complement operator and by specifying that
the kill zone is all space outside the union of cells 7 and 8, namely

9 0 #(7:8) IMP:N=0 IMP:P=0 $ graveyard

Note that the second entry on this cell card is zero, indicating a vacuum and that the photon
importance is set to zero.

2.2 Macrobodies

MCNP has an alternative way to define cells and surfaces through the use of macrobodies. These§5.3.4
macrobodies can be mixed with the standard cells and surfaces and are defined in Block 2. For
example, the command in Block 2
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Table 2. Macrobodies available in MCNP.

Mnemonic Type of body

BOX arbitrarily oriented orthogonal box (90◦ corners)

RPP rectangular parallelepiped (surfaces parallel to axes)

SPH sphere

RCC right circular cylinder

RHP or HEX right hexagonal prism

REC right elliptical cylinder

TRC truncated right-angle cone

ELL ellipsoid

WED wedge

ARB arbitrary polyhedron

15 RCC 1 2 5 0 0 50 10 $ right circular cylinder

defines a right circular cylinder with the following properties: the center of the base is at (1,2,5);
the height is 50 cm and the axis is parallel to the z-axis; the radius is 10 cm; and the macrobody
has 15 as its identifier.

The macrobodies available in MCNP are shown in Table 2. MCNP automatically decomposes the
macrobody surface into surface equations and the facets are assigned identifying numbers according
to a predetermined sequence. The assigned surface number consists of the macrobody identifier
number follow by a decimal point and an integer 1, 2, . . . . For example in the RCC example above,
the cylindrical surface has the identifier 15.1, the plane of the top is 15.2, and the plane of the base
is 15.3. These facet surfaces can be used for anything standard surfaces are used for, e.g., tallies,
other cell definitions, source definitions, etc.

The definition of a macrobody can require many parameters. Here we give the details for three
of the most useful macrobodies.

BOX Arbitrarily oriented orthogonal box: This body is defined by four vectors: v defining a §5.3.4.1
corner of the box and three orthogonal vectors a, b, and c defining the length and direction of the
sides from the specified corner. The syntax is

BOX vx vy vz ax ay az bx by bz cx cy cz
The facet suffixes are: .1/.2 plane perpendicular to the end/beginning of a

.3/.4 plane perpendicular to the end/beginning of b

.5/.6 plane perpendicular to the end/beginning of c

RPP Rectangular parallelepiped: This orthogonal box has sides perpendicular to the coordinate §5.3.4.2
axes. This body is defined by the range each side has along its parallel axis. The syntax is

RPP xmin xmax ymin ymax zmin zmax

The facet suffixes are: .1/.2 plane xmax/xmin; .3/.4 plane ymax/ymin; .5/.6 plane zmax/zmin.

RCC right circular cylinder: A right cylinder is specified by a vector v giving the center of the §5.3.4.4
base, a vector h defining the axis and height of the cylinder, and the radius R. The syntax is

RCC vx vy vz hx hy hz R
The facet suffixes are: .1 cylindrical surface; .2/.3 plane normal to the end/beginning of h.

NOTE: The space inside a macrobody has a negative sense with repsect to all the macrobody’s
bounding surfaces. The space outside the bounding surfaces has a positive sense to the macrobody.
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More important to remeber is that the sense of a macrobody’s bounding surfaces or facets is the
sense assigned to it by the macrobody and the facet surface retains this sense even if it appears
in other cell definitions. For example, the base of the RCC cylinder discussed above is a plane
normal to the z-axis with intercept of 5 cm and has the identifier 15.3. The space with z > 5 has a
negative sense to this surface because this space is towards the interior of the cylinder. The space
for z < 5 has a positive sense because this region is outside the macrobody. This sense convention
for macrobody surfaces is different from the sense convention of standard surfaces. The surface 15.3
is equivalent to a plane surface 16 defined as 16 PZ 5, but space with z > 5 has a positive sense
with respect to surface 16 while it has a negative sense for surface 15.3!

y

x

z
z=40

z=41

z=59

z=60

99

9

9

7

8

MB 17

MB 18

Figure 3. Geometry for a simple cylindrical cask.
Two macrobody right cylinders are used to define
the inside and ouside surfaces of the cask and num-
bers in circles are the cell identification number.
As before, the axis of the cask passes through the
point (x = 5 cm, y = 5 cm, z = 0)

The use of macrobodies can greatly ease the specification of a problem’s geometry. We illustrate
this by returning to the simple cask problem considered in the previous section. Rather than define
6 surfaces to form the cask, we use two nested cylinder macrobodies. The subsequent Boolean logic
used to define the three cells now becomes considerably simpler. For the geometry shown in Fig. 3,
the input geometry specification becomes

Use of macrobodies for cask problem

c ***************** BLOCK 1 -- cells

8 0 -18 IMP:P,N=1 $ inside the cask

7 5 -7.86 18 -17 IMP:P,N=1 $ cask iron shell

9 0 17 IMP:P,N=0 $ void outside cask

c ***************** BLOCK 2 -- surfaces/macrobodies

17 RCC 5 5 40 0 0 20 10 $ outer cylinder

18 RCC 5 5 41 0 0 18 9 $ inner cylinder

Cell 8 is simply all the space inside macrobody 18 and is denoted by -18. Cell 7 is all the space inside
macrobody 17 and outside macrobody 18, namely 18 -17. These cell definitions are considerably
simpler than those based on the intersections and unions of the six standard surfaces used in the
previous definition of this cask.

2.2.1 Unstructured Meshes

The use of macrobodies and the ability to construct geometric regions from Boolean operations on
bounding surfaces gives MCNP a very powerful constructive solid geometry (CSG) capability. It
has been extensively tested and verified. However for complex geometries the CSG approach for
specifying a problem geometry is labor intensive and susceptible to errors which are often hard to
debug.
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New to MCNP6 is the ability to use an unstructured mesh (UM) to define a problem geometry. Ch. 8
This alternative to CSG is an exciting development but one that is still evolving and one novice
MCNP users should ignore until they have gained some experience with MCNP.

3 Data Specifications – Block 3

This block of input cards defines the type of particles, problem materials, radiation sources, how
results are to be scored (or tallied), the level of detail for the physics of particle interactions, variance
reduction techniques, cross section libraries, the amount and type of output, and much more. In
short, the third input block provides almost all a problem’s specifications other than the geometry.

The 60 or so different commands cards and the sometimes many KEYWORDS (options) for the
commands are extensively discussed in Ch. 5 of the Manual. Here some necessary background and
a few of the more commonly used commands for simple problems are briefly reviewed.

3.1 Interaction Data Used by MCNP6

The nuclear data needed by MCNP6 to describe the interactions of particles with the ambient
medium as they transported through the problem geometry are provided by (1) pointwise cross-
section data and other extensive data tables and/or (2) various nuclear physics models, used pri-
marily for high-energy particles (> 150 MeV). Unlike many other transport codes, all this nuclear
data is an integral part of the MCNP code. The various libraries and data tables distributed with §2.3
MCNP6.3 are listed in LA-UR-17-20709 (Conlin, 2017). Relevant nuclear data are now distributed
separately from the MCNP code to decouple updates between the two. Nuclear data for use with
MCNP can be obtained from https://nucleardata.lanl.gov/.

For neutrons with energies up to 150 MeV, the comprehensive ENDF/B-VII data files are com- §2.3.1, §2.3.6
posed of pointwise (continuous-energy) interaction data and secondary-particle production data, for
a few hundred target isotopes.6 Proton interaction data for 48 isotopes are provided for energies
from 1 to 150 MeV. Photon and electron/positron data are included for energies of 1 eV to 100 GeV
and from 10 eV to 1 GeV, respectively. Photonuclear data for 157 isotopes are included for photon
energies up to 150 MeV. Above the maximum energies of these data tabulations, and for all hadrons,
interaction physics are based on theoretical models with empirical corrections.

3.2 Materials Specification – M Card

Specification of materials filling the the various cells in an MCNP calculation uses an M card in block §5.6
3 for each material. This card specifies (a) defining a unique material number (a positive integer
< 108), (b) the elemental (or isotopic for neutrons) composition, and (c) the libraries of cross section
and data tables to be used. The ZAID number ZZZAAA identifies a specific nuclide or element. For
example, elemental uranium is 092000, or simply 92000, whereas the isotope 235

92U has a ZAID of
92235.

Note that mass density is not specified here. Instead, density is specified on the cell definition
card. This permits one material to appear at different densities in different cells. Suppose that the
first material to be identified in problem input is (light) water and that only gamma-ray transport is
of interest. Comment cards (cards beginning with C or c) may be used for narrative descriptions. In
the following card images, the designation M21 refers to material 21. For a compound, unnormalized
(stoichiometric) atomic fractions may be used. For example,

c ---------------------------------------------------------

c WATER for gamma-ray transport (by atom fraction)

c ---------------------------------------------------------

6Some discrete reaction tables in which the cross sections are averaged over 262 groups are also available for use on
computers with very limited memory. These tables should be avoided.
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M21 1000 2 $ elemental H and atomic abundance

8000 1 PLIB=04p $ elemental O and atomic abundance

The designations 1000 and 8000 identify elemental hydrogen, atomic number Z = 1, and elemental
oxygen (Z = 8). The three zeros in each designation are place holders for the atomic mass number,
which would be required to identify specific isotopes of the element and which, generally, are required
for neutron transport, as described later. For gamma ray and electron transport, one needs to
specify only the atomic number. The keyword PLIB=04p says the 04p photon library is to be
used. Alternatively one could omit PLIB=04p and just append it to the ZAIDs, i.e., 1000.04p and
8000.04p.

For compounds or mixtures, composition may alternatively be specified by mass fraction, indi-
cated by a minus sign, as follows:

c ---------------------------------------------------------

c WATER for gamma-ray transport (by mass fraction)

c ---------------------------------------------------------

M21 1000.04p -0.11190 $ elemental H mass fraction

8000.04p -0.88810 $ elemental O mass fraction

Note mass and atom fractions need not sum to unity; MCNP will normalize them.

For neutron transport problems, often specific isotopes of an element must be specified. If neutron
cross sections for an element composed of its isotopes in their naturally occurring abundances is
desired, then sometimes the ZAID can be specified as ZZZ000. Note, such elemental neutron cross
section sets are old and not available for all elements. Usually one must list all of the important
isotopes. As an example, light water for neutron problems could be defined as

c ---------------------------------------------------------

c WATER for neutron transport (by mass fraction)

c (ignore H-2, H-3, O-17, and O-18)

c ---------------------------------------------------------

M21 1001.80c -0.11190 $ H-1 and mass fraction

8016.80c -0.88810 $ O-16 and mass fraction

Here 1001 and 8016 provide atomic number and atomic mass designations, in the form of the
ZAID numbers. The 80c designation identifies the ENDF/B-VII.1 cross section compilation. Other
compilations distributed with MCNP6.3 are given by Conlin [2017]. There is no hard and fast rule
as to which neutron library is “best” (see also Section 3.2 below).§2.3.1

When hydrogen is molecularly bound in water, either in pure form or as a constituent in some
other material, the binding affects energy loss in collisions experienced by slow neutrons. For this
reason, special cross-section data treatments are provided that take binding effects into account. To
use this special treatment, an additional MT card is required, as shown below.§5.6.2

c ---------------------------------------------------------

c WATER for neutron transport (by mass fraction)

c (ignore H-2, H-3, O-17, and O-18)

c Specify S(alpha,beta) treatment for binding effects

c ---------------------------------------------------------

M21 1001.80c -0.11190 $ H-1 and mass fraction

8016.80c -0.88810 $ O-16 and mass fraction

MT21 lwtr.20t $ light water at 293.6 K

Without the MT card, hydrogen would be treated as if it were a monatomic gas. With the
S(α, β) treatment, fast neutrons slowing down to thermal energies will develop a Maxwellian energy
distribution with the specified temperature. Treatment of binding effects for other nuclides, materials
and temperatures are also provided [Conlin et al. 2017].
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3.3 Cross-Section Specification

Neutron interactions and the history and many sources of cross-section data tables are described
in Section 2.3.1 of the the MCNP6 Manual. A comprehensive list of cross section compilations
in the ACE format distributed with MCNP6 is provided by Conlin and the LANL Nuclear Data
Team [2017]. This 500-page Technical Report replaces the infamous Table G2 of Appendix G to
Vol. I for MCNP5 and MCNP4. Specification of a particular cross-section compilation depends
somewhat on the nature of the problem being solved and on the data available to the user. Not
all cross section sets are available to all users. For users obtaining data through the Radiation
Safety Information Computation Center (RSICC), a common choice would be the 80c library, which
was derived from the ENDF/B-VII.1 evaluated nuclear data files for room-temperature, Doppler
broadening of neutron cross sections. For Doppler broadening at other temperatures, other libraries
are also available.

In a few instances, neutron cross sections are available for elements with naturally occurring
atomic abundances. For example, natural chromium can be specified as 24000.50c. However, ele-
mental neutron cross sections are rare and, for the very few such libraries available, the underlying
data are old. Generally, it is necessary for the user to define a natural element as a combination of
the natural occuring isotopes. Even then, data for nuclides with small (<0.1%) isotopic abundances
are often not available and the trace isotopes must be neglected (as was done in the previous section
for light water).

3.4 Source Specification

The source and the radiation particles it emits in a fixed-source MCNP problem are specified by the §5.8.1 to
§5.8.6SDEF command. The SDEF command has many keywords or parameters that are used to define all

the characteristics of all sources in the problem. The SDEF command with its many keywords and
their possible values is one of the more complex MCNP commands and is capable of producing an
incredible variety of sources — all with a single SDEF command. And only one SDEF card is allowed
in an input file!

On the SDEF card values of appropriate keywords in Table 4 are entered, if other than the default
values, that are needed to characterize a particular source. The = sign is optional, so that PAR=1

is equivalent to PAR 1. Values of variables can be specified at three levels: (1) explicitly (e.g.,
ERG=1.25), (2) with a distribution number (e.g., ERG=d5), and (3) as a function of another variable
(e.g., ERG=Fpos). Specifying variables at levels 2 and 3 requires the use of two ancillary source cards:
the SI (source information) card and the SP (source probabilities) card.7

3.4.1 SI: Source Information Card

This card tells MCNP how K values i1, . . . iK about a source variable (e.g., energies of photon
spectral lines) are to be interpreted. The form of the SI card is

SIn option i1, . . . iK
where n is the distribution number specified on the SDEF card. The four possible options are listed §5.8.2
below

option = H i values are monotonically increasing histogram bin upper
boundaries

option = L i values are discrete source variable values (e.g., cell numbers or
energies of photon spectrum lines).

option = A i values are points where a probability density is defined. Entries
must be monotonically increasing, with the lowest and highest val-
ues defining the range of the variable.

option = S i values are distribution numbers.

