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Abstract

Methods, based on the principles of neutron transport physics, are
described for formulating and solving discrete ordinates representations
of the general linear Boltzmann transport equation. In a first approach,
the transport equation is formulated directly in terms of discrete vare
iables, while in a second approach discrete ordinates equations are for-
milated that are equivalent to generalized moment representations of the
analytic transport equation. Both formulations include general speci-
fications of the collision and fission sources. Selection of discrete or-
dinates angular quadrature coefficients is described, and simplifications
of the transport equation (including diffusion theory) are outlined.
Solution techniques are described that combine the principles of neutron
conservetion, flow attenuation, and flux positivity with accuracy and
calculational simplicity. A sample problem is used to illustrate the

techniques discussed.
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PREFACE

This report is a first draft of Chapter III of "The Application of
Digital Computers to Problems in Reactor Physics," a book edited by H.
Greenspan, C. Kelbexr, and D. Okrent and to be published by the Addison-
Wesley Publishing Company. The book is intended for use by advanced
graduate students in nuclear engineering, and the authors of this chap-
ter welcome suggestions for improvenment.

The material of this report includes and augments that of Los Alamos
Report LA-2996. On some topics it supercedes the material in that re-

port.
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CHAPTER III

TRANSPORT THEORY - THE METHOD OF DISCRETE ORDINATES
B. G. Carlson - K. D. Lathrop

Discrete ordinates equations for numerical solution of the equations
describing neutron ensembles can be formulated in many ways. This chap-
ter describes methods, based on the principles of neutron transport phys=-
iles, for formulating and solving discrete ordinates equations. Physical
principles are used not only to insure correspondence between mathemat-
ical and physical descriptions of neutron transport, but to insure and
accelerate convergence of the numerical solution. That solutions con-
verge to the true solutions of the problems posed is a conjecture, but
for the methods discussed below the conjecture is supported by the prag-
matic test of numerical computing. That is to say, in a wide variety of
test problems, numerical results obtained with these methods have agreed
with exact solutions (when available); with other types of numerical so-
lutions; and, allowing for cross section uncertainties, with experiment.
We begin describing discrete ordinates methods by defining terms and
stating assumptions.

The goal. of neutron transport theory is to determine a distribution
function 1[:(3;, vQ, t). TIn the most general situations ¥ is a function
of three position variables denoted by X, two angular variables denoted
by Q, the neutron speed, v, and the time, t. In these terms y/v is the
neutron density distribution, the number of neutrons per unit volume per

unit velocity (v@) at time t. With several fundamental assumptions,




conservation of neutrons is expressed, in terms of ¥, by the linear
Boltzmann transport equation. Briefly, it is assumed a) that neutrons
flow without change of direction or speed until they either interact with
atomic nuclei in the domain of r or esc;ape from the domain, b) that the
number of neutrons considered is large enough that statistical fluctu-
ations can be neglected and small enough that neutron-neutron interac-
tions can be ignored, c) that neutrons do not appreciably alter the
medium with which they interact within the time intervels considered,

and d) that quantum mechanical effects are unimportant. In what follows
these assumptions are made. However, the methods of this chapter msy ve

applied even when some of the above assumptions do not hold.l’2

3.1 Formulation of Discrete Ordinates Equations in Terms of Discrete

Variables

Discrete ordinates equations can be written by applying difference
methods directly to the analytic form of the Boltzmsnn neutron transport
equetion, but this approach has several disadvantages. The resulting
equations may conserve neutrons only in the limit of small intervals,
they may prove to be numerically unstable, or they may result in complex
and unreslistic couplings among the various components of ¥. Here, using
averages of ¥ over r, v, O,and t, the Boltzmann transpoxrt equation is
derived for finite cells in phase space. By constantly insisting on
neutron conservation and by following the physical neutron flow simple,

general, numerically stable difference equations are obtained. The




averages of Y, which are denoted by subscripted quantities N, are fre-
quently of direct use in applications; and the detailed connection be=-
tween N and ¥ is usually not explored. However, the approach here de-
scribed permits the orderly formulation of difference equations beginning

from representations of V.

3.1.1 Coordinate Systems

The domain of y is defined by a set of non-overlapping mesh cells.

The volume of these cells is designated by V. . where the cen-
&n J ‘*‘%) J*’%} k"’é

tered subscripts locate the center of the cell, and i, J, and k indicate
the position of the cell as measured in the coordinate system defined
by the components of I. The areas of the cell surfaces are indicated by
quantities with non-centered subscripts. For instance, the surface of
the cell that is a distance from the origin, and perpendicular to the
direction, indicated by i is written as Ai, 3 +%, Kk

Although not necessary, it is frequently convenient to adopt or-
thogonal coordinate systems in which mesh cells are defined by the inter-
section of the orthogonal surfaces of the geometry. For instance, in
rectangular (x,y,z) geometry the mesh cells are rectangulaer parallel-~
pipeds. A typical such cell is shown in Fig. III-1.

Fig. III-l
The volume of the above cell is Vi-&-%,j—k%,k% = (xi+l - xi) (yj+l - yj)
(zk+l - zk) = MX-Ay-Az. The area of the cell face perpendicular to the
X direction at x = x, is A = *Az. The aresa of the 1
N paratie

face at x = x A,

1417 P j-i% Kk is the same. The areas of the two faces
¢4 ) 8




perpendicular to the y axis, Bi-y%,j,lﬂé- and Bi%’ j+l,k+%’ are Ax-Az; and
the areas of the remaining faces, Ci_'%, 54,k and Ci+%, j—l%,k-{-l! are AX-AY.
Areas and volume elements for orthogonal rectangular, cylindrical, and
spherical geometries of varying dimensionality are given in Table ITI-1.
Table III-1
Note that although all three subscripts are used in the areas A, B, G
the actual areas are not, in general, functions of all subscripts. The
range of subscripts is 1 =0to IM, j =0 to JM, k = O to KM with the
(0,0,0) triplet locating the origin. In this notation there are IM + 1
coordinate surfaces and IM intervals in the i direction. In the discus-
sions that follow, only the coordinate systems of Teble III-l are con-
sidered.

When orthogonal geometric coordinate systems are used, the angulaxr
veriables can be measured in a rectangular coordinate system (u, n, £)
locally aligned with the unit vectors of the geometric system. Typicel
such alignments are shown in Fig. IIT=2.

Fig. ITI=-2
For a discrete direction 'Qm the components of ,Q(m along the pu, n, and ¢
axes are |, N, and ¢ - and these coordinates are the direction cosines
of 'Qm Consequently p.i + ni + gi = 1. The direction 'Qm can be pictured
as a point on the surface of a unit sphere with which a surfece ares, w ~
is associated. The W, can then be assigned the role of angular quadrature
weights with the obvious requirement that the weights sum to the surface

ares of the unit sphere. In the convention here adopted, M directions



are chosen and angular areas are measured in units of Ux so that
M

Z L 1. In the ensuing derivation of discrete ordinates equations
I:.;éitional restrictions on the components of AQm and on the L arise. A
discussion of the selection of angular quadrature sets is deferred until
these restrictions are obtained.

To complete the discrete representation of coordinates, speeds in

th t
e range vg_% o vg_%

times in the range t =t to t_, are given the subscript s + %

are referred to as vg, g =1,2y...,G, and

s =0,1,...,5. While the smallest values of s refer to smallest times,

the smallest values of g represent the largest neutron speeds.

3.1.2 local Averages of the Distribution Function v

The first average of ¥ that is needed is the average of ¥ in the
speed range Vgl to Verk? qu(;,,gz,t). That is, the multigroup approxi-
mation is made. For convenience in handling integrations over speed,
the number of neutrons in the speed range, defined by Ng(g;,g;t) =
vg(;,g_,t)(vg_% - vg_*%), is used. That is, all the neutrons in the speed
range are treated as a unit. However, if it is necessary to treat the
detailed speed variation (as in an age theory approximation), then the
number per unit speed, ¥ & would be used. The mltigroup approximation
requires weighted speed averages of cross sections, for which many rec-
ipes are available. Here, the averaging process is indicated by affixing
the subscript g to cross sections.

In addition to the speed average of V¥, several averages of Ng over

all but one of the remaining independent variebles are needed. These




averages are denoted by a subscripting convention in which the non-cen-

tered subscripts indicate which varisble is not included in the aver-
eging process. For example, the average of Ng over the volume of & mesh
ell, V and over the area on the unit directional sphere

O Tag, g, ke € SPReTes

Wi at t = 'bs is written N

g, S,m,

J+k, k4, m and g are centered subscripts but s is not; and the average

1ok, 3ok, ok Tn this notation, ik,

N has the dimensions of neutron flux per unit volume per unit direction.
Similarly, in rectangular geometry, the average of l\Ig over the cell face
at x = X;, oOver the direction range W and the time range At = ts+l -t &
is wxritten N

233 S‘*‘%) m,i,J
script and N has the dimensions of neutron flux per unit ares, per unit

where i is the o© non~centered sub-
o, ke ny

direction, per unit time. Rectangular geometry requires six averages

of N over cell faces, directions, and time; one average of N over the
cell volume, directions, and time; and two averages over volume and
directions at fixed times. Curved geometries require additional aver-
ages of Ng, over time and volume at the "edges" of a direction cell.”
All these averages are unknown functions in the discrete form of the
transport equation, and difference relations are required to balance the

number of unknowns with the number of equations to be solved.

x
The meaning of a direction cell "edge" is clarified below in the treat-
ment of neutron angulaxr redistribution.



3.1.3 The Neutron Transport Equation in Three~Dimensional

Rectangular Geometry
Within the cell of Fig. III-1 the rate of change of the number of

neutrons is the difference between the population increase, due to flows
from adjoining cells and sources, and the decrease, due to flows to ad-
joining cells and collisions (direction, mumber, or speed altering) in
the cell. The difference between the munber of neutrons in the cell,

in the direction range denoted by m, at times ts and t St¥ is, in terms

of averages defined above,

N . . - . . . =1
wm( g, s+1,m, 1’*’%’ J'P%: k’*’s]é' Ng) 5,m, 1""%: J’*’}é’: k’*‘% )Vl""%) j""}é’: k‘*’%/vg (3 )

The number of neutrons crossing a cell face in the direction range
m in time At is the product of the average flux at the cell surface,
the cosine of the angle between the surface normal and the neutron di-
rection, the engular area, the cell surface area, and the time interval.
In rectangular geometry the orientation of the angular coordinate sys-
tem is such that the cosines of the angles between surface normals and
the neutron direction are just the direction cosines of the angular co-
ordinate system. Picking, for convenience, a direction ‘Qm such that
Mo T and gm are positive, the flow of neutrons into the cell of

Fig. III=-1 is




wml"'mA:L., j-l'%, k-l"%NS: 8‘*%: m, i, j"‘%} k"‘%At *
-2
T ¥ Bi""%} Js k"‘% g, S‘*‘Jé': m, 1"‘%’ J, Kk "‘%At * (5-2)
+ Wmgmci-l-'%, j-l%, kNS; s""%) m, i""%: J"’%} kAt

For the same direction the flow of neutrons out of the cell is

wmumAi'*'l: 3485 k""%NS: s+g,m, 141, 3+, k"‘%At *
VB, 41, ke, sk, m, 14k, 341, k+%At t (3-3)
+ ¥ g Ci—}%, j+"L k+l g, s+r;~ m, 1+%, J+r:L k+l

With the number of source neutrons produced in the cell per unit
volume, per unit direction, per unit time indicated by the average

S . the number of source neutrons released in the
& s#,m,i#,g-}%,k—l%j
cell is

msg, s+&,m, 145, J+5, kekV 145, j4%, kiE A8 (3-%)

The above source is taken to include the collision source, that is, those
neutrons that arrive in the direction and speed ranges considered as a

*
result of collisions in other speed and direction ranges. The de-

tailed treatment of the source term is discussed in Section 3.1.5 below.

*

The concept can be generalized to include neutrons emitted at earlier
time intervals which axrrive in the time range considered, i.e., delayed
neutrons.




The number of neutrons removed from the cell by collisions is the
product of the total macroscopic cross section, the average flux in the

cell, the angular area, the cell volume, and the time inverval;

. . . YA\ A -
ViuOg, ok, 14k, 34k, kid Ve, o+Bym, 1ed, 34h, ked  Viad, 34, ke (3-5)

Equating the change of the cell neutron number, Eq. (3-1), to gains,
Egs. (3-2) and (3-4), minmus losses, Egs. (3=3) and (3=5), gives a con-

servation relation for a finite cell:

(Noyq = NIV/vat = (AN = A Ny 0) + (BN, = By N, 5 )+

(3-6)

+ §(CkN

k = Cigy1Nigp1) + SV = oV

In equation (3-6) each term was divided by wmAt. Also, only the non-
centered subscripts are indicated, a convention which is henceforth
adopted except when a particular coordinate dependence is emphasized.
However, it is to be understood that, in general, the quantities of Eg.
(3-6) depend upon the full range of subscripts as indicated in Egs.
(3-1) to (3-5).

