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FOREWORD

This "notebook" is the result of an attempt to organize the basic
ideas and formulas of special relativity into a form convenient for
Monte Carlo treatment of relativistic systems of point particles.

Some mathematicél sidelights have been included which may inter-

est the beginner, as well as rouse the ire of physicists, who certainly

should not take them seriously.
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CHAPTER I
DYNAMICS OF A POINT PARTICLE

1. The parameters of a particle. In an inertial frame 2, of events

(R,t), a definite type of particle (i) is assigned s constant charac-

teristic mass m, Z 0. PFor a "material" particle (electron, meson,

nucleon, °*<*) m, is positive, being the "rest mass," or mass of the

particle at rest in 2, whereas an “immaterial® particle (photon, neu-
trino, +e¢.) is assigned a ch, mass m = 0.

A particle moving on a trajectory (Ri(t),t) has velocity V, = ﬁi’
end speed v, = |V;| 2 0. Ifm =0, v, has the constant value
c= 3 x 10°° cm/sec, but is confined to the range O = v; <cifm >0.

It is customary to write B = vi/c, and, for m, > 0, also Yy = l/(l-Bie) .
At time t, every particle has a positive mass Mi = Mi(t)’ For a

material particle, M.i is speed-dependent, being by definition

M, =my, Zm > o. (1)
However, the mass M.i of an immaterial particle is an independent parame-

ter, which may have any positive value.

= 2 .
The energy of a particle is defined to be Ei Mic > 0, its

characteristic energy ('"rest energy" if m, > 0) being e, = mice.

The excess ki = Ei - e of Ei over e, is called the kinetic energy




of the particle.

The momentum of a particle is defined as the vector Pi = Mivi’ of
magnitude p; = |B/| = Mv;.

A particle with vy > 0 at time t has a well-defined direction,
nemely, the unit vector ¥, = vi'lvi = pi'lpi, of megnitude |¥,| = 1.
If the spatial trajectory Ri = Ri(t) is so paremeterized by arc-length

sy that dsi/dt > 0, then the relation
v¥, =V, = (dRi/dsi)-(dsi/dt)

shows that v, = dsi/dt, and ¥, = dRi/dsi’ the latter being the geometric
direction of the trajectory tangent.

Finally, every particle is assigned a frequency v; = Ei/h, and (if
vy > 0) a wave-length A, = h/pi, vhere h is Planck's constent. Note

here that
2 _
)"ivi = Ei/pi = Mic /,Mivi = c/fai z ¢

with equality ()‘ivi = ¢) in case m, = 0.

We are able to treat particles of both kinds (mi Z 0) in a uniform
way by virtue of the following basic

Theorem 1. A number M and vector P are possible values for the

mass and momentum of a particle of ch. mass mi if and only if they sat-

isfy the "validity condition"

M>0 & P = c2(M2~m12). (2)

[ ]




Proof. Case 1. (mi > 0) By (1), the mass M; = m;y; > O of such
e perticle sstisfies the equation M, % = ¥, - m, % hence B, = M, % °
= ce(Mie-mi2) as in (2). Conversely, (2) implies that a velocity V,
defined by P = MV, has megnitude v = |V| < ¢, and that M = mi/(l-vec'e)
as required by (1).

Case 2. (mi = 0) Here, condition (2) is equivalent to M > 0 &
|P| = Me, which obviously obtains for the mass M, end momentum P; = M, V,
of an immaterial particle. Conversely, defining V by P = MV for such a
pair M, P, we have M> O and |V| = ¢, which is all that is required of
an immaterial particle.

The net force acting on a particle is by definition Fi = éi’ a free
particle being one with Fi = 0, hence with Pi’ M&, and V., constant on its

i
straight line trajectory Ri(t) = Ri° + V,t.

The parameters(Pi, Mi’ mi), although dependent, as required by the
validity condition (2), do completely characterize a free point particle
at an event (R,t). They are adopted because of their intuitive relation
to classical mechanics, and the simplicity of their transformation to
other inertial frames.

The closely related "energy-parameters" (cPi, E;, ei), expressed in
any convenient energy unit, are preferable in computations, and may be
used interchangeably, by an obvious scaling.

For example, one may verify the basic relations:




E, = e, + Kk (3)

i i i .
E126i2 - (cpi)E = E12 - eiQ e
Y, = Ei/ei (ei > 0)
Y, = cPi/cpi (cpy # 0)

Notes 1.
1. The work done by a force Fi on a particle between points 1 and

2 of its trajectory is

2 2
W= J Fi-‘i’ids:L = f F1°Ridt (dsi/dt >0) .
1 1

. . ° 2 L _ .
Differentiating (2), one has Pi Pi = MiMic « Since Pi = Fi and Pi = MiRi
with Mi > 0, this implies

e o 2
Fi Ri = Mic (h)

Consequently

2

° 2 2

W = j M ctdt = A(Mic ) = A(ki).
1

Classically, for a force F = - grad $(R), we have also

2 2
W = f F, ‘R;dt = - J Q(Ri(t))dt = - AD,
1 1

10



In such a case, it follows that E + & and k + ¢ are constant on the

trajectory.

2. A positive electron e’ of charge q esu (TABLE I) in an electro-
static field due to a potential ®(R) esu volts is subject to a force
F = - grad quR) dyne. If the différence in potential between points
1, 2 of its resulting trajectory is 108/c esu volts (= 1 practical volt),

the corresponding k.e. increase is

Ak = - A(qe) = q(108/c) = 1,602095 x 10712 erg

a unit of energy called the electron-volt (ev)

1l Kev = lO3 ev 1l Mev = 106 ev 1l Bev=1Gev= 109 eve.

3. From cpi%.i = ch and Eq. (3), one obtains the numerical relation

( Eig-ei2 Be;) X (ki in fermi) = 1.239806.

For example, a l.24 Bev electron has wave-length Ay = 1 fermi (= 10713 cm) .

4, The Compton wave-length kc of a material particle of rest-mass

m, > 0 is an intrinsic parameter, defined as the wave-length of a photon

having energy equal to the rest-energy of the particle: h(c/kc) = e

= mic2 l.ee, N, = hc/ei = = h/mic. One may show that

A
c

VILA

<
N as By 3 1//2

where Xi is the wave-length of the moving particle.



The value of hc may be obtained from the relgtion (ei in Bev)
X (Ac in fermi) = 1.239806. The Compton wave-length xe of the electron
is given in TABIE I, as well as its mass me in grams and its ch., energy

2
e =mc in Mev.
€ €

5. For the k.e. of a material particle, one has the convergent

series
—— 2 — 2 l 2 ).l- oo @ -— l 2 2 L
ki = mic (yi-l) = mic {-2- Bi + % Bi + } =3 mivi {l + % B1 + }

1 2
from which one may see that kﬁ > 3 mvy unless vy = O.

Mathematical side-light: The inequality micg(yi-l) > % mivie may
be written in the form

(1-8,%) (1+38,%) (1+36,%) <1

and so deduced from the classical inequality (with n = 3):

1/n
For 2 = 0, (nlnaj) / < (Z? aJ)/n unless all a, are equal.

