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This peper is divided fmto three parts. In Part T we describe
a2 simple mdel of the NMomte Carlo process amd develop 2 (momlfimesr) :
tioms. From the Limesrized form of these recsrsion relstfioms, it
tween floctustions in saccessive gemerstions. In a sinple test
mmmhmm,waﬁmﬂﬂmtmmﬂlm"smmudmtﬁmfmmm—
amres im mesms im fadirly accomrste.

Part I desls with first-order momlfmesr terms im the meemmr—
siom relstiom. From these mowlimesr terms am expressdiom for tie
mmmwmmm&,mmﬁmmm
megsurimg the biss sre formmisted.

Im Part IIT we cutlime plams for the development of the WINM
mﬁe,mﬂd&uﬁhebﬂﬂymmmﬁmllmle
perinrbetions fim VIM.

Part T

THEORETTCAL STUDY OF THE MOWYE CARLO EICENVAIUE COMPUTAYTON,
LINEARTZED BUATTORS

A. Bagic Features of the Mathewatrical Model

in edigenvalwe calculztions have gemeraily beem based primarily om fmtwdtfom.
It is kmown that wemy of the methods in use todesy are biassed [1,2]. It is

mmmnmbmmmﬂmmlmumm-
cal estimatiom pwocess [3]; bat cme fimds very Iittle theovetical work fm the
techmical literasture on the msgmitude of the hias, or om the mstvre of these
correlatioms. We pyopose here a mathemstical model of the Momte Carlo pro—
cess, a model from which perhaps some of the mathemstical properties of the
Monte Caxlo process cam be dednred. For comvenienre we deal with a K x K
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mm,mmmmm,mmm@yﬂlmﬁﬁ
pearttiicles per gewerwstfon. Ore iz to imegine thet these perticles exscute a
random walk ameg K boses.. Eﬂt'ﬂ‘whﬁemmﬁﬁilﬁtyt&mtamdﬂﬁimtﬁe
w%ﬁm;vﬁ]lm,mt,inmﬂew—ﬁ. Suppose, Further, that the -t Sox
Maﬁnﬁwzﬁ@ﬂt,wgl((msl,z,.--,m)),mﬂﬂmm- Deffme a diago—
mmmmmmwmmwmm_mﬁ%, Let

mettrix egust-fiom
largest cligeovalne, Ay the corresponding eigenwector U amd, perieps fmte—
Msd%maymﬁﬁeﬂm@mimﬁemmuﬂgmaﬁm.

Mmﬂm:,mﬂeuﬂﬁﬂmi—l"ﬁwmﬂﬁm,ﬂ%@ﬂmﬁawatﬁb
mimatted thefr histories in the p-tk box. Here, of cowrse,

- K
2t - w.
LLg 8

mnmmmm@fmmm

Note thatr in csr model, mdnprﬁdeﬁtimi—l"wmaﬁmm@eﬁmes cne,
ddymmﬂiﬂﬁmﬁmsﬁﬂfwﬂmi—ﬁ. Thus, our amziysis will
Mﬂymammm&mﬁmmﬂmﬁamﬁﬁﬁs‘
siom site or, geasrnily, mmmmmmm@fﬁs&imaltes
mtei,yetmm,isardquvuiﬁle. Note that ewery box in which a
Iistory termimates is, mmtmlm,a"mﬂﬁssimsite",m
if the weight assigned to that box is zero. This pecmlisrity fm termimology

Define a K-dimensiomal vector - = (I L - - - 1). Clearly
Pn'% - V%I(ET - vi). The vectors Vi and vitl are commected by the recursion
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relation
i
HV
~Vi+1 = N ——— 4 Ei , %)
T Vv
v oo iatarta e, e (T v / N . (5)

Here Ai is a familiar i-1'st generation estimate of the dominant eigenvalue
while Vi is an estimate of the corresponding eigenvector. In Eq. (5), E} is
the net statistical error committed during the i-th generation in transfer-
ring particles from their starting locations into the u-th box. More pre-
cisely

i _ il i il | il gitl
& = Vi E’Vk |v} Vi Ve o - (6)

It will be seen that V§+1 is the conditional mean of Vé+l, given Vi. From

(6),
1 1+l -1+1l 1
1} E E{vk M g,

i i
EFk} = EE:ek

=i+l +
= E{Vk - Vi 1} = 0. ¢)
0f course !} and !}il are not independent, so that 5? and E?-l cannot be

independent either. But

i i-1] . 1 .4-1) .4 .i-1
Elekeg , z fp(z Vv )d! av’ I}k {
f L1+1| ] 141 [1+1 1+1
Ve

Here P(Vi vi-1ly 15 the joint probability distribution function of Vi and Vi 1
while P(follVi) is the conditional distribution function of Vi+l given Vi
By definition

/ P (Xi+1| !i} avitl E’iﬂ _E {v;ﬂl!i[l

and it follows that

i4i-1
E‘ak62 } = 0 .

gl
Sl
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Thus, although E} and g_“ are not independent, they are, in the technical
sense, uncorrelated. It will be necessary, later, to examine the properties
of the statistical errors, 5}, more closely, but we need say no more about

them at this point. Note that it follows from Eq. (7) that

eyt - & B{v' At} (8

Define

f‘ = NU +§i , ' 9
T

U; being the main mode eigenvector normalized so that 1" * Uj = X1. From

Eqs. (5) and (9) we see that

i
"y
Ng + 6 - N e (10)
1'@&+ﬂ

Equation (10) is clearly nonlinear in g}. In our analysis it will be con-
venient to treat separately those effects which can be deduced from the
linearized form of Eq. (10), and those whose study requires retention of
higher terms. Intergeneration correlations fall into the first category,
biases into the second.