Equation (3-6) is an exact statement of neutron conservetion for a
finite cell with each term having a well-defined physical interpretation.
With the definitions of the area and volume elements in rectangular geom-
etry, Eq. (3-6) can be written

Noep = N el 5 - W) (N, =) e, - M)

+ + + + oN =38
vAb ¢ Ny Nz (3_7)




or, in the limit of vanishingly small ccordinate intervals,

%%%+}%§+3%§+%1§-+0N=S (3-8)

which is the analytic form of the neutron transport equation in the

miltigroup approximation.

3.1.4 The Neutron Transport Equation in Curved Geometries

In a sense, Cartesian geometry is anomalous because it is not
curved. In curved geometries +the orientation of the angular coordinate
system changes with geometrical position. Thus, as a neutron travels
through the system, the magnitude of its angular coordinates is con-
stantly changing even though the neutron does not physically change
direction. In effect, the neutron is being transferred from 4i-
rection to direction in the process of streaming, and some provision
mist be made for this transfer. In the snalytic form of the neutron
transport equation, the angular derivatives account for directional
transfers, and direct differencing of these derivetives can be used to
form difference equations. However, such a procedure can destroy the
neutron conservetion so carefully preserved in Eq. (3-6). Moreover,
direct differencing can produce strong directional coupling - physicelly
improbable - and may lead to tedious iterative solution. For example,
Eq. (3=6) involves the unknown N for a single direction subscript m,
but treatment of directional transfer may introduce unknowns depending

upon several values of m (cf. Section 3.2.2). An artifice which main-



tains neutron conservation and permits minimal directional coupling is the
following. Equation (3=6) is written in the stationary case, when cross
sections and external sources are time independent, for a geometry curved

in one direction, say cylindrical, giving

Ay Ny g = AN) + (BN, = BN+ B(C Ny = G +
+ (Ct 'LNm-i'— _%N 1)/W + Vol = (3-9)

In this equation the terms in o are introduced as flow terms from the
"edges" or "surfaces" of the directional cell. That is, in general,
Nm __% is the average of the neutron flux in the cell volume in the time
interval At but in the direction m~5, where the directions mi} define
the "edges" of the angular renge denoted by w . Then, @ _%Nm _%At is
the flow, due to angular redistribution, into the angular range being
considered and is directly analogous to flow through the geometric sur-
face of the cell. Division by w At produces the terms of Eg. (3=9).
The coefficients ¢ are determined by examining the case of every-
vhere uniform flow when VoN = VS. Then, all N's are identical, and with
the geometry curved in only one direction B, = B, and Ck+l = Ck The

J+1 J
non-vanishing terms of Eq. (3-9) give a recursion relation for the «:

am_l,% - am_% LA (A1+l Ai) (3-10)

In order that the angular redistribution process be conservative, the «

terms mist neither create nor destroy neutrons. That is, when (3-9) is




miltiplied by v and summed over m ("integrated" over directions) the

sum of the @ terms

M

o O~ g nd) < %edNed T %% (3-12)

mst vanish. By ordering directions so that neutrons only flow out of
the first directional cell (o% = 0) and only flow into the last cell
(O/‘M+% = 0) Eq. (3-11) vanishes for any N and neutron conservation is
maintained.

With positive LA Ai +1 > Ai’ and direction sets ordered so that the
u, increases uniformly on the interval [-1,1], the ¢ coefficients have
the desirable property of being non-negative so that terms in Eq. (3-9)
can actually be interpreted as directional flows. With O% = (XM_I% =0
the m sum of the left side of Eq. (3-10) vanishes. For comsistency,
then, the right side m sum mist vanish, or

M
mz=:l v =0 (3-12)
which represents an additional constraint on the angular quadrature coef=
ficients. However, Eq. (3-12) is satisfied by any direction set sym=
metric with respect to the midpoint of the p range, and unsymmetric sets
are undesirable because computational. results are not inveriant under
geometrical inversion. Symmetric sets also guarantee that if O% = 0,

then aM_l% is identically zero.
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In the limit of small intervals the above procedure reproduces the
angular derivatives of the analytic transport equation. For example, in

a one-dimensional, spherically symmetric system Eq. (3=9) can be written

(A, N, . = AN, ) (o 1N - 1N ;)
i+l i‘-f}l il m—pﬁm—%vw m~z m~k’ + o = S (3-13)
m

The first term is (see Table III-1)

>
3u(rs Ny = riaNi)

(3-1%4)

5 5
(Tap + T3%ga * tilry,y = 7y)

which is P—a 9@1 in the limit of small intervals. The second term
r
suggests the derivative of the quantity ofN with respect to direction,

here designated by p. From Eq. (3-10)

%y " %l (B0 = Ay) ) 3ulr; g + 7y) (3-15)
= =3 5
L v Tial ¥ Ti%i1 T T

In the limit this term gives d¢/dp = -2u/r, or, by integrating, o =

_“2/ r + constant. But @, in the limit, vanishes at both ends of the
. 2

1 range [o% = O = 0], that is, at p = +1. Thus, o = (L - u)/r.

Equation (3-13) is then

2
};_2 B(riN) L1 a[(l-“g 105 (3-15)




which is the conservation form of the Boltzmann equation in a one=-
dimensional spherical geometry.

The point of the above procedure for determining o coefficients is
that the resulting expressions guarantee neutron conservation for finite

intervals, while a direct approach, say writing the angulaxr derivative
of (3.16) as

(L= b2 N 5 = (1= 2 )N
it35-2 m*fl:rw m=z Eﬁ (3-17)

m

is unnecessarily restrictive because when the above equation is multi-
plied by w_ and summed over all m it vanishes only vhen “ﬁ.,% = |.12 = 1.
m 2
In more general situations, direct differencing approaches may be
more complicated as well as restrictive, but coefficients similar to the
o can easily be determined. For example, if the geometry is curved in
two directions so that Bj+l £ Bj’ in addition to the @, coefficients B

defined by

Bk = Pmg =~ min(Bya ~ By) (3-18)

(with B% = BMP}; = 0) readily permit neutron conserving treatment of di-

rection to direction transfer.

3.1.5 Definition of the Source Ternm

The source term of Eq. (3-6) includes external sources, sources due

to fission,and the scattering collision source.

1k




The external sources are here denoted by Qg, s +§,m, i _‘%, 3 1%,1{-1%
with dimensions of neutrons per unit time, per unit direction, per unit
volume, but not per unit speed, consistent with the definition of the
group flux. Experience has shown that external shell sources can be
represented by narrow distributed sources, so that the main computational
problem in handling external sources is finding storage space for what
may be a seven~dimensional array.

The fission source is assumed to result from a process which dis-
tributes neutrons isotropically in direction but with a spectrum of
energies. Because the process is isotropic the muber (density) of

fission neutrons produced in the gth group is

F, - (vof)gNg (3-19)

vhere ('vcrf)g is the fission cross section times the mean rnumber of neu=-

trons per fission in group g and -ﬁg is the average group flux

M
N = % wN (3-20)
g m=1 m gm

or, vhat is the same thing, the zeroth (or isotropic) Legendre component
of the angular flux in terms of a discrete ordinates quadrature. The
total number of fission neutrons released is the sum of F_ over all
groups, and the number released per group can be represented as the pro~

duct of this sum and a fission spectrum, X ,
g

15




G G
f_
(FISSION soURCE)g =%y B Ty =%, I vol (3-21)
h=1 h=1
In the above context Xg is simply the fraction of the totael number of
fission neutrons which enter the gth group. A more general representa-
tion of the fission source can be made by assuming that the fission
spectrum is a function of the group in which the fission occurred. Then,
G

(FISSION SOURCE) = = X voil (3-22)
8" oy & 'mn

in which X h is the fraction of neutrons produced in the gth group due
to fission in group h. RFurther generalizations in which the fission
spectrum is material, and hence spatially, dependent are possible, but
seldom are needed in practice.

The scattering collision source is the sum, over all directions and
groups, of the product of the angular flux in group h in direction m'

times the scattering cross section for transferring neutrons from di-

rection m', group h, to direction m, group g,

G M .
(COLLISION SOURCE) = % = Wyou ¢ N, (3~23)
gn "y gioy T oghm’ Vhm

In anayltic terms, the above equation represents a double integral, over
all initial directions and speeds, of the product of a transfer kernel
and the angulaxr flux. In discrete terms, the angular integration is de=-

noted by the m'! sum with weight Wt while the speed integration is indicated
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simply by the h sum, the speed "weight" being included in the definition
of N. Equation (3-23) is a very general. treatment of anisotropic scat-
tering, but is one which has several computational disadvantages. The
transfer cross section o ¢ 1is at least a four-dimensional array
which may also be a function of position. Equation (3-23) also re-
quires that the angular flux for all positions, groups, and directions

be available. Together these two arrays pose & storage and menipulation
problem. In addition,the complete transfer cross section is seldom
available and in many cases is not needed. If the order of the truncated

legendre expansion, L, needed to represent the scattering function

22+1L s

(v ovg) = B ST oy (v ovIRy(gleg) (3-2%)

“ML"'

is less than M; as it usually is, the collision source can be conveniently
represented by a Spherical Harmonics expansion evaluated at the discrete

directions of the quadrature scheme used. In these terms*

t

G M
(coLLisTON SOURCE) ., = zfo 2z+l{h lgh P, (e )l: S owooP (6 N o+

2 M
L-r)!? > T
rez {T+r‘g‘! 2 (&) e v Py (& 1 )eos(e, - @, )th.]}

(3-25)

vhere Un is included in wm. ci gh represents the appropriate averages

of u:'(v' - v) of Eq. (3-24) and the remaining terms are from the expan-

sion of P, (2'-2) in Legendre and associated Legendre polynomials and

*
For rectangular and cylindrical geometry. For spherical geometry.
Sy b 20, N € . (See Fig. III-2).




angular integrations. ¢ is an angle such that
2 ok
L = (1 - &m%cos ¢, @nd n = (1=~ ¢ Winqg

Certain terms of Eq. (3-25) are not needed if the system considered
possesses symmetries. For instance, in one-dimensional cylindricsl or
in two~dimensional x-y geometry the angular flux is even in &, and the
integrations of the flux and polynomials odd in & are not required.
Equation (3-25) is relatively simple provided L is not large. When

! = O the isotropic portion of Eq. (3=25) is just

M G
s =
z o zw,N = % oo N (3~26)
n-1 %8 n n-1 °8h B
and, with some manipulation the £ = 1 texrm can be shown to be
z 30 (uL, + 03, + &%) (3-27)
h=1
where I, J, and K are the currents
M
= X W uN
Ih m=1 m m hm
: (3-28)
Jy= I wnN 3-28
h m=1 hm
M
%= 2 o'

Higher order terms have no such simple expressions.
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With the above definitions and linearly anisotropic scattering,

S of Eq. (3=4) is

G G
fomm 8 —
S_ = + X Z + X + ~-29
gm ng 8 p-1 vohNh h=1 C’oghl\rh (3 )

G
+3 hz=:l cy;;.gh (“'th + Tlth + ngh)

In the solution of the transport equation in the gth group,
external sources are known, the fission source is assumed known, either
from previous calculation of all ﬁh or from an initial guess, but por-
tions of the collision source depend upon the flux which is to be cal=-
culated. That is, in group g, the average flux and currents for other
groups can be assumed known, but the average flux and currents for
group g are determined after the calculation of the angular flux in
group g. This implies an iterative solution process, in which the source
is calculated from the best previous information, the equation solved,
and the source recomputed. The control of this iterative process, de-
scribed in detail below, is Pacilitated by the fact that cggg appeaxrs
as part of the total cross section of Eq. (3~6) and as part of the

source term.




3.2 Formulation of Discrete Ordinates Equations Directly From the

Anslytic Form of the Neutron Transport Equation

Although the preceding discrete ordinates equations are quite gen-
eral, it is useful to examine formulations made directly from analytic
representations of the transport equation. For this purpose a gen-
eralized moment representation, including spherical harmonics as a
subcase, is considered; and the conditions necessary for equivalence
of & moments and & discrete ordinates representation are derived. By
establishing this equivalence valuable insights are obtained about
the structure of the equations derived in the previous section, and
guidance is provided in the selection of discrete ordinetes quadrature
sets. All essential points are made by considering the stationary,

monoenergetic, transport equation in one-dimensional spherical geometry.