7Two other ancillary source cards are available for more advanced applications: the SB (source biasing) card and the
DS (source dependent) distribution card.
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Table 3. MCNP6 particle identifiers and the minimum tracking energy for the more com-
monly used particles. Data for other leptons, baryons and mesons are given in Table 4.3 of
the Manual.

MCNP
Low-E Default

MCNP
Low-E Default

PAR Name
Symbol

Cutoff Cutoff PAR Name
Symbol

Cutoff Cutoff
(MeV) (MeV) (MeV) (MeV)

1 neutron (n) N 0.0 0.0 31 deuteron (d) D 10−3 2.0
2 photon (γ) P 10−6 10−3 32 triton (t) T 10−3 3.0
3 electron (e−) E 10−5 10−3 33 helion (3He) S 10−3 3.0

8 positron (e+) F 10−3 10−3 34 alpha particle (α) A 10−3 4.0

9 proton (e+) H 10−3 1.0 37 heavy ion (A
Z

X) # 10−3 5.0

Table 4. Source keywords for the SDEF command.

Variable Meaning Default

CEL cell determined from the position of the particle, and pos-
sibly the particle’s flight direction if the position is on
a cell surface.

SUR surface SUR=0 means cell (volume) source

ERG kinetic energy (MeV) 14 MeV

DIR µ, the cosine of the angle between
VEC and particle flight direction.
The azimuthal angle is always sam-
pled uniformly in [0, 2π].

Volume case: µ is sampled uniformly in [−1.1]
(isotropic). Surface case: p(µ) = 2µ for µε[0,1] (cosine
distribution).

VEC reference vector for VEC Volume case: required unless isotropic. Surface case:
vector normal to the surface with sign determined by
NRM.

NRM sign of the surface normal +1

POS reference point for positioning
sampling

0, 0, 0

RAD radial distance of the position from
POS or AXS

0

EXT Cell case: distance from POS along
AXS. Surface case: cosine of angle
from AXS

0

AXS reference vector for EXT and RAD no direction

X x-coordinate of position X=0

Y y-coordinate of position Y=0

Z z-coordinate of position Z=0

CCC cookie-cutter cell no cookie-cutter cell

ARA area of surface (required only for di-
rect contributions to point detectors
from a plane surface source)

none

WGT particle weight 1

EFF reference efficiency criterion for po-
sition sampling

0.01

PAR type of particle source emits. Many
choices e.g., cosmic ray, background,
particles from radioactive decay.

particle with smallest IPT value on MODE card: N=1,
P=2, E=3, ...
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3.4.2 SP: Source Probability Card

This card gives the probabilites for each item on the corresponding SI card. It has the two forms
SPn option p1, . . . pK and SPn -f a b

where n is the distribution number specified on the SDEF card and the option letter specifies how §5.8.3
the pi are to be interpreted according to the following list (only the 5 most frequently used options
are listed here).

option omitted the same as D for an H or L distribution on the SI card or a proba-
bility density for an A distribution on the SI card.

option = D pi values are bin probabilities for an H or L distribution on the SI
card. (Default value).

option = C pi values are cumulative bin probabilities for an H or L distribution
on the SI card.

option = V pi values are for CEL distributions; the probability is proportional
to a cell’s volume (×pi if the pi are present)

option = −f a negative integer specifies the use of a built-in function with pa-
rameter values a and possibly b. See §5.8.3.1 of the Manual

3.5 Examples of Simple Sources

Often MCNP problems involve fairly simple fixed sources that for a novice can be challenging
to implement in MCNP. The documentation for MCNP5 and earlier versions devoted only a few
exceptionally terse pages to the SDEF and ancillary cards. The few source examples in the examples
chapter were far too complex for an MCNP beginner to understand and use to create a simple
source, which was a primary motivation for our Primer on MCNP5. With the simple examples in
our first MCNP Primer, our students were able to start using MCNP with greater ease.

With the advent of MCNP6(v.1), the user’s manual has greatly expanded the discussion about
sources until the latest version for MCNP6.3 [Kulesza et al., 2022] devotes almost 60 very under-
standable pages and many “simple” examples to the subject. Kudos to the authors! However, many §5.8
of these simple examples illustrate advanced features not covered in this primer. Presented below
are some even simpler source examples. These are designed to help the novice MCNP user model
many common source situations, rather than demonstrate the subtleties or alternative syntax for
keywords and options of the SDEF card.

Once users have gained confidence with simple source models, they should begin studying the
often complicated source examples given in Chapter 10 of the Manual. From periodic perusuals §10.3
of §5.8 and §10.3 of the Manual one usually gains new insight into the robustness of the SDEF

command. It is probably the most powerful, complex, and flexible of all the MCNP commands, and
consequently, the most difficult one to master.

Finally, a cautionary word learned from experience. When you develop a new source model,
always check and recheck that source particles are truly being generated where you think they
should be and are born with the correct energies and directions of travel. HINT: place the VOID
card and the PRINT 110 statement somewhere in block 3 of the input file. The PRINT 110 causes
the starting locations. directions, and energies of the first 50 particles to be printed to the output
file. Examine this output table to convince yourself that particles are being generated as you expect.

3.5.1 Point Isotropic Sources

Two Point Isotropic Sources at Different Positions

c ----- Two point, isotropic, 1-MeV, photon sources on x-axis

SDEF ERG=1.00 PAR=2 POS=d5 $ energy, particle type, location

SI5 L -10 0 0 10 0 0 $ (x,y,z) coords of the two pt sources

SP5 .75 .25 $ relative strengths of each source

z

x

y

10-10
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Point Isotropic Source with Discrete Energy Photons

c ----- Point isotropic source with 4 discrete photon energies

SDEF POS 0 0 0 ERG=d1 PAR=2

SI1 L .3 .5 1. 2.5 $ the 4 discrete energies (MeV)

SP1 .2 .1 .3 .4 $ frequency of each energy
E

freq

E
1 E

2
E

3
E

4

.2

.4

Point Isotropic Source with a Histogram of Energies
c ----- Point isotropic photon source with 4 histogram energy bins

c NOTE: range of first E-bin is (-infty,E1) with prob p1=0

SDEF POS 0 0 0 PAR=P ERG=d1 $ position, part type, E distn

SI1 H .1 .3 .5 1. 2.5 $ histogram upper boundaries

SP1 D 0 .2 .4 .3 .1 $ probabilities for each bin E

N(E)

.2

.4

Point Isotropic Source with a Continuum of Energies

c ----- Point isotropic neutron souce with Maxwellian energy spectrum

SDEF POS 0 0 0 PAR=N ERG=d1 $ position, particle type, energy

SP1 -2 0.5 $ Maxwellian spectrum (2) with temp a=0.5 MeV
E

N(E)

Point Isotropic Source with Tabulated Energy Distribution

(a) Horizontal Input
c ----- Isotropic proton source w cont.-E PDF listed at discrete Es

SDEF POS 0 0 0 PAR=H ERG=d7 $ position, particle type, E distn

SI7 A 1 2 3 4 5.5 7.0 7.5 $ tabulated energies E1 ... E7

SP7 D 0 .2 .27 .3 .28 .18 0 $ tabulated PDF values f(Ei)
E

f(E )

E
1
E

2
E

3 E
4

.2

.4

E
5 E

6
E

7

i

(b) Vertical Input
c ----- Isotropic proton source w cont.-E PDF listed at discrete Es

SDEF POS 0 0 0 PAR=H ERG=d7 $ position, particle type, E distn.

c ----- use vertical input for PDF -- easiest if many Ei

# SI7 SP7 $ # sign indicates start of vertical input

A D

1.0 0.0 $ E1 f(E1) start of PDF

2.0 .20 $ E2 f(E2)

3.0 .27 $ E3 f(E3)

4.0 .30 $ E4 f(E4)

5.5 .28 $ E5 f(E5)

7.0 .18 $ E6 f(E6)

7.5 0.0 $ E7 f(E7) end of PDF and vertical input

Two Point Sources with Different Energy Distributions

c --- 2 pt iso sources: src 1 (4-bins) src 2 (4 discrete Ei)

SDEF PAR=2 POS=d1 ERG FPOS d2

SI1 L -10 0 0 10 0 0 $ coords of srcs on x-axis

SP1 .4 .6 $ rel strengths of sources

DS2 S 3 4 $ energy distributions

SI3 H .1 .3 .5 1. 2.5 $ E bin limits src 1

SP3 D 0 .2 .4 .3 .1 $ bin prob for src 1

SI4 L .3 .5 .9 1.25 $ discrete Ei for src 2

SP4 .20 .10 .30 .40 $ rel freq for src 2

E

freq

.2

.4

x
0 10-10

source 1 source 2

E

N(E)

.2

.4
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3.5.2 Isotropic Volumetric Sources

Rectangular Parallelepiped Parallel to Axes

c --- volumetric monoenergetic source inside a rectangular parallelepiped

SDEF X=d1 Y=d2 Z=d3 ERG=1.25 PAR=2

SI1 -10. 10. $ x-range limits for source volume

SP1 0 1 $ uniform probability over x-range

SI2 -15. 15. $ y-range limits for source volume

SP2 0 1 $ uniform probability over y-range

SI3 -20. 20. $ z-range limits for source volume

SP3 0 1 $ uniform probability over z-range x

y

z

Source in a Complex Cell: Enclosing Parallelepiped Rejection Method

c --- Cell 8 is some complex cell in which a monoenergetic isotropic

c volumetric source exists. A rectangular parallelepiped envelops

c this cell (MCNP does NOT check this!). Points, randomly picked

c in the rectangular parallelepiped, are accepted as source points

c only if they are inside cell 8.

c

SDEF X=d1 Y=d2 Z=d3 ERG=1.25 PAR=2 CEL=8

c NOTE: source parallelepiped is larger that cell 8, and hence

c source positions sampled outside cell 8 are rejected.

SI1 -12. 12. $ x-range limits for source volume

SP1 0 1 $ uniform probability over x-range

SI2 -11. 11. $ y-range limits for source volume

SP2 0 1 $ uniform probability over y-range

SI3 -13. 13. $ z-range limits for source volume

SP3 0 1 $ uniform probability over z-range

cell 8

Source in a Complex Cell: Enclosing Sphere Rejection Method

c --- Cell 8 is some complex cell in which a monoenergetic isotropic

c volumetric source exists. A sphere envelops this cell {MCNP

c does NOT check this!). Points, randomly picked in the sphere,

c are accepted as source points only if they are inside cell 8.

c

SDEF POS=0 0 0 RAD=d1 CEL=8

SI1 0 20. $ radial sampling range: 0 to Rmax (=20cm)

SP1 -21 2 $ weighting for radial sampling: here r^2

cell 8

3.5.3 Line and Area Sources (Degenerate Volumetric Sources)

Line Source (Degenerate Rectangular Parallelepiped)

c --- Line monoenergetic photon source lying along x-axis

c This uses a degenerate Cartesian volumetric source.

c

SDEF POS=0 0 0 X=d1 Y=0 Z=0 PAR=P ERG=1.25

SI1 -10 10 $ Xmin to Xmax for line source

SP1 -21 0 $ uniform sampling on line Here x^0 z

x
y

10-10
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Disk Source (Degenerate Cylindrical Source)

c --- disk source in x-y plane centered at the origin.

c This is a degenerate cylindrical volume source.

c

SDEF POS 0 0 0 AXS 0 0 1 EXT 0 RAD d1 PAR P ERG 1.25

SI1 0 11 $ radial sampling range: 0 to Rmax

SP1 -21 1 $ radial sampling weighting: r^1 for disk source

z

x

y

Rmax

Plane Source (Degenerate Rectangular Parallelepiped)

c --- rectangular plane source centered on the origin and perpendicular

c to the y-axis. This uses a degenerate Cartesian volumetric source.

c

SDEF POS=0 0 0 X=d1 Y=d2 Z=0 PAR=P ERG=1.25

SI1 -10 10 $ sampling range Xmin to Xmax

SP1 0 1 $ weighting for x sampling: here constant

SI2 -15 15 $ sampling range Ymin to Ymax

SP2 0 1 $ weighting for y sampling: here constant

z

x

y

Line Source (Degenerate Cylindrical Source)

c --- line source (degenerate cylindrical volumetric source)

SDEF pos=0 0 0 axs=1 0 0 ext=d1 rad=0 par=2 erg=1.25

SI1 -10 10 $ axial sampling range: -X to X

SP1 -21 0 $ weighting for axial sampling: here constant
z

x
y

10-10

3.5.4 Monodirectional and Collimated Sources

Monodirectional Disk Source

c --- Disk source perpendicular to z-axis uniformly emitting

c 1.2-MeV neutrons monodirectionally in the +ve z-direction.

c

SDEF POS=0 0 0 AXS=0 0 1 EXT=0 RAD=d1 PAR=1 ERG=1.2

VEC=0 0 1 DIR=1

SI1 0 15 $ radial sampling range: 0 to Rmax (=15cm)

SP1 -21 1 $ radial sampling weighting: r^1 for disk

z

x

y

Point Source Collimated into a Cone of Directions

c --- Point isotropic 1.5-MeV photon source collimated into

c an upward cone. Particles are confined to an upward

c (+z axis) cone whose half-angle is acos(0.9) = 25.8

c degrees about the z-axis. Angles are with respect to

c the vector specified by VEC

c

SDEF POS=0 0 0 ERG=1.25 PAR=2 VEC=0 0 1 DIR=d1

SI1 -1 0.9 1 $ histogram for cosine bin limits

SP1 0 0.95 0.05 $ frac. solid angle for each bin

SB1 0. 0. 1. $ source bias for each bin

z

x

y

With this conical source, tally normalization is per source particle in 4π steradians. To normalize
the tally per source particle in the cone, put WGT=1/fsa2 on the SDEF card, where fsa2 is the
fraction solid angle of the cone (0.05 in the above example).
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Biasing the Source Emission Direction

The above conical collimation trick can also be used to preferentially bias the emission of particles
in certain directions. The SIn entries are the upper bin cosine limits µi ≡ cos θi in ascending order.
The first entry is −1. Angles are with respect to the direction specified by VEC. The SPn entries give
the fractional solid angle fsai = [(1 − µi−1) − (1 − µi)]/2 for the bin from µi−1 to µi, and the SBn

entries give the desired (biased) relative probabilities for emission in each angular bin. Note the first
probability must be 0 for the unrealistic bin from (−∞,−1). From the true bin probabilities (from
the SPn card), the weights of the source particles are adjusted by MCNP to remove the bias when
scoring (or tallying) a history. A side note: it is not necessarry to normalize the sum of the pis on
the SPn or SBn cards. MCNP automatically ensures the probabilities are properly normalized.