B. The Linearized Iteration Equation and Correlations

Retaining only linear terms in Eq. (10), we get

§1+l x _<S_i+1 = HlE{ ‘EILI] 51 +§_i . (11)
Taking expectation values of both sides, it.is easy to show that E{Q}} + 0 as
3 i +> », go that to first order in ¢ the bias vanishes. In all the work which
1 follows, we will assume that H has a complete set of eigenvectors and that
all eigenvalues are real and nonnegative. It is our hope that, even when
these assumptions fail, our analysis will still give us some valid insight
into the character of the Monte Carlo iterative process. At any rate, assum-
ing completeness, we write

D, (12)
T n-n

where, as in Eq. (1), the U, are the eigenvectors of H. We have already
specified that TT *U) = Al. It will be convenient to normalize the other
eigenvectors similarly if possible. If 1T * Uy # Ap, let tT » Up = Aps
otherwise the normalization of U, will remain unspecified. Clearly
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T, z: pe |
LR A8 s (13)

where the primed summation runs over all n such that 1? * U, ¥ 0.
Write Eq. (11) in the form

TIPS SR A

n
fam
i
[}
on
4

~

H

H/A; /A1 . (14)

-
"

Assume that the iterative process has been in progress for an infinite number
of enerations. It is easy to show, given our assumptions on H, that
AT It follows then, from Eq. (14), that

0

£i+1 - Z: Angi—n , (15)

n=0
where, of course, the superscript on € is an iteration index, not an exponent.

The reader can verify that

S

L R . Sl n>1. (16)

Putting Eq. (16) into Eq. (15), we see that

i+l <1 n i-n
? : k ; ; pﬁei.n . 17)
n=1 =

Here px = Ak/A;, while si is the coefficient of the k-t eigenvector in the.
eigenfunction expansion for ei:

o
]

N XA s
= £t fiex

It follows from Eq. (17) that

i+l n i-n
83 = ; : Préx
n=1



1+l n i-n : ,
S = ;
K ng pkek ’ k > 1. (19)

To compute the mean-square coefficients of the error modes, we write

~i+1)2 -n_i-
(ak ] - z :z :pap:elj; "M, k4L (20)

n=0 m=0
: i+l . 41+1
Defining Ty = E{Gk 62 -}, we see from Eq. (20) that
e
r, = —&— kg1, (21)
kk 9
1l - L

For later use, we also cite, here, expressions for the other rkZ'S:

K- K -
Py P
- ke
r;; = €31+ — T %1 -
k=2 £&=2 (1 - pkpg')
K .
PP
k™%
Tig = To1 T fip T N ke 41,
ke
T, = T k+1, L #1. (22)
o
Above, and in all the work which follows,
_ ii
€y = El;kezj. ‘ (23)

Note that we are assuming that the right-hand side of Eq. (23) is independent
of {i.

The quantity rkix is the mean-square coefficient of the k-th eigenvector
in an expansien of the "asymptotic" fission source (i.e., the fission source
in any single generation preceded by infinitely many iterations). At this
point we want to derive a corresponding expression for rgx in a fission
source averaged over M successive generations. Define

M

~i+1 1 “{42-n

6 - ——2 : 6 (24)
k ’

LM ME)

207




208

and

~i 2
Tk, - E [dk,M) ’ (25)

M
1 C o) it2-nTit2-m
Tk, M = MZZiE{Gk 8y } (26)
n=j ms

We consider, for the sake of simplicity, only the variance in the ampli-
tudes of contaminating modes, modes for which k > 1. For such modes

E 61+1—n61+1"m = PP E ei n-j i-m-% s k > 1 . (27)
k Tk Z-o Zzao Kk &

If n > m, then

ti+l-n i+l-m - 3 n-mtj
E{6k Gk } E :pk Py €k ° k>1. (28)
3=0
o0
2i+l-n;i+l-m k
E{Gk Gk } = {T———z-}— ekk R k>1. (29)
A4 = Pk
Putting Eq. (29) into Eq, (26), we find after some manipulation that
1 °kk
TaeM " —( ) E.+2h.M[ IJ k>1, (30)
M|l - pk
where
: M
p 1-0p
k 1 k (31)

) [T

Obviously hy(p) =+ p/(1 -~ p) as M > ». It is easy to show in addition that
hy(e) & (M - 1)/2 1f oM} 1. Thus

Ekk .|
r N —— ifM<<-{!ank) , k>1, (32)

kk,M _ a2
[1 pk]

and
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€

’

1 “kk 20y -] i} Kk
Te,M M [1 - pi] o (1 - pk)-, [1 ~ p‘k—}z

if M >> -(2n pk]-l . k>1. (33)

i
M

Note that if successive generations were uncorrelated, one would find that

€
- 1_ ke (without correlation) . (34)

r
kk,M _ .2
M (l ka

Thus we see that the factor 1 + lépk/(l - pkgl in Eq. (33) is an amplifica-
; tion factor embodying effects due to intergermeration correlations. A closely
1 related amplification factor is introduced by MacMillan in Ref. 3.

In order to make any use of the expressions derived above, it will be
necessary to evaluate the covariances epy. We discuss this problem next.

? C. Computation of €KL

The quantity el in Eq. (5) is a vector whose spatial components have the
form

R e IR S T E{Niﬂ'lvi’ . (35)
v vV v v AV had

Expanding g} into eigenvectors of H, we find that

K
i E' * i+1
€ ™ UkvwvAv . (36)
=]
Here ﬁ:» is the v-th combonents of the adjoint eigenvector g;. Thus

f:z: * & A+, 141
- : . 7
€y by £ UkaququE{Av Au } (37)

To evaluate ¢, ,, we must now compute.the expectation value which appears on

the right-hanhzside of Eq. (37).