3.2.1 A Generalized Moment Representation of the Traensport Equation

The analytic neutron transport equation in sphericel geometry can

be written in conservation form as

1_3(="uy) + % (A - u ] + o¥(r,u) = s(z,n) (3-30)

> dr du

For convenience, the source is limited to an isotropic external source,
Sf, isotropic fission, and a linearly anisotropic scattering source so

+that




s 5
vo.+ 0. 1 0.0 1
s(xyu) = 8.(r) + 52 fl ¥z n)au' + —3 fl p'y(r,ut)ant =
(3-31)
=8 (r) + 3us (r)
Defining a moment operator
il s (3-32)
m- 2/ wooe du

such that M ¥ = ¥ and applying ﬁm to Eq. (3-30) gives the moment equa~

tions, m = Q,1,...,

2
a(r“y._ )
1 m+1 m
_2.__.____.‘.;(11, l-vm-l)-"wm

_|s o/ (m+1), m even
35,/ (m+2), m odd

The first n of the above equations, m = 0,1,...,n~1, can be solved for

(3-33)

the moments \ym by analytic or numerical methods. First, however, the \lrn
moment must be eliminated from the equation for m = n=1 %o obtain an
equel number of equations and unknowns. This elimination is made using a

terminating condition obtained by assuming a representation for y(r,p)

as a function of p. Letting ¥ be represented in terms of n arbitrary coef-

ficlents which may be functions of r and operating on the representation
with, M lp B = 0 to n, gives n+l relations which can be used to express

¥, in' terms of the other w T < n. With this relation solution of the
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moment equations is possible; and the angular flux cen be reconstructed
from the moments; i.e., the arbitrary coefficients in the assumed re-
presentation can be determined. As a simple example of this procedure
consider the case of a homogeneous medium with an isotropic scattering

and fission source. Then S; = O and S = ('chf + oi)\{ro. With r measured

1
in mean free paths, the Tirst two equations of (3-33) are

1l a 2
;ga(rwlhwomwo
(3~34)
1l a4 2 1
;ggr-(rurg)+;(w2-wo)+¢l=o

vhere c = (wxf + cz)/c. ¥, is eliminated by representing ¥(r,u) as a

polynomial with two undetermined coefficients
¥(x, 1) = ag(r) + ag(rdu (3-35)

When Mm is applied to ¥ for m = O, 1, and 2 to obtain the relations

wo = ao(r)
3%, = ay(r) (3-36)
3¥, = ay(r)

it is seen that the last equation is satisfied if 1];2 = 11;0/3. Using this

equation in Eq. (3-34) and eliminating ¥, glves

22




23

ay
1l 4 2 o
2 (r° 57) + 3(e = L)y =0 (3-37)

the familiar diffusion theory or Pl spherical harmonics equation. The
application of boundary conditions now permits \]xo and qu to be determined
(say for the sphere critical radius). The first two of the Egs. (3-36)
then give a, and a; and hence the angular flux in Eq. (3=35).

The above procedure is quite general, particularly in the choice
of representations of Y. Three choices which readily permit coefficients
to be expressed in terms of Ilfm are (a) a singg-.e polynomial of degree
n-l over the p interval [=1,1]: vy(r,un) = n;, a.m(r)um; (b) two separate
polynomials, each of degree n/2 - 1, one onm'lzzge range [-1,0], the other
on the range [0,1]; and (c) a sequence of step functions with n different
amplitudes over the interval [-1,1]. Representation (a) is that of
Spherical Harmonics (cf. the example with n=2 above), while (b) is similar
but not equivalent to Yvon's (the double Legendre) method and applies to
curved as well as rectangular geometries. In addition to the n amplitudes
of representation (c) the partitioning of the p interval gives extra de-
grees of freedom which are, in effect, an implicit weight function for
the moment operator Eq. (3-32).

For a boundary condition of no incoming flux, Marshak boundary con-
ditions are most suitable, being expressible as moments of {. The Marshak

conditions are, for odd m,

0
fl duu™(r,p) = 0, T on the boundary (3-38)
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The first of these is the condition of no inwerd current, while the
higher order conditions can be interpreted by associating paxrtial cur-
rents with each even order moment \ym. For the representation of Eq.
(3-35), the Marsheak condition is -a,o(r)/2 + al(r)/3 =0 or 211;1(1') =
\lto(r) for r on the sphere boundary.

The moments equations above may be made more general by including
a weight function, with or without adjustable parameters, in the de-
finition of ﬁm' However, only with a unit weight function is the m=0
moment equation the neutron balance equation. Also, without a unit
weight function the Egs. (3-33) become dependent upon the coefficients
of the ¥ representation. A detailed description of general moments
equations for the three representations of § and for three one-dimen-

sional geometries is given in Reference 3.

3.2.2 Discrete Ordinate Equations Equivaelent to Moments Representations

Let Eq. (3-30) be evaluated at n discrete values of u = I

k=-n/2,...,0,-o-,n/2 andbe Written as

n/2
=& g+ 5 _Z BBy + ofy = S, + 3m8; (3-39)
T L=-nf2

where ﬁk(r) = ¥(x, p.k) end the sum involving B, , represents the u dif-
ferentiation of ¥ with coefficients to be determined. A reasonable con=-
dition far equivalence between the moments equations and the discrete rep-

resentation, Eq. (3-39), is that the terminating condition be satisfied.




For the three representations of qr(r, p) discussed above, the terminating
condition can be written, for even n, as
n/ 2 X

m-O
But in terms of a discrete ordinates quadrature the moment q:m is

n/2 o
ACIRIE XD (3-41)

so that Eq. (3-30) becomes, interchanging the order of the finite sums,

n/2 n/2 2m)

. n/2 wk;ék ( z Conl =0 (3-42)

Equation (3-42) is satisfied if the W, are the (+ paired) roots of the
polynomial né’a °2m”'k = 0. If a single polynomial representetion of
¥(r,un) is used, these roots are the roots of the Legendre polynomials
P (1)

Another condition for equivalence is that the moment equations

(3-33) should be obtainable by the application of the discrete moment

operator
n/2 n
Mm = k=§n /2 wk“k (3",4'3)

to BEq. (3-39) with moments ¥ defined as in Eq. (3-41). After operation

with M, the right side of Eg. (3-38) is equivalent to the right side of
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Egs. (3-33) if

) 2/2 vt = 1/(em+ 1),  m=0,1,...,0/2 (3-Lk)
==q

and the left sides are identical if

(g -ty - B e (3-15)
m -an =3 -
ml T Vel T D Wi /e n/2 Prsfy
or, rewriting both sides, if
nzp v m"l(pk -1)]l-=2p, = Wk“ﬁﬁu (3-16)
k ! “k

that is, if for all {,

il = =N - ) (3-47)

withm = 0,1,...,n=1. TIf Egs. (3=-U42), (3-bk), and (3-147) are satisfied,
discrete ordinates quadrature coefficients are determined, and the dis-
crete ordinates equations are equivalent to the moments equations. For
the representations of y(r,pn) considered above and even n, Eq. (3-42)

determines the i vhich are symmetric with respect to u = 0, Eq. (3=4k4)

determines all the weights (equal weights to symmetric directions), and
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Eq. (3-46) determines the curvature coefficients. . For spherical har-
monics moment equations the B matrix is full. This is an example of
the detailed directional coupling of flux equations that can occur in
discrete ordinates representations (cf. Section 3.1.L4). Note, too, that
even if spherical harmonics weights and directions are used in Eq. (3-9)
the formulation is not the same (because of the treatment of the curva-
ture term) unless N m—l-%- and Nm _%_ are specially defined. In geometries
without curvature the two treatments are the same (assuming the same ap-
plication of the boundary conditions).

The manipulations leading to Eq. (3~-47) above point the way to
extending the treatment of the curvature term developed in Section
3.1.4. That is, the angular coupling there introduced can be made more
complicated without, however, going to the extreme of introducing a

complete coupling matrix.

It should be noted that moments equations can also be formlated
without using the vehicle of polynomial representation. If an arbitrary
(but symmetric) quadrature set is selected and angular moments defined
as in Eq. (3-41), the first n/2 of the “even" equations [m = 0,2,...,n=2
in Eq. (3=41)] can be solved for (f_+ $_.) in terms of ¥, and the re-
sults used in the m = n equation to Obtain the coefficients, Copy OF
the terminating condition, Eg. (3-40). At a bare boundary (where
ﬁ_k = 0), Eq. (3-41) can be solved for in terms of y_, m even, and
these results used in the odd m equations to obtain the Marshak bound-
ary conditions. From this point the procedures discussed in the text
are followed.

Given a moments representation, the procedure of the text produces
equivalent discrete ordinates equations. The point of this note is that
“"moments" representations which are equivalent to srbitrary discrete
ordinates quadrature can also be constructed. Whether direct solution
of such moments equations is practicable has not been examined.




When the above analysis is extended to one-dimensional cylindrical
geometries by generalizing the moment operator to include two angular
variables, it is found thet in order to satisfy all terminating con-
ditions, interesting restrictions are imposed on the quadrature coef-
::‘.’:i.cien‘t:s.3 Although these restrictions have not been fully explored

they seem akin to symmetry restrictions which are discussed next.

3.3 Selection of Discrete Ordinates Angular Quadrature Coefficients

Up to this point, directions have been indicated simply by the
vector Q ~with components (um, iy gm). The weights associated with
the directions /am sum to unity provided the surface area on the unit

directional sphere is measured in units of Ux. As also has been seen,

in curved geometries, some or all of the conditions

M M M ( )
S wp =0 X wn =0, % wgEg =0 3=-48
m=1 mm m=1 m'm m=1 m-m

may be necessary to guarantee neutron conservation. Insuring that phys-
ical symmetries are satisfied imposes additional conditions. For ex~
ample, computations in a heterogeneous plane slab should give results
which are invariant under geometrics orientetions of the slab. If the
slab consists of two regions, say a moderator and an absorber region,

and the slab is oriented with the absorber on the right, a coarse spatial
mesh might be used in the moderator region and a fine mesh in the absorber.

If then the absorber and moderator regilons are interchanged, without
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changing the spatial mesh, it is unlikely that the same computational
result would be obtained. Such a difference would not have been possible if a
uniform spatial mesh had been used. While common sense dictates that
the spa;tia.l mesh should be rearranged if the system components are inter-
changed, it is usually not possible or feasible to make a similar re=-
arrangement of the direction mesh. That is, while it is customary to
allow great freedom in the specification of the spatial mesh, it is also
customary to use the same direction mesh in all groups and space cells.*
Thus, to preserve computational invariance of solutions under geometric
transformations, the direction mesh itself must be made inveriant under
geometric transformations.

To apply the above considerations in the general case of three-di=-
mensional geometry consider a homogeneous cube. A 9o° rotation of the
cube about the z axis is equivalent to a 900 spatial coordinate rotation
vhich also rotates the p axis into the n axis. For the flux coordinate
representation to remain the same, the positive Fo mst be the same as
the positive N, A second rotation of 90° about the z axis shows that
the positive B should be the same in magnitude as the negative K3 i.e.,
the My mist be symmetric with respect to p = 0. Other rotations show

that the gm mist also be chosen from the same direction set as the Mo

%.

It is, of course, possible to allow the direction set to be a function of group
and position. The simplest variant is to allow a group dependence of

the .order, n, of the angular quadrature.




Thus, to preserve physical symmetry, quadrature sets for angulsr inte-
gration in a cube must be chosen so that the By Mg and gm are the
same and symmetrically located with respect to the origin. Hence, all
of Eqs. (3-48) are satisfied. If the geometric dimensionality is re~
duced, some symmetry restrictions can be relaxed. For example, in two-
dimensional x-y geometry, one set must be used for both By and My while
a different set may be used for gm.

With the same distribution of cosines on each axis, the directional
points on the surface of the unit sphere lie on latitudes, which leads to
8 decided computational convenience. Foy except in one-dimensional slabs
and spheres, two independent variables are reguired for angular quadra-
ture, and latitudinal point arrangement permits a two-dimensional quad-
reture to be accomplished as simply as a one~dimensional integration.

A typical, completely symmetric, lstitudinal arrangement is shown in
Fig. ITI-3 where, along ¢ latitudes, only p and n change, and since
u2 + §2 + 112 = 1 only one variable is independent.

Fig. III-3

In the arrangement of Fig. III-3 there are n(n + 2) points, n = 2,
Ly, 6..., on the surface of the unit sphere. This n is the subscript
of the commonly used Sn discrete ordinates scheme. As described here n
refers to a symmetry preserving point arrangement and not to a specific
quadrature set. Although such sets satisfy constraining conditions, de-
grees of freedom remain, and particular additional. conditions may be im-

posed for special purposes.



If full symmetry is not required the latitudinal point arrangement
can be relaxed as well. However, the direct sum evaluation of a two-
dimensional angular integral can still be retained. For example, in
one-~dimensional cylindrical geometry, points can be arranged on & lat-
itudes, but not on p and n latitudes. In such geometry the point ar-
rangement of Fig. IIT-4 might be used in lieu of the symmetric arrange-
ment of Fig. III-3.