3.5.5 Multiple Volumetric Sources

Two Cylindrical Volumetric Sources

c --- Two volumetric sources uniformly distributed in cells 8 & 9.

c Both sources emit-1.25 MeV photons. Surround both source cells

c by a large sampling cylinder defined by the POS RAD and EXT

c parameters. The rejection technique is used to pick source

c points with cells 8 and 9 with the specified frequency.

c

SDEF ERG=1.25 CEL d1 AXS=0 0 1 POS 0 0 0 RAD d2 EXT d5

SI1 L 8 9 $ source cells: src 1 =cell 8, src 2 =cell 9

SP1 0.8 0.2 $ 80% from src 1; 20% from src 2

SI2 0 50 $ radius of cyl. containing cells 8 & 9

SI5 -30 30 $ axial range of cyl. containing src cells

z

x

y

8
9

sampling
cylinder

Two Cylindrical Sources with Different Energy Photons

c --- Two spatially different cylindrical monoenergetic sources.

c The size and position of each cyl. source depends on the

c source energy (FERG).

c

SDEF ERG=d1 POS=FERG d8 AXS=0 0 1 RAD=FERG d2 EXT=FERG d5

c

c -- set source energies: .667 MeV for region 1 and 1.25 MeV for region 2

SI1 L 0.667 1.25 $ fix energies: .667 MeV for region 1 and 1.25 MeV for region 2

SP1 0.4 0.6 $ 20% from src 1(Cs-137); 80% from src 2 (Co-60)

c -- set positions of the 2 source cylinders

DS8 S 9 10 $ get position for chosen source

SI9 L -30 0 0 $ center for sampling of src 1

SP9 1 $ prob. distn for src 1 center

SI10 L 30 0 0 $ center for sampling of src 2

SP10 1 $ prob. distn for src 2 center

c -- set radius and axial limits for each source

DS2 S 3 4 $ sampling distns from each src axis

SI3 0 20 $ radial sampling limits for src1

SP3 -21 1 $ radial sampling weight for src1 r^1

SI4 0 10 $ radial sampling limits for src2

SP4 -21 1 $ radial sampling weight for src2 r^1

DS5 S 6 7 $ axial sampling distns for each src

SI6 -10 10 $ axial sampling limits for src1

SP6 -21 0 $ axial sampling weight for src1 r^0

SI7 -30 30 $ axial sampling limits for src2

SP7 -21 0 $ axial sampling weight for src2 r^0

z

x

y

source 2
sourse 1

30-30
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Two Arbitrary Volumetric Sources with Different Energy Photons

c --- Two volumetric monoenergetic sources in complex-shaped cells 8 & 9

c Spatial sampling uses the rejection technique by placing a finite

c cylinder over each source cell. A random point inside a cylinder

c is accepted as a source point only if it is inside the source

c cell. Location and size of the sampling cylinders and source

c photon energies are functions of the source cells (FCEL).

c

SDEF CEL=d1 POS=FCEL d2 AXS=0 0 1 RAD=FCEL d5 EXT=FCEL d8 ERG=FCEL d20

c

SI1 L 8 9 $ choose which cell source region to use for source

SP1 0.4 0.6 $ 40% from src 1; 60% from src 2

c -- set POS for each source

DS2 S 3 4 $ based on the cell chosen, set distribution for POS

SI3 L -30 0 0 $ center for spatially sampling of source 1

SP3 1 $ prob. distn for src 1 center

SI4 L 30 0 0 $ center for spatially sampling of source 2

SP4 1 $ prob. distn for src 2 center

c -- set RAD for each source (must completely include cells 8 or 9)

DS5 S 6 7 $ distns for sampling radially from each src axis

SI6 0 20 $ radial sampling limits for src1

SP6 -21 1 $ radial sampling weight for src1

SI7 0 10 $ radial sampling limits for src2

SP7 -21 1 $ radial sampling weight for src2

c -- set EXT for each source (must completely include cells 8 or 9)

DS8 S 9 10 $ distns for sampling axially for each src

SI9 -10 10 $ axial sampling limits for src1

SP9 -21 0 $ axial sampling weight for src1

SI10 -30 30 $ axial sampling limits for src2

SP10 -21 0 $ axial sampling weight for src2

c -- set energies of photons for each source

DS20 S 21 22

SI21 L 0.6938 1.1732 1.3325 $ Co-60 spectra for src 1

SP21 D 1.6312E-4 1 1 $ frequencies of gammas

SI22 L 0.667 $ Cs-137 spectrum for src 2

SP22 D 1

z

x

y
9

sampling
cylinder

sampling
cylinder

8
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3.6 Tally Specifications

The tally command F tells MCNP what information about the radiation field should be calculated
and output. MCNP6 has 12 basic tallies, which together with 20 ancillary commands and several
variations of the basic tallies, allow the user to estimate a great many properties of the radiation
field, such as doses at important locations from both primary and secondary particles.

With such flexibility afforded by the tally and associated commands, the about 10% of the Manual
is devoted to this topic. The theory supporting the various types of tallies available in MCNP6 is
given in Sections 2.5.1 to 2.5.9. The detailed description on the use of the tally and associated
commands is in Sections 5.9.1 to 5.9.20. Finally many examples are provided in Section 10.2. A
summary of available tallies in MCNP6 is given below.

Table 5. Types of tallies available in MCNP. The type of particle tallied is denoted by pl.

Mneumonic Tally Type Fn Units *Fn Units

F1:pl Integrated current over a surface # MeV

F2:pl Average surface flux # cm−2 MeV cm−2

F4:pl Average flux in a cell(s) # cm−2 MeV cm−2

F5a:pl Flux at a point or averaged on a ring # cm−2 MeV cm−2

FIP5:pl pin-hole flux image # cm−2 MeV cm−2

FIR5:pl planar radiograph flux image # cm−2 MeV cm−2

FIC5:pl cylindrical radiograph flux image # cm−2 MeV cm−2

F6:pl energy deposition averaged over a cell MeV g−1 jerks g−1

+F6 collison heating MeV g−1 N/A

F7:pl fission energy deposition in a cell MeV g−1 jerks g−1

F8:pl energy distn of pulses created in a cell pulses MeV

+F8:pl charge deposition in a cell charge N/A

Tallies are identified by a unique tally id integer m < 108, the last digit of which specifies the §5.9.1
tally type. Thus F4:P, F134:P, and F748374:P are all tallies for the average photon flux in a cell(s).
Multiple F cards may be placed in Block 3. Thus, for example, one could use F2:N, F12:P, and
F22:E to give the average surface flux of neutrons, photons, and electrons, respectively. Some tally
types allow multiple types of particles. For example, an energy deposition tally for both gamma
rays and electrons may be specified as F6:n,p. In the case of collision heating, +F6 always applies
to all particles in a problem; therefore, this tally has no particle designator.

The most frequently used tallies for fixed source problems are current at a surface (F1), average
flux at a surface (F2), at a point or ring (F5), and flux averaged over a cell (F4). Similar to flux
tallies over a cell are various tallies of energy deposition (F6 and F7). Unless otherwise specified with
an FM card, tallies are normalized to one source particle. Except for tallies F6 and F7, designating a
tally as *F1:P, for example, multiplies the tally of each event by the photon energy. This results in
tallies of energy flux or energy current. Tallies F6 and F7 are already in energy units.

The following sections describe the physical nature of several tallies. In the description, time
dependence is suppressed, which is the normal case in MCNP calculations. The flux is integrated
over time, and might better be called the fluence.

3.6.1 The Surface Current Tally (Type F1)

Each time a particle crosses the specified surface, its weight is added to the tally, and the sum §2.5.1
of the weights is reported as the F1 tally in the MCNP output. Note that there is no division
by surface area A. Nor is there a distinction between direction of surface crossing. When used
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with problem geometry voided (zero density), the tally is useful for verifying conservation of energy
and conservation of number of particles. Technically, if J(r, E,Ω) ≡ ΩΦ(r, E,Ω) were the energy
and angular distribution of the flow (current vector) as a function of position, the F1 tallies would
measure

F1 =

∫

A

dA

∫

E

dE

∫

4π

dΩn•J(rs, E,Ω)

*F1 =

∫

A

dA

∫

E

dE

∫

4π

dΩE n•J(rs, E,Ω)

where n is the outward normal to the surface at rs.

3.6.2 The Average Surface Flux Tally (Type F2)

A

n

Particle

si

δ

θi

Figure 4. Particle
crossing a surface at
an angle θi from the
outward normal n.

Often the fluence, averaged over some surface (or portion of a surface) is
sought. Imagine a parallel surface a very small distance δ from the surface of
interest as shown in Fig. 4. The fluence (flux density integrated over all time
or all simulated histories) is just the weighted sum of the path lengths of all§2.5.2.2
the particles passing through this incremental volume ∆V = Aδ divided by
the volume of the extended region, i.e., Φ =

∑

i Wisi/∆V , where Wi is the
weight of particle i. The path length for the particle shown is si = δ/| cos θi|
where θi is the angle between the particle’s exit direction and the outward
normal n. Thus, the fluence contribution of the ith particle crossing the
surface is Φi = limδ→0(Wiδ/| cos θi|)/Aδ = Wi/(A| cos θi|) = Wi/(A|Ωi•n|).
Every time a particle crosses the surface, the value of its Wi/ cos θi is added
to the tally. Of course, many histories may not cross the surface in question
and so no score is contributed to the tally. Finally, after N histories the

average fluence, per source particle, is estimated as

F2 =
1

A

∫

A

dA

∫ ∞

0

dE

∫

4π

dΩΦ(r, E,Ω) ' 1

NA

N
∑

i=1

ni
∑

j=1

W j
i

| cos θj
i |

∗F2 =
1

A

∫

A

dA

∫ ∞

0

dE

∫

4π

dΩEΦ(r, E,Ω) ' 1

NA

N
∑

i=1

ni
∑

j=1

EiW
j
i

| cos θj
i |

(1)

where ni is the number of surface crossing made by the ith particle,8 W j
i the ith particle’s weight

on its jth crossing, and θj
i is the angle with respect to the outward normal at the jth crossing. Here

Φ(r, E,Ω) is the energy and angular fluence normalized to one source particle.

It should be noted that the variance of this fluence estimator is infinite and, hence, the central
limit theorem can not be used to estimate confidence intervals. If many particles cross the surface
in nearly tangential directions, i.e., cos θ is very small, the tally contributions becomes very large.
To avoid such large scoring events, MCNP sets |µ| = 0.0005 whenever |µ| < 0.001|. Because of this
approximation the F2 surface flux tally is not quite exact.

3.6.3 The Average Cell Flux Tally (Type F4)

The idea behind the F2 tally, i.e., Φ = sum of path lengths in V /V , can also be extended to deter-
mine the average fluence in the volume of a cell. In this type of tally, the sum of path lengths si

each particle makes in the volume V of interest is accumulated (see Fig. 5). Again, if a particle
history never reaches the cell in question, then si = 0. The average fluence, per source particle, is
then estimated as

F4 ' 1

NV

N
∑

i=1

ni
∑

j=1

W j
i s

j
i ,

8Typically ni is 0 or 1. But a particle may make several crossing especially if the surface is re-entrant.
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s7
s2

s5

s3

s8

s6

s1

V

Figure 5. Particle paths in a
cell of volume V .

where ni is the number of times the ith particle enters V , sj
i is

the jth track length in V , and W j
i is the particle’s weight when

entering V for the jth time. By breaking the energy range into
a contiguous set of bins and adding each weighted path length to
the tally in the appropriate energy bin, the energy spectrum of the
volume-average fluence can be estimated as

ΦV (E) ≡ 1

V

∫

V

dV

∫

4π

dΩΦ(r, E,Ω) ' Si

NV∆E
, (2)

where ∆Ei is the width of the energy bin containing Ei and Si

is the weighted sum of path lengths tallied in that energy bin.
As before the tally for each particle can be multiplied by some
function R(E) so that when the results in each energy bin are
summed, the average value of

∫

dER(E)ΦV (E) is estimated. In
particular, if R(E) = 1 or E one obtains F4 or *F4, respectively.

If the volume V is large so that many histories enter it, the path-length estimator is generally
a good tally. If the region is a thin curved shell most track lengths have similar lengths and the
estimator has a small variance. By contrast, for a regions bounded by two closely spaced parallel
planes, there may be a wide variation in the track lengths through the region, and the resulting
path-length estimator may have a large variance. The path length estimator is also computationally
quite efficient, since particle tracking already computed the track lengths in the regions, so little
extra effort is needed for this tally.

3.6.4 Flux Tally at a Point or Ring Detector (Type F5)

Point Detector A very powerful technique for scoring is to combine deterministic tally contribu-
tions and the stochastic collisions that occur during a history. One such estimator is the next event §2.5.6.1
estimator. To simplify description of this type of tally, assume that calculations are being performed
in a uniform medium. Consider the small spherical detector, with cross sectional area dA, shown in
Fig. 6. A particle traveling in direction Ω′ has a collision at r′. The collision may not be a scatter,
and even if it were a scatter, it is very unlikely to scatter in the direction of the detector or even
reach it to contribute to the fluence tally for the detector. However, one can analytically calculate
the probability the particle will scatter at r′ and reach the detector without further interaction, and
thus provide a contribution to the fluence tally for the detector, thereby short-cutting the Monte
Carlo process.

The probability the particle with energy E scatters at r′ through a scattering angle θs and has
a new direction of travel in dΩ about Ω with energy E′ is9

p1 =
µs(E, ωs) dΩ

∫ 2π

0
dψ

∫ 1

−1
dωsµs(E, ωs)

=
1

2π

[

µs(E, ωs)
∫ 1

−1
dωsµs(E, ωs)

]

dΩ =
p(ωs)

2π
dΩ,

where p(ωs) is the PDF (defined by the terms in the square brackets) for scattering through an
angle θs = cos−1 Ω•Ω′. The distance between r′ and rd is R = |r′ − rd| so that dΩ = dA/R2. The
probability that such a scattered particle actually reaches the detector without further collision is
p2 = exp [−µt(E

′)R], where the argument of the exponential is the total number of mean-free-path
lengths between r′ and rd.