Neglecting any bias, we shall assume that the expected number of parti-
cles in the v-th box is Nv’ where

WN = NTU . (38)
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liows ome cam show thet

z:gm;iﬂmgﬂg - ﬁwﬁl‘ - w//m}} . (39)
Egmiﬂmiﬂg = —ﬁwﬁ “//m » vH#ER . ()

Putrtfimg Eps. (39) amd (40) imto By (37), we Find thet

K
m = z]; U T ¥, {1 — B,/8)

D2 MeT Y

+§; [i v 952) /m . 1)

-;g EALEEAT D | “2

Becanse of the biorthogomality of efgewvectors amd adjoints, the secomd
term om the right-hoami side of Eg. (42) vanishes snless k = £ = Iz

K
S = 21“;»“;\1»‘%&\»' k#1 or 24#1. (43)
=]

Again using ' » one Finde that




K
€11 = E : {{uﬁ;wwwj]zmw -N. oy
W=

| a-egs

B@MEWﬂsﬁemﬂ@tm,WimSmﬂmmmmmm Fau
tiion for sbecnptiom. From Hy. 42), it is essy to show that, in general,

K .
L “; e = T [T~ Ta) T - | (46)
_
ilk = § ‘Ikwmw »

i =1Nw//‘m..

Mﬁmqmmﬁtﬁty( mmbeimmaﬂmﬁmwmnmmemfﬂwmm
tamce fopctions, T and R,vﬁﬂmpmtmﬂmm;pti@mwdhmﬂwmt -
botion fonction. ,

D. Qualitative Festures of the Momte Carlo Hstimates

Bote that we have, so far, been discessing the fluctwations im the met
fission somrce prodoced in a typical gemeratiom by N sampie particles. The
mﬂmﬁmmgﬁsﬁmmmﬂd,ﬁm,bewrﬂmmlmmm It
m,m,mmmmmmmﬁamM
source wihose normalization is independent of W. Defime

- vy @

E[twrﬂlﬂnesemﬂmtv ismesﬂmteufﬂmﬁssmmcedmitypmdme
at the end of the i—th generatiom, by one fission mestron born at the begim—

ning of the i-th gemeration. Correspondingly, we defime
B

-1
e T

241
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and

- .1 J ) itl i+l ’
e T T E{Yk Vg ’ (48)

In terms of the newly defined quantities, we may write

€

= k&
Ty = —1————————-, k#1, L¥1, (49)
(= #ies)
K -K -

PP
- - Ky -
ry; = €11 + EZ———‘—— €1 * (50)

k=2 =1 (1 - pksz

»

r,, = €,, - ———p-li‘-‘-——z = r L1 (51,
18 12 - [l-pp) 3 21 ° ? ’
k™2
Teem = L Tk [y, Zhu("k] s k#1, (52)
’ M2 (l - pi}. :
. W Gk .
M v oo M >> —{zn pk'I] R k¥1, (54)
S Gl
K .
gy, = % v* w)2n -1 (55)
11 N & vy v s
K
= .1 * 2
€y - vz_ ;Ukvumwvnv , k,2 # 1. (56)

We see from Eqs. (49)-(51) that the asymptotic fission source contains an
"equilibrium" distribution of modes. Although the amplitude of all error
modes tends to vanish like 1/N (since the €y, vanish 1ike 1/N), the spectrum
of error modes is independent of N.

Generally one would expect that the Ekk would decrease with k, since the
number of zeros in U increases with k. On the other hand there seem to be no
reason to suppose thdt ey is very sensitive to k and we shall assume that
variations in €y are not very important. Certainly this is true in the model
problems discussed in Section E. Neglecting variations in ey, , and assuming
that o, Y1, Py % 1, we find that



;kk/;u % [1 - °2)A1" "k) . 7

Clearly it is not safe to assume (as one does in a deterministic eigenvalue
calculation) that only a single error mode survives after many iterationms.

Averaging over many generations, we find that

2

;kk,M/;Ju?,,M R (1 - pz}y(l - pk) . (58)

It will be seen that whem M is sufficiently large the spectrum of error modes,
which is always independent of N, becomes independent of M as well. In the
averaged fission source the importance of error modes with large p is con-
siderably enhanced though higher-order error modes persist.

To compute the variance of the eigenvalue estimate, we recall that

S (f'!i] Ny Ty, (59)
mtoz At oy e - i, vyl (60)
LA Kk .
=1
(Axi/xl} - b Te - (61)

k=1
From Eq. (19) we see that

K - - [~ [
1 i z : n i-n , 2: n+l i-n
kak €1 - g pk.ek + pk Ek ’ (62)

"
= |

k=1 ' n=1 n=0 k=2

K.~ . >

_ 1 i_ ne. y 1
;2- ;r =3 2 Pt S :E :pk[l pk) el (63)
= = =7 n=

From Eqs. (61) and (63), it follows that

E{(Akilh}z} = g; °k"zgkz

ee(1 - Py L - ey - (64)

o

213



214

Define

5 1 (T 1)2
=l;9kp£’t~:k‘Q = ;E{_‘r_ - } (65)

After a little manipulation, one finds that

K
@y, = X (w-’)zn , W Z:WAII , T
V= [ Y Y v v v

N v=]

I<2|

. (66)

2

This oy is equal to 1/N times the variance of the weights. It can be shown
that ag has, in addition, the following significance. Suppose one were to
draw N fission source sites from the main mode fission source distribution,
starting one sample particle from each site. Each sample particle is to be
followed for one generation. Let N, be the number of sample particles which
end their histories in box v, and define

A o= Nva . (67)
=

Then og is the variance in (A/A}). The second term on the right of Eq. (66)
is, then, the additional variance induced by the iterative process. This
second term may be written in the form

oy = p p 1 -p ] 1-p ] g . (68)
n-l k-2 k™2 n ( L4 kL

Since the &, , are elements of a covariance matrix, and such a matrix must be
non-negative definite, o; is a sum of non-negative quadratic forms. It is,
therefore, non-negative. The iterative process will tend to increase (and
will certainly not decrease) the variance of the eigenvalue estimator.