Fig. III-&

If the geometry is not three-dimensional, all the points on the
unit sphere are not needed even if full symmetry is retained. For in-
stance, in two-dimensional x-y geometry, the flux is symmetric in §;and
only half the ¢ range is needed, say the upper hemisphere. In one~-di-
mensional cylindrical. geometry the flux is symmetric in & and 7, so that
only a quadrant, containing the entire range of p, is needed. In gen=-
eral, the number of points required in a completely symmetric arrange-

ment is
M = 2%(n + 2)/8 (3-49)

where 4 is the geometric dimensionality. In one-~dimensional slabs and
spheres the flux is independent of ¢ or 7, and then only M = n values of
¢ are needed.

With full symmetry, latitudinal point arrangement, and n direction

cosines, the requirement that
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Eantef=n (3-50)
becomes

2 2 2

M+ My Mooy = 1 (3-51)

32

Here, the subscripts refer to the coordinates of Qan with 1 = 1,5,3,... ,n/2,

j=1,23,..,n/2-i+l. The correlation between the i and j subscripts
(ordering cosines on an axis) and the subscript m (mumbering points on
the unit sphere) may be made in any convenient manner. For example,
when n = 8 (Fig. IIT-3) the point m = 1 might be taken to have coordi-
nates p = gy, N = py, 80d £ = . Equation (3~51) is then 2@ + uﬁ = 1.
In general, Eq. (3-51) is solved by

2
wp + (1 = 1)a, i=1,2,...,n/2

2
By
(3-52)

A

2(1 - 315)/(a - 2)

as may be verified by direct substitution. Equation (3-52) shows how
strong the restraint of complete symmetry is, since only one direction
cosine remains independent. Selection of B determines the spread of
direction cosines along the axes. For small p.i cosines are clustered
along the ends of the interval [0,1]. For larger u.i < 1/3 the cosines
are clustered nearer the middle of the interval.

Symmetry also imposes conditions upon the number of independent

point weights, for the weights as well as directions must be invariant
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under geometric transformations. For n = 2 each point has the sane
weight. That is, there are eight directions, one through the midpoint
of each sphere octant; and by requiring that weights be invariant under
90° degree rotations of the (u, M, £) coordinate system it is easily seen
that each weight must be the same. For n = I again all weights are equal,
and for 2<n < 12 there are n/2 - 1 independent point weights. For
n > 12 the number of different point weights grows rapidly. In any case
the freedom of Gaussian quadrature sets is not present. That is, it is
not possible to correctly integrate the first 2n powers of u, but for

n < 12 only n such moment conditions can be satisfied (the odd powers

of p are correctly integrated because the M, are symmetrically located
on [~1,1]). However, it can be shownh that quadrature sets satisfying
Eq. (3-52) with the mumber of independent point weights restricted to

n/2 - 1, all n, also satisfy the relation

M
2 _1 -
mfl Ve = 3 (3-53)

Symmetric sets which integrate as many even powers of u as possible are
given in Reference 5. For n > 22 negative weights, which are computa-
tionally undesirable, occur; but such large values of n are seldom re-
quired.

When complete symmetry is not required, many of the above restraints
can be removed.5 In particular, in one-dimensional slabs and spheres,

the integration reduces to quadrature on the interval [-1,1] for which




Gaussian quadrature sets may be used. In these cases the flux is in-
dependent of n and ¢ so that for a given p the point weights can be
accumilated to produce “level" weights, the normal weights for in-
tegration on & line. Gauss-Legendre quadrature on [-1, 1] is the famil-
jar Pn-l discrete ordinates system of qua.drature.* Separate Gauss~
Legendre quadrature on [-1,0] and [0,1] is known as the double Legendre,
DPn /2_1, system. For integration in one-dimensional cylinders or in
two-dimensional x-y geometry, P or DP quadrature for ¢ integration can
be combined with Tschebyscheff coefficients in the p-n directioms.

It should be emphasized that there is no optimum type of quadra-
ture for all situations. Even in the simple case of a plane homogeneous
slab, DP n/2-1 quadrature, while very accurate in thin slabs, is less ac~-
curate than Pn-l quadrature in very thick slabs. This being the case,
the moment matching completely symmetric sets are preferred because of
their generality, and special sets are reserved for the special situa-
tions where they are most accurate. Moment matching is particularly
important if anisotropic scattering is epproximated by a Legendre poly-
nomial expansion so that the polynomials can be integrated correctly.
That is, if the flux should be isotropic, all the Legendre moments ex-
cept the zeroth should vanish, and sets which integrate polynomials

guarantee this.

*Remember, however, that the discrete ordinates formlation of section
3.1.4 is not equivalent, in curved geometries, to the spherical har-
monics formulation of Section 3.2.2 unless the same quadrature coef-
fictents are used and the curvature fluxes as especially defined.
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Regardless of the quadrature set selected a problem solution should
be tested, just as in the evaluation of an integral, for dependence upon
the order of quadrature. However, solutions of the transport equation
are more complicated because spatial as well as angular quadrature is
involved. Experience has shown that errors involved in spatial and
angular quadrature are interdependent. Qualitatively, the error sur-
face 1s like a valley between two ridges. If error is plotted against
order of angular quadrature along one axis and order of spatial quadra-
ture along an orthogonal axis, the ridges of the surface lie above these
axes. Hence, if a calculation gives a result in the error valley, both
quadratures must be refined to remain in this error valley. On the
other hand, for a given spatial mesh, refining the angular quadrature

may actually increase the error, and conversely.

3.4 Approximations and Simplifications

In particular problems, or parts of problems, the entire panoply
of Eq. (3=6) or Eq. (3-9) may not be needed. Some methods that can be

used to reduce complexity and computational effort are here described.

3.4.1 fThe Diffusion Theory Approximation

A diffusion theory representation of neutron transport is obtained
by letting n = 2 in Eq. (3-6) and assuming that N, is linear in the di-

rection cosines
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N =N+ 3w, I + 30T + 35K (3-54)

m

When n = 2, there are eight directions corresponding to two values of
each of the direction cosines. When Eq. (3-54) is multiplied'by'wm
and summed over m,the left side is N by the definition of Eq. (3-26).
The right side is N only if each weight is equal to 1/8 and only if the
two values of each direction cosine are equal and opposite in sign.
When Eq. (3-54) is multiplied by W i end summed the left side is I

by the definition of Eq. (3-28), but the right side gives I only if

p? =1/3. That is, Eq. (3-53), sometimes called the diffusion theory
condition, must be satisfied. Similexly, n2 and §2 mist be equal to
1/3. A1l these conditions are met by the completely symmetric direction
set for n = 2 in vhich all weights are equal and p° = n> = &= = 1/3
(cf. Eq. (3-50)).

Reduction of Eq. (3=6) to a set of diffusion theory equations is
accomplished by procedures analogous to those of analytlc theory. The
treatment of curvature terms, however, requires additional assumptions.
These not very restrictive agssumptions are illustrated by beginming

with Eq. (3-6) written for a geometry curved in the i direction.

(v NS)V/vAt + p(A, (N, .. - AiNi) + n(Bj+lNJ+l - BJNJ) +

s+l * 341 141

+ 8(0 N - CN) + (oznh%l\rm%3 - %l -%)/Wm + oW = sv  (3-55)
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Multiplying the above equation by L and summning over m gives, as for

any n, the neutron balance equation

J, +

(Ns+l - NS)V/vAt + AT - AT+ Bsy175401 = By

i+17i+l
* OB = Gy + oWV = SV (3-56)

Where S is the isotropic component of the source, 8 = T w S - The next
step in the reduction is to obtain a current equation in the i direction
by mltiplying Eq. (3=55) by w p and summing. The procedure is made

clearer by explicity defining the eight directions, letting

N = N -+/31 -437 -3k
Ny = ¥ +4/31 -V37 -3¢
N, = N -/31 +437 =43k
M, = ¥ +431 +4/37 =43 (3-57)
Ny = § -V31 =435 +43k
Ng = N +431 -4/37 +43k
N, = N =3I +437 +43k

Ng =N +43I +437 +43K

Then, the sum of W M times the first terms of Eg. (3-55) yields a
time difference of the current I. Because each u2 = 1/3 the sum of
the terms involving pu gives a spatial difference of the average flux,
while the terms containing 1 and ¢ venish as may be seen by inspecting

the ordering of signs of Eq. (3-57). The resulting current equation is
then
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8
(Is+l - Is)v/ vab + (Ai+lNi+l - AiNi)/ 3+ i: M m(arm-%NnH% - m-%Nm-fg) +

+ oIV = SV (3-58)

where S, =ZwpS . From the ordering of p values in Eq. (3=57) and
the definition of ¢, Eq. (3-10), the only non-venishing a's are for
m=1, 3, 5, and 7. At each of these values of m, Ko is the same,and
hence all the non-vanishing a's are equal. Then

8 A.-A,
i T4l
- = —=T= 5 2uN -
g‘l_um(am_%Nm% m_%Nm_%) 3 g ek (3-59)
But because of the linear assumption, Eg. (3-54), Nm_*% = (le-3/2 +
Nm_%)/2, or what is the same thing 2le% = (Nm_;é + Nm_%)/Q + (Nmﬁ’s +
LI /2)/2 so that

8
5 weN = Z w(N 1 +0N_.1)°2 (3-60)
1,3,5,7 m - m=1 n m.% EH%

Now, if the coefficients of the terms on the right of Eq. (3-54) are
contimous, the average of the angular flux is equal the average of the
spatial flux, i.e., (Ni+l + Ni)/a = (Nm-% + Nm%)/E. With this as-
sumption Eq. (3-60) becomes % (ﬁi_*_l + ﬁi). When miltiplied by

(.L\.i - Ai+l)/3 this term can be combined with the similar term in Eq.

(3-58) to give the current equation

(T3 = T IV/ves + AN, 4 - §,)/6 + oIV = sV (3-61)
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where A = A, . + A;. If there is no curvature Eg. (3-58) does not con-

tain the o term sum, but the absence of curvature implies Ai = A so

i+l
that Egs. (3-58) and (3-61) are then consistent. Two additional current

equations, obtained by mltiplying by v A, or ngm and summing, are given

by
(Js+l - JS)V/vAt + B(-ﬁ3+1 - Nj)/6 + oIV = S,V
(3-62)
(k, w1 - K V/vae + c(ﬁk+l - N.)/6 + okv = 8.V

Above, B = B,j+l + Bj and C = Ck+l + C

curvatures in these directions.

X to include the possibility of

Equations (3-56), (3-61), and (3-62) are discrete analogs of the con-
sistent P-1 approximation; and, in the limit of small intervals, the
analytic forms are easily obtained.

It is worth noting that only four linear combinations of the eight
82 equations were needed to form the above equations. For geometric di-
mensionality d, the diffusion approximastion converts 2d 82 equations into
d + 1 equations. Thus, for d > 1, the accuracy of the diffusion approxi=
mation is possibly less than that of the 82 equations. Numerical results
for 4 = 2 tend to confirm this hypothesis; and the difference between the
two results is much like the diffusion theory error itself, decreasing
as the flux becomes more nearly isotropic. However, since it is possible
to cancel the within group scattering cross section from both sides of

Eq. (3-56), iterative procedures in diffusion theory are simpler. With




the neglect of higher order angular resolution of the source term, a
requisite for the use of diffusion theory, the diffusion approximation

can be made selectively by groups.

3.4.2 Reduction of Dimensionality

Equation (3-6) can be reduced to a sequence of steady-state problems
by the simple assumption, requiring only that | be a continuous function

of time, that N_ e (v .. + NS)/E. Using this relationship to remove

s+1

N, from Eq. (3-6) gives

p(Ai+lNi o1 AiNi) coo (0 + 2/vAL)NV = SV + 2NSV/VA’G (3-63)

2NSV/vAt is then the source of neutrons transmitted into the time in-
texrval from the previous time step. With known values of NS, either from
initial date or from calculation in a previous time interval, Eq. (3-63)
can be solved for Ns_*%. Then, Ns+l = 2Ns+§- - Ns is the input for the
next time interval.

If the time dependence of all fluxes and sources 1s such that they
can be approximated by N = §f(t), S = gf(t), with N and § time independ-
ent, then time dependence can be eliminated entirely. TIn the limit of

small At

<=

af Nf d(tnf
v (3-64)

- NS)/vAt - 3T

(Ns+l

If £ = eM-', Eq. (3-6) becomes, dividing ell terms by f,
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~

“(Ai+lﬁi+l - Aiﬁi) SN CA 'i?) NV = §v (3-65)
The quentity )./v, the time absorption, appears as a correction to ¢ and
is frequently the object of an implicit eigenvalue seaxrch.