J

6. If a particle of rest energy e = 500 Mev has k.e. ki = 800 Mev,

its other scalar parameters may be obtained as follows:

E; = e; + k; = 1300 Mev vy = Ei/ei = 13/5

: 2 ot
cp; = (E;"-e,") = 1200 Mev By = cpi/Ei = 12/13
Ay = 1.03 £. (Note 3) A, = 2.48 £, (Note k)

10

If required, vy = Bic = 2.77 x 10 cm/sec, and the conversion 1 Mev =

1.602095 X 106 erg, with the appropriate constants of TABIE I, yield



v, = E/n = 3.14 x 1023 gec™1

P, = cpi/c = 6.41 x 10'1‘LL gm cm/sec

Note that v, = 3.25 x 1010 2

{ cm/sec > ¢ and k, = 800 Mev > ¢ m

1 1 Vi

B oep,® = 213 Mev,

7. (This, and its "application" in Notes 8, 9, are mathematical
"recreations." Any resemblance to physics is purely coincidental.)
A particle of ch. mass m starts from R = 0 at t = O with initial

momentum Po = po‘i’ P

o = MV, and is subject therefore to a "friction"

0’
F = - HP vhere H > O is a constant. Then, for t = O,

P=P e.Ht = poe-Ht‘i’

o o]

and, since P = MV = M(aR/ds) (as/at), (ds/dt > 0) we have R = s¥_ and
P=M = poe-Ht where v = ds/dt.

(a) If m> O, the relation M = m(l—vec'a) then implies

v/e = l/{l-i-(mc/po)eezﬂt]é = 1/f(t) - O whence M~ m

and Xk -+ 0. Integration ylelds

s = (c/aH) n(£(0)+1)(£(t)-1)/(£(0)-1)(£(%)+1)

with limit (c/2H) 4n(£(0)+1)/(£(0)-1) as t = ».

(b) Ifm=0, then v=c¢, 8 = ¢ct, and Mc = Moce-Ht, whence

E=nhv= hvoe'ﬂs/“ - 0.

i3



8. (Hubble's law.) In astrophysics, the absolute magnitude M of

a point light source G of luminosity £ erg/sec is defined by (.i‘,/lmlo-lo)/¢o

2

=10 7 , vhere ¢ is e standard flux (2 x 101‘

b erg/Mpc2 sec)., If ¢
is its observed flux, then G is said to have apparent magnitude m, where

2
- m
¢ﬁto = 10° , and luminosity distance D(Mpc), where ¢ = S/EWDz. These

parameters are therefore related by the identity
m=M+ 25+ 5 log D. (5)
A friction F = - HP (Note 7) acting on the N, photons, of average
energy h\)o, emitted per second by a source G at (constant) distance s,

would imply a flux ¢ = Noh\)oe'HS/c/lms2 = S:/lmszes/R (R= c/H Mpc)

and hence a luminosity distance D = ses/ 2R. Moreover, the light received
would exhibit & "red shift!

z= (\A/A = /R 12 s/ 51,- (s/R)Z + «e-. (6)

In terms of z, we see that D = R(l+z)% 4n(1+4z), so that (5) gives

m=M+25+ 5 log R + % log (1+z) + 5 log log (1+z) + 1.811 (7
for the apparent magnitude m of a motionless source of agbsolute magnitude
M showing a red shift z > O.

In reality, en approximete relation (Hubble's law)
zg = (M)A = s/R. (8)

(R = c/H = 3000 Mpe, H == 100 (Km/sec)/Mpc is found to exist between the

observed red shift ZH of light, of normal wave length >"o’ recelved from

b




an "average" galaxy (M = - 20.3), now at estimated distance s. Measure=-
ment of z is relatively clear cut, whereas the estimation of s is very
ambiguous. For distant galaxies, m and z are the observables, the func-
tion (M. L. Humason, et al., Astron. J., 61, 1956, p. 149) m = 5 log cz
= 1.18z - 5.81 having been "fitted" to the observations for
3<w=1logcz<5, (c=3x 105). The function m = m(z(w)) in (7) hes
the same general features (dm/dw = 5; am/dw - 5 as z —» 0), and numerical
agreement is surprisingly good for the orthodox values R = 3000,

M = 2003’ i.e. for

m = 23.9 + 5{% log(l+z) + log log (1+z)}. (9)

For the quasar 3C9, with reported m = 18.2, z = 2.012! (J. B. Oke,
Astrophys. J., 145, 1966, p. 669), we find from (6) and (7) a distance

s = R fn(1+z) = 3300 Mpc, and an absolute magnitude M = - 25.6.

9. (Olbers' paradox.) Suppose infinite Fuclidean spece has a uni-

3, each of luminosity

form density of n motionless point galaxies per cm
£ = Noh\)O erg/sec, as in Note 8. Such a galaxy, at distance s from earth,
produces & flux ¢ = £/kns2 erg/cm2 sec (in the simplest model), of which
the earth, of radius Tps recelives an2 times this. Multiplying by the
number no(knszds) of galaxies in the "s-shell" about earth, integration

on r < s < o, and division by the surface area Uinr 2 of earth gives the

B B
infinite result

15




o]
Q = J % n £ds erg/cm2 sec.
'E
Assunming the friction of Note 7(b), we should use instead the ga-

lactic flux ¢ = (.s:/lmse)e'Hs/c of (8), with the final result

) -

With n_ = 10°T5 galaxies/emd, £ = 4 x 10%3 erg/sec (M = - 20.3), and
18

w
® = j % .S:noe-Hs/ Cas = n g (

Tg

o

sec™t (C. W. Allen, Astrophysical Quantities, Univ.
3

H = 3.2% x 10°

of London, Athlone Press, 2nd Ed'n. 1963), one finds o 2= 10 erg/cm2

sec, which is far too great (Just visible flux ~ 10-7, m=6).

10. The relativistic parameters of a particle are exploited
(rather naively) in Appendix I to obtain physically correct properties

of a "gas" of such particles.

2. The Lorentz transformation. Let 2 and %' bve inertial frames,

the position space of 2. having constant velocity U, of magnitude

u, = |U°| < ¢, relative to 2. For such frames, the Lorentz transforma-

tion defines & one-to~one correspondence
(R,t) ~ (R',t)

between all events of L and 2, , corresponding "four vectors" being re-

garded as the "same event," as it appears in the two frames.

16



Parallel spatial axes 8,3’ may always be chosen so that the spatial
origin 0’ of ¥’ moves on the X-axis of ¥ in the positive direction, its
velocity Uo having components (uo,o,o)s; and the time so measured that

0’ coincides with O at t = O = t'. For this standard configuration, in-

dicated in Fig. 2.1, the Lorentz transformation assumes the form

(L) X

I
<
]
It
]

Yo(x'+u°t') y
t=v_ (u c-2x'+t')
oo

1/(1-302)% z 1,

where Bo = ub/c < 1, and Yo

Y Y’
PM P4
o’ x’
0 X
U=(u°,0,0)
pA A
FIG. 2.1

The inverse of (L) and other transformations derived from it re-
sults from the formal substitution - u, - uo,‘and interchange of primed

and unprimed variables.