We have seen that in the asymptotic mixture of modes, the modes with
p % 1 ("low-order" modes) occur with relatively large mean-square amplitudes.
On the other hand, because of the factor (1 - px)(1l - pg), such modes do not
play a particularly important role in amplifying the variance of the eigen-

.value estimator. In fact, the fluctuations in amplitude of low-order modes

has little effect on the eigenvalue estimates precisely because the eigen-
values of such modes are almost the same as the main mode eigenvalue. Be~-
cause the contributions of low-order modes are suppressed in a;, one would
expect the net amplification in the variance of the eigenvalue to be small.

Suppose, how, that we are interested in estimating the fission rate in
a volume, k, within a reactor configuration, From Eq. (48)
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Define

and

102

= E i ri
R,M M= =R 4

z1,443 E{7 ii+j
kz - YkYs .

By straightforward co{nputation, we find that

and

PPy
1,1+ _ e
1 = PP }

K
PyP
44 L = 4 3PPy -
ik Elkpk+;pk{l_pp “hg 0 kPl
| - Py
| p.p
i, 44 | _ 1P -
kl gpx ‘1- Ekﬂ,’ k*l’
S G
PP
gl.ity . 3 __ k&t o =
T Py . €rg ? k#1, g =1.
(- Pw)

Making use of the above expressions we find that

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

@7
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K .

where the o) are complicated functions of all the p's and all the €'s. Using
MacMillan's approach, we write

ii-1 i i-2
i L, 2 4 {rRrR } + 2 4 E{rRrR } +
OR,M = -};[- OR + MZ ’ (79)
so thus, for large M
a.
o2 & Loz 42 —k 1, (80)
’ M k=1 (1 - pk)

Equation (80) is a generalization of the equation for o on page 74 of
Ref. 3, and is identical with MacMillan's expression if only one py is dif-
ferent from zero. It is possible that one could use Eq. (80) assuming, per-
haps, that only two of the px (p2 and p3 for example) are different from zero.
The four parmeters aj, @3, P2, and p3 could, then, be fitted to match observed
correlation coefficients of lag 1, 2, 3, and 4. Whether or not such a pro-
cedure would be practical is not clear at present.

E. Analysis of Model Problems

In our analysis of the Monte Carlo process we have dealt with a random
walk in a discretized phase space, i.e., a random walk among K distinct boxes.
It is easy, however, to adapt this analysis to a continuous random walk by
letting K go to infinity, while replacing sums over v by integrals over space
and energy. The model problems discussed in this section are problems in
which the position and energy variables are regarded as continuous.

We consider, as our model problem configuration, a homogeneous cube of
thickness T. Suppose that the scalar flux vanishes on all faces of the cube,
and that T is large enough so that diffusion theory is valid. In one group
the eigenvectors are, then, given by the expression

UkZm = Ckzm sin BkX sin BzY sin BmZ , Bk = kB,
B = /T, k,2,m = 1, 2, . . ., (81)
where the Ckzm are normalization constants. The adjoints take the form
*
= 3
Uon (B/T Cklm} sin B X sin B)Y sin B Z . (82)
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€ = L3¢, V%(c.../B%) a,a.0 (83)
kim,kim N ( klm) ( 111 ] k 2 m

for k, 2, and m are not all equal to one, and

Q.

. 1+ 1/(4k% - 1) .

Our normalization condition requires that

so that we may write

- L1 3 P)
*kem,kem T l}”‘ln / (T Ckzm}] % (84)

In the proposed model problem

MNeom ™ [1 + tB2(k? + 22 + m2):|'1 . (85)
Consequently
Prgg ¥ 1= B2k + 22 +w? - Dy . (86)

and, to first order in B2,

=02 = 20B2(K2 + 22 4 m? -
1-02,, = 2822 + 2% +m N - (87)

Approximately, then

4)\2110 a,o
1117, ¢ ™ m . (88)

[r ckm)z(kZ + 22 +m? - 3]

- 1
rklm,kzm N

Thus the root-mean-square coefficient of the kim-tZ mode is




Tk

) fl: %&\lzmnau @ @ B l Mzilnm @@ @)
“k&m . ; - -
W’? m:cnglﬂ%{km]}z((&z + m? + ’?2 - 3) Jmm%n@([lkz + 22 # n? — 3)

G the other Hemd, mwﬁmmmm,mmmw
tive -t mﬁm,byasﬂnﬂ.e.ﬂmﬂmmmmﬂf thhe 111 "#t penerstion s

e = Appn(B/2)3 sin BX sim BY sin BZ

= Apppm/21)3 sim BX sim BY sin BZ . (30)
Therefore tie ratio, ,mfﬂmrmt—m—mmemdfﬁﬂdmtnfﬁekﬂm—%
arror mode, to the coefFicient of the muim mde, is given by the