The flux density can be interpreted as the number of particles entering a spherical detector of
cross sectional area dA divided by dA [Shultis and Faw, 2002]. Thus, the contribution to the fluence
made by the particle with weight W that interacts at r′ is

δΦ = W
µs(E)

µt(E)

p1p2

dA
= W

µs(E)

µt(E)

p(ωs)

2πR2
exp [−µt(E

′)] .

9Here µi is the interaction coefficient or macroscopic cross section for interactions of type i. The Manual uses the
symbol Σi.
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rd

r ′

R dA

θs

Ω′

dΩ

Ω

Figure 6. A particle moving in direction Ω′ makes a collision at
r′ and scatters towards a small spherical detector at rd of cross
sectional area dA and a distance R = |r′ − rd| from the scattering
point.

This result is independent of dA and, thus, is used as a fluence tally for a point detector at rd.
After each interaction in a particle’s history, an estimate is made deterministically for the expected
contribution of that interaction to the fluence at point rd.

A difficulty with this point detector tally occurs when the tally point lies within a scattering
medium. Because of the 1/R2 term in the above equation an enormous contribution is made to the
tally if an interaction occurs very near the tally point. In fact, in a scattering region the variance
of this estimator is infinite! An infinite variance, however, does not mean the tally cannot be used;
indeed the tally will converge, but the asymptotic behavior is reduced to 1/ 3

√
N , slower than the

1/
√
N convergence for a tally with a finite variance [Kalos et al. 1968]. Of course, if the tally point

is in a vacuum or non-scattering medium no such problem occurs.

MCNP avoids the infinite variance in a scattering medium by surrounding the tally point by a
small sphere of radius Ro and, if an interaction occurs with R < Ro, the F5 tally records the average
fluence uniformly distributed in the volume, i.e.,

δΦ(R < Ro) =

∫

Φ dV
∫

dV
= W

µs(E)

µt(E)

p(ωs)

2π

∫ Ro

0

1

r2
e−µt(E

′)r(4πr2) dr

4
3πR

3
0

= W
µs(E)

µt(E)
p(ωs)

3(1 − e−µt(E
′)Ro)

2πµt(E′)R3
o

.

Although the next event estimator can produce good estimates of the fluence at a point, its
convergence may be rather slow. Further, F5 tallies are computationally expensive because a tally
contribution is calculated every time a particle has any interaction even when it is far from the
detector and makes very many small and negligible contributions δΦ. This problem is aggravated
with multiple F5 detectors.

Ring Detector If the problem is axially symmetric about one of the coordinate axes, then a ring§2.5.6.2
detector centered on the symmetry axis experiences the same fluence at all points on the ring. With
a ring detector a point on the ring is randomly sample and the fluence contribution δΦ is calculated
as for a point detector for each interaction a particle makes. The advantage of a ring detector over
a simple point detector is that sampling the tally point on the ring can be biased to obtain points
closer to the interaction site, i.e., R is smaller (and δΦ larger) than if the sampling were uniform
around the ring. The biased sampling is discussed in Section 2.5.6.2 of the Manual. Unlike the point
detector, a ring detector has a finite variance.
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3.6.5 Tally Specification Cards

At least one tally card is required, with the first entry on the card being Fn:pl, in which n is the tally
id number (the last digit of which determines the type of tally), and pl stands for N (neutron tally),
P (photon tally), N,P for joint neutron and photon tallies, and E for electron tallies. Following
the tally type is a designation of the surfaces for the tally (types F1 and F2), or the cells (tally
F4). For the type 5 detector tally, there follows a designation of the position of the detector. The
energy deposition, pulse-height, and other specialized tallies are not discussed in this primer. In the
subsections below, several examples are given to demonstrate the parameters on the Fn:pl card.

Surface and Cell Tallies: The card §5.9.1.1

F1:E 1 2 T $ current through a surface

specifies electron current tallies through surfaces 1 and 2, and the total (T) over both surfaces. Note
that the current tally is not divided by surface area. The card

F2:P 1 (1 2) (2 3 4) T $ fluence averaged over surfaces

specifies photon surface-integrated fluence tallies for surface 1, the average over surfaces 1 and 2,
the average over surfaces 2 through 4, and the average (T) over all surfaces 1 through 4. Similarly,
the card

F4:N 1 (2 3 4) $ fluences averaged over cells

specifies cell-averaged neutron fluence tallies for cell 1 and for cells 2 through 4. No composite
average is called for.

Point-Detector Tallies: In the sense of an experiment or a Monte Carlo calculation, as the volume §5.9.1.2
of a cell approaches zero, the path length segments in the cell and the number of particles intersecting
the surface of the cell also approach zero and, hence, the flux tally becomes indeterminate. However,
there is a way of computing the flux at a point by using the deterministic last-flight-estimator tally
F5. This tally is invoked by a card such as

F75:P X Y Z R $ point detector

Here 75 is the tally number, the last digit 5 denotes the F5 tally type, and P specifies the tally is for
photons. The values of X, Y, and Z specify the coordinates of the point detector, and R designates
the radius of a spherical exclusion zone surrounding the detector point. The need for an exclusion
zone is evident from the 1/r2 term in the flux contribution tallied, namely,

δΦ =
W

4πr2
e−µ(E)r ,

where r is the distance between the particle interaction site and the point detector. If r approaches
zero, the tally contribution approaches infinity. Such large contributions make the F5 tally much
less stable than the cell (F4) or surface (F2) flux tally. This instability is minimized by establishing
a spherical “exclusion volume” of radius R centered on the point detector. For interactions occurring
within this exclusion zone, an abnormally large tally contribution is avoided by scoring the fluence
uniformly averaged over the exclusion spherical surface. The exclusion radius R can be specified,
as a positive number (centimeters, and is the preferred method), or a negative number (mean free
paths). Typically, R should be about 0.2 to 0.5 mean free path (averaged over the energy spectrum
at the sphere). For a point detector inside a void region, no interactions can occur near the detector
and R should be set to zero. Finally, several point detectors may be specified on one tally card, e.g.,

F5:P X1 Y1 Z1 R1 X2 Y2 Z2 R2

Ring Detectors: The manual also describes the use of a ring detector – useful for problems with §5.9.1.2.2
symmetry about one of the problem axes. The form of this command is

Fna:pl ao r ± Ro $ ring detector

where n is the tally number (last digit 5), a is X, Y, or Z to denote the symmetry axis, pl the particle
type (P,N,...), ao distance along axis a where the plane of the ring intersects the axis, r is the ring
radius, and Ro is the exclusion radius around the ring (as discussed above).
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3.6.6 Cards for a Few Optional Tally Features§5.9.2 to
§5.9.20

The MCNP6 Manual describes 20 optional commands that modify the output from a specified type
of tally. Three such tally modification commands, which are frequently used, are sorting a tally
into energy bins (the En card), multiply a tally by some quantity (the FMn card), and multiply each
tally contribution by a fluence-to-response conversion factor (the DEn and DFn cards). These are
addressed individually below.

The Tally Energy Card: Suppose one wanted to divide the total flux or current normally produced§5.9.3
by tally Fn into energy groups, say E1 to E2, E2 to E3, and E3 to E4. This might be useful, for
example, to isolate an uncollided component of the flux. This may be accomplished by use of a tally
energy card (En card), such as

E24 E1 E2 E3 E4 $ energy bin boundaries

With this card the results for tally 24 (of type F4) are binned into four energy groups where E1,
E2, E3 and E4 are the group (bin) upper limits. The lowest bin would extend down from E1 to zero
(or to a specified cutoff energy) for the type of particle being tallied. To create m equispaced bins
between E1 and Emax use

E34 E1 mi Emax $ m linear interpolates + one bin from 0 to E1

If all tallies in a problem have the same energy group structure, a single card may be used, with En

replaced by E0.

The Energy Multiplier Card: Associated with the tally energy card is an optional energy multiplier§5.9.9
EMn card of the form

EMn M1 M2 M3 M4 $ multiply energy bin k by Mk

Here the multiplier Mk is applied to each contribution to the tally for the kth energy group. This
card is useful, for example, to convert a fluence per source photon to a flux per curie source strength.
For this example, one would add the following EM card for, say tally F64.

EM64 3.7E+10 $ (photons per sec)/curie (assuming 1 photon/decay)

The units of tally F64 would then be “photons (cm−2 s−1) per Ci.”

Dose Energy and Function Cards: Suppose one wanted to compute a dose rate of some type§5.9.8
associated with a flux or current tally, either total or by energy group. For example, suppose one
wanted to compute

*F4 =
1

V

∫

V

dV

∫

E

dE

∫

4π

dΩ<(E)Φ(r, E,Ω),

in which <(E) is a fluence-to-dose conversion factor. MCNP will carry out this calculation, obtaining
values of <(E) by interpolation of values specified in a table placed in the input file. The form of
the table is

DE4 A E1 E2 ... Ek $ energy grid for fluence-to-dose factors

DF4 B F1 F2 ... Fk $ fluence-to-dose conversion factors

Entries E1 through Ek are tabulated values of energy and F1 through Fk are corresponding tabulated
values of <(E). Entries A and B, either LOG or LIN, specify linear or logarithmic interpolation. If
omitted, the default is logarithmic interpolation for both variables. If all tallies are to have the same
dose conversion factors, a single table, designated by DE0 and DF0, may be used to avoid repeating
the table.

The Tally Comment Card: If tallies are modified, it is good practice to explain the modification§6.9.2
in a comment card that will be printed in the output file for the calculation. For example, an
explanation of tally Fn could be entered in the card

FCn This tally has units of Sieverts per source photon

Continuation lines may be added so long as there are blanks in columns 1 through 5.
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3.6.7 Miscellaneous Block 3 Commands

The Mode Card: This card is used to specify the type of particles to be to be tracked. Every
input file must have a MODE card somewhere in block 3 of the input file. In the command line MODE §5.7.1
x, the variable x may be just a single particle such as P, E, etc. or a combination such as N P E. A
minus sign [-] in front of a particle’s symbol means the antiparticle. Thus MODE E F, MODE E -E,
and MODE F -F are equivalent.

Time and History Cards: The usual method for limiting how long MCNP runs is to specify either §5.13
the maximum number of source particle histories or the maximum execution time. The maximum
number of histories N is specified as NPS N. Alternatively, the maximum computing time T, in minutes,
may be specified by the card CTME T.

The Print-and-Dump Cycle Card: By default, an output file is created only at the conclusion of §5.13.5
a calculation, a binary continuation file, RUNTPE, is written every 15 minutes, and no tally-plot
file, MCTAL, is written. Options to control the dump cycle are provided by the PRDMP card

PRDMP NDP NDM MCT NDMP DMMP

Here NDP is the increment for printing tallies in the output file (> 0 the number of histories, < 0
the time in minutes, = 0 for no intermediate dump); NDM is the increment for writing a continuation
RUNTPE file (> 0 the number of histories, < 0 the time in minutes, = 0 to suppress all intermediate
dumps); MCT is a flag to write tallies for plotting (1 yes, 0 no); NDMP is the maximum number of
dumps written in the RUNTPE file (all by default); and DMMP is related to the use of multiple
processors in the execution of MCNP. A typical card might read

PRDMP 0 -60 $ create continuation RNTPE every 60 min.

With this card, at most, 60 minutes of computing time would be lost if a calculation were aborted.

3.6.8 Short Cuts for Data Entry

nR repeats the preceeding entry n times. Thus IMP:n 2 4R produces IMP:n 2 2 2 2 2.
nI generated n linear interpolates. Thus E24 1 3I 5 produces E24 1 2 3 4 5.
xM multiplies previous entry by x. Thus IMP:n 2 2X 3X 2X produces IMP:n 2 4 12 24.
nJ jumps over n items. Thus PHYS:P 4J 1 changes the default physics PHYS:p 100 0 0 0 0 J 0

PHYS:p 100 0 0 0 1 J 0.

3.7 Running MCNP6 §3.3.2

If the input file is named inp, then running MCNP is as simple as entering the the command MCNP6

in the MCNP command (DOS) window, which the installation of MCNP placed on your computer’s
desktop (after the window is set to the directory containing inp). However, one generally also
specifies additional information. The general form of the executable command is

mcnp6 KEYWORD=value ... KEYWORD=value execution_option(s) other_options

where each instance of KEYWORD is one of 25 MCNP6 default file names (see Table 3.4 of the Manual)
that the user wants to change, execution option(s) specify which of 5 execution module(s) are
to be run, and other option(s) provides the user with additional execution control. The KEYNAME

requires only enough letters of the default name to identify it uniquely. Much of this file renaming
and option specification can be placed in block 0 (message block) of the input file to minimize typing
for the MCNP6 executable command.

Interrupting a Run: MCNP6 allows the following interactive interrupts while running.

〈ctrl+c〉, k kills the job immediately without normal termination. If this re-
quest fails, enter 〈ctrl+c〉 three or more times.

〈ctrl+c〉, q stops the job normally after the current history
〈ctrl+c〉, s gives the status of the job (number of particles and collisions pro-

cessed so far and the time used)
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4 Variance Reduction

The challenge in using MCNP is to minimize the computing expense needed to obtain a tally estimate§2.7
with acceptable relative error (as well as satisfying nine other statistical criteria). For many deep-
penetration problems, a direct simulation (analog MCNP) would require far too many histories to
achieve acceptable results with the computer time available. For such cases, the analyst must employ
“tricks” to reduce the relative error of a tally (or its variance) for a fixed computing time, or to
reduce the computing time to achieve the same relative error.

Two basic approaches can be applied to reduce the computational effort for a particular problem:
(1) simplify the MCNP model, and (2) use non-analog simulations. In the first approach, the model
geometry and the physics used to simulate particle transport can often be simplified or truncated.
For example, it is a waste of computing effort to use a detailed geometric model of a region that
is far from the detector tally location and that has little influence on the radiation field near the
detector. Similarly, it is a waste of computer time to track neutrons as they thermalize in a shield
if only the fast neutron fluence in some structural component is sought. For such a problem, once a
neutron leaves the fast energy region, it can be killed without affecting the tally.

The second basic approach to reduce the variance of a tally is to modify the simulation pro-
cess itself by making certain events more or less probable than actually occur in nature. Such a
modified simulation is referred to as nonanalog Monte Carlo. As discussed in this section, MCNP
has many nonanalog options many of which an analyst can use in combination to make a difficult
analog problem much more tractable. These nonanalog tricks can be categorized into three general
methods: (1) population control, (2) modified sampling, and (3) partially-deterministic calculations.
In population control, for example, the number of particles in regions of high/low importance can
be artificially increased/reduced. In modified sampling methods, certain events can be altered from
their natural frequencies. Finally, in the partially-deterministic methods, part of the random-walk
simulation can be replaced by a deterministic point-kernel type of calculation.