17



From this simple form, all physically meaningful inferences may be

drawn. The most important one is the invariance relstion

R2 - 02122 - R/2 - c2t12 (1)

existing between corresponding events, from which we conclude

2 2.2 :2 2

R® = ¢%t® if and only if R 2

et (2)

and R2 < c2t2 ] 1 " 1t Rle < Ce‘b'e. (3)

12 2,42

Moreover, if for an event (R‘,t’) we have R ct’“ and t’ > O,

the same relations govern the event (R,t). For, in the formula

-2

= Y (uc “x'+t"), we see that |x’| = |R'| = ct’ while u < c. Hence

|uc x| < t’, and t > 0. In this way we establish the further result

R°s 2 & t > 0 if and only if R’ = 6’2 & t/ > 0. (4)

These are formal properties of the transformation itself, which will
assume added significance in §k.
Of immediate relevance here is the "time dilatation" effect, with

its implications for the life time of a moving particle. Consider two

times t] < t/ at the same point R/ in ', observed in L as times t, and

t The situation is schematized in Fig. 2. From (L) we find, for the

20

corresponding events

v L YA
(Rl’tl) (Ro’tl) and (Rzytg) ~ (RO’tE)

4 '
that Xy = X = YU (t5-87) Yp =¥ =0 2, =23 =0

F— '- l -




From this we conclude that a free material particle, moving with

speed u_ in 2, and having an intrinsic 1ife time 'ri in its own rest-

frame Y., appears in T, with a life time

v
-

’
Ty = Yo'

and to travel a distance

o
1
[
.i
I}

¥ 4
i oi aoYocri *

Note the identification of the particle parameters Vis 8 10 Yy with the
transformation parameters U, Bo’ Yor and the significant proportion

'ri/'ri =Y, = Ei/ei' (Energy 1s the secret of longevity?)

P | '
\ =
T4 Yo'
Z
2
R S,=u T R Yo
1 1791 2
'
tl Y
K T
’ ’
% b
'
RO
HG. 2.2

19



Notes 2.

1. From (2) it appears that |R’| = c|t’| implies |R| = c|t]|,
picturesquely, "the transfbrmation (1) takes the light cone into the
light cone." This may be regarded as the basic feature of the Lorentz
transformation. Indeed, it is well known that an arbitrary non-singular
linear transformetion of two 4-spaces with this formal property assumes
the simple form (L) when spatial axes are properly aligned by rotations

and units suitably standardized. For a generalization, see Appendix II.

2. 1In practice, given spatial axes are usually not in the standerd
configuration of Fig.2.l, and auxiliary rotations are required in order
t0 apply the simple transformation (L). These are discussed in Appendix
IIT, which will be referred to when necessary. An slternative device is
afforded by the "vector form" of the transformation, which may be derived

in the following way.

Y ¥/
¥4 !
(R, ") U =u Y
/,’ \ 0o 0O O
(Ryt).~~ N\
el
\ Z'
0 L X
FIG. 2.3

20




If R’ is a vector in Fuclidean space, and Y ° is an arbitrary unit

vector, the projection of R’ on ¥ o 18
' r_ ! ’, ., nl.
|R’| cos 8’ = |R'| (R"-¥ )/|R"| ¥ | = R'¥_ .
The component Rfj of R’, parallel to ¥ o» 18 therefore
Rj = (R'-¥ )Y, (*)

¢

and the vector R, = R’ - R is then orthogonal to Y since R} ¥ = 0.

Now, if (R,t) ~ (R’,t’) are corresponding events in the two frames
Z,Z' of this section, and Uo = uo‘i’o (uo > 0), ‘i’o being the direction of
relative motion, we may resolve R and R’ relative to ‘1’0 as indicated

above., From (L) we then see

o ’, ¢
that RY = Yo{(R ¥o) + ut 3

i}

o - I‘ ?
whence R; = (R ‘1'0)‘1’o = YR+ Yoo t'Y

while R = R .
Hence R=R, + Ry =R{ + YORI'I + Youot"i’o
= R{ + Ry + (Y,~1)Rj + y ut'¥
or R=R+ {(Yo-l)(R' ¥) + Youot'}‘i’o (L)
while t = Yo{uoc-E(R'-‘l’o) + t'}.

21



In applications of this vector form of (1), components of R,R' are

specified on arbitrary parallel axes G,G’ in Z,Z’ . Its inverse, and
that of other transformations derived from it (Notes, §§3,4) results
upon the' substitution ~ Yo - ‘i’o and interchange of primed and unprimed

variables.

3. A particle of rest energy e; and energy E:L , which travels a

distance 5 in 2. between birth and decay, has an intrinsic life time

T = (8,/e)/{(E,/e;)%-1)

N.B. B Y. = (Y

2
Yo -1) and vy, = Ei/ei.

o]

For example, a EC particle (TABLE III) of rest enmergy 1314 Mev and
k.e., 545 Mev travelling 3 cm in its 2. life time has an intrinsic life
=10

time 'rj" 2= 10 sec.

L, In order to cover a distance Si > 0 in 2 during an intrinsic

life time 'r;, a particle must have speed

%

u = c/{l+(c'r;_/6i)2}
1,2
and energy E; = ei{l+(81/c'ri) 1.

Thus an earth dweller with 4O Y to live,who wishes to visit a-

Centauri, 4 LY away, must travel at the modest speed c¢/i/I0I, with a k.e.

%
K, = ei{(1+1o'2) -1} = e, /200. )

22



If his rest-mass is m, = 105 grams (neglecting the ship!) then k1 =

500 c® erg (1 kilo-ton high explosive ylelds ~ 4 x 1012 erg) .

5., If a source of photons at 0’ in Y (Fig. 2.1) emits two photons,

in direction ¥’/ = (- 1, 0, 0), at times té > ti > O resp., their times

T, > T; > O of arrival at O in Y. will have the difference
_ - 1. _ _ 0yt
T, - T, = (t2 tl) + ¢ (x2 xl) = Y°(1+ﬂo)(t2 tl).

Hence if the source emits N’ such photons/sec, the number N per sec re~
ceived at O 1is
— ’ = ’ -
N = N/ (148,) = Ny (1-B,).
This is precisely the formule governing the energy degradation of each

rhoton, but is quite an independent effect. (Cf. §5.)

6. A statement dusl to that connoting time dilatation reads:
Consider two points Rj, Ré at the same time t’ in ¥/, observed as the

points R,, R, in Y.. For the corresponding events

' 4 4 '
(Rl’tl) (Rl’to) (RE’tZ) ~ (Raito)
we obtain from (L) in this case

/ '] ’ 4

‘7 _ - - = -
1 = Yolxgxy) Yp =¥y =¥ "y Zp " 2y F Iy 2y

o]
[}
b
I

ct
t
ct
|}

2,0 2
5 = By = YHe Tlxpmxy)e

When interpreted as referring to simultaneous observations in Z’

of the ends of a rod in its own rest frame X, we f£ind that

23



-1
'] 4 - - -
Xy = Xy = Yy (Xpmxp) S (x5m%y

i.e., the dimension in the direction of relative motion appears less

by factor y;l in Y. (Fitzgerald contraction.)

3. The velocity transformation. If (R,(t),t) ~ (Ri(t'),t') are

'
trajectories in 2,2 , with component events correlated as in §2, then,

via (2L), the system

1oyt ’ ol et Y
x, = v Ix (") +ut’}l oy o= yi(eh) z; = z;(t")

ct
|

-2 1,0 ’
= yo{uoc xi(t ) + t'}

defines a t’-parameterization of the trajectory (Ri(t),t). Since

dRi/dt = (dRi/dt')/(dt/dt'), we obtain the (non-linear!) transformation

(V)

' '
Vix (Vix+uo)/di

I} ‘ t - -2
viy/Yodi aj = (ue “vi +1) >0

Viy

' 4
Vizg = Viz/Yodi

for the instantaneous velocities V. = dRi/dt, Vi = dRi/dt' (referred to
standard axes) at corresponding events on the two trajectories. Note

[ 7 4
thet u < ¢, and lvix‘ s |V1| s ¢ (assumed in 2 ) insures di > 0.