/I 256 o, @, o
£ O™y "m 1)

T Jmmzmmun@-a» :

The quamtity :ﬂsanm@nmnfﬁhendmﬂmmﬂ“mfﬂhéw'
error mode dm fisgion source distribution. I the meim mode lesis poobe—
bility dis 307 (fairly typical for experimemtal fast resctors), then T = 0.1l
hthﬁxmmm'ﬂmﬂmtmwﬂyﬁ,mmmmﬂsmlﬂhw,pﬂ
ssunhanammﬂmrufmimwgmmﬁm-

fyoma = A 12 oyl 1 ©2)
| VN Mr® (:B2)2 (k2 + 22 + n? — 3)?

sssuming that M is sufficiently large so that Hy. (54) is walid. Wow we Find
that 100,000 histories would be reguired (i.e. B = 100,000), after settling
o xmmmmﬂmwmﬁmmmmﬂsmwmﬂ.
This is a.rather large mmber of histories, but a Momte Cario problem with
106,000 histories can be rum in roughly three hours, genserally, on the latest
TR or (DT compaifers.

trun on the mmber of histories. On the other hand, it tells us wery little
abmtﬁmmﬁmmmm,ormmm,hwﬂd
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subregions of the problem configuration. Certainly it would be possible to
study local fluctuations in this first model problem. However, to shorten our
computations, we turn now to a model problem which is similar to the first,
but still simpler. The second problem configuration is again a cube of thick-
ness T, but with reflecting boundary conditions imposed on each face. It will
be convenient, in this case, to designate the main mode with subscripts 000,
in place of the subscripts 111. In this modified notation

Uklm - E : hk(x)hz(y)hm(z) . (93)
kim
Here the % om are normalization constants; further
(94)
hk(x) = cos kBx , k#0,
where B = n/T. As for the adjoints
*
Ueom = (1/ “kzm) Ekhk(")szhz(y)smhm(zﬂ »
Bk = (/) , k=0. (95)
From Eqs. (93) and - (95) we see that
o B, B,8
= = 000 kim =g =m=
ekzm,klm N o2 unless k = 4 =m =0 . (96)
kim
Further it is clear that
€000,000 = O, 97
and that
;kzm,k‘z’m’ 0 wunlessk=k", £ =2, m=m" . (98)

As in Eq. (70) define

1 1 ) E -
R [ (" - ‘-IlJ av CremYicim * (99)
R

k,2,m
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CkRm = ./I:ng'm av . (99)

Let R be the cube bounded by the planes x = 0, x=t, y=0, y = t,
z=0, and z = t Then

Cklm = klmfkfkfm ’
fk = (gin kBt)/kB , k%0,
£,0= ts k=20. (100)

As in Eq. (71)

02 = - . .T PP (101)
R Ky Z.m k*, 87 ,m klmklm kim,k“2 m
But one can show from Eqs. (50), (51), (97), and (98) that
Tooo,000 = O - | (102)
rklm,k‘l‘m‘ = 0, wunlessk=k’, £ =2", m=m" ., (103)
Therefore

o 00 (-]
Z:-l ;_ Zm.-o kim " kim,kim
'Oi - :2- ;>- z kzm kR.m,kR.m . (105)

pklm

24 £2
5 2000 '§‘B BoEePufm
N kl,m

(106)

- kaLm
3 B 52N
- 3 (107)
N k,2,m 1 - kaLm
since aggo = T3. Here

[ ]
Fie d (3T %, ’

(t/T) , k=0,
(V2/7) sin (kBt)/k , k¢ O. (108)
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Since high harmonics may contribute substantially to the variance, it seems
worthwhile, in Eq. (107), to use a rigorous expression for p o For the sake
of simplicity, we assume that the medium in the cube is a pure absorber. Then

Prem = kam’ 2000 (109)
Ly B/kZ + 22 + m2~
Akz = . tan~! . (110)
A B/k2 + 22 + m? I,

/

Via Egs. (107); (108), and (110), it is possible to compute oﬁ numerically to
any desired level, of accuracy.

By methods now familiar, it can be shown that

- F,F,F
1 1-1 3 z : [k u:l
E{__”R”R } =X Pram T 5 (111)

k,2,m pklm
and that, for M sufficiently large

6z:p [F :l/ - p2 1-p )
) ) 1 ) Krom kim klm klmJ

OR,M ;;-OR 1+ . (112)
R .
On the other hand, MacMillan's method gives

o ,
R 2 R ]
o2 & o2 = =—g2{1 + 3123 . (113)
R,M R,M R
M o3 1 - p100)

We see, again, that MacMillan's approximation would be rigorous if all the
eigenvalues were zero, except for Agge and for Aj1gp = Apio = Ago1-

In the absence of correlations we would have

2 )
a = () .
RyM ™ R

Thus, in Eqs. (112) and (113), the quantities in parentheses act as amplifi-
cation factors embodying the correlation effects. Define
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6 E kamEkFlFﬂJ 2/ (2 - Pkem) (1 = Prem)

e R R e R

22
A = 14—l - , (114)
°R
2 /- o2
. ¢ L pkszszFxr] / 2 - Pken)
A = 1+ 22 . (115)

02(1 - p100)

Here A is the "true" amplification factor while A is the approximate "MacMillan
amplification factor". It will be seen that A and A depend only on the absorp-
tion probability p = (t/7)3, and on TB? = 32/32%. The intergeneration corre- .

lation coefficient

c = E{rli{rlji_l} /5§

is also determined by p and tB2. Values of A, A, and C are listed in Table I
for various combinations of p and TBE. In the last colume of Table I we have
displayed the percentage errors in ZZ (in place of the errors in A) since VA
is a measure of the uncertainty in the fission rate within R. Note that when
B2 = 0.1 the dominance ratio (pjgo) is approximately equal to 0.9, and that
this dominance ratio is not at all large for a thermal reactor. On the other
hand, tB% = 0.3 corresponds to p100 N 0.7, a dominance ratio characteristic of

a small fast reactor.