4.1 Tally Variance

Before discussing the tricks used to reduce the variance of MCNP tallies, it is appropriate to examine§2.6.1
exactly what it is that we are trying to reduce. When we run a Monte Carlo simulation, the ith
history contributes a score xi to the tally. If the particle (or its daughters) never reaches the tally
region, then xi = 0, whereas, if it reaches the tally without interaction, the score xi often is very
large. The probability any history will contribute a score between x and x+dx is denoted by p(x) dx
where p(x) is a probability distribution function (PDF). In an MCNP simulation, we seek the mean
score (or expected value) of x, namely

〈x〉 ≡
∫ ∞

0

x p(x) dx. (3)

Unfortunately, we don’t know p(x) a priori (although MCNP will construct it and generate a plot
of it — see Section 2.6.8.6). Instead, MCNP approximates 〈x〉 by the average x of the scores of N
particles, i.e.,

x ≡ 1

N

N
∑

i=1

xi. (4)

As N → ∞, the strong law of large numbers guarantees that x→ 〈x〉, provided 〈x〉 is finite.

The variation in the different scores xi is measured by the standard deviation of the population
(histories), which for large N

S2 ≡ 1

N − 1

N
∑

i=1

(xi − x)2 ' x2 − x2, (5)
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where

x2 ≡ 1

N

N
∑

i=1

x2
i . (6)

The estimated variance of the average x is then

S2
x =

1

N
S2. (7)

The central limit theorem states that if we repeated the simulation a large number of times (each
with N histories), the variation of the means x from each simulation will be distributed normally
about the true mean 〈x〉 and have a variance S2

x. It is this uncertainty or variance we are trying to
reduce in our MCNP simulations, i.e., for a fixed number of particles, we seek an estimate x which
has the least uncertainty or minimum Sx.

4.1.1 Relative Error and FOM

In any variance reduction method, we change the simulation and hence change the underlying §2.6.4
distribution p(x) so that it produces fewer zero-score histories and becomes more concentrated
about its mean 〈x〉. By making p(x) more concentrated about its mean (which remains the same
as the mean of the analog PDF), the variance of the mean S2

x will be less than that of the analog
PDF, i.e., our estimate of the mean will be more precise.

For each tally, MCNP not only calculates the sample mean x, but several other statistics. One
of the most important is the relative error R defined as

R ≡ Sx/x. (8)

Clearly, we want to make R as small as possible with as few histories as possible. As discussed in
the manual, R generally must be less than 0.1 for meaningful results (and even smaller if point/ring
detectors are used). From Eqs. (7) and (8), it is seen that R ∼ 1/

√
N . Thus increasing the number

of particle histories is generally a very poor way of reducing R. This property of the relative error is
the great weakness of the Monte Carlo method, because, generally, many histories must be generated
to obtain acceptable results.

Another important statistic generated by MCNP is the figure of merit (FOM). This is defined as §2.6.5

FOM ≡ 1

R2T
, (9)

where T is the simulation time, which is proportional to N the number of histories run. Since
R2 ∼ 1/N , we see that, except near the beginning of the simulation, the FOM should remain
relatively constant. Also, for different simulations of the same problem, the simulation with the
largest FOM is preferred since it requires the least time or produces a specified relative error.

Now on to ways of how to perform nonanalog techniques with MCNP.

4.2 Truncation Techniques

The basic idea behind truncation methods is to reduce the time per particle history by either
simplifying the geometry or the physics used to generate the random walk for each particle. Proper
application of this approach for variance reduction requires considerable experience and intuition
by the analyst, since any simplification in the geometry or physics introduces a bias into the tally.
Although a very precise (i.e., low variance or relative error) can be achieved, the tally estimate
may not be very accurate. Generally, multiple runs with different approximations must be made to
assess the importance of any simplification. MCNP can give you no warning about errors caused by
geometric simplifications. Even for physics simplifications, MCNP produces, at best, a warning in
the output, but no indication of whether serious bias has been introduced.
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4.2.1 Energy, Time and Weight Cutoff

The CUT command is used to specify a minimum energy, time, or particle weight below which the§5.7.4.1
particle is killed. The values specified on the CUT card apply everywhere in the geometry. Here is
an example:

CUT:p j 0.075 $ kill photons with E < 75 keV

In this example, whenever a photon falls below 75 keV, it is killed. The CUT command has 5
parameters. The first is a time limit for an individual history, which in the above example is
specified as j to jump over the default value of a very large time. Parameters 3 to 5 are limits on
the weights of particles.

The ELPT is like the CUT card, but allows you to specify the cutoff on a cell-by-cell basis. For§5.7.4.6
example,

ELPT:p 0.01 0.02 0.03 0.04 0.05 $ energy cutoffs

terminates photons in cell 1, 2, 3, 4, and 5 that have energies less than 10, 20, 30, 40, and 50 keV,
respectively. Should both the ELPT and the global CUT commands be used, the higher limit prevails.

The CUT and ELPT commands are particularly useful for energy deposition tallies for which low
energy particles make little contribution. However, for neutron problems, use CUT and ELPT carefully
since low energy neutrons cause most of the fissions and produce most of the capture gamma photons.

4.2.2 Physics Simplification

The PHYS command is used to specify energy cutoffs and the physics treatments to be used for§5.7.2
photons, neutrons and electrons. Each particle has different parameters which are specified with
this command.

Photons: There are two inherent physics approximations for photon interactions in MCNP: (1)
only K and L edges are considered for photoelectric interaction, and (2) no triplet production (pair-
production near an orbital electron). In addition, other physics simplifications can be imposed with
the PHYS card. This card has the form

PHYS:P EMCPF IDES NOCOH PNINT NODOP

The EMCPF parameter is the energy in MeV above which simple physics is to be used. In simple
physics, no fluorescence from photoelectric interactions is produced, no binding effects are used in
photon scattering, and no coherent scattering is included. IDES= 0/1 indicates that Bremsstrahlung
is included/ignored for MODE P and, for MODE P E, electron production and transport is used/not
used. NOCOH= 0/1 specifies that coherent scattering is included/ignored. PNINT= −1/0/1 indicates
photonuclear interactions are used in an analog manner / not used / used with a bias. If PNINT 6= 0
there must be a MPNn card following the material Mn card. Finally, NODOP= 0/1 turns Doppler
broadening (from the speed of bound electrons) on/off. The default is

PHYS:P 100 0 0 0 0 $ 100 MeV, brems, coh scat, no photonuc, Doppler

The various physics options selected can greatly affect the run time, especially if electron trans-
port is turn on. As an example of how different physics simplifications can affect the run time,
consider a point isotropic source emitting 7-MeV photons into an infinite iron medium. The ambi-
ent dose equivalent 20 cm from the source is estimated by using an F2 spherical surface detector.
In Table 6 the tally mean and the runtime are shown for different physics assumptions. Notice that
turning Bremsstrahlung off more than halves the compute time with only about a 15% reduction in
the estimated dose. Thus, the no Bremsstrahlung option is very effective for initial scoping calcula-
tions. Also notice that using simplified photon physics increases the compute time, a mystery to the
authors. Although not shown in the table, if secondary electron transport had been used instead of
the thick-target Bremsstrahlung approximation (by invoking the MODE P E command) the compute
time is very much longer (about 1700 minutes for the test problem). Use electron transport only
when necessary!
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Table 6. MCNP6.2 results with different physics models for a point 10-MeV photon source in an
infinite lead medium. Tally is the ICRP 1987 ambient dose equivalent at 5 cm from the source.
Results are for simulations of 4×106 source photons, split among 8 tasks, on an Apple M2 Pro Mac
Mini All cases passed the 10 statistical tests, unless otherwise noted.

MCNP6
Description*

F2 Tally Relative
FOM

mcrun Time
Commands (Sv/photon) Error (min)

PHYS:P 100.0 0 0 0 0 J 0 default: dphys + brem
+ coh + no pn + dop 1.20610E-14 0.0010 293 393 3.31

PHYS:P 10.0 0 0 0 1 J 0 dphys + brem + coh
+ no pn + no dop 1.20597E-14 0.0010 293 685 3.26

PHYS:P 10.0 0 1 0 1 J 0** dphys + brem + no coh
+ no pn + no dop 1.20609E-14 0.0010 290 038 3.21

PHYS:P 0.0 0 0 0 0 J 0*** sphys + brem + coh
+ no pn + dop 1.20775E-14 0.0010 148 802 6.60

PHYS:P 0.1 0 1 0 1 J 0 sphys > 10 keV + brem
+ no coh + no pn + no dop 1.20873E-14 0.0010 145 006 6.73

PHYS:P 10.0 1 1 0 1 J 0 dphys + no brem + no coh
+ no pn + no dop 7.11461E-15 0.0015 864 296 0.49

PHYS:P 0 1 1 0 1 sphys + no brem + no coh
+ no pn + no dop 7.11551E-15 0.0015 965 105 0.44

no PHYS card default: + kill photons
CUT:p j 0.1** if E < 0.1 MeV 1.20321E-14 0.0010 696 922 1.32

* dphys = detailed physics, sphys = simple physics; coh = coherent scatter; pn = photonuclear brem =
Bremsstrahlung; dop = Doppler broadening

** Did not pass VoV Decrease Rate Test

*** Did not pass PDF Slope Test

Neutrons: MCNP with its integrated neutron cross section libraries is an ideal tool for neutron
transport studies. Nevertheless there are several approximations MCNP uses for neutron inter-
actions: (1) secondary particles from neutron interactions are sampled independently, (2) delayed
gammas from fission products are ignored so about one-half of the steady-state gamma-ray energy
is ignored, (3) treatment of temperature effects with the S(α, β) method is limited to about 15
moderators, and (4) the number of fission neutrons is always sampled from the closest two integers
about ν(E).

For neutrons the PHYS card has only four parameters, namely

PHYS:N EMAX EMCNF IUNR DNB

The EMAX parameter is the energy in MeV above which neutron data is not placed in memory
(default is very large). Neutrons below EMCNF (in MeV) are treated by analog capture while above
EMCNF implicit capture is used (see next section). If IUNR= 1 the averaged cross sections above the
resolved cross section region are used, while if IUNR= 0 (the default) probability tables, describing
interactions over the myriad levels and widths of the unresolved resonances, are sampled. The final
parameter DNB specifies if ν(E) includes prompt plus delayed neutrons (= −1, the default), or if
only propmt neutrons are included (= 0), or if DNB(> 0) delayed neutrons per fission are to be used.
Here is an example.

PHYS:n 5.0 0.1 $ max sigma table energy; analog capture below 100 keV

Here cross section data only below 5 MeV is retained (to save data storage memory). For neutrons
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below 0.1 MeV, analog absorption (direct simulation) will be used, while above 0.1 MeV, implicit
absorption is used.

4.2.3 Histories and Time Cutoffs

Normally an MCNP run is terminated when a certain number of particle histories have been run§5.13.1.1 ,
§5.13.1.2 or a desired computing time has been exceeded. These cutoffs are specified by the NPS and CTME

commands such as

NPS 1000000 $ stop after a million source particles have been run

CTME 20.0 $ stop run after twenty minutes

If both are specified, the first cutoff to occur causes program termination.

4.3 Nonanalog Simulation

In many problems, very few of the source particles reach the detector or region used for the tally, i.e.,
most particles produce a zero score. The number of particles reaching the tally region can, however,
often be dramatically increased by abandoning a strict analog simulation. Of course, the expected
value of the tally must not be changed. How can the tally remain unchanged when we artificially
force more particles to the scoring region? The key is to assign each particle a weight, and, as the
particle is “forced” towards the scoring region, the particle weight is decreased in a manner such
that the average of the particle weights reaching the detector is the same as the expected tally in a
true analog simulation. Thus, if we make a certain event in a particle history m times more likely,
we must multiply the particle’s weight by 1/m to avoid biasing the tally expectation.

MCNP has many nonanalog simulation options whose use, often in combination, can decrease
the variance of a tally without increasing the computational expense.

4.3.1 Simple Examples

To understand the basic idea of nonanalog techniques, consider the simple slab transmission problem
illustrated in Fig. 7. In this problem a point isotropic source is placed on one side of a slab shield,
and the problem is to determine the fraction of source particles that reach the opposite face of the
slab. A direct analog simulation is represented by Fig. 7(a).
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Figure 7. Examples of analogue and nonanalogue Monte Carlo simulations.

æ

Source Biasing: A non-analog simulation can considerably reduce the computing effort compared
to an analog simulation. For example, in the analog simulation half of the source particles are
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“wasted”, i.e., those emitted away from the slab cannot reach the scoring surface and computer
time is wasted sampling backward source directions and tracking these particles to the left problem
boundary. It would be more efficient to start each source particle towards the slab, as shown in
Fig. 7(b). However, by restricting or biasing the source emission directions to only those oriented
toward the slab, twice as many particles will subsequently penetrate the slab in case (b) compared to
analog case (a), for the same number of particle histories tracked. To avoid doubling the transmission
tally (no. transmitted per real (analog) source particle), we adjust the source particle’s weight in the
biased simulation to be 0.5. Thus the average of the weights of transmitted particles still equals the
particle transmission fraction obtained with the analog simulation. Moreover, for the same number
of source particles, twice as many reach the tally surface in case (b) compared to case (a), and thus
the variance of the case (b) tally is less.

Splitting: Another technique for increasing the number of particles reaching the scoring surface
is illustrated in Fig. 7(c). Here the slab is conceptually divided into two sublayers. Whenever a
particle crosses from the layer nearest the source to the layer nearest the tally surface, it is split
into two particles, each with half of the original particle’s weight and both moving with the same
velocity as the original particle. The random walk simulation is then performed independently for
each new particle, beginning at the entry point into the second layer of the original particle. Twice
as many particles will now reach the tally surface (thereby reducing the tally’s variance); but, since
their weights have been reduced by one-half, the expected tally value remains unchanged.

Russian Roulette: When a particle reaches a region of space far from the tally region it is unlikely,
with further random walk simulation, to reach the tally region, and the run time can be reduced
by terminating or killing such a particle. Thus, in the example case (c), when a particle in the
right-hand sublayer returns to the first left sublayer, we may think it has a relatively poor chance
of returning yet again the right sublayer and reaching the tally surface. When a particle renters
the first layer from the second, the particle is hence killed with a probability of 0.5. If the particle
survives this winnowing process, its weight is increased by a factor of two, to keep the simulation
unbiased, and the particle’s random walk continues.