Total elimination of spatial variables is also possible. For in-
stance, in rectangular geometry, suppose that the y dependence of the
Tlux is such that a diffusion theory shape is adequate. Set N =
N cos (ny/2v), assuming that N is time independent and that the flux
vanishes at y = +b. Considering, for convenience, a time independent

problem with an isotropic source, Eq. (3-62) can be used to determine J
J = -B(ﬁj_*_l - ¥, )/ 6Vo = -(Nj+l - Nj)/3o£\y =

= -ﬁ[cos[n(y + Ay)/2b] - cos (ny/2b)}/3cAy or, in the limit
of small Ay, (3-66)

J = ﬁn:sin(ny/?b )/ 600

This relationship can be used to eliminate J from the balance equation,

Eq. (3-56), since

B, 1J.q = BJ. A
lm BRI 3 No(x/2b0) cos(ny/20)/3 (3-67)

Ay-0

Finally, if there are no external sources, or if all sources are assumed

e
to be given by S = § cos(xwy/2b), Eq. (3-56) becomes
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A 2
AT ... oll+2 (=) Iiv - 8v (3-68)

Ajiali - M1 - 3

and the Ay of A, C,and V cancel. That is, the two-dimensional area and
volume elements cen be used. Equation (3-68) is then a two-dimensional
equation with a buckling absorption correction to the total cross section
to approximete the effects of y direction leakage. The same correction
cen be made to the x-z dependent form of Eg. (3=6). The same type of
correction can also be used to remove x dependence as well, and the cor-
rection is additive. If the x thickness is 2a the effective total cross

section becomes

oll + (x/200)%/3 + (x/2a0)%/3] (3-69)

The above correction can be maede essuming either that b is an actual di-
mension or that b is an extrapolated half-width related to the actual
half-width t by b = t + 5. To the order of approximation made gbove
5 = 2/30, but in Eq. (3-6) 3 = 0.7].011-5>\.t1jc can be used. Here, X is
the transport mean free path and ¢ is the local secondaries ratio
c = (WZ + czgg)/cg-
The cancellation of the assumed y shape from all terms of the eques~
tion was fortuitous. Had the shape N = NIL - (y/b)2] been used the
derivatives of Egs.(3-66) and (3-67) would have given 21/\1\/30‘02 which does
not contain N as a factor. In this situation a y average can be used.
The average of the correction is divided by the average of N. In other
words, Eq. (3=56) is integrated over y and divided by the y integral of

PaS
N. For the quadratic shape N = N[1 = (y/b)a] this process gives

4o
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b ooa 2 b A 2 2
J (2/30b )dy/fb N1 - (y/v)lay = 1/ob (3-70)

«b

and the corrected total cross section is o[l + 1/(ab)%].

3.%.3 Source Simplifications

Practically all source simplifications involve additional approxi-
mations. Computationally the most profitable are those simplifications
which reduce the complexity of anisotropic scattering. Frequently, Eq.
(3-25) is simply truncated after the L = O term to give Eq. (3-26).

Some anisotropic scattering effects can be included within the framework
of isotropic scattering by making the transport approximation. For within
s

group scattering this approximation subtracts Ulgg from cg and cz

eg
while for group-to=-group scattering e variety of recipes are available.

6
By including all scattering effects in isotropic cross sections, all the
sums of Eq. (3-25) and the time consuming computation of Legendre flux
moments are eliminated.

To insure iterative stability or to accelerate convergence it is
sometimes useful to transpose terms to the source side of the equation.
In the buckling correction made above the cross section correction is a
true absorption which belongs on the loss side of the equation. But if
a more complicated flux shape had been assumed, or if a pointwise cor-

rection had been made, the correction might have been negative. Then

the negative correction, say O'*NV, could have been transposed to the
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source side of the equation. When terms are transposed to the source
side of the equation the angular dependence of the flux is approximated
by N ~ N + 3uI + 31T + 3¢.K or higher orders of anisotropy if desired.

This device can be used to define a modified transport theory by subtrac-

ting Vorzggl\l from the left hand side of Eq. (3-9), thus changing ‘the
term Vo to Vo'N, and subtracting vUigg(ﬁ + 3ul + 3nJ + 3&K) from the
right hand side. This approximation removes from the source term side
of Eq. (3~9) the isotropic component Vozgg-ﬁg of in-group scattering
(see Eq. (3-29)), which has certain advantages in numerical solutions
as will become gpparent later.

Inverse transpositions are also possible. If, say, the time ab-
sorption is very large, a portion of the source term might be moved to
the left side of the equation to reduce the size of the collision term.

Finally, if the average velocity change per collision is small com-
pared to group width, an age theory type assumption can be made, letting
collision contributions to S come only from grows g + 1 and g - 1.
Under these conditions, Ng should be redefined to be the number of neu-
trons per unit speed to allow within=-group structure, i.e., derivatives

with respect to speed.

3.5 Solution of Discrete Ordinates Equations

Equation (3-6), when written for curved geometry, is a very general
statement of the neutron transport equation and can be used to describe

very complicated problems. Because complicated problems can be
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computationally time consuming, methods of solution must be efficient

as well as sure and accurate. Thus, while some of the methods described
below are based on mathematical and physical principles, other methods
are selected on the pragmatic basis that they are the simplest rather
than the most accurate. If it is felt that such considerations are in
some sense a lowering of standards, it should be remembered that, as of
early 1965, no general solution of the three space dimensioned trans-

port equation has been attempted, and two~-dimensional, time independent

*
problems typically require a few hours on the fastest computing machines.

The curved geometry form of Eq. (3=6) contains eleven fluxes

(w Ng W/vat + p(A

1418041 = AN;) + n(B

s+l ~ #lge1 = ByNy) +

(3-55)
+ §(Ck+1Nk+1 - cka) + (am%Nm% - am_%Nm_%)/wm + oV = 8V

only five of which can be assumed known from calculations in adjoining
cells, previous directions, or previous time steps. The additional
flux equations which are necessary in order to solve Eq. (3-55) are

provided by difference relationships.

3.5.1 Elementary Difference Methods

The "diemond" difference equations provide a particularly simple set

of flux relationships. Requiring only contimity of Ng(;;, Q) for

*
Even a very complex one-dimensional problem requires only a few minutes
for solution.




application, these relations are

N1 + Ng =Ni+l+Ni=Nj+l+Nj =N g +N = Nm%+Nm_%= 2N (3-71)

and state simply that the arithmetic average of the cell "surface"
averages is the average of Ng over the entire cell. These equations
lead to & simple recursion relation for N and generally provide good
accuracy relative to the computational effort involved.

If it is assumed that Ni’ N,, Nk, Ns’ end N, are known, that is,

m=-g

J
if the calculation is proceeding in the direction of positive cosines,

increasing time, and increasing direction index, then Eq. (3-71) is used
to eliminate N, ,, N PRY Ney1» N p2nd N mth from Eq. (3-55), which is
then solved for N in terms of the known fluxes. Simple substitutions

give

MAN, + nBN, + ECN, + ON_ 1/w + oVN_ + SV
N = — J 5+ Mo/ - (3-72)
2“Ai+l + 2"33+1 + 2§ck+l + 20 1/w + oV + oV

and o

2/vat. Since there is no curvature in the j and k directions

aBj+l B and 2Cy,q = C- The curvature equation, Eq. (3-10) can bve

used to write
P2l E/W = (ozm_% + am_%)/w - “‘(Ai+l - Ai) (3~73)

which allows Eq. (3-72) to be expressed as
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N=“ANi+nBNj+§CNk+QNm-§{w+UWs+SV

= (3-74)
A + NB + EC + ofw + oV + oV

In the above form, N, the average flux in the cell, is the weighted

average of all the flux sources in the cell.

Equation (3=7k) is completely general except that additional cur-
vature terms may be needed. Such terms can be added by inspection.
The specialization of Eq. (3~7l4) for systems of reduced dimensionality
is accomplished by removing terms. For example, the form applicable
to time independent problems is obtained by letting o = 0. Computa-
tionally, the relation of Eg. (3-74) is advantageous because many of
the same coefficients appear twice and portions of these can be pre=
computed. Further simplification is obtained by dividing each term
of the numerator and denominator by V, remembering that ¢« is propor=-
tional to area elements in the i direction.

Once N is determined from Eq. (3-74), the remaining unknowns are
found from Eq. (3-71). These fluxes are then used as inputs for the
next time-space-direction cell, and solution proceeds recursively.
Tterative solution is required only because S depends on N. For ac-
curacy in calculation, the ordering of the progression from cell to
cell must be such that no cancellation occurs in the denominator of
Eq. (3-74). The strategy employed to avoid cancellation is described

in Section 3.6 below.




If evaluation of fluxes is proceeding in the negative & direction
the appropriate recursion equation for N is obtained by replacing &
by =€ and Nk by Nk+l' Similaxly if 7n is negative n is replaced by -n
341 by N 3 ; while if both directions are negative, both replacements

and N
are made, and so forth for all combinations of direction cosines. These
replacements are simply the result of using Eq. (3=71) in Eq. (3-55)
to solve for N. In contrast to spatial directional evaluation, pro-
gression on the m index can be ordered so that Nm _% alweys appeaxs in
the recursion relation, while time evaluation naturally proceeds in the
direction of increasing time. Thus, actual calculations can be per-
formed with a single recursion relation, using magnitudes of direction
cosines and entering the formula with appropriate fluxes.

While initial values of the spatially dependent fluxes are given
by boundary conditions and initial conditions supply the first values of
the time dependent flux, some initial values of Nm -3 are needed when the
geometry is curved. These values are found by examining Eq. (3-55) in
directions in which there is no angular redistribution. In one-dimen-
sional sphericel geometry, as can be seen from Eq. (3-30), p = =L is a
direction in which the angular derivetive vanishes and is also & direction
suitable for initiating a recursive solution beginning at the outer bound-
ary of a sphere. In the other curved geometries described in Table III-l
several starting directions are needed. With the angular orientations
of Fig. III-2, these directions correspond to 1 = O, Hi = (L - gi)%;

i=1,2,...,n/2. In order that these special directions not affect



symetries of a quadrature set, they are assigned zero weight. For
these directions, then, N m"‘% = Nm _%, and from the diamond difference
relations, Nm% = (Ni + Ni+l)/2' Also for these directions, am-%; = 0;

and as W approaches zero, Eq. (3-10) gives

m 1

(xm_l_%/w = - (Ai+l - A.) (3-75)
Thus, for these special directions, the curvature term is
(am:ql;N ik = Onedly -%)/Wm = pg(Ay = Ay )N, 5+ N )/2 (3-76)
which, when combined with the similaxr term in Eq. (3-55), gives

(Ns+l - Ns) V/voe + pA(Ni+l - Ni)/2 + T](Bj+le+l - BJNJ) + : )
3=TT

+ 5(Ck+1Nk+1 - cka) + oNV = 8V

A recursion relation for N obtained from this equation differs from Eq.
(3-74) only in the absence of the @ terms. Hence, in practice, Eq.
(3=74) is used in all cases, with zero & for the special directions.

The special initial recursion relation can be eliminated by employing
less accurate difference relations. The relatively crude "step function"
relations assume that N is constent over the mesh cell. That is, the un-
known boundary N's are assumed to equal the average flux in the cell.

For p, n, and & positive these relations are

N=N,- Novl = Mer1 = Ngi1 = Nm% (3-78)
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Substituting these in Eq. (3-55) gives

WA, N, +nBjNJ+§CN +aiN_Jw +VN/vA1:+vs

Ni41 =

(3-79)
MAL 4+ nBJ+l + ECpq + am%/wm + V/vat + Vo
Since for the special directions in curved geometries am _% = 0, the
above recursion relation is applicable for all geometries. As in the
case of diamond model difference scheme, proper directional evaluation
of Eq. (3-79) insures that the terms of the numerator and denominator
remain positive and hence that unfortunate cancellations do not occur.*
Both Eq. (3-7T4) and Eq. (3-79) have the property that individual
‘terms correspond to quantities which, physically, are positive. If the
diamond difference scheme is solved for a recursion for Ni+l’ asg was
originally done, this valuable property is lost. With some negative
terms in the numerstor, the relation occasionally led to flux oscil-
lations and an incorrect estimate of the worth of the diamond difference
method. However, Eq. (3-T4) has been found to be both reliable and ac-
curate. In general, its accuracy and simplicity have warranted its use

in preference to the step function recursion relation.