The entries in Table I display some fairly obvious regularities. First

of all we see that:

(a) As one would expect, the amplification factors tend to be large when
the dominance ratio is close to one. In fact it is clear from Eq.

(114) that as pjgp > 1, A > =.

(b) Secondly, A and C are large when p is large (i.e., when t/T is
large), and both are small when p is small. For k << (1/7)(T/t), we
see that F % p: thus if p is small, Fy is almost constant for a
wide range of k's. Many modes, including many for which pygpy 18
small, then contribute to the sums in Eqs. (111) and (112). The
presence of pypgy as a factor in these sums then tends to make the
correlation coefficient C, and the amplification factor, A, small.
On the other hand, when p is large, F decreases as 1/k, enhancing
the importance of modes near the main mode. A and C then become

- large.

Finally we see that when pjgg % 0.09, the MacMillan method is reasonably
accurate down to p = 0.005. In leakier reactors with pigo % 0.07, the
MacMillan method is adequate for p's as low as 0.00l. Eventually, as p be-
comes still smaller, C approaches zero and A approaches one. Significant
errors in the MacMillan method do occur, but in a range where p is so small
that the binomial estimator (the only absorptions estimator we can deal with

here) starts to become ineffective.



TABLE I

Amplification Factors and Correlation Coefficients
for Various Values of the Problem Parameters

Error in
B2 P c A A q)T %)
0.1 0.25 0.86 18.1 18.2 0
0.1 0.1 0.84 16.5 17.8 4
0.1 0.01 0.69 8.9 14.8 29
0.1 0.005 0.62 7.0 13.4 38
0.1 0.001 0.45 3.8 10.0 160
0.3 0.1 0.67 6.4 7.7 10 -
0.3 0.01 0.49 3.7 5.9 26
0.3 0.001 0.28 2.0 3.8 38

On the other hand there are many other estimators which can be introduced
in this range. Track length estimators, collision and line-of-sight estima-
tors are often used, when p is small, to reduce the variance in reaction rate
estimates. We cannot say what these estimators will do to correlation coeffi-
cients or amplification factors. It is possible, however, that such estima-
tors reduce variance by suppressing the uncorrelated "noise" component of the
statistical fluctuations, without strongly affecting correlated large-scale
fluctuations. In this case, amplification factors would again become large
and a more extended analysis of MacMillan's method would be necessary.

Part II

THEORETICAL STUDY OF THE MONTE CARLO EIGENVALUE COMPUTATION,
- BIASES '

A. (Calculation of the Eigenvalue Bias in the Mathematical Model

As discussed in Part I, the retention of terms nonlinear in statistical
fluctuations when calculating deviations from the fundamental mode eigenvector
will give rise to estimates of the bias in the calculated eigenvalue. Follow-
ing the definitions of Section A of Part I, one obtains from Eq. (10)

VL ) N (116)
N ' :

where A and,;T are defined by Eq. (14). The statistical error vector ei is
defined in Eq. (6) and has the property E E?} = 0. However, due to the pres-
ence of nonlinear terms in Eq. (116), the expectation value of 81+1 does not
generally vanish even in the limit i > », Since the deviation of the esti-
mated eigenvalue of the i-th generation from the fundamental mode eigenvalue
is given by
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A ~
mi o= atoa, = 22T, (117)
N
the expected value of the bias may be obtained from
X ~
m = uwe{mi) = =L e{zt - sY. (118)
> N >0
If we retain only terms quadratic in g} in Eq. (116), we have the
equation
s o st - 1 ET . _g-i) ast 4 &t (119)
N
where
g:l+1 = Z Angi—n (120)
n=0

was obtained in Eq. (15).

Assuming again that an infinite number of genera-

tions have passed, Eq. (119) possesses the solution

e e ;i: ET . 3_1—:1)
N n=0
Defining 3
o =AM
and noting that
E{§_1+1} -0,
we obtain
. - “LZEt&T . ;é_i-n)[iT .
N2 =0

Upon substitution of Eq. (120),

A'n+161-n

(121)

An¥l 31-n)

(122)

|



1 i 22 E‘&T . Apei--n—p—lj ET . An+q+1£i—n—q-1]}
N2 n=0 p=0 g= - -

or
) §§p20 {LT . ,DP i—n-p-l)[ i An4-p+1_e_i-n-pel)} ’ (123)

since the statistical fluctuations in different generations are uncorrelated.
Using Eqs. (18) and (23), we obtain

RS 32529 3 LIUN COR N g
N2' n=0 p=0 [ % k2
From Eq. (16), we obtain

°T

- Afu = - P
LAY = (e l) Py

for p > 1 and for all modes k such that i? * U ¥ 0. It then follows that

s » [- -]

—lzz Zn
o« = + PP, =P P, €
kz( z)n_ozkz

N2 k=l Q=2
;":E:: 2 : E : P P E n+l
- 1l - o] 1 - o} 0.0 p € .
2 k*m2 4=2 p=l ( k)[ 2) Ko &P ke

which reduces to

-~

D D D1 G} cey - (124)

2 km - -
N k=l =2 1 PxPe

As in Part I, py = Ak/h, and the summations designated with primes run over
those modes with TT . I_Ik ¥ 0.