Implicit Absorption: Those particles which are tracked through the slab but are absorbed before
they reach the tally surface represent wasted computing effort. Another variance reduction trick is
to replace analog capture with implicit capture. At a collision site, a particle is killed, in an analog
simulation, with a probability σa/σt (analog capture). However, in implicit capture, the particle is
allow to continue on its trajectory as if no interaction had occurred but with the particle’s weight
changed to 1− (σa/σt) times its original weight. In this way, no particles are lost due to absorption,
but absorption effects are properly accounted for.

4.4 MCNP Variance Reduction Techniques

MCNP offers a variety of variance reduction techniques based on different nonanalog simulations. §2.7.2.1-4 ,
§5.12The art of using MCNP to solve difficult problems is to use these program features to obtain both

precise and computationally efficient results. In this section, the use of several of the most useful
variance reduction techniques are described.

The variance reduction techniques offered by MCNP can be categorized as follows:

1. Population Control Methods: These methods artificially increase/decrease the number of par-
ticles in spatial or energy regions that are important/unimportant to the tally score. Specific
population control methods include

• Geometry splitting and Russian roulette (IMP)

• Energy splitting/roulette (ESPLT)

• Weight cutoff (CUT, PWT)
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• Weight windows (WWE, WWN, WWP, WWG, WWGE)

2. Modified Sampling Methods: These methods artificially increase the likelihood of events that
increase the probability a particle reaches the tally region. Included in MCNP are

• Exponential transform (EXT, VECT)

• Implicit capture (PHYS)

• Forced collisions (FCL)

• Bremsstrahlung biasing (BBREM)

• source direction and energy biasing (SDEF, SP, SB, SI)

• neutron-induced photon production biasing (PWT)

3. Partially Deterministic Methods: These method replace the random-walk process by a deter-
ministic process (e.g., exponential attenuation) to move particles from one region to another.
In MCNP the following are available:

• Point and ring detectors (F5a)

• DXTRAN spheres (DXT, DXC)

• Correlated sampling (PD)

The selection of effective variance reduction methods for a particular problem requires consid-
erable experience and skill on the part of the analyst in interpreting the MCNP output. To gain
experience in using these variance reduction techniques, the novice is encouraged to try using them
on simple problems, sometimes separately and sometimes in various combinations. Through such
experimentation, valuable experience and insight into variance reduction is gained. In the sections
below, some of the simpler variance reduction techniques are discussed and illustrated.

4.4.1 Geometry Splitting

In geometry splitting, importances are assigned to each cell in the problem. Generally, cells near the§2.7.2.7 ,
§5.12.1 tally region should have a greater importance than cells farther away. When a particle leaves a cell

with importance I1 and enters a cell of importance I2, the particle is split/rouletted according to
the ratio I2/I1. For example, if I2/I1 = 2.75 the entering particle is split into three particles with
75% probability and into two particles with 25% probability. If I2/I1 = 0.6, the entering particle is
killed with 40% probability and allowed to survive with 60% probability. Of course, in each splitting
or Russian roulette the weight of the remaining particles is adjusted to leave the tally unbiased.
This technique of geometry splitting with Russian roulette is very reliable since, if no other biasing
techniques are used, all the particles in a cell will have the same weight regardless of the paths taken
to reach the cell. The importance of a cell can be defined on the cell definition line, such as

c Set cell importance on the cell definition line

20 1 -7.86 10 -20 IMP:p=7 $ cell 20; matl 1; density; defn; importance

or the importances of all cells can be set in Block 3 with the IMP command

c Set cell importances in a geometric progression

IMP 1 2m 2m 2m 2m 2m 0 $ import. of cells 1--7 = 1 2 4 8 16 32 0

The importance of a cell is intimately related to the average adjoint fluence in the cell (a quantity
generally not known a priori). As a practical matter, the cell importances should be adjusted so
as to keep the population of particles in the cells relatively constant as one moves from the source
region to the tally region. First, perform a short run with all importances set to unity, examine the
“cell population” found in output print table 126, and estimate the cell importances by the ratio of
cell populations P in adjacent cells, i.e. In ' Pn−1/Pn. Typically, source cells have an importance
of unit and cells closer to the tally region have larger importances.
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Adjacent cells should not have importances that are greatly different. As a rule, the ratio of
importances in adjacent cells should not exceed a factor of 6 to 8. Consequently, it is often necessary
to subdivide cells into many cells to prevent adjacent cell importances from changing too rapidly.
It should also be remembered that, when Russian roulette is used to terminate some particles,
information is lost; subsequent building up the particle population with large cell importances cannot
regain this lost information.

A warning about large importances. In problems with large attenuation of particles between the
source and tally region, importances of cells near the tally can reach many orders of magnitude.
For these cases, if a VOID command is used to flood the geometry with particles in order to find
geometry errors, the cell importances are still in effect, and a few source particles will be magnified
into millions of particles, all of which MCNP must track. Instead of a short run, hours or days can
be required!

4.4.2 Weight Windows

The weight-window variance reduction technique adjusts the weights of particles as they change §2.7.2.12 ,
§5.12.3energy and move through the various cells in the problem geometry. In each cell, a lower weight

bound and an upper bound (defined as a multiple of the lower bound) are specified. If a particle
entering a cell or a particle created in the cell has a weight above the upper bound, the particle is
split such that all split particles are within the weight window. Similarly, if a particle has a weight
below the lower bound, Russian roulette is used to increase the particle’s weight until it lies within
the window or until it is killed. In most problems weight-windows is preferred over importance
biasing.

Advantages:

• Weight-windows can equalized the weights of scoring particles, by requiring important
regions to have small weight windows, thereby producing a tally with a small variance.
(Recall if every particles gives the same score, an answer with zero variance is obtained.)

• The weight-windows variance reduction technique is a space and energy biasing scheme,
whereas importance sampling is only a spatial biasing technique.

• Weight window discriminates on particle weight before taking appropriate action. Geom-
etry splitting is done regardless of the particle’s weight.

• Weight windows uses absolute bounds, whereas geometry splitting is based on ratios so
that a particle’s weight can grow or decrease without limit. This is particularly useful
when using ring and point detectors with which large particle weights can cause large
tally perturbations.

• Weight windows is applied at surfaces and collision sites whereas geometry splitting occurs
only at surfaces.

• Weight windows is immune to weight fluctuations caused by other biasing techniques,
whereas geometry splitting preserves such fluctuations.

• Weight windows can be turned off in large cells, in which no single importance applies,
by setting the lower limit to zero.

• Weight windows can be generated automatically by MCNP whereas cell importances
requires considerable insight by the user.

• Weight windows is more compatible with other variance reduction techniques such as the
exponential transform.

• Weight Windows can be based on user-defined meshes superimposed on the geometry.

Disadvantages:

• Weight windows is not as straight forward as geometry splitting. Without the automatic
weight-window generator, weight windows would be very difficult to use since window
limits of each cell are difficult to predict. By contrast, cell importances are much easier
to guess.
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• When the weight of source particles is changed, the weight-window limits have to be
renormalized.

Generating Weight Windows The weight-windows biasing is specified with the WWE, WWN, and WWP§5.12.14.1
commands. The reader is referred to the manual for the command parameters. However, the non-
expert rarely enters these command directly; rather, the weight-windows generator is usually used
to automatically calculate these commands and their parameters.

To use the weight-window generator, the WWG (and, optionally, the WWGE) commands are placed
in Block 3 of the input file. The WWG command is

WWG It Ic Wg j j j j IE

where It is the tally number, Ic is a reference (usually source) cell,10 Wg is the value of generated
lower weight-window bound (if 0, set to 0.5 of source particle weight), the next four parameters are
not used and simply “jumped” (j) over,11 and IE = 0 specifies the generated WWGE card is for energy
bins while IE = 1 means time bins are used.

The optional WWGE can be included generate weight windows for a set of contiguous energy bins.
This command is

WWGE:n E1 E2 . . .Ej

where n = N/P/E for neutrons/photons/electrons, Ei is the upper energy bound for weight-window
group (Ei+1 > Ei), and j is the maximum number of energy groups (j ≤ 15).

As an example, for a point photon source in cell 10 and tally F2, the following weight-window
generator command

WWG 2 10 0 j j j j 0 $ generate weight windows using energy bins

is placed in Block 3 of the input. Near the end of the resulting output file, lines similar to the
following appear.

wwp:p 5 3 5 0 0 0

wwe:p 1.0000E+02

wwn1:p 5.0000E-01 5.0000E-01 4.0810E-01 2.5853E-01 1.5586E-01

9.1319E-02 5.2707E-02 3.0064E-02 1.6959E-02 9.4621E-03

5.2438E-03 2.8816E-03 0.0000E+00 -1.0000E+00

The ten leading blanks on these lines are edited out, the weights inspected and changed if necessary
to ensure there are no spurious fluctuations (caused by incomplete sampling), and then these lines
are placed in Block 3 of the input for a second run. This interation process can be repeated to
perfect the “best” weight windows.

4.4.3 An Example

Consider a point isotropic source emitting 7-MeV photons surrounded by an iron annular spherical
shell 30-cm in thickness with an inner radius of 30 cm. The ambient dose 160 cm from the source
is sought. Three approaches are used: (1) analog simulation, (2) geometty splitting, and (3) weight
windows. The MCNP input file for the analog simulation is shown in Fig. 8.

With this thick iron shield, few source particles penetrate the shield, and hence we need to
use some biasing technique to help particles through the shield. This problem is ideally suited for
geometry splitting. To implement this, split the 30-cm spherical cell into 10 cells, each 3-cm in
thickness. Examination of the output produced when this 10-cell shield problem is run as an analog
simulation shows that the photon population in each shield cell decreases by about a factor of two

10If < 0 weight windows is based on a user specified mesh, but we do not discuss this in this primer.
11These parameters were used in debugging the weight window algorithm.
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Point isotropic 7-MeV photon sources in iron shell: (analog base case):

c ********************* BLOCK 1: CELL CARDS *****************************

c GEOMETRY: X isotropic point source (7-MeV)

c D ambient dose 100 cm from outer shield surface (160 cm)

c iron shield 30-cm thick (r=30 to 60 cm)

c (without shield, dose is 6.013x10^{-17} Sv/gamma)

c

c z-axis ^

c | \ \ void

c | \ Fe \

c | void | |

c X -------|-------|--------D----> x-axis

c source | |

c / /

c / /

c

c ********************* BLOCK 1: CELLS *********************************

10 0 -10 imp:p=1 $ inside of shield

20 1 -7.86 10 -20 imp:p=1 $ iron shell

30 0 20 -50 imp:p=1 $ void outside shld and inside detect

40 0 50 -100 imp:p=1 $ void past detector

50 0 100 imp:p=0 $ vacuum outside problem boundary

c ********************* BLOCK 2: SURFACE CARDS *************************

10 so 30.0 $ inner shield surface

20 so 60.0 $ outer shield surface

50 so 160.0 $ detector surface

100 so 10.E+02 $ spherical problem boundary (at 10 m)

c ********************* BLOCK 3: DATA CARDS ****************************

SDEF erg=7.00 par=2 $ 7-Mev pt photon source at origin

c

mode p

phys:p 100 1 1 $ no bremsstrahlung; no coherent scattering

nps 10000 $ 10000 particle cutoff

f2:p 50 $ tally on surface 50 as ambient dose

c

c ---- Photon ambient dose equivalent H*(10mm) Sv cm^2; ICRP [1987]

de2 0.100E-01 0.150E-01 0.200E-01 0.300E-01 0.400E-01 0.500E-01

0.600E-01 0.800E-01 0.100E+00 0.150E+00 0.200E+00 0.300E+00

0.400E+00 0.500E+00 0.600E+00 0.800E+00 0.100E+01 0.150E+01

0.200E+01 0.300E+01 0.400E+01 0.500E+01 0.600E+01 0.800E+01

0.100E+02

df2 0.769E-13 0.846E-12 0.101E-11 0.785E-12 0.614E-12 0.526E-12

0.504E-12 0.532E-12 0.611E-12 0.890E-12 0.118E-11 0.181E-11

0.238E-11 0.289E-11 0.338E-11 0.429E-11 0.511E-11 0.692E-11

0.848E-11 0.111E-10 0.133E-10 0.154E-10 0.174E-10 0.212E-10

0.252E-10

c

c --- Natural iron (density 7.86 g/cm^3)

m1 26000 -1.00000

Figure 8. Input for analog simulation of example problem.
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over its neighbor closer to the source. Thus, to use geometry splitting, change the importances of
the shield cells to 1 for the innermost iron cell, 2 for the next, 4 for the next, and so on to the tenth
cell with an importance of 29 = 256. This is done with the IMP command

c Importances: 1 src cell; 10 shld cells; 2 outer cells; 1 boundary cell

IMP:p 1 1 2m 2m 2m 2m 2m 2m 2m 2m 2m 2R 0 $ cell importances

The mean and relative error with such a nonanalog simulation are shown in Figs. 9 and 10. For
this nonanalog simulation, the figure-of-merit (FOM) was 4.9 times larger than that for the analog
simulation, so that, to achieve the same relative error, the analog simulation would have to be run
4.92 = 24 times longer.

An alternative approach is use weight windows for the 10-cell shield model. First run the problem
as an analog problem with the weight window generator command placed in Block 3. Here we use

WWG 2 10 0 j j j j 0 $ ask WW generator to find weights

Then place the generated weight-window cards written near the bottom of the output (with the
appropriate blanks removed) into Block 3 and rerun as a weight-window biased simulation. The
results are also shown in Figs. 9 and 10. For this weight-window simulation, the figure-of-merit
(FOM) was 5.4 times larger than that for the analog simulation.

Figure 9. The mean of the tally for the ex-
ample problem.

Figure 10. The relative (fractional)
error for the test problem.

4.4.4 Exponential Transform

The exponential transform artificially changes the distance to the next collision. In this technique,§2.7.2.13 ,
§5.12.7 particles can be moved preferentially towards the tally region and inhibited from moving away from

it. The exponential transform stretches the path length between collisions in a preferred direction
by adjusting the total cross section as Σt(1−pµ) where p is the stretching parameter, and µ is cosine
of the angle between the particle direction and the preferred direction.

The exponential transform biasing is invoked with the EXT and VECT commands. The EXT com-
mand has the form

EXT:n A1 A2 . . . Ai . . . Aj

where n = N/P/E for neutrons/photons/electrons, and for the i-th cell Ai has the form Q V m, and
j is the number of cells. Usually Q = p, while Q = 0 indicates the exponential transform is not to
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be used (and V and m are omitted). The stretching direction is specified by the V and m part of
Ai and the VECT command.