*

The special directions and associated evaluations can also be avoided
by determin N when no N is available, from N

y 198 Nk, 1 -k, 144 ’ m, 143

and N +’§ by linear interpolation. This procedure has so far only been

explored in the case of modified transport theory and n = 2 which in
one space dimension is equivalent to diffusion theory. See Section
3.5.4




3.5.2 More General Difference Relations

It is possible to make various ad hoc combinations of step and
dia.mond. difference schemes or to use weighted diamond relationships
such as &N, ; + (l-a.)Ni = N. However, a more fruitful, albeit only
partially explored, possibility is to use functional relationships for
the flux ¥(r,Q t) and obtain difference relations by applying the de-
finitions of cell averages. Suppose that ¥ = ¥(x,n) only and that,
in the cell shown in Fig. III~5, ¥ is represented by, including

Fig. III-5

centered subscripts,

Wou) = vy gt Qg - by )0/ () +

I,

(3-80)

. (543 = Voud 143000 = 1) L 3ig,s + iy = 200 - wy g)

(n - um_,,:_é_) (2um% * My 35)(;1”% - um_%)

The above is an expression, linear in x and quadratic in u, that assumes
the value qu,ia.tx=xi, p = p; the value qu_%,i_‘%atx=x, p=

By and the value tlfm’i%_ at x = X, 4 = u. Further, if x = (xi+l + xi)/2
the x and p averages of Eq. (3-80), as defined in Section 3.1.2, are

given simply by Nm,i 1 = \lfm, 14f Nm,i = Wm, ;> and Nm"x'la‘: ik wm-%,i-{%'

For example, Nm’ 1+ is defined by

1 Pmd 141 Pmid
Vywd = 4 1 vowaes [ [ auax (3-61)
xi p’m—% x5 p’m-é—
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and the result of this average of Eq. (3-80)is Yo 4 & Now with
’4
¥(x, n) given by Eq. (3-80) the p average of q:(xi+l, u), which by

definition is N

I, 142 gives N N,

i+l = ¥ T Vmpi O Mpyga1 t V1 T

2Nm 14¥ which is a diamond difference relation. However, the x aver-

rd

age of \l;(x,um%), N ai‘l‘%, gives Nm-l-%,i-l—%‘ + Oﬂ\fm_%’i_‘% = (1+(¥)Nm,i_*%

where

oo (llm_% - E)(p‘mﬁ + 2um:% - 3n)
(“m-—’,-; - E)(Qum% b T 31)

(3-82)

Equation (3-82) is a weighted diamond difference relation. ITf E is
taken to be (”m-ké- + a.p.m_%)/(a&-l), o is a(2-a)/(2a-1), and the weighting
choice is dependent upon the selection of an average cosine. This
cosine may be selected arbitrarily, or alternatively, it may be deter-
mined by substituting Eq. (3~80) in the applicable analytic transport
equation and requiring, say, that the p average of the equation is
satisfied at some point in the cell.

Clearly, ¥ representations more complicated then Eq. (3-80) can
be used and more conditions satisfied. For instance, a flux form
matching known fluxes at the three corners of the cell could be used
to find expressions for the cell average and remaining corner fluxes.
Higher polynomial relations can be assumed so that, in addition to
boundary fluxes, other conditions are matched. However, the resulting

difference and recursion relations quickly become more complicsted than




the diamond scheme, and such methods have not been tested. There is
undoubtedly a balance point at which benefits due to increased accuracy
are offset by increased computational effort. Even with the diamond
difference assumption, choice of spatial mesh size is frequently dic=-
tated by the requirement of resolving spatial detail rather than by

the requirement of accuracy.

3.5.3 Simplifications in (Qne Space Dimension

As mentioned ebove, iterative solution of the recursion relation
of Eq. (3-T4) is required because S depends upon N. In one-dimensional

problems Eq. (3-9) becomes
AL N g = AN) + (e = 0 o, 1)/ + ol = sV (3-83)

with subscripts i and m only. It is possible to transform Eq. (3-83)
to a set of equations which, at each space point,may be solved, once

7,8 The transfor-

and for all, for Nm by & form of matrix inversion.
mation is necessary to insure numericel stebility and is similar to
the one described below for solution of the diffusion equations. Whether
or not this special form of solution involves fewer nmumerical operations
than direct iteration is an unexplored question.

In diffusion theory approximations the in-group flux terms of the
source can be subtracted from similar terms on the loss side of the

equation so that no in~group iteration is needed. In one space dimension

the resulting equations are, from Egs. (3=56) and (3-61),
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S - s
Ay aTiq = AT, + (o - cogg)NV = (S = coggN)V
(3-84)
A(Ni+l - Ni)/6 + (o = °1gg)IV = (sl_ - °1ggI)V

where the source ‘terms no longer contain N or I for the group (except
for the possibility of isotropic fission, vcfﬁ, which is handled as a
separate, outer, iteration). By using the diamond difference equations

2N = Ni+l + Ni and 2I = Ii+l + Ii it is possible to write recursion
relations for N and I. Unfortunately, these equations are not numeri-
cally stable with respect to round-off error. However, rewriting equa=-

tions in terms of two unknowns p and q such that

I, =p,N, - q, L =3iori+1l (3~85)
leads to stable recursion relations for p and g. These relations are
found by substituting Eq. (3-85), £ = i+l, into Eq. (3-84) in which I
and N are replaced by their diamond difference equivelents. Then,
eliminating N +1 from the two resulting equations gives an equation of

the form I, = fN;, - g- Equating f and g to p and g of Eq. (3-85) gives

Py = [Pi+l (AAi+l+co)+2Ac ]/(Pi+l QAR +oc)

(3-86)

q = Loy (A5 = 0501) + 8,(A + oypy ) = 81 (8, 12 5 + 0 )/

/(Pi+ L+ A+ o0 )




where the abbreviations

Q
1}

o= (o= cggg)V/E, oy 3(c - oigg)v

(3-87)

[2]
1t

S = S
R (5 - aoggN)V , s, = 6(s; - °1ggI)V

are used. The mmerically stable recursion relations of Eq. (3-86)
are applied by starting at an outer boundary where 9.1 and Dy, 8¥e
given by boundary conditions. Computation proceeds recursively until
the inner boundary is reached. At the inner boundary ﬁi is determined
by boundary conditions and then computed for increasing i from the re=

lation

Ni+l = [(Aipi+l - oo)N:i. + A:’.+lq'J.+l - Aiqi + So]/ (Ai+lpi+l + °o) (3-88)
which is obtained from the first equation of (3-84) by using Eq. (3-85)

to eliminate Ii and Ii + At the same time N is computed I is calcu-

1
lated from Eq. (3-85).

In terms of an albedo, 0 < r < 1, and the ratio B = (1~r)/(L+r N3,
the inner boundary condition is I = -BN and the outer boundary condition
is I = BN where I, N,and B are evaluated at the appropriate boundary.

From Eq. (3-85), boundary conditions become

B a=0, outer boundary

U]
I

(3-89)

=0
i

o/ (v + B), inner boundsry
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The transformation of Eq. (3-85) is a reflection principle, similar
to that introduced in the technique of invariant imbedding, which is
used to establish a relationship between the Iincoming and outgoing
neutron flow. By its application, solution of the diffusion equations
is reduced to a two-pass traverse of the system, an incoming pass to
find p and q and an outgoing pass to find I and N. If the principle
is applied directly to the discrete ordinates form of the transport
equa:l;ion,8 Eq. (3-85) becomes a vector-matrix relationship; and, as
mentioned above, the question of matrix inversion time arises. Unfor-
tunately, no way has been found to apply the principle to multi-di=-
mensional problems. However, in two dimensions, say, the three dif-
fusion equations (one flux and two current equations) can be treated
as two pairs of one=dimensional equations. First the J currents can
be assumed known while the flux and I current equations are solved as
above. Then, using the latest values of N and I, the flux and J cur-
rent equations can be solved as a separate one-dimensional pair, etc.
This process, in effect a detailed buckling iteration, was examined
for efficiency in several simple two-dimensional problems. Compaxred
to solutions of the second order differential. diffusion equations it
was found to be considerably faster; however, the method was only compa-
reble in speed to iteration of the S, transport equations which, as
mentioned in Section 3.11-.1, contain more information and are presum-

ebly more accurate.
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3.5.4 Diffusion Theory Solutions Within the Framework of Trans-

port Theory
One argument for using diffusion theory solutions is that diffusion

theory gives accurate results in energy groups where transport theory
solutions are slowly converging. To overcome this slow convergence,
diffusion theory solutions are often used selectively, by energy group,
or in the early phases of a computation. A method of diffusion theory
solution that is applicable to all geometrical dimensionalities and
that fits within the framework of the transport theory solutions pre-
viously described is the following. For notational clarity the dis-
crete ordinates equation, Eq. (3-55), is written for one=-dimensional
spherical geometry assuming a single incoming and a single outgoing
direction. Letting p = LA3 and letting N denote the incoming di-

rectional flux the incoming flux equation is

— — r ——
~pAy Np AN (A, = AN+ NV =
(3-90)
= V(@ + F + 3paJ)

The average flux N and the current J are defined, in terms of N and the

outgoing flux, N, by
+ — -—
N= (@t +N)/2 J=plt -N)/2 (3-91)
and hence

N=0N +3uJ (3-92)
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This last equation was used to transpose czggN-V (cF + cggg = ¢) from
the left to the right side of the equation so that o = o " oigg.

Q@ 1is the incoming component of external sources, here including
sources external to the group. The curvature term is represented in
the same approximation as in the derivation of diffusion theory. Using
Eq. (3-92) and the diesmond relation 2N = N; + N;_i_l in Eq. (3-90)
gives the recursion for the incoming flux

i =}JAN1+1- (Ai+l-Ai)J + V(@ + F + 3p0d )

A + otV

(3-93)

Above, J is glven a superscript to indicate that previous information
is needed to compute the current and that iteration is necessaxy. For

the outgoing flux

+

BAy Np,g = BANG - n(Ag ) = AN+ o' = V(" + F - 3u07) (3-94)

The same substitutions as for the incoming flux give

oo s (A = A + %) ¢ V(@ + F - 3i50°)
Nt - = (3-95)
2“Ai+l + oV

Tteration solution of Egs. (3-93) and (3-95) is begun by assuming a
value of J°, traversing imverd to compute N and outward to compute N'.

From these values, the current is recomputed to repeat the calculations.
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The recursion relations above are very similar to Eq. (3=-74) and
can easily be imbedded within that transport theory formula so that
selective diffusion theory solution is feasible. The sum of Egs.
(3-94) and (3-90) give the neutron balance equation despite the fact
that J° depends upon previous information. Because Eq. (3-92) was
used to form each recursion, the solutions also satisfy neutron balance,
and no extra effort is needed to guarantee that balance is mintained*

(cf. the subject of scaling, Section 3.7.1).

3.6 Principles of Solution Evaluation

Once a set of recursion relations is decided upon, every effort
is used to insure that they are accurately evaluated. The desirability
of obtaining relations with positive numerator and denominator terms
has already been emphasized. Two other aids to accurate computation are
the use of negative flux fix-ups and the application of the principle

of directional evaluation.

3.6.1 Directional Evaluation = Following the Neutron Flow

Accuracy is generally improved if the coupling among fluxes is
relatively weak, that is, if the recursion relation represents an at-
tenuation relation. The idea here is that if effects of far distant

fluxes (fluxes separated by many indices) are important, they mst be

x
Had N = N - 3ud been used to form the recursion for N symmetrical
formulae would have been obtained but neutron balance would have been
sacrificed.




passed, by many successive calculations,to the point of interest, de-
creasing accuracy. Physically, attenuation relations are obtained by
following neutron flows. Spatially, the neutron flux is attenuated
most in those directions of most neaxrly directly inward or outward

flow. Hence, it is adviseble to begin calculation in the most inward
(to begin with outer boundary conditions) direction and then to proceed
smoothly to the next most inward direction. By proceeding in this
fashion an inward spatial traverse is made for all incoming directions
before inner boundary conditions are imposed and the outward treverse

is begun. In several dimensions the procedure is more complicated, but
the principle is the same. For illustration consider a cube in the first
octant of a rectangular coordinate system with the back bottom left
corner &t the origin. Here calculation is begun at the front top right
corner with p, n, and ¢ negative. Then, beginning with the most nega=-
tive u, 1, and & an inward x traverse is made along the front top edge.
With fixed n and &, inward traverses are made along this edge until all
negative p are covered, and then ocutward traverses are made for each posi-
tive p. Next, with an inward and outward series of traverses for nega-
tive and positive u on each z level, a downward traverse is made along
the front face successively following all negative & flow. In turm an
upward z traverse is made, again traversing inward and outward direce
tions. Finally the inward-outward y traverse is begun with x and =z
traverses in each plane perallel to the front surface. Such a procedure
entails eight major sweeps through the directional mesh, one sweep for

each octant of directions.



As implied by the above, directional evaluation along uniformly
changing values of direction cosines is also important. In one=di-
mensional plane geometry for instance, each direction is independent
of the other and the order of directional solution is conceptually

immaterial. In practice, however, the flux at p = =l can be very dif-

ferent than the flux at pu = 0, say; and by proceeding p = -1, 0, =0.9...

rather than in the order g = «1, =0.9...0,... flux ogcillations can
be introduced.