We now obtain from (V) the transformation for speed v. From (V1)

we find (suppressing i for the moment)

ok




e vrau 12 - (e rae)? o (y2og?
) = (vx-i-uo) (uoc vx+c) Vx )/Y

or v 2 _ c2 = (v 12 2)/Y d/2

X

Combining this with (V2,3) results in

2 2 2 2 12, 12, 12 2 2,42
Ve + Vy +v," - c = (vx +v! Sv!c-c€) / o & .
_ I - '
Hence, the speeds v, = |V,| and v{ = |V]| satisfy
2 2
(v) v,o-c = '2 2)/Y d .

We conclude that v/

He

v, = ¢ if and only if vg

jectories. In case vi <

o
(v¥) 1/(1-vfc 2y -

. .
= ¢ in 2’ implies Vs £ ¢ in Z, and moreover,

c at corresponding events of arbitrary tra-

¢, v; < ¢, we obtain from (v) the law

I/(l_ 12 2)%.

In view of the relations V, = v.¥, and V; = V;Yi holding for tra-

jectory directions where

viv£ £ 0, the transformation for their compo-

nents relative to the standard axes S,S' (Fig. 2.1) follows at once from

(V). Writing

'
Yi (alx’aiy 12)3 and Y (aix’aly iz)g’
we obtain
- ’ ’ ’
(¥) 8, = (a,001)/D;
a. =

' I
iy = aiy/YaDi

_ I} ’
844 ~ A
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where we have set pi = ub/vi

and D

e &
o
e
s
»

For vi we must of course use its evaluation
3
= (B (v]2-c®) /v Bal®

in terms of Y. parameters, as provided by (v).

This involved transformation is by-passed in most problems by a
device given in §4. It is required for transformation of differential
cross sections however, and for that reason we include the explicit

evalugtion

%

Dy = {(aj #0])% + v 2(1-a] ] (1)

in terms of the essential parameters a{x

’ _ ’
and p{ = uo/vi.
To verify (1), we note (suppressing i)

D'“ =4

2 /2v2/V12 (d/c/v/)Q + Y;e(l c2VI 2)

2
(u_c Yelrev! l) 2 L yT3eey-2
o %x

= t*Y¥ " Yo

g 202 242 -2 2,-2) 2 -2
=B, 8, + 2’ a + v+ Yo - (l'uo e v

= (1-vy;%)al? + 2'al +y 24 p'?

vhich yields (1).
For the application referred to, we require the relstion

(Y1) cos §, = (cos y! +p /D'
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vwhich gives the important relation between a, = cos ¥, and al

- '
1x 1x = €08 ¥y

for the angles wi,wi made by & trajectory with the X,X’ axes of Fig. 2.1,

i.e., with the direction of relative motion of the frames.

Using the value of Di in (1), we find, for pi fixed, the derivative

da, [da; = (l*pi i) /D'3 (2)

When vy =¢= vi (as is the case for the trajectories of an im-

material particle), these results become greatly simplified, since then
’ r _ r _
Di = di =B a <+ 1l and =B .

Specifically, in this case,

(¥e) a = (85,48, )/ (B 8] +1)
aiy =8y y/Yo(Boaix-*'l
2y, = 81,/Y (B2 1)
and da, [fdal =y 2/(Boalel) . (2¢)

Finally, we derive the (expected) inverse of (V), namely

-l . _
(V) Vix T (Vix uo)/di
-2
r = (=
Viy = viy/yodi 4; = (-uc v, +1) > 0
I-—
Vig = ViglYode
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From (V1),

- uoc-z(vixdi) = - uoc-evix - uoec-2 ‘
= - (uoc'2v1x+l) + (l-uoec-e)
= - .di + Yo-g'
Therefore, (-uoc-2v1i+l)d£ = Y;2.
Tt follovs that d,d! = Y;2, 4, >0 eand
(a) (vody) (v df) =1

where di is defined as in (V)-l. With this established, the last two
equations of (V)-l follow trivially from those of (V) while the first
results simply from solving (V1) for v{x, using the formula for d{ in

(v).

Notes 3.

1. The "vector form" of the velocity transformation (V) follows

from Note 2.2. TFor,

dRi/dt'= Vi + {(Yo‘l)(V{'Yo) + Youo}Yo

r =200, = ‘
at/at’ = v lue (Vi¥,) + 1} = Yods

SO

(V) Vy = (Y@ UYL+ (lvgm D (vEeY ) + v u Y]
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We have as before (yodi)(yodi) =1 (a)

-2
where di {- uc (Vi-Yo) + 1}.

- r oyt s
2. From (V) and the relations Vi = ViYi’ Vi = ViYi one obtains

the vector form of
_ 1y=Lpye ‘ ‘
(¥) ¥y = (D) TI¥S + Ly m1) (¥ ) + v piY¥ ]
' - ’ . a ‘ ‘ .
vhere py = uo/vi, D; = divi/vi’ and d; is defined in (V) above.
Explicitly,

2

Dy = {L¥g-¥  + 0]1% + v22I1 - (¥l )2))

(o}

which reduces, for vy =¢= Vi, D{ = Bo’ to

¢ _ a0 _ ’,
Di = di = Bo(Yi Yo) + 1.
3. One esslily obtains the relastion
tan §, = Y-l sin §!/(cos §'+p’)
i (o} i i"i
between ¢y and w; by division of
2 2 % 12, 42 ¢ _ =1 . tpr
(a‘iy+a‘iz) - (a'iy"'a'iz%/YoDi = Y, sin ll'i/Di

(cos yi+p{)/D].

sin ¢1

by cos Wi

29



4, The momentum-mass transformstion. The preceding results, in-

volving no reference to mass, may be regarded as purely kinematic as-
pects of the Lorentz transformation. Suppose now that a particle of
ch. mass mass mi z 0, mass Mi = M;(t')> 0 moves on the trajectory

(R{(t'),t') in ¥/, appearing in X as a particle of ch. mass m, ,
mass M; = Mi(t)’ on the corresponding trajectory (Ri(t),t), the frames

being related as in Fig. 2.1. We shall assume (Cf. Note 5) that

(m) m = my and
= M ‘ - -2
(M) M; = Miy s, dj =uc v +1

are the laws of transformation for the ch. mass, and mess, of an arbi-
trary particle. Note that (3d) provides the inverse of (M).

The relation (M), combined with the (non-linear) velocity trans-
formation (3V), yields a transformation for the momentum-mass 4-vector
Pi’Mi of a particle which is not only linear, but has the same matrix as

(2L) itself. Thus,

(PM) pix = Mivix = YodiMé'(V£k+uo)/di =Y (Pix+u M )
Piy = MViy = oM * 1y/Y a = Piy
Py, = MV, = v aiMivi vdl = pf,
M = Yod;Mé = Yo(uoc-2v1x+l)M1 = Yo(uoc i +M ).

The formal properties of (2L) derived in §2 imply here that, at

corresponding events on the trajectories of a particle, one has
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P12 - c%die = P2 . caMi2 (1)

i

Pi2 = c2M12 if and only if Pie = cemge (2)

P12 < c2M.i2 L " Pia < cEMZf’L2 (3)

Pi2 = ceMia &M >0 " " " " Pie S cgmgg & M; > 0. (+)

It follows from (1) and (4) that the validity condition of Th. 1.1

is preserved by the momentum--mass transformetion. For example, if Pi
and M, are "valid" parameters for the ch. mass my (z 0) in 2, then P{
and Mj'., as computed from (PM)-J', are valid for the same m, in . The
import of (2) and (3) for the speed of a particle is manifest.

The transformation makes it clear that a particle is "free" in L.
(P; constant) if and only if it is free in X'.