4.4.5 Energy Splitting/Russian Roulette

In some problems, e.g., finding the high-energy neutron fluence in a pressure vessel, only particles §2.7.2.8 ,
§5.12.5with a certain range of energies are of interest. When such a particle is created, the ESPLT command

can be used to split the particle into more daughter particles of the same type. Also, when a particle
of energy outside the energy region of interest is created, Russian roulette is used to eliminated some
of these particles. An example of the ESPLT command is

c Energy splitting with Russian roulette

c split to 4 for 1 if parent energy falls below 3 MeV

c split to 2 for 1 if parent energy falls below 1 MeV

c split to 1 for 2 if parent energy falls below 0.4 MeV

c split to 1 for 4 if parent energy falls below 0.1 MeV

ESPLT:n 4 3 2 1 0.5 0.4 0.25 0.1

4.4.6 Forced Collisions

The forced collision biasing method increases the sampling of collisions in specified cells, generally §2.7.2.15 ,
§5.12.9those near a DXTRAN sphere or point/ring detector. This method splits particles into collided and

uncollided parts. The collided part is forced to interact within the current cell while the uncollided
particle exits the cell without collision. The weight windows game is not played at surfaces bounding
a cell in which forced collisions are specified. The forced collision option is invoked with the command

FCL:n x1 x2 . . . xi . . . xj

where n = N/P for neutrons/photons, j is the number of cells, and xi controls which particles undergo
forced collisions (see manual for details)

4.4.7 Source Biasing

One of the easiest nonanalog techniques to implement is source biasing. In MCNP, any of the SDEF §2.7.2.16 ,
§5.8.4variables can be biased. For example, source particles can be started with enhanced weights, with

preferred energies, and in regions closer to the detector. One of the most useful source biasing
techniques is to start particles in preferred directions, generally towards tally regions.

As an example, consider the spherical iron shell problem of Section 4.4.3. Rather than use a
spherical F2 detector at 160 cm from the source, place a point detector on the x-axis 160 cm from
the point source. (This is a terrible idea compared to using the surface F2 detector, but it illustrates
the importance of source biasing.) Then to start particles preferentially towards the detector on the
positive x-axis, we might use

SDEF ERG=7.00 PAR=2 VEC=1 0 0 DIR=d1 $ bias source direction

SB1 -31 2.0 $ exp bias exp[2mu]

Here source particles will be emitted with the PDF p(µ) = CeKµ where µ = cos θ, the cosine of the
angle between the emission direction and the VEC direction (here the x-axis). C is a normalization
constant C = K/(eK − e−K) that is calculated by MCNP. In this example we specify p(µ) = Ce2µ

so that 50% of all source particles are emitted within 48 degrees of the x-axis. Here the forward-to-
backward emission probabilities, p(1)/p(−1) = e−4 ' 1/54.5.

Another approach for source direction biasing is to restrict source emission to a set of nested cones
about the bias direction. This discontinuous conical biasing is more time consuming to implement
but can produce better results, when optimized, than can the continuous direction biasing. In some
problems involving a collimated source, it must be used. Suppose we set up a set of nested cones
about the source parameter VEC direction with cosines of the conical half angles −1 < µ1 < µ2 <
. . . < µn < 1. We want particles to be emitted in µi−1 < µ < µi with probability pi (here µ0 ≡ −1
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and µn+1 ≡ 1). Then on the SDEF card place the parameter DIR = dn with the following lines placed
after the SDEF card:

SIn −1 µ1 µ2 . . . µn 1
SPn 0 f1 f2 . . . fn fn+1

SBn 0 p1 p2 . . . pn pn+1

Here fi is the fraction of the solid angle of the i-th cone and is calculated as fi = [µi − µi−1]/2.

4.5 Final Recommendations

Here are some recommendations for using the various variance reduction techniques.

• Before attempting to use variance reduction techniques for the first time, use the contemplated
technique on a simple problem before using it on the practical and more complex problem.
You need to get a feel for how the technique works without the confounding complexities of a
difficult problem.

• One of the key parameters for assessing the effectiveness of different variance reduction tech-
niques for your problem is the figure-of-merit (FOM). Generally, the better the improvement
in the FOM, the better is the variance reduction technique.

• For deep penetration problems, use either cell importances or (preferably) weight windows to
keep the particle population high in the cells of interest. Weight windows is more difficult to
implement but more effective when done correctly. However, geometry splitting through cell
importances is relatively safe and easier to implement.

• Use the CUT, ELPT, and PHYS commands when appropriate to avoid time-consuming tracking,
physic, or unimportant tally contributions. This can speed up calculational times for some
problem by a factor of 10.

5 MCNP Output

The output produced by MCNP provides a wealth of information about the simulation. The skill
of the analyst is in using this output to interpret the precision and acceptability of the tally results
produced by the Monte Carlo run and to decide what changes need to be made to improve the tally
in subsequent runs.

5.1 Output Tables

MCNP provides a wealth of information about the simulation, and a skilled user can elicit much§5.13.3
insight from this voluminous output. By default only a small portion of all the possible output
is produced. Always output are (1) input file listing, (2) summary of particle loss/creation, (3)
summary of KCODE cycles (if KCODE is used), (4) tallies (if used), and (5) tally fluctuations charts. In
addition, certain output tables deemed basic are always produced—they cannot be avoided. Other
default tables are also generated unless turned off by the PRINT command. The various MCNP tables
are listed in Table 7.

The output is changed from the default with the PRINT command in Block 3 of the input.
Examples of the three forms of this command are

PRINT $ produce everything

PRINT 110 20 $ basic & default tables plus Tables 110 and 20

PRINT -110 -20 $ all Tables except Tables 110 and 20
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Table 7. Selected output tables available in MCNP. (d)=default; (b)=basic

Table
Table Description

Table
Table Description

No. No.

10 Source information 120 Importance function analysis
20 Weight windows information 126 Cell particle activity
30 Tally descriptions 128(b) Universe map
35 Coincident detectors 130 Particle weight balances
40 Material compositions 140 Neutron/photon nuclide activity
50 Cell vols & masses; surface areas 150 DXTRAN diagnostics
60(b) Cell importances 160(d) TFC bin tally analysis
62(b) Forced coll.; expon. transform 161(d) p(x) tally PDF plot
70 Surface coefficients 162(d) Cumulative p(x) plot
72(b) Cell temperatures 170 Source frequency; surface source
85 Electron range & straggling 175 Estimated keff by cycle
90 KCODE source data 178 Estimated keff by batch size
98 Physics const.& compile options 180 WWG bookkeeping summary

100(b) Cross section tables 190(b) WWG summary
102 S(α, β) nuclide assignment 198 WW from multigroup fluxes
110 First 50 starting histories 200(b) WW generated windows

5.2 Accuracy versus Precision

With MCNP and its various variance reduction techniques, it is possible (and often the case for§2.6.2
novice users) to produce tally results that, while very precise, i.e., a small relative error, are not very
accurate. Technically, precision is the uncertainty (as measured by the tally variance) in the tally
mean x caused by the statistical fluctuations in the individual scores xi of the simulated histories.
By contrast, accuracy is a measure of how close the tally mean x is to the true physical quantity
being estimated. The difference between the true value and the expectation value of the simulation
tally is called the systematic error, an important quantity but one that is seldom known.

Factors Affecting Accuracy: §2.6.2.1

• The MCNP code: This includes inaccuracies introduced by MCNP in its use of (1) physics
models, (2) mathematical models, (3) uncertainties in the nuclear/atomic data, including
cross sections, atomic weights, Avogadro’s number, etc., and (4) coding errors. MCNP
is a very mature code and these sources of error, while always present, are not generally
thought to be a major concern for “standard neutron/photon problems.” Many MCNP
benchmark validation problems have been analyzed and documented.

• The MCNP model: Improper modeling of source energy and angular distributions, poor
representation of the actual geometry by the MCNP geometric model, and errors in the
material compositions can lead to significant inaccuracies.

• User errors: Probably the most important source of inaccuracies (at least for novices) is
error introduced by the user in incorrectly using program options or making errors in the
input file. Similarly, a novice often misunderstands the difference between a particular
tally and the physical quantity being sought.

Factors Affecting Precision: §2.6.2.2

• Forward versus adjoint calculations: For problems with spatially extended sources and a
tally in a small region, an adjoint simulation often produces more precise results with few
histories compared to a forward simulation.
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• Tally type: The choice of tally type often greatly affects the precision of the results.
For example, point detectors are often less precise than surface detectors in a scattering
medium.

• Variance reduction: The use of different variance reduction techniques can affect the tally
precision tremendously.

• Number of histories: The more histories run (and the greater computer effort expended)
the better will be the precision of the tallies.

5.3 Statistics Produced by MCNP

MCNP produces a wealth of information about a simulation to allow the user to assess the precision
(not the accuracy) of the result. While much of the detailed assessment performed by an experienced
user depends on careful examination of the many output tables, the initial focus should be on the
ten statistical indices calculated by MCNP. In this section we review these ten statistics.

5.3.1 Relative Error

Many beginners examine only the relative error R, and, while this is a very important statistic, it§2.6.4
alone cannot decide the acceptability of the tally result. The relative error is the fractional 1-sigma
estimated uncertainty in the tally mean, i.e., R ≡ Sx/x, the ratio of the standard deviation of the
tally mean to the mean. Here is how R is to be used to interpret the tally value:

Table 8. Interpretation of the relative error R.

Range of R Quality of Tally

> 0.5 Meaningless
0.2 to 0.5 Factor of a few
< 0.1 Reliable (except for point/ring detectors)
< 0.05 Reliable even for point/ring detectors

The value of R is determined by two quantities: (1) the history scoring efficiency q, which is the
fraction of histories producing non-zero xi’s, and (2) the dispersion in nonzero scores. In almost
every tally, the tally PDF f(x) (whose mean the tally is trying to estimate) has a delta-function at
x = 0 representing the probability a source particle makes no contribution to the tally (e.g., a source
particle is absorbed before reaching the tally region).

MCNP breaks R up into two components such that R2 = R2
eff + R2

int. Here Reff is the spread
in R caused by scoring inefficiency and Rimp is the intrinsic spread of the non-zero history-scoring
events. If every source particle contributes to the tally (q = 1) then Reff = 0; but as more and more
particles produce zero score, Reff increases. By contrast, Rimp measures the uncertainty produced
by the spread of nonzero scoring events. If some particles produce zero scores and the remainder
produce the same score, Rimp = 0. As the scoring particles have increasingly different scores, Rimp

increases.

The purpose of variance reduction techniques is to increase the scoring efficiency q and hence to
reduce Reff. At the same time we want to decrease the spread in nonzero scores, i.e. to make f(x)

more concentrated about its mean so that Rimp decreases.

5.3.2 Figure of Merit

Another important statistic generated by MCNP is the figure of merit (FOM), defined as§2.6.5

FOM =
1

R2T
, (10)
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where T is the run time. Since T varies with the computer, the same simulation performed on
different machines produces different FOMs. As discussed earlier in Section 4.1.1, the FOM should
remain relatively constant (except for fluctuations early in the simulation). For different variance
reduction techniques, the one with the largest FOM is preferred.

5.3.3 Variance of the Variance

The estimation of the relative error R is important to indicate the precision of the tally mean. §2.6.7
However, how accurate is the estimation of R? To indicate the accuracy of R, MCNP estimates the
relative variance of R, i.e. a variance of a variance (VOV). The VOV is defined as

VOV =
S2(S2

x)

S2
x

=

∑N
i=1(xi − x)4

[

∑N
i=1(xi − x)2

]2 − 1

N
. (11)

where S2(S2
x) is the variance of S2

x).

The VOV involves the third and fourth moments of the tally distribution f(x) and is much more
sensitive to fluctuations in large history scores than is R, which is based on only the first and second
moments of f(x). The proper sampling of infrequent but high scoring events is vital if reliable tally
means are to be obtained, and for this reason the VOV is an important indicator of a reliable result.

From Eq. (11), it can be shown that the VOV should decrease as 1/N. MCNP tests for this 1/N
behavior in the VOV. Further, the VOV should always be less than 0.1 for all types of tallies.

5.3.4 The Empirical PDF for the Tally

MCNP also constructs the tally PDF f(x) to help assess the quality of the confidence interval §2.6.8
estimates for the tally mean. An example is shown in Fig. 11. Examination of the high-end tail
of this distribution is very important for problems involving infrequent events with very high score.
Three possible outcomes for such problems are possible:

1. Statistically meaningful confidence intervals are produced. This, of course, is always the desired
outcome.

2. The sampling of a rare event with a very large score causes the the mean and R to increase and
the FOM to decrease significantly. This situation is easily detected by observing the behavior
of R and FOM in the tally fluctuation chart (TFC) produced at the end of the MCNP output.
See Fig. 12 for a well-behaved example.

3. The third and most troublesome case is one that appears to be converged, based on accept-
able statistical behavior of the mean, R, FOM, and the VOV, but in reality the tally mean is
substantially underestimated because large scoring histories were inadequately sampled. De-
tecting this situation of too few large history tallies is difficult. It is for this case that MCNP
performs extensive analysis of the high tally tail of the tally PDF.

The main difficulty in detecting case 3 above is knowing when you have performed enough
histories to make a valid estimate of the confidence interval for the tally mean. The central limit
theorem (CLT) guarantees the tally mean will appear to be sampled from a normal distribution with
a standard deviation σ/N if N is sufficiently large. The confidence intervals estimated by MCNP
for the tally are based on this normality assumption. The key question is how large must N be for
this assumption to be valid.