B. Approximations for Estimating the Eigenvalue Bias

Equation (124), for the fractional eigenvalue bias, may be written as
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a = og + a + 0y ,

where
rd

o1
0g = — E : Pp€ql » (125)

N2 i=2
Ly >
0 = — PP, L =0, Erps (126)
N2 =2 =2 a = 0]
rd rd 2
PP 1-p
a2=-1—zz:(k”}( ideu. (127)
N2 k=2 4=2 1 =pP,

In the above partition, ag contains all contributions which are weighted by
the fundamental mode and can be expected to contain a large contribution to
the bias; o} is the leading term in the series expansion of that part™of a

which contains contributions only from higher-order modes. The expressions
for ag and o) can be converted into sums over regions rather than over modes

by utilizing the following relations:

R
€ = U, .U, €
kL :E: kp v pv ’
H,V s s

euv = N[gqulev - UluUi;] ’

and

»

= 1 E _ * ik
Z PxCke zzu Z\; UkoUkpVavEuv

k=1 A k=1 "0

r S Ty oy 2v uwv
1 E E *

= —— U € ’
a S = JAVR TRV

where completeness has been assumed. Applying the above relationships to
Eq. (125), we obtain
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E:ZUIE EUU
v uv 1y 1€ uv

H,yV

1
i -I\; Z [_—_ ’ v] UlVWlev : - (128)

In Eq. (126), we obtain

1 11 E *
ol P (l - p) E :U £
N2 El o1 L L TPy JAVIR TV

* %k
E 1 - Py Z U, U

=1 Y u zv QY
Noting that

{1 - * = E * -7
(1 pz) UIL\) = Ulol:sov Ho\;]

and
= — - !‘_ 6 = 1—
Z Z E = :: : - ’
2=1 2, ILo Ay o=l T Z'r 20 AT T0 A1
we obtain
4 = - Z Gov'- ﬁov v . E 60\) - ﬁov U?ueu\) :
N2A§ Os UV H Nz)q O,yH,V

Inserting the expression for Euv gives

. z i * - E . :
[ -U ] 1 - Bl WU, - (129)

Otl‘ =
NX; A1

Define the quantity Gv by
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G, = :>-;'Huv = )\1‘2 H, - (130)

Then

, . ,

a1 iz:-l———u’l‘v L-—: WU,
v Ay Al A

If we now estimate a with the approximation

a n oy toay,

we obtain

o miE:—l—-U* —1——+U’1‘ -l clwu, . (131)

The approximation, Eq. (131), may be evaluated during a Monte Carlo run if

the appropriately normalized importance function va is supplied. The other
quantities appearing have the following interpretation: Ulv/kl is the contri-
bution of a unit source in regiom v; W, is the weight of a site produced by
the absorption of a unit-weight neutron in region v; and G, is the weight of

a site produced by a unit-weight neutron born in region v.

Another approximation for the eigenvalue bias may be derived by noting
that

1 AT AT N
0‘1"'0‘2""222[1'1_1][1'9] l—p]pp €
N2 k=2 =2 n=0 k L [ ) [k z] k2

- L), E{{?T F I - glg’flﬁ“si'“’l]
n=0

x (f c 1 - gutlEn - B gi‘“'l]}-

It follows that




~

ay tap, = i‘z‘ |’ - (1 - 1_11‘_1’1‘} st - (1 - 1_11‘_11] [ii - iiﬂ] .

1f, in the above equation, we make the approximation that

si v
- - —  -ave

e

O
2

<
|
-

then

[ B b )

The approximation for aj + ap may be estimated from a Monte Carlo run if the
importance functions are either supplied externally or generated by the run.
When combined with oy from Eq. (128), an estimate of the eigenvalue bias will

be obtained.

C. The Bias in the Eigenvector

The bias which occurs in the eigenvector is related to our previously
defined quantities by

s = LE{st), (132)
N

where g} is obtained from Eq. (116). The eigenvalue bias is related to AU by

M _ T
A1

a =
By steps similar to those used in the derivation of'Eq. (124), we obtain

[;T U ] €
1 LI TR N Ug) U, - 0,0, - (133)
N2 k=]l =2 1 - PPy,

By examination of Eq. (133), two features may be noticed. First, contributions
from modes may be present which do not contribute at all to the eigenvalue bias
(i.e., those with tT + U, = 0). Second, modes with eigenvalues close to the
fundamental, which contribute only slightly to the eigenvalue bias, are much
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stronger contributors to the eigenvector bias. As a consequence, large local
bias in source shape may be present even when eigenvalue bias is unimportant.

Some understanding of the potential difficulty may be gained by examinin
the leading term in Eq. (135) coming from the series expansion of [1 - pkpzl‘ :

“ . [AT —k] (AT } ~
AU = ——-E : 2 : T U v U} U, -p,U,| € .
N2 k=1 2=2 =yt ke

Using the relationships of the previous section, we obtain

() _ 1 1 *
AU H Eu WU U, - 2 :Uuz Y (134)

1 -
M2 it WY 2=1

By using the assumed completeness of the eigenvectors, Eq. (134) may be
reduced to the form

w® - ms, (135)

where
l — .
§='—E'E—]Hl. (136)
NAY

In Eq. (136), W is the diagonal matrix with elements wuduv and
r 3

Wuulu
b I (137)

2 U1y

H J

=
n

\

The lowest-order estimate for the eigenvector bias may thus be obtained from
a source vector constructed by weighting the fundamental mode eigenvector by
the deviation of the weight from its average over the fundamental mode.
Applying the appropriate operator to S as defined in Eq. (136) will produce
corresponding results for the bias in reaction rate estimates.