An obvious scaling of (PM) yields the analogous transformation

(cPE) CP, .

I} 1 ! = g
Yolep; #B Es) Py = °Piy Py, = ©Pj,

7 14
Ei - Yo(ﬁOCPixf"Ei)
for the energy parameters of a particle. The inverse results from the

usual interchange of variables and the substitution - Bo - Bo.

The latter equations afford a simple means of computing
cp, = (E 2 e 2)%
i i 71
and the direction relations (3¥) for Yi = cPi/cpi, Y{ = cPi/cpi

in the form a, = cPix/cPi 8, = cPiy/CPi a;, = cpiz/cpi. (Y)
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- ’ ’ ’
In particular, cos §, = y_(cp] cos ¢i+6oEi)/cpi. (Y1)
Explicit evaluation leads of course to the previous result (§3) where
’ r ’ _
note BoEi/cpi = uo/vi = pi.
By eliminating cpi cos W; = cp{x between the above form of (Y1) and

the formula for E; in (cPE), one easily obtains

; 3
cos ¥, = (B;~v'E})/B_(E,2-e,®) (5)

showing the direct dependence of cos wi on Ei’ for a given Z' energy E{.

For an immaterial particle, e, = O, and (5) has the simpler form

i

cos §; = {1- (Ei/YoEi)}/ﬁo

or E; = EiY;l/(l-Bocos wi). (5¢)

(ct. §6 for s geometric interpretation.)
Notes k4,

1. The "vector form" of (PM) follows from Note 3.1, and the "coor-

dinate free" version of the mass transformation:

— At I} ’ =201,
(M) M, = Mjy. d; dj =uc (vi ‘1’0) + 1.
Thus,

— — ' !
(PM) Py = MV = M (v ;v

’ ’, ’
P; + {(Yo-l)(Pi ‘f'o) + Yoqui}‘i‘o

= -2 ’, ¢
M, = Yo{uoc (Pi Yo) + Mi}.
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Scaling yields the energy parameter form

(cPE) cP

' 4 '
, = CFj + {(yo 1)(c1>i wo) + YOBOEi}YO

©]
|

1 = YolB (cPi¥ ) + E(.

This will be useful in computation. For the inverse, set - Yo - Yo
and interchange (cPi,Ei) and (cPi,Ei). The spatial relations involved

were introduced originally in Note 2.2.

2. The “vector form" of the force transformation is obtained from

(PM) of Note 1. By definition, Fi = dPi/dt', and

F, = dPi/dt = (dPi/dt')/(dt/dt').
Just as in Note 3.1, we find
’ ’ . =247,
at/at’ = Y 45 vhere 4/ = ugc (vi Yo) + 1
and, from Note 1.1, the relation (1.4), interpreted in L', yields

’ ' =2nr ot
aMj/at’ = c FiVy.

Computing dPi/dt' from (PM) and using these results, we have
_ TR P - ‘,, -1 Ty
(F) Fyo= (v 8g) TIFD + {(v ~1)(F{Y ) + vy B (Fy-v Y 1.
For components on the standard axes of Fig. 2.1, we need only set

Yo = (1,0,0) to obtain

- ’ o R ’ p) -1,

Fix = (Fiyp + 8o (Fievi)}/ag d; =B Vixt+ 1
- ' I ’

Fiy B Fiy/Yodi Fiz Fiz/Yodi'
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3. (Biot-Savart cum Lorentz law) In a long but straightforward
way, without reference to electromagnetic fields, we derive a relativ-
istic version of the vector product force law for two moving charges,
assuning as primitive only the electrostatic force, This derivation
would seem to indicate an analogous force law for gravity.

For 1 = 0,1, let i be a particle of charge q; (esu) in 2. We sup-
pose g moves with constent velocity Uo = quo on its trajectory
(Ro(t),t), (essentially) unperturbed by q,, which travels with velocity
Vl(t) on (Rl(t),t). In the rest frame L' of 4., 4, eppears on & cor-.
responding trajectory (Ri(t'),t'), vhich we suppose determined solely

by the Coulomb force exerted on q. by q_  fixed at R’, namely
1 o} o’

dPi/dt' = F] = C'aR’ (6)
I} 3
vwhere AR’ = R](t') - R} and ¢’ = qq /|aR'| (1)
!
Y i Up = uo Yy
>3 /
a,; R (1),
0 Ro
X
FIG. 4.1
Vl
U
p (///
q, R, (t),t
9
Ro (),
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From Note 2, the force of q_ on q, at Rl(t),t in X2 is

RN N ’ -1, :'L} = -
F = (Yodl) [Fl + {SoFl Yo+ YPoC lFl v Yo » %% % Yo 1 (8)
vhere Fi’V:,L are evalusted at the corresponding event Ri(t’) ,8/ in X',

Applying (L)"l of Note 2.2 to the lL-events (Rl(t),t) and (Ro(t),t),

we see that
N T A TR Y R
AR! = Rl(t ) R = AR + so(AR ‘1’0)‘1‘0 (9)
where AR = Rl(‘b) - Ro(t). Substituting (6) in (8), recalling that

(Yod;.)-l = vd,, and using (9), we find

_ At 7y, WA }
F, o= C'vg [dlAR + {dlBO(AR-l-AR ) ¥+ BcC (AR Vlyodl) Y ] . (10)
We will write I-Io = Uo/c and Vl = Vl/c. Then, by definition,

-2 R
d; = - ugc (Vl-‘i’o) +1=1-Y9,"U]

so that, in (10),

dlAR=AR-V

LT AR, (11)

Purning to the bracket in (10), we have for the first term, using
(9)

dlao{ 2AR + 5°(AR ¥ O)Y o} ¥

it

2
d18°{2AR-‘1’° + B _AR ‘i’o} = dl(yo -l)AR-Yo (12)

2.2 W _ 2, =
= dlBo Yo AR Yo = d11.60‘(0 4R Uo'
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From (9), and (v)‘JL of Note 3.1, the final bracket term in (10) is

Bo[AR + & (aRY )Y _1+[V, + {8 V ¥ - vp J¥ ]

- 2 -
= B ARV, - d)Y,BART .
Combining this with (12) and (11) we have finally, from (10)

Fy

, - _ _
C YO[AR - (vl UO)AR + (vl-AR)UO]

SR _ _
L0090 [pg 4 vV, x (T, x ar)]
[ ar|

— - ' -— - [ ]
where AR = Rl(t) Ro(t) and AR’ = AR + (yo 1)(aR Yo)‘yo.

By the same argument, we should obtain, on the basis of a primitive
gravitationsl force in 2., namely
’ t ol _ alap?
dPl/dt = F] = N'AR
vhere N’ =-GMimo/iAR'|3, the apparent force in L
_TAnMY

Fl = W (l"Vl‘Uo) [AR + Vl X (UO X AR)]-

For, at the final step, we should have-GMimo in place of 939, where

-1
7 o

As before, the second part of the force lies in the plane of Uo and
1 Ro, and (however weak) would tend to produce rotation of Ml about a

much greater mass Mb'
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L, 1If (°P1’Ei) ~ (cPi,Ei), i=1,...,I under the (cPE) transforma-
tion, then formally, (ZcP&,ZEi) ~ (ZcPi,ZEg) also, by virtue of its

linearity. Moreover, we know (cP)2 - E2 = (cP')2 - &2 for every such

corresponding pair. It follows that not only are all the (°P1)2 - E12

invariant, but (ZcPi)2 - (ZEi)e as well. In particular, when I = 2, we
2 2 _ 2 2 2 2

have the identity (cPl+cP2) - (E1+E2) = (cPl) - B+ (cPE) - E,

+ 2(cPl~cP2~ElE2) and conclude that the function cP,*cP, - E.E, is an
invariant too.