In energy also, solution is guided by neutron flow. Since slowing
down neutron flows are most frequent, calculetions are customarily
begun at the highest neutron speeds. Then, a maximim amount of fresh
information is passed from group~to-group and the effects of absorption

attenmuation enhance accuracy.

3.6.2 Flux and Source Fix-ups

Even if all the terms of Eq. (3~T4) are positive, insuring a suc-
cessful calculation of N, the use of the difference equations (3-71)
to extrapolate across a mesh cell may produce negative fluxes. These
values used as input to adjoining cells may then result in catastrophic
oscillations in or negative values of the scalar flux. In practice
these situations usually arise when cross sections are large or in-
adequate spatial resolrtion is used (too many mean free paths per cell
width), but sometimes occur in the early stages of calculations when

the flux is grossly in error. To prevent the propagation of these
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negative values, flux fix-up routines are used. On the physical grounds
that fluxes are always non=negative and that a negative Ni+l’ N 3417 Nk 1

N is merely the result of an over~enthusiastic extrapolation,

s+’ Nm-v,lg
the offending flux is set equal to zero. Then a new recursion relation,
obtained from Eq. (3-55) by equating the previously negative flux to
zero,* is used to recompute the remaining fluxes. These are ggain tested
for positivity and corrected, if necessary. If more than one flux is at
first negative, only one negative flux is set to zero before recomputing,
hoping that recomputation willd. improve all remaining fluxes. This pro-
cedure is continued until all fluxes are either positive or zero. This
method, which requires several different recursion relations to cover
all possibilities, has successfully prevented negative fluxes in situ-
ations where previous, simpler recipes have failed. In addition, the
method has been tested in a consistent mammer. In a plane slab critical
calculation a normal computation produced no negative fluxes and gave a
known result. When the direction cosines were re-ordered, negative
fluxes occurred, but these were corrected by fix-up routines to give the
same known answer.

Although all the terms of Eq. (3~T74) are normelly positive, situ~
ations arise when either the source or total cross section may be nega-
tive. Cross sections may be negative due to time absorption or buckling

corrections, (n,2n) reactions treated as negative absorption, or whimsical

*
This procedure ensures that neutron conservation is maintained.




use of cross section recipes. Sources may be negative due to anisotropic
scattering approximations. For instance, if the source is represented
by a linear anisotropic expansion, S = So + 3p.Sl, Sl mey be large enough
to force S negative for some values of u. While a negative source may
sometimes be tolerated because it may be overwhelmed by the remaining
terms of the nmumerator of Eq. (3-Tl4), the negative cross section is more
dangerous. Both negative sources and cross sections are eliminated by

transpositions of the type discussed in Section 3.4.3.

3.7 Tteration Cycles and Convergence Criteria

3.7.1 TInner Iterations

The cycle of calculations in a given group in which the within group
(self=-scattering) collision source is successively recomputed is termed
inner iteration. Based on the best available information, the within
group source is computed and then a complete traverse, through all 4i-
rections and space cells, is made to compute the angulsr flux. This
process is, by definition, one inmexr iteration.

The iterative process is terminated when two successive self=scat=
tering sources differ, by some established criterion, by less than a
prescribed amount. Convergence is accelerated and system wide neutron
conservation is insured by a process known as scaling. The neutron
balance equation, obtained by mltiplying Eq. (3-55) by v and summing

over m, is
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AjpaTaer = A4T3 v Byndsn = Byds + CpnKpyn = G+
(3-96)
r s e _ 1 S —P
+ (o7 + oogg)NV = (8! + ooggN W
xr S _ _ N S =P
Kvove, o + o, =0 and S=8§'+ o) N. On the right ¥ indicates

that this flux is a previous value; and were it not for this fact, Eq.
(3=96) would be an exact statement of neutron balance. The difference
between the actual collision source and the correct collision source re=-
presents an error in the form of a false source. By introducing a

scale factor f as a parameter, the flux level over the whole system can
be adjusted so that, over the system, the false source is zero. Milti-

plying Eq. (3-96) by f and rearranging the source terms gives

r s _
TRy aTip = BTy + ByaTsyy = Bydy + Ky = G + (00 + o Jw] =

(3-97)

_ S W 1 S - - 1
= £ G NV + VS' + fo (F - NV + (£=1)s'v

12423
If the only terms on the right of this equation were fozggﬁv + 8',

then the equation would be an exact statement of balence for a flux level
fN and the correct fixed source VS'. Thus, if f is chosen so that the
remaining terms venish, neutron conservation is assured. However, with
a single constant f, the best that can be done is to satisfy one con-
dition, say to make the system average of the additional source terms
vanish, i.e., let
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g (£ ozgg(ﬁp - + (£ -1)8'lV=0 (3-98)

or, choose f according to

£ =28z [6° (F -7 +s'lv (3-99)
R R &8
where R denotes summation over all cells. The scale factor of Eq. (3-99)
is used to adjust all fluxes before beginning another inner iteration.
As Z os 5\ approaches X cs ﬁpv, f approaches unity. At the ex~
R ©88 R 88

pense of more compliceted equation solving, additional scaling unknowns
could be introduced to guarantee neutron conservation within system
subdivisions. Generalizations of the scaling process have not been
widely explored.

Based on the scaling process a possible convergence criterion is
that iteration be terminated when the false source is small, i.e., when
l;;. o(s)gg(_ - V)| < esfWg (3-100)
where S:g.vg is the average non~-collision source per group, determined by
dividing the total system source (based on previous information) by the
mubexr of groups, and € 1s a specified convergence precision. A related

test is to require that

H

= czgg [ - v < e VESE, (3-101)

R=1 avg
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where the more stringent condition on the left is balanced by the
statistical relaxation on the right, H being the total number of space
cells. Both of the gbove tests are volume weighted averages of errors
and tend to emphasize errors in large cells and neglect errors in small
cells. Generally this emphasis is the one of interest; but occasionally
the detailed behavior of +the flux is important, and then the very strin-
gent test

Max |1 - N/ <e (3-102)
over R

should be used.

3.7.2 OQuter Iterations

Once inner convergence is obtained in the first group, the calcu~
lation proceeds to the second group. The cycle of calculation which
obtains converged inner solutions for all groups, beginning with group
one and ending with group G, is termed an ocuter iteration. In this
cycle of iteration collision and fission sources are recomputed. The
down scattering socurce can be computed for all lower energy groups as
soon as an inner iteration is finished, but upscattering collision
sources and the fission source cannot be computed until an outer iter-
ation is finished. If there is no upscatter or fission source (implying
that an external source must exist in at least the first group) one

outer iteration concludes the calculation. If, however, fission or
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upscattering sources are present, the total source must be recomputed
after an outer iteration, and the outer iterative process must be con-
tinued until sources stabilize.

The upscattering source is an implicit source analogous to the
in-group scattering source of inner iteration, and a similar scaling
procedure can be used to accelerate convergence and insure neutron con-
servation in the mean. A scaling condition is obtained from the balance

equation for the whole system, i.e., from Eq. (3-96) sumed over all

groups
-

For brevity all the current terms are symbolized by L, for leakage. Now
from the definition of the source term, Egq. (3-29),
G G G g G o o
LT vs_ = % V(Q +%X_ £ vo + Z ¢ ) (3-10k4)
o1 & gr e ,n YH T Coann
where the anisotropic collision terms vanish in the m sum made to form
Eq. (3-96) and Qg is the isotropic component of the external source.

From the definition of differential scattering cross sections

G
a s
c,=0_+ % ¢ =
& & L. °hg
a s s s  _
=0+ Z © + 0 + Z o = (3-105)
g n<g ohg ogg g ohg

a d s u
o +0_+ 0 + O
g 28 ogg g




where the superscripts d and u refer to down and up scattering. With

these definitions Eq. (3-103) becomes

u d s
% L + (o + +
[ ( o cg %

u—
+ 0 JNV] =
-1 &R g)g

8
(3-106)

G G
s —
= = V(Qg + XgFP) + Z V(cﬁﬁh + 0, N+ cu]-\?ﬁ)
g=1 h=1

where, again, p indicates that fission and upscatter sources depend on
previous information. Now if Eq. (3-106) is summed over all cells, the
self-scatter terms cancel since the volume average of the self scatter
terms was made equal by inner iteration. The down scatter texrms also
vanish because the same N is used to compute each. Then, except for
upscatter imbalance, Eq. (3-106) states that the system leakage and
gbsorption equals the system source:

%z [L R+(ca+ou)'ffv]= 2 ("® + Q) + = Y (3-107)
Above, the fission spectrum normalization was used to perform the g sum
of the fission source. From Eqg. (3-107) an upscatter scale factor is
determined as for inner iteration,

£ =V +2Q )z v +2 [Q + o(F - )1} (3-108)
up g g g 8 g
R g R g
As with self-scatter scaling, more complicated recipes might be applied

to effect balance over sub-portions of the whole system.
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Convergence tests for upscattering are analogous to those of Egs.
(3-100) and (3-101):

|2 V(@ -F )| <ezv(F +2q) = s (3-109)
gR & & 8 R g B TOT

and
N U - N ¢ -]J.O
z Vo, l'ﬁg Ngl 'JGHSTOI, (3-110)

If there is no external source, the total fission source is nor-
malized to a specified level, and all flux data are made consistent with
this normalization. After an outer iteration the fission source is re-

computed, and the ratio

r = (= vE)/(S VFE) (3-111)
R R

is calculated before the fission source and flux are renormalized. A
is the multiplication ratio. Before each succeeding outer iteration
the fission spectrum is multiplied by 1/A so that M tends towards unity
as iteration proceeds. In these terms the system multiplication con-
stant is the product of the successive A. Convergence of A is deemed

sufficient when
-2 <e (3-112)

and when
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2V |F - APFP| < eEs

ave (3-113)
R

where Sa.vg is the average total source in the group (as in Eq. (3-100))
and can, in a subcritical. system, contain an external source as well as
fission.

After both upscatter and fission convergence tests are passed the
outer iteration cycle is terminated. However, the calculation itself
may not be finished. Although the procedures so far described are suf=-
ficient for source and criticality problems, more sophisticated problems

may be posed.

3.7.3 Parametric Eigenvalue Seaxrches

Once an outer iteration cycle is converged, an alteration of the
system may be made, by adjusting suiteble parameters, in an attempt to
achieve a given multiplication level, usually criticality. Parameters
customarily altered are system dimensions (vhole-system or zone), time
absorption, or material composition. In each case an iterative seaxch,
involving & sequence of converged outer iteration cycles, is necessary
to find that value of the varied parameter which gives the desired multi-
plication. At this point in the iterative process, every effort mist be
made to accelerate convergence since each converged outer cycle may be
very time consuming. Alternately, the time required for outer solutions
may be reduced by relaxing outer solution convergence criteria. That

is, in a critical thickness calculation obtaining an outer solution to
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six significant digits is wasted effort if the system dimensions are

yet to be modified by large amounts. A related method which has been
successful in reducing total iteration time uses artificial restriction
of the number of inner iterations until the eigenvalue sought has con-
verged to within, say, ten times the specified accuracy. This restriction
is based on the philosophy that early values of innexr solutions need

not be extremely precise to give reasonable values of integral parameters
such as the multiplication, and that precision is most efficiently
obtained when the entire calculation is nearly complete. In practice
this strategy has materially shortened computation times. Usually it

is found that by the time the parametric eigenvalue has converged to
within ten times specified accuracy, inner iteration values have already
been obtained very accurately.

The search for parametric eigenvalues is usually made by parabolic
or linear extra.pola.tion/ interpolation. However, when convergence is
nearly complete, the numerical derivatives involved may become unreli-
able. This difficulty is cvercome by fixing the slope when A is within
a specified distance of unity. Iteration is terminated at that value of

the parametric eigenvalue for which A is within € of unity.

3.7.4 Implicit Boundary Conditions

While the boundary condition of no incoming flux is easily satisfied
by using zero values of the flux for incoming directions at the boundary,

more complicated boundary conditions require iterative solution.




For instance, a reflective boundary condition on the right of a
plane slab requires that the incoming flux in each direction be equal
to the outgoing flux in the reflected direction, i.e., the direction
with the same magnitude of direction cosine. Because the calculation
proceeds by following the flux flow from the right to the left for in-
coming directions and then from left to right for outgoing directions,
the outgoing flux on the xright depends upon the modification, by an
entire sequence of calculations, of the right boundary incoming flux.
Thus, with a reflective boundary condition, inner iteration must con-
tinue until incoming and ocutgoing fluxes match in detail as well as
until the false within group scatter source converges. Unfortunstely,
the angular flux is, of all the fluxes, the least smoothed by integrating
processes and is the most susceptible to oscillations. Thus, unless con=~
vergence is accelerated or unless a less stringent boundary convergence
test is made, a reflective outer boundary is likely to require lengthy
iteration. One method of improving the rate of convergence utilizes
the linearity of the Boltzmann equation. First, one imward-ocutwerd pass
is made in which the laward directed flux on the right is taken to be,
in detail, the last available right boundary outgoing flux. Then, before
normal immer iteration control tests are made, the outgoing flux from
this computation is used as an incoming flux source for another inward-
outward pass. The second pass is made with all other socurces set equal
to zero. Next, a multiple of the second solution is added to the first

solution in such a way that the total right current is zero. Normal

T2




inner iteration procedures are executed on the combined results of each
set of two passes. Rather than insist on detailed agreement between
ingoing and outgoing fluxes, this iterative process may be terminated
vhen the right current is zero (within €) after the first of the two
invard-outward passes.