D. A Note on Reducing the Bias

It has been suggested by Lieberoth [1] that the bias may be reduced by
modifying .the Monte Carlo procedure. The analog of his suggestion which
applies to our mathematical model may be described as follows:

(1) define a maximum weight Wpay > W, for all v;
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(2) at each absorption, accept a source site with probability WQ/Wmax;
and

(3) if the site is accepted, assign the weight Wﬁax'

The effect of the procedure is to do a Monte Carlo calculation with only
 constant or zero weights allowed. A correlation matrix analogous to € , may
be derived which 1is given by H

*
€y " N{wamaxulu - UluUlv}

and

* %* *
e = MW zu U Uy Uy = 88y oY (138)

The effect may be seen in Eq. (134) by the replacement W,, + Wp,y, causing the
loyﬁgt-order estimate of the eigenvector bias to vanish identically:

AU + 0 when Wy * Wpay . The increase in the magnitude of the correlation
matrix, Eq. (138), will increase the magnitude of the nonvanishing terms,
partly offsetting the gain obtained by eliminating the first term. Variances
in calculated quantities will be increased as well.

If the presence of the bias is considered to be a potential difficulty,
then the simplest and most direct approach is to try to use as large a number
N of neutrons per generation as is feasible after sufficient source settling
and to take advantage of the 1/N dependence of the bias.

Part III

MONTE CARLO CODE DEVELOPMENT AT ARGONNE NATIONAL LABORATORY,
VIM DEVELOPMENT

Monte Carlo work at Argonne has, as its main goal, the construction of a
Monte Carlo code for use in the analysis of Argonne critical experiments. The
code presently available at Argonne is the VIM code originally writted by
Levitt, et al, [4] at Atomics International.- Responsibility for the mainte-
nance of VIM, and for its future development, was transferred about a year ago
from Atomics International to Argomnne.

VIM is a continuous energy Monte Carlo code designed to treat a fast
reactor lattice of rectangular subassemblies (or "drawers"). 1In the original
VIM it was assumed that all interfaces within any drawer would be planar sur-
faces, and that each planar interface would be parallel to one of the three
cartesian coordinate planes. Recently, however, combinatorial geometry rou-
tines written by MAGI [5] have been incorporated into VIM. The use of combi-
natorial geometry allows VIM calculations to be made in complex, irregular
geometries as well as in lattice geometries. The combinatorial routines are.
being extended to the lattice environment to permit a full range of geometric
options within repeating subassemblies. This capability is required for the
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analysis of small-sample-worth experiments and for the analysis of pin-type
fuel loadings, since small cylinders are used within the drawers.

1

The VIM cross-section library at present consists of 20 isotopes. Cross
sections are specified pointwise from 10 eV to 10 MeV with different interpola-
tion schemes possible in different energy ranges. ENDF/B data specifications
are closely followed in the VIM library with respect to scattering angular
distributions and individual isotopic fission spectra. Probability tables
[6] are used for unresolved resonance cross sections. In the present library,
all resonance data has been Doppler broadened to 300°K. Since the VIM cross-
section library codes are now operational at Argonne, the number of isotopes
in the library is being extended and it is now feasible to generate a multi-
temperature library.

Among the modifications to VIM, which have been made at Argonne, has been
the inclusion of variable dimensioning with dynamic allocation of storage. A
small test problem may be executed in a total core requirement of about
60,000 words, with a realistic full-core eigenvalue problem requiring perhaps
400,000 words. The Monte Carlo calculation is completely core contained. The
use of variable dimensioning has removed most limitations on problem complex-
ity, with the exception of a temporary limit of 20 isotopes in a calculation;
core size is the practical limitation on problem specification.

The computation of small sample worths is a primary goal in the VIM code
development program. Such calculations are difficult simply because the sam-
ples are small. It is our intention, at present, to explore carrying out
these calculations by a combination of three techniques, namely,

(1) roulette and splitting, to build up the density of particles around
the sample;

(2) line-of-sight estimation, to make optimum use of collisions near the
sample; and

(3) complete correlation.

By "complete correlation' we mean the simultaneous treatment of perturbed and
unperturbed problems in a single random walk. The proposed computational
method has the advantage that it is exact and that it does not require the
simulation of the adjoint transport equation.

REFERENCES

1. J. LIEBEROTH, "A Monte Carlo Technique to Solve. The Static Eigenvalue
Problem of the Boltzmann Transport Equation," Nukleonik, Bd. II, 213

(1968) .

2. R. C. GAST, "Monte Carlo Eigenfunction Iteration Strategies That Are and
Are Not Fair Game," WAPD-TM-878 (1969).

3. D. B. MAC MILLAN, '"Monte Carlo Confidence Limits for Iterated-Source
Calculations," Nuel. Sei. Eng., 50, 73 (1973).




233

4. L. B. LEVITT and R. C. LEWIS, "VIM-1, A Nonmultigroup Monte Carlo Code for
Analysis of Fast Critical Assemblies," AI-AEC-12951, Atomics International
(1970).

5. M. O, COHEN et al, "SAM-CE: A Three-Dimensional Monte Carlo Code for the
Solution of the Forward Neutron and Forward and Adjoint Gamma Ray Trans-
port Equations," MR-7021, Mathematical Applications Group Inc. (1971).

6. L. B. LEVITT, "The Probabilty Table Method for Treating Unresolved Reso-
nances in Monte Carlo Criticality Calculationms," Trans. Am. Nucl. Soc.,
14, 648 (1974).