Such invariants often allow elegant derivations of parameter values.

’

1
%' of a second, material particle 2, these having known parameters

For example, to obtain the energy E. of a particle 1, in the rest-frame
cP;,E; in 2, one need only note that, since cPé =0 and Eé = e, in Y,

one must have

. - -0 - 7
cPl cP2 ElE2 =0 Ele2

l —3 - *
so that E] = (E;E,-cP; cPe)/ea.

The whole story may of course be obtained from (cPE)"l of Note 1,
where i1 = 1, and Bo’Yo’Yo are the X-parameters of particle 2, namely
By = cp2/E2, Y, = E2/e2, ¥, = CPQ/CPQ' (The case cp, = 0 is trivial.)

Note. The relativistic invariants R= - c°t° and (cP)2 - E° in-

volve the same parameters as the Heisenberg uncertainty principles
|aR| | AP| = h/2m = AtAE.
For the significance of this and the invariance status of the principles

in relativistic quantum mechanics, I have no reference.
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5. The laws of transformation (m) and (M) are not derivable from
(2L) alone. It is clear from the properties of particles assumed in §1,
and the kinematic results of §3 concerning speeds, that at least the
"materiality" of a particle must be an invariant, so certainly m = mi
(= 0) for an immaterial one. If one regards the rest mass of a material
particle as an intrinsic property, with mi = m; axiomatic, then the mass
law (M) follows at once from the definition (§1) of the masses Mi,M{ and
the speed relation (3v¥). However, we cannot deduce (M) for the com-
pletely independent mass of an immaterial particle, and consider it an
additiongl assumption, warranted by all experimental evidence.

It is interesting (mathematically) to note the following conse-
quences of the "axiom" (M).

(a) Combined with (3v) it implies directly the formal invariance
of Pie - c2M12. This, together with (m) insures the invariance of
"validity."

(b) For a particle with m{ > 0 in %', (M) and (3v*) imply that

m

;= m{, and (m) is entirely redundant.

(¢) As shown, (M) implies the transformation (PM) for all particles.
This enters in a fundamental way in transmutations involving particles of
both kinds, and leads to no contradiction with experiment.

(d) The law (M) implies the energy transformation

o ‘
(E) By = BiYody

and hence also (assuming h = h’!) the transformstion
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- ’
(v) v; = vy d

’
i i

for the frequency parameter vi = Ei/h of an arbitrary particle. The

significance of this for photons is next considered.

5. The Doppler effect. A free immaterial particle, with direction

‘i’j'_ and energy E:’l’ in a frame L' related to L in the standard way (Fig.
2.1), appears as such a particle in the latter frame with direction (§3)

ot ‘ ot ¢ ot ‘
(¥,) 8y, = (81,48,)/8] 8y = 2y Yo 8y, = 85, /¥ 3

and energy (84)
(E) E; = Eg_yodi a'! =g a’ + 1.

Thus a photon of energy h\)j’_ , moving in ' in the transverse direc-
‘ _ — holv = ‘
tion ¥, = (0’1’0)8’ has energy h\)i = hv;y = hv; and direction ‘i’i =
-1
(BO’YO )O)S in 2"
On the other hand, if its direction in Y is opposite to the motion

of X' in L, then ¥ = (-1,0,0) = ¥, and
' - < '
hv, = hviyo(l Bo) = hvy.

Moreover, N’ such photons/sec emitted at 0’ in X' arrive at O in % at a

rate N = N'Yo(l-Bo) s N’

satisfying the same formal transformation (Note 2.5).
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Notes 5.

1. In certain experiments, a "plane monochromatic light wave," of
wave frequency £’ (in ') acts like a beam of particles (photons) each
of energy hf’. Such a wave is described at (R’,t’) in terms of a func-

tion
A’ sin 2xc te’ (R’ -‘P;-ct' )

where R’ -‘i’i'_ is the projection of R’ on the direction ‘fj'_ of wave motion.
- -1
Tt follows easily from the "kinematic" relations (2L) l,(3d),(‘1'c) alone

that the angle here involved appears as
-1
2nc f(R-‘i’i-ct)
at the corresponding event (R,t) in Z, where

[ 4
(£) £f=f Yodi

(relativistic Doppler equation). Granting that the wave in 2. behaves as

& beam of photons of energy hf, one concludes that photon energy E;, must

i
transform as in (E). The situation for neutrinos is perhaps less convinc-

ing.

2. Tt appears from the final remarks of this section that the energy
flux in a beam of photons such as described there should transform sccord-

ing to the relation

e = 3'Y°2(1-Bo)2 erg/cm2 sec.




In the wave picture, £ may be related to the average megnitude of the
Poynting vector (wave intensity), which is proportional to the square

of the "amplitude" A of the wave. It may be shown (Einstein, Ann. Phys.,
Lpz., 17, 1905, p. 891) that

2 2 2 2
A" =AY "(1-8))

is the transformation law for A2, although this is not so "elementary" as

the frequency result.

3. ("Flux now-distance now" relation.) In the standard configura-
tion of §2, an isotropic point source at 0’ in its own rest frame Z'con-
stantly emits N’ photons/sec of energy hv{, and is receding radially from

0 in L with speed u, > 0. Photons emitted at t, > O, X =u t, are re-

1 o1l
celved at 0 at a later time Tl > tl, when 0’ has reached Xl = uoTl in X.
From (2L)_l, we see that the 2, events of emission (xl,tl) and arrival

‘ -1
(O,Tl) appear in 2. as (O,Yo tl), and ('del’YoTl)' The numerical flux
in Z' at time YoTl is uniform over the sphere of radius Yoxl about 0',

namely

N'/lm(yoxl)2 p‘hotons/cm2 sec.

Due to the rate diminution of Note 2.5 and the energy degradation of (E)

’

in the direction ¥; = (-1,0,0)84, the energy flux observed at O in X is

¢ = (N'y (1-8,)/ by 2x *hovly (1-8,)

(£/th12)(l-Bo)2 erg/cm2 sec . (1)
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where § = N'h\); is the intrinsic luminosity of the source, and Xl is its
distance from O in 2 at the time its flux is observed at O.

The energy degradation results in a Doppler red shift

= - ’ ! - - — 2 see
z= (WA =y (14B)) -1 =B + &8+ (2)
in the wave length of the light received.

N.B. There has been some controversy sbout the flux formule (1).

The result is usually given in the form ¢ = (£/1+np2)yoz(l-80)2, vhere
p should be the Y radius YOXl. (cf. H. P. Robertson, Zeitschrift fiir

Astrophysik, 15, 1938, p. TT.)

L, If the observed red shift of Hubble's law (Note 1.8) is due to
radial recession of galaxies, with speeds u o constant in time, one in-

fers that uo/c =B = Ty = %y = Hs/c whence u, = ul(s) >~ g/ is the

speed of & galaxy now at distance s(tr = 1/H = 1010

a "big bang" around 10lo Y ago, and of course the decrease of Hubble's

Y). This implies

"eonstant" with time.