Other implicit boundary conditions cen be handled in a similar
fashion. The "white" boundary condition is an isotropic return con-
dition; i.e., the incoming partial current is made up of equal angular
components. In this case a zero net current on the outer boundary is
a precise convergence requirement. Another implicit condition, the
periodic boundary condition, requires that angular fluxes on the left

boundary equal their counterparts on the right. This condition can be

satisfied in detail or by requiring that the net flow through the system

vanish (within €).

In multidimensional systems, if integral convergence criteria are

used, all outer boundaries with the same type of condition can be lumped

together and treated as a single surface.

3.8 A Numerical Example

To clarify some of the techniques and procedures that have been de-

scribed, consider a simple problem. Suppose the flux and multiplication

constant are to be determined in a homogeneous sphere of radius 2 cm.
Assume, for the sake of simplicity, that two energy groups, four equal

spatial intervals, and a n = 4 angular representation will provide a
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sufficiently accurate solution. Again for simplicity, assume that
scattering is isotropic, that there is no upscattering, and that
most of the fission neutrons which are created by reactions in the
second group are released in the first group. Geometric and angular
coefficients, cross sections, and a fission spectrum reflecting these
assumptions are given in Table III-2,
Table III-2

Apart from the relative coarseness of the geometric mesh and the axbi-
trarily selected cross sections the input data of Table III-2 defines a
typical problem.

For a one=dimensional sphere the applicable form of the recursion
relation, Eq. (3-7k) is

l“:mIANi-i-l,m + aNif%,mr%/wﬁ.+ Vs lsi+§

Ny - (3-13%)
L4gm ]umJA + o/wh +V

145°

where, for m = 1 the O terms are absent and for m = 4 and 5 Ni m is used
2

instead of Ni+l,m'

the entire calculation, are listed in Table III-3. ai/2’ for the

Values of ImeA and Q/wh{ which remain constant for

Table III-3
starting direction, is zero.
To begin calculation it is assumed that all fluxes are zero and
that the only source is due to one fission neutron uniformly distributed
over the system. For the first group, then, the source vi+%si+% is

L
ogv (= Vv, ). That is, the fission source of Eg. (3-21) is the
143/ 4op 14E
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same in each cell and is normalized to unity when integrated over the
whole system. Nine~tenths or Xl of this source is released in the first
group. The calculation begins with the straight inward direction, m = 1,
at the outside of the sphere. A vacuum boundary condition is assumed;
i.e., the neutron flux in the incoming directions on the boundary is
zero. The space~direction mesh and calculation flow are shown in Fig.

III-6. With Ny ; = O, Eq. (3=114) (with @ = 0) gives N, /2,1 = 0.006313k.
b4 ¢4

Fig III-6
Because there is no angular redistribution in this direction N7 /2’ % =
N7/2, 3/25 and by the diamond difference scheme, Eq. (3-71), these are
both equal to N7 /2,1’ Again from the diamond relations N ,1 + N’-L,l =

2N7 /2,1 so that N = 0.0126268. 1In this fashion calculation continues
$4

31

inward for m = 1. N3,l provides input for computation of N5 /2,1

can be extrapolated and so on. The values of

so that

N. .1 generated by the inward traverse serve as input for the next
i+5,3/2 =
direction. After the first three directions have been traversed, cale-
culation begins at the center and proceeds to the outer boundary. Since
the geometry is spherical, center boundary values for directions four
and five are obtained from the central values of the flux in the re~

i i i . . = = . Ce]l
flected directions, i.e., N0,9/2 NO, 7/2 and NO,J_‘L/Q NO,5/2
average flux values, I\Ti i obtained from a complete traverse of the

B

mesh, i.e., from one inner iteration, are displayed in Fig. III-7. The
5

z mei ‘*%, m’

Figure also displays values of the average flux, ﬁi _'% =
1

Fig. III-T7
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Before the second iteration is begun, convergence tests are made. The
left side of Eq. (3-100) is

IZ o>

jo1 o8& (Ni-fr,’s - ﬁ—z L)V,

+57 1
which is larger than esP with € = 0.000L and s®__ = 0.5. The test
avg avg
of Eq. (3-101) also fails. The scale factor f of Eq. (3-99) is easily
found, since the volume sum of the gxc ip source is 0.9, to be T =
0.9/(0.9=0.0675174) = 1.08110k. This scale factor is used to adjust
the flux level of ﬁi & with results as shown in Fig. III-7. With first
)

i

to the unaltered fission source. As inner iteration pro-

iterate values of N +i available,the group source is corrected by adding
Toged1h 14k
ceeds, this portion of the source is continuously revised while the fis-
sion source remains fixed. A second inner iteration produces fluxes as
shown in Fig. ITII-8. Note that the scale factor, in addition to pro-
Fig. III-8
viding system~wide neutron conservation, accelerstes convergence since
the second iterate fluxes are indeed larger than the first iterate
fluxes. Also note that the new scale factor is much closer to but still
larger than unity. The second iterate flux values do not yet pass the
convergence tests;and & third iteration, with results as shown in

parentheses in Fig. III~8, is needed to finish imnmer iteration in the

first group.

+%, = 0.067517h (3-115)
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Calculation next proceeds to the second group. The fission source
in this group, 0.1 of the total fission source, is supplemented by a

down-scatter source calculated with converged first group fluxes:
VidSiad o = 20 iedMiud et * O W/ (2 Vi) (3-116)

The above source is the fixed source for the second group and is cor-

rected by addition of a self=scatter source. This self-scatter source

is calculated as soon as second group fluxes are available and corrected

after each inner iteration. The results of three iterations necessary

for second group inner iteration convergence are summarized in Table

IIT-k. With inner iteration converged in both groups, outer convergence
Table ITT-k

tests are made. When the fission source is recomputed, Eq. (3-111) gives

L ,
A = (i>=:l ViaFr)/ (igl V;aFi,a) = 0-0901929 (3-117)
After six more outer iterations and a total of twenty-seven inner itera=-
tions a converged outer iteration terminates the calculation. The be-
havior of fluxes, multiplication constant, and A are summarized in Table
III~5.
Table III=5
For the problem defined, the sphere is so small that most (9L.12%)

of the neutrons escape, and consequently the system is very subcritical.
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Most of the numericel values computed above were hand-calculsated
and then checked by comparing with a special edit of a current version
of a Los Alamos one-dimensional. transpoxrt code.

Indeed, almost all of the methods described in this chapter are
presently (1965) applied in one- and two-dimensional, multigroup trans-
port codes for orthogonal geometries. In addition to the capsbilities
here described these existing codes also solve the adjoint transport
equation by meking simple transformations of sources and cross sections

entered for a regular computation.
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TABLE IIT-1 AREA AND VOLUME ELEMENTS

Ceometry Variables v A B C
x Jave 5 1
Rectangulaxr XY Axiij oy 3 Axi
X, Yy 2 1, 0 Ay 2y sz o, Oz 256,09 5
T Ri enr,
r,e R.MO, 2nr. Ao Ar,
Cylindrical® o e *
Y,z R iAzk EztriAzk Ri
r, 0,z RiAejAzk EnriAzkAeJ AriAzk EztriAr iaej
2
r 8 ’mri
. a 2
Spherical r,Q 8,8, lmrisk R; cOS21tQ,
2
r, 6,9 5,8,08 hnriskAe R0 R, cos2nq, A8

%9 ana ¢ measured in revolutions

5; = l‘“(r;l - 1'2)/3’

2
Ry = n(rf,;
by = X1 "

2

8y = (sin21tq>K+l - sinancpk)/g
and similarly for other variables.




TABLE III-2 INPUT DATA FOR EXAMPLE PROBLEM

Geometric Functions

i Ra.diim - ri Axrea Eliﬁsnts - Ai Volume Elf;;gnts - Vi _P%
0 0.0 0.0 0.523598
1 0.5 3.14159 3.665188
2 1.0 12.56636 9.9483568
3 1.5 28.27431 19.3731%0
L 2.0 50.265Mk -
Quadrature Coefficients
m Direction Cosine “m Direction Weight w Product me‘m
1 =1.0 0.0 0.0
2 ~0.8819171L 0.1666667 =0. 1469862
3 -0.3333333 0.3333333 ~0.1111111
L +0.3333333 0.3333333 +0.1111111
5 +0.8819171 0.1666667 +0. 1469862
Macroscople Cross Sections (cm"l) and Fission Spectrum
ca' vcf o o o o] X
g, g+l gg g,8~1 g
0.02 0.2 0.0 0.06 - 0.9
0.08 0.22 - 0.1% 0.12 0.1
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TABLE IXI-3 EXAMPLE PROBLEM GEOMETRIC AND CURVATURE FUNCTICNS

i 0 1 2 3
m O o | ofw Gy I, A ofw Ol ln, 1A ofw %l ln, la ofw
1 |lo.0 3.1416 0.0 15.7079 0.0 40.8L407 0.0 78.5397

2 |l0.4618 | 2.7706 | 2.7706 {[1.3853 |13.8531 | 8.3119 || 2.3088 | 36.018L |13.8531 | 3.232k |69.2655 |19.394k
3 |(0.8108 | 1.0472 | 3.8178 [|2.4325 | 5.2360 | 11.4534 || 4.0542 | 13.6136 {19.0891 |[5.6758 |26,1799 | 26.72kT
4 ll0.4618 | 1.0472 | 3.8178 (|1.3853 | 5.2360 |11.4534 [|2.3088 | 13.6136 |19.0891 [[3.2324 [26.1799 | 26.T72kT
5 0.0 2.7706 | 2.7706 {0.0 13.853L | 8.3119 10'0 36.0181 [13.8531 {{0.0 69.2655 |19.3944

c8




TABLE III-4 EXAMPLE PROBLEM =~ SECOND GROUP

INNER ITERATION

Average Flux N.

INNER ig SCALE FACTOR
ITERATION i=0 i=1 i=2 i=3
NUMBER
1 0.0123561 0.0120812 0.0107605 0.0077786 1.21253
2 0.0152062 0.0148435 0.0131309 0.009k4156 1.000767
3 0.0152358 0.0148695 0.013k622 0.0094215 1.000050

€g




TABLE IIT-5 EXAMPLE PROBLEM =~ OUTER ITERATION

AVERAGE FIUX N

OUTER g MULTIPLI-
ITERATION GROUP 1 GROUP 2 CATION
NUMBER I=0 I=1 i=2 i=3 i=0 i=1 i=2 i=3 CONSTANT
1 0.046255 | 0.04554k | 0.041882 | 0.031603 | 0.015236 | 0.0L4870 | 0.013147 | 0.009k22 | 0.090193
2 0.054482 | 0.052780 | 0.045139 | 0.031148 | 0.017253 | 0.016646 | 0.014091 | 0.009606 | 0.0951L7
3 0.056497 | 0.054400 | 0.045713 | 0.031023 | 0.017719 | 0.0L7031 | 0.014269 | 0.00963L4 | 0.0960Tk
4 0.056963 | 0.054761 | 0.045830 | 0.03099% | 0.017826 | 0.017118 | 0.014307 | 0.009640 | 0.096279
5 0.057071 | 0.054843 | 0.034856 | 0.030988 | 0.017850 | 0.017137 | 0.014315 |0.0096k1L | 0.09632k
6 0.05709% | 0.054860 | 0.045861 | 0.030986 | 0.017856 | 0.0L7142 | 0.014317 | 0.0096k415 | 0.09633k
7 0.057100 | 0.054865 | 0.045863 | 0.030986 | 0.017858 | 0.0L71L43 | 0.014317 |0.0096416] 0.096338

ute]
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Fig. III-1 Mesh Cell in Rectangular Geometry
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Fig. III-3 Completely Symmetric Point Arrangement, n = 8
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Fig. III-4 ILatitudinal Point Arrangement - Relaxation of Symmetry
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Fig. III-5 Space = Direction Mesh
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Fig. III-6 Example Problem Space - Direction Mesh
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Fig. III-7 Example problem - First group fluxes after first inner iteration
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Fig. III-8 Example problem - First group fluxes, second and third (in
parentheses) inner iterations
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