For the CLT to hold, the first two moments of the tally PDF f(x), E(x) =
∫ ∞

0
xf(x) dx and

E(x2) =
∫ ∞

0
x2f(x) dx, must exist.12 For the first two moments to exist, f(x) must either have a

12For the VOV to be finite, the third and fourth moments must also exist; however, MCNP doesn’t enforce this.
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fom = (histories/minute)*(f(x) signal-to-noise ratio)**2 = (4.861E+03)*( 5.450E-02)**2 = (4.861E+03)*(2.971E-03) = 1.444E+01
unnormed tally density for tally 14 nonzero tally mean(m) = 3.961E-12 nps = 200000 print table 161

abscissa ordinate log plot of tally probability density function in tally fluctuation chart bin(d=decade,slope= 3.9)
tally number num den log den:d------------------d-------------------d------------------d-------------------d-------------------d-

3.16-16 1 7.69+10 10.886 *******************|*******************|******************|*******************|*******************|*
3.98-16 0 0.00+00 0.000 | | | | |
5.01-16 0 0.00+00 0.000 | | | | |
6.31-16 0 0.00+00 0.000 | | | | |
7.94-16 0 0.00+00 0.000 | | | | |

1.00-15 0 0.00+00 0.000 | | | | |
1.26-15 0 0.00+00 0.000 | | | | |
1.58-15 0 0.00+00 0.000 | | | | |
2.00-15 0 0.00+00 0.000 | | | | |

2.51-15 0 0.00+00 0.000 | | | | |
3.16-15 0 0.00+00 0.000 | | | | |
3.98-15 0 0.00+00 0.000 | | | | |
5.01-15 0 0.00+00 0.000 | | | | |
6.31-15 0 0.00+00 0.000 | | | | |

7.94-15 0 0.00+00 0.000 | | | | |
1.00-14 1 2.43+09 9.386 *******************|*******************|******************|*********** | |
1.26-14 0 0.00+00 0.000 | | | | |
1.58-14 5 7.67+09 9.885 *******************|*******************|******************|*******************|* |
2.00-14 3 3.66+09 9.563 *******************|*******************|******************|*************** | |

2.51-14 2 1.94+09 9.287 *******************|*******************|******************|********* | |
3.16-14 3 2.31+09 9.363 *******************|*******************|******************|*********** | |
3.98-14 5 3.05+09 9.485 *******************|*******************|******************|************* | |
5.01-14 9 4.37+09 9.640 *******************|*******************|******************|**************** | |
6.31-14 8 3.08+09 9.489 *******************|*******************|******************|************* | |

7.94-14 9 2.75+09 9.440 *******************|*******************|******************|************ | |
1.00-13 8 1.94+09 9.289 *******************|*******************|******************|********* | |
1.26-13 10 1.93+09 9.286 *******************|*******************|******************|********* | |
1.58-13 15 2.30+09 9.362 *******************|*******************|******************|*********** | |
2.00-13 20 2.44+09 9.387 *******************|*******************|******************|*********** | |

2.51-13 27 2.61+09 9.417 *******************|*******************|******************|************ | |
3.16-13 23 1.77+09 9.248 *******************|*******************|******************|********* | |
3.98-13 45 2.75+09 9.439 *******************|*******************|******************|************ | |
5.01-13 57 2.76+09 9.442 *******************|*******************|******************|************ | |

6.31-13 83 3.20+09 9.505 *******************|*******************|******************|************** | |
7.94-13 69 2.11+09 9.325 *******************|*******************|******************|********** | |
1.00-12 62 1.51+09 9.178 *******************|*******************|******************|******* | |
1.26-12 71 1.37+09 9.137 *******************|*******************|******************|****** | |
1.58-12 90 1.38+09 9.140 *******************|*******************|******************|****** | |

2.00-12 72 8.77+08 8.943 *******************|*******************|******************|*** | |
2.51-12 76 7.36+08 8.867 *******************|*******************|******************|* | |
3.16-12 74 5.69+08 8.755 *******************|*******************|******************| | |
3.98-12 84 5.13+08 8.710 mmmmmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmmmmm|mmmmmmmmmmmmmmmmm | | |
5.01-12 70 3.40+08 8.531 *******************|*******************|************* | | |

6.31-12 89 3.43+08 8.535 *******************|*******************|************* | | |
7.94-12 68 2.08+08 8.318 *******************|*******************|********* | | |
1.00-11 78 1.90+08 8.278 *******************|*******************|******** | | |
1.26-11 77 1.49+08 8.172 *******************|*******************|****** | | |
1.58-11 60 9.20+07 7.964 *******************|*******************|** s | | |

2.00-11 18 2.19+07 7.341 *******************|********** | s | | |
2.51-11 8 7.74+06 6.889 *******************|* |s | | |
3.16-11 1 7.69+05 5.886 * | s | | | |
3.98-11 3 1.83+06 6.263 ******** | s | | | |

total 1404 7.02-03 d------------------d-------------------d------------------d-------------------d-------------------d-

Figure 11. An example of the Tally PDF plot prodiced in the MCNP output.
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tally 4 tally 14

nps mean error vov slope fom mean error vov slope fom

16000 2.5565E-19 0.1546 0.0460 0.0 13 1.6147E-20 0.1550 0.0990 0.0 13

32000 2.6267E-19 0.1057 0.0219 0.0 14 1.5614E-20 0.1098 0.0404 0.0 13

48000 2.9321E-19 0.0822 0.0129 10.0 15 1.5964E-20 0.0868 0.0228 0.0 13

64000 2.9096E-19 0.0725 0.0108 10.0 14 1.6062E-20 0.0760 0.0189 0.0 13

80000 2.9088E-19 0.0655 0.0086 10.0 14 1.6037E-20 0.0687 0.0161 4.9 13

96000 2.9487E-19 0.0595 0.0072 10.0 14 1.5578E-20 0.0631 0.0130 2.7 13

112000 2.9758E-19 0.0545 0.0061 10.0 15 1.5749E-20 0.0571 0.0105 3.0 13

128000 3.0167E-19 0.0509 0.0052 10.0 15 1.5970E-20 0.0528 0.0086 2.7 14

144000 3.0142E-19 0.0483 0.0050 10.0 14 1.5824E-20 0.0496 0.0075 2.7 14

160000 3.0284E-19 0.0461 0.0046 10.0 14 1.6205E-20 0.0465 0.0064 2.8 14

176000 3.0391E-19 0.0443 0.0042 10.0 14 1.6276E-20 0.0441 0.0056 3.2 14

192000 3.0143E-19 0.0427 0.0040 10.0 14 1.6351E-20 0.0420 0.0050 3.5 14

200000 3.0080E-19 0.0420 0.0040 10.0 14 1.6317E-20 0.0410 0.0048 3.9 14

Figure 12. Example of a tally fluctuation chart (TFC).

finite upper tally cutoff, or decrease with x faster that 1/x3. It is this behavior of a proper tally
PDF that MCNP tests for by analyzing the high-tally tail of the empirical PDF.

MCNP uses the highest scoring histories (the 200 largest) to estimate the slope of the PDF’s
high-tally tail. This is done by fitting a generalized Pareto function (with parameters a and k),
namely

fPareto(x) =
1

a(1 + kx/a)1+(1/k)
, (12)

to the high tally events. The slope is then estimated from

SLOPE = 1 +
1

k
(13)

On the output plot of the PDF, the Pareto fit is shown by string of s’s, and tally mean by a row of
m’s (see Fig. 7).

For the high-end tail to be acceptable, a sufficient number of histories has to have been run so
that the CLT is expected to apply, namely, the SLOPE must be 3 (or greater). If insufficient, rare,
high-scoring events have not been tallied, the SLOPE will generally not satisfy this criterion. If too
few histories have been run to estimate the slope, the SLOPE is reported as 0; if the PDF falls off
faster than 1/x10, the SLOPE is set to 10 (a “perfect” value).

5.3.5 Confidence Intervals

From the relative error R, MCNP estimates the confidence interval for the tally. Because the esti- §2.6.9
mated mean and estimated uncertainty in the mean are correlated, the mid-point of the confidence
interval needs to be shifted slightly from the mean. The amount of this midpoint shift, SHIFT,
is proportional to the third central moment, and should decrease as 1/N . MCNP calculates this
refinement for the confidence interval.

5.3.6 A Conservative Tally Estimate

Sometimes a user wishes to make a conservative tally estimate, just in case rare high-tally events §2.6.9.2.2
may not be completely considered. In the output, MCNP shows what would happen to the mean,
R, VOV, confidence interval, etc., if the next history (N + 1) were the same as the largest scoring
history encountered in the simulation of N histories. If large changes occur, then be very suspicious
of the result.
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5.3.7 The Ten Statistical Tests

The most valuable tool provided by MCNP for assessing the reliability of results is the suite of§2.6.9.2.3
10 statistical tests it performs on the tally. If any of the 10 tests are failed, MCNP automatically
produces additional output to aid the user in interpreting the seriousness of the failed test(s). The
10 tests are summarized below.

Tally Mean, x:

1. The mean must exhibit, for the last half of the problem, only random fluctuations as N
increases. No up or down trends must be exhibited.

Relative Error, R:

2. R must be less than 0.1 (0.05 for point/ring detectors).

3. R must decrease monotonically with N for the last half of the problem.

4. R must decrease as 1/
√
N for the last half of the problem.

Variance of the Variance, VOV:

5. The magnitude of the VOV must be less than 0.1 for all types of tallies.

6. VOV must decrease monotonically for the last half of the problem.

7. VOV must decrease as 1/N for the last half of the problem.

Figure of Merit, FOM:

8. FOM must remain statistically constant for the last half of the problem.

9. FOM must exhibit no monotonic up or down trends in the last half of the problem.

Tally PDF, f(x):

10. The SLOPE determined from the 201 largest scoring events must be greater than 3.

If any of these tests fails, a warning is printed in the output and a plot of f(x) is produced.
If all ten tests are passed, MCNP then calculates asymmetric and symmetric confidence intervals
for the mean at the one-, two-, and three-sigma levels. While these ten statistical tests provided
an excellent indication of the reliability of the result, they are not foolproof. There is always the
possibility that some high-scoring rare event was not sampled in the histories run and that the tally
is underestimated. Users must rely on their understanding and insight into the particular problem
to avoid such traps.

5.3.8 Another Example Problem

Consider a point isotropic source of 7-MeV photons in an infinite medium of iron. The ambient dose
equivalent 30 cm from the source is sought. A surface F2 detector and a F5 point detector are both
used to estimate this dose. The input file is shown in Fig. 13.

The variation of the tally mean, R, VOV, SLOPE, and FOM with the number of particle histories
is shown in Fig. 14. At 107 particle histories, the F2 tally passed all 10 statistical tests: the mean and
FOM are relatively constant, the relative error R is monotonically decreasing as 1/

√
N (1 y-decade

decrease for every 2 x-decades increase), the VOV is monotonically decreasing as 1/N (1 y-decade
decrease for every 1 x-decade increase), and the SLOPE has a “perfect” value of 10. This high slope
value is to be expected since there physically is an upper limit to the tally, namely that produced
by an uncollided photon reaching the scoring surface. The slope of 10 is a strong indicator of such
a tally cutoff.

By contrast, the F5 point detector has not converged. The mean, error, VOV, and FOM all
exhibit sudden changes, a result of an occasional photon that scatters very near the point detector
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and contributes a huge score with the last-flight estimator used by the F5 tally. The SLOPE remains
constant at about 2, an indication of a long slowly decreasing high-tally tail. In fact, a point detector
in a scattering medium has no tally cutoff. Be very wary of using point/ring detectors in a strongly
scattering medium.

If you had performed this simulation for only 5000 histories and, unwisely, looked only at the
relative errors, the F5 detector would appear attractive since it has a relative error of about 0.06
(almost near the acceptable value) while the F2 tally has R > .2. Recall that every source particle
produces a score with a point detector (q = 1, Reff = 0) and R often starts to decrease properly.
The F2 tally, on the other hand, received scores from only 0.8% (q = 0.0080) of the source particles
leading to Reff = 0.0024 and Rimp = 0.0024 after 107 histories. Because of the large fluctuations in
the F5 scores, its Rimp is much larger (0.127 after 107 histories).

The PDFs for these two tallies are shown in Figs. 15 and 16. As expected, the PDF for the F5

tally is spread out over a wide range of scores and has a high-score tail that is poorly defined even
after 107 histories. The PDF for the F2 tally is much more compact with a well established upper
cutoff.

Point isotropic 7-MeV photon sources in infinite iron medium

c ********************* BLOCK 1: CELL CARDS *****************************

1 1 -7.86 -10 imp:p=1 $ iron inside detector shell

2 1 -7.86 10 -20 imp:p=1 $ iron outside detector shell

3 0 20 imp:p=0 $ vacuum outside problem boundary

c ********************* BLOCK 2: SURFACE CARDS *************************

10 so 30.0 $ detector surface

20 so 3000.0 $ outer surface of iron

c ********************* BLOCK 3: DATA CARDS ****************************

SDEF erg=7.00 par=2 $ pt isotropic 7-MeV photon source

mode p $ photon mode only

nps 1000000 $ number of histories to be run

f2:p 10 $ tally 2: surface detector at 30 cm

f15:p 30 0 0 -0.3 $ tally 15: pt det 30 cm on x-axis; Ro=.3mfp

c

c --- Photon ambient dose equivalent H*(10mm) Sv cm^2; from ICRP [1987]

de 0.100E-01 0.150E-01 0.200E-01 0.300E-01 0.400E-01 0.500E-01

0.600E-01 0.800E-01 0.100E+00 0.150E+00 0.200E+00 0.300E+00

0.400E+00 0.500E+00 0.600E+00 0.800E+00 0.100E+01 0.150E+01

0.200E+01 0.300E+01 0.400E+01 0.500E+01 0.600E+01 0.800E+01 0.100E+02

df 0.769E-13 0.846E-12 0.101E-11 0.785E-12 0.614E-12 0.526E-12

0.504E-12 0.532E-12 0.611E-12 0.890E-12 0.118E-11 0.181E-11

0.238E-11 0.289E-11 0.338E-11 0.429E-11 0.511E-11 0.692E-11

0.848E-11 0.111E-10 0.133E-10 0.154E-10 0.174E-10 0.212E-10 0.252E-10

c

m1 26000 -1.00000 $ natural iron (density 7.86 g/cm^3)

Figure 13. Input file for the example problem

Revised April 30, 2024 An MCNP Primer 45



Figure 14. The variation of the various statistics estimated by MCNP for the two tallies
of the test problem of Fig. 13.
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Figure 15. The PDF for the F2 surface tally in the example
problem. Heavy line is for 106 histories and dotted line for 107.

Figure 16. The PDF for the F5 tally in the example problem.
Light line is for 106 histories and the heavy line for 107.
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Useful Web Sites

https://mcnp.lanl.gov/reference collection.html. This is the offical web site for MCNP.
Much MCNP information is available from this site including the Theory & User’s Manual and a
large number number of Los Alamos Technical Reports presenting many different details about the
code.

https://nucleardata.lanl.gov: This site provides the latest cross section and related data in the
ASCII ACE format needed by MCNP. As errors in the ENDF/B files are corrected or updated, new
ACE formatted files are found here.

https://www.nndc.bnl.gov/. This is the official site for the national nuclear data center from
which a wealth of nuclear data can be obtained. In particullar, the latest ENDF/B cross sections
are readily available in ASCII or graphical form.
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