Within the framework of special relativity, the assumption of s

Doppler shift Z = y°(1+eo) - 1, together with the flux formuls (1), with

average £ assumed: ¢

S,/lmsz(l-Bo)-z, s = X,, implies a luminosity
distance (Note 1.8) D

S(l-Bo)-l = s(14+€)/2, where { = (l+z)2, and
hence a relation m = M+ 25 - 5 log 2 + 5 {log s + log (1+()}, determin-
ing s as & function of Z (or uo) via the observables m and z., If

z = Hs/c, the argument of Note 1.9 leads to an Olbers' flux
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P = J125 (n-2)nd$(c/H), n = density now.

6. The momentum ellipsoid. In passing from 2 to L, we saw in §k

that the momenta of a particle i, referred to the standard axes, are in

the relation

Piy = Yooy + YoPix Pyy = Piy Pig = Pype (1)

1f p/ = |P’| is fixed, then all possible momenta P/ terminate on a sphere
i i i

of radius b = pi about the origin 0’ of %' momentum space. The following

geometric construction for the momentum Pi’ corresponding to a given such

- ' ’ ’ "= ‘
P; = (Pix’ Piy? piz)g,’ with p; = p; cos ¥;, helps in visualizing the

nature of the transformation.

A second concentric sphere of radius a = Yopi > p; 1s imagined, and

the given vector P{ represented in the plane of the paper as in Fig. 1.

An associated point Qi is next located, by the construction shown, with

r ' r - ‘ "o 1o
Ux = (yopi)cos wi = YoPix? qiy PiyJ Uz = Pig (2)

as its coordinates. From (2), one sees that Q; ranges over an ellipsoid

of revolution in L' momentum space, namely

q’ 2 q’ 2 q/ 2
ix iy iz
(e) >+ =5 = 1.

! 7

2
4
(v,p;) 2 )
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FIG. 6.1

If we now set up, with parallel axes, a momentum space for Z, with
origin o; at (-youomi,o,o), it is clear that the point Q{, referred to
these axes, has the components required of P, in (1), and hence the vec-

tor from 01 to Q{ represents P, .

The formulas (¥) of §83,4 govern the directions of P{ and P, in the

figure. In particular, the dependence of cos Y. on cos y! is given by
i i

(Y1), where the pi involved may be written in any of the forms

4

Py

7 y) . _ y) r ‘ ¢t - o'q’
uo/vi = M:iuo/pi - Yoqui/YoPi N YoBoEi/YOCPi OiO /2 (3)
The ratio YoBoEi/YOCPi is indicated for use with energy parsmeters, in a

figure similar to Fig. 1, its momenta

'4 4 4
Yoqui pi Yopi

Lk




being replaced by the corresponding energies (cf. Fig. 2)

' ' ' '
Y p OEi cpy YoCP; cP H cP T

(o]

It is clear from the figure that, as ‘”:{ veries (in any L’ plane) from ¢°
to 180°, the behavior of ¥, in Y, will depend upon the position of Oi
with respect to the ellipsoid €. Since p ; = uo/v;. = oio'/a, the fol-
lowing cases arise:

Case I. (u < vi, 01 inside €) {, also ranges from d® to 18¢°.

Case II. (uo = vi, oi ong) ¢ 4 Tanges from 0® to a limiting 9¢°
at the tangent plane,

Case III. (uo > v;_, 0{ outside &) ¥, ranges from ® to a maximal
value Wi (opening of tangent cone) and thence back to ¢° . In this case,
each angle y; < Ty'i arises from two distinct \Lv'i end therefore appears with

two different values of 2
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These three cases are also distinguished by the inequalitles

2.,2< (42 _ 42 _ 2
Bo By 5 (opy)” = Ej” - & (4)
< 7 <V
or &Yy S Ef (Yo gY; if e > 0). (5)

Note throughout that u, Bo’ Yo pertain to the relative velocity

Uo = quo of the frames, while all parameters with subscript i are those

of the particle i.
Notes 6.
1. What is wrong with Fig. 2? (Deduce the value of ei.)

2. An ellipse with semi-axes a > b > O may be described as the
locus of a point which maintains a fixed ratio e (eccentricity, 0< e< 1)
between its distances from a fixed point F (focus) and a fixed line D
(directrix). If & > O is the distance from F to D, a polar coordinate

equation of the curve is therefore p/(8+p cos §) = ¢, or

p = 5e/(1l-c cos 8).

The relation between 5,¢ and a,b is given by

€ = (1-b2a’2)§ 5 = ba/ae

and f = ae i8 the distance from F to the center.
For the elliptic section of Fig. 1, b = pi, a = Yopi, and hence .

' I= ¢ 7 4 tAn?
€= Bo’ 5 = pi/YoBo’ and £ = YoBoPi Youomi(vi/c) = Yoqui = Oio .
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The origin oi of momenta Pi is therefore never closer to the center
O’ then the (left) focus F, and coincides with it if and only if vi =c
(mi = 0). 1In such & case, the dependence of p; on y, is that of p on ©
in the sbove polar form, namely, p; = PiY;l/(l-Bo cos wi) and therefore

also E; iY l/(l-a cos ¥, Yo (cf. (5¢) of §k.)

3. It is a simple exercise (not requiring calculus) to show that

the maximal angle Ei in Case III is given by

%
[ !
tan wi 1/y (pi -1) , M uo/vi > 1.

b, If Fig. 1, scaled for energy parameters, has cpi 3, Y c:pi S
YPEs = 20/3, one may infer from this alone that Y, = 5/3, B, = 4/5,
Ei = 5, e = ., Note the necessity, in all such figures, of the rela-
tion Ef = cp;, as reflected by the condition o{o'/b =y p OE;/cp{ zyp

o
= (Yoe-l)é, equivalently, 010'/f z 1, as in Note 2,

5. Note from the figure the obvious relation sin ¢£/sin v = pi/pé
and compare with the value given in Note 3.3, ydDi d'vi/v

YodiMivy MV = My, /Ml

6. Since the matrices in the (R,t) Lorentz transformation and the

momentum-mass transformation are identical, a figure similar to Fig. 1

relates the corresponding displacements (ARi,Ati) ~ (AR{,At;) of a free

particle with the momenta shown, the basic parameters

? ' ¥4 1
YoucMy Py YRy By By
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being replaced by the distances
) ) ’ ’
Youotty  [8R{l . v leRj]  aR;  oR.

All proportions in the two figures are identical, in particular

7i/2, = sin ¥, /ain ¥ = |oR7]/|ar, -
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CHAPTER II
CIASSES OF SYSTEMS

7. Systems of particles. A system S = S(mi,...,mI) in a frame X

is defined as a set of I = 1 triads (Pi, M, mi), i=1,.4.,I, Of con-
stant valid parameters, together with a specific set of trajectories
° = il

R (t) =R, +Vt, ~o<t<ow (V, =M ), and is considered to repre-
i i i i i1

sent a set of I free physical particles in the time interval At of its
duration. The "mathematical object” S may thus be regarded as "real"
during At, and "virtual" otherwise.

The total momentum, mass, and ch. mass of S are denoted by

POEZPi MOEZMi mS=Zmi.

Similerly, cPo, E = Mbca, and e, = m c2 designate the corresponding

S 5]
energy-parameter totals of S. Its total kinetic energy is therefore

kg = Eo = €g°

The center of mass (CM) of the system is the point

o

- 41
Rg = M_ Z MR, .
Since the Mi are constant, its velocity is

. -1 -
Ry = M I MV, = MOJ‘PO.

kg




A system S with all velocities V., identical we call coherent, im-

i
material if the common speed is c (hence all mi = 0), or material if
it is less (hence having all m, > 0). Obviously the common velocity

VC of a coherent system is that of its CM:

VC = RS = M°J~P°o

Concerning systems, we prove the following fundemental
Theorem 1. The totals P, M , m, of a system S(mi) satisfy the
conditions

M >0 & P 2= o?(M 2
(o] [0}

2
5 )

me ") .
2 2 2 2 .
Moreover, PO = c (Mb -mg, ) if and only if S is coherent.
Proof. Clearly M = )Y M > O. The classical "polygon" and "Cauchy"
inequalities insure that

|2l = Z |p| =X (Mi-mi)'b (Mi+mi)§ =

%

(T (M,-m,) I (Mi+mi)}% = (v 2n?) .

The known properties of the inequalities cited imply that equality holds

between the gbove extremes if and only if both

(a) all Py (equivalently, all M;lPi = Vi) are unidirectional, and
(b) M, -m, = C(Mi+mi), i=1,...,I, for some constant C = O.
Cleerly, (b) is true if and only if all ratios mi/Mi are equal.

But, for each i, Miiavi2 = P12 = cz(Mia-mie), so (b) is also equivalent
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to the identity of all magnitudes |V,|. It follows that

%
IPOI = c(Moe-mse) if end only if all velocities v, are identical, i.e.,

S is coherent.

Corollary l. For the CM velocity of a system S, one has always

|Rg| = ¢, with equality if and only 1f S is coherent-immaterial.

Proof. This is apparent from Th. 1, and the relations Iﬁsl = M;JTO,

P°s

. = c2(M°2-mse) s 02M°2.

Note 7.

1. The basic inequality underlying Th. 1 may be stated in various

ways, none very "elegant" in form. For example:

It wl, ces ,WI are vectors of an inner-product space, with all

|wi| S 1, and 0, ...,0p are positive members of sum Z o, = 1, then

2
Z Otiwi)2 + {Z a (l-wia)%} s 1.

Equality holds if and only if all wi are identical.

)

For the Theorem, one takes W, Vi/c in Euclidean 3-space, and

a = Mi/Mo‘

A second version reads: For numbers e, = 0 and vectors Qi’

4 2
% 2
(Z ei)2 + (X Q’i)2 s {Z (eie-l-Q,i2 ) },

where the condition for equality 1s that all Qi/ (e12+Q12 ) be identical.

(The terms in the above bracket are assumed positive.)
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8. The class of a system. Since all transmutations A — S conserve

the total momentum and mass of the systems involved, it is convenient to
define the class {PO,MO} = [cPo,Eo} of all systems A,S,... having the
same total momentum Po and mass Mb’ regardless of the number and nature
of their individual ch. masses. A (concurrent) system A being given,
its totals Po’Mb define its class, and the possible systems S which may
result from its transmutation ere all those in the class having the same
point of concurrence. The present chapter, which studies the totality
of systems belonging to a given class is therefore of immediate relevance
for Ch. ITI, which deals with transmutations as such, stressing the role
of the initisl system A.

For the class parameters Po’Mo there is first of all the simple
"vglidity condition" of

Theorem 1. A number Mb and vector Po are possible values for the
total mass and momentum of a system S, and so define a non-empty class
{P,M}, if and only if M_> O, and P02 s czMoe, i.e., |M b | =

Proof. If S is a system with totals Po’Mb’ and totel ch. mass mg,

2. 2 2 2 2
then by Th. 7.1, we know M > 0 and Po s ¢ (Mb -t ) s ceM.o .

Conversely, a pair Mb’Po with the stated properties may serve as
system "totals" for any system So(mo)of I = 1 particle, with ch. mass
m, = 0 defined by the validity condition for particle parameters (Th.

1.1)
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It i1s therefore clear that a non-empty class {Po’MB} contains a
representative (system of one) particle, with particle parameters
(P,M ,m_ ), velocity U, = M; > Speed u_ = |U°|, and trajectory (say)

R = Uot. As for any particle, we have the basic relationsof 81 for its

parameters:
E, = Mbca e, = moc2 E,=e, +k By = uo/c (1)
M 2u°2 = p°2 = cE(Moz-moa)
or E°2B°2 = (cpo)2 = Eo2 - eo2
7o = 1/(1-(302) =M /mo = Eo/eo (m >0, u <ec)
‘i’o = u;on = p;lPo (uo > 0).

While all these quantities gain concreteness as the parameters of
a particle, they are a p£iori functions of the class {PO,MB}, being de-
termined solely from the values of Po’Mb’ which are in turn the total
momentum and mess of each system of the class. We may therefore properly

refer to U° as the class velocity. Also, for reasons which will soon be

apparent, m is called the critical mass of the class, and e, = moc2 its

critical energy.

Corollary l. The class velocity Uo is the CM velocity of every
system of the class, and therefore the common velocity VC of every co-

herent system of the class. Hence, for a coherent system, the total mo-
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mentum Po is distributed among its particles according to the relation

P, = MU = Mi(M;lPo) = (Mi/Mo)Po.

Proof. From §7, we recall R, = M;lPo = U, for every system, and

S

Vo = ﬁS for every coherent system, of class {PO,MB}.

Since we have defined m_ by the relation Po2 = c2(M62-m02) the

principal result of Th. 7.l may be restated as

Theorem 2. If mg is the total ch. mass of a system S of class

{Po’Mb}’ then necessarily

m Z mg. (T)

Equality holds if and only if S is coherent.

Corollary 2. The coherent systems of class {Po’Mb}’ in particular
those like So(mo) consisting of I = 1 particle, possess the greatest
total ch. energy, and hence the least kinetic energy, of all systems in
their class.

. % = - E - = .
Proof. Trivially e, = eq hence kS E0 eq E° e, kb

Notes 8.

l. The parameters Eo and cPo are the indicated totals for all sys-
tems S of class {Po’Mb} = {cPo,Eo}. Note however that e = moce, and
k = Ej - e (the ch. & kinetic energy of the representative particle)
are not system totals eq and ks unless S is coherent.

2. To be precise, all systems S of a given class {Po’MB} are de~
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termined (except for trajectory origins Rio) by the solutions, for the

number I, and the parameters (Pi’Mi’mi) , of the conditions

_ 2 _ 2,2 2
(c) 1. Zpi_Po 3. BT = ct(M,%m, %)
i'—‘l,ooo, I;Igl
2. ZM1=M° 4, M, >0, m = O.

3. Choice of the particular trajectory R = Uot for the representa=-
tive particle is convenient (§10) but quite arbitrary. We do not of
course imply, or require in the applications, the physical existence of
a rest-mass m, .

k., One may associate with each system S(mi) of a class an "equiva-
lent" system (i.e., one in the same class) consisting of a single par-
ticle with the trajectory of its own CM, and particle parameters (Po,

Mo,mo). Note: Here, m_, not my, unless S is coherent.

9. The two kinds of classes. We here characterize completely the

coherent systems, and in doing so, emphasize the fundamental distinction
between a class of critical mass m, = 0, for which the representative
pérticle is immaterial, and one with m, > 0, having a material representa-
tive particle, which can be brought to rest by a Lorentz transformation.
Theorem 1. (a) A system S(mi) belongs to a class {Po,Mh} of criti-
cal mass m_ = O (u°=c) if and only if it is coherent-immaterial.
(b) Every such system has parameters satisfying the re-
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where the f, are positive, with sun Zfi = 1.

(e) 1If {PO,MO} is a given class with m_ = 0, it con-
tains a system S of an arbitrary number I 2 1 of ch. masses mi = 0.
Proof. (a) follows from Th. 8.2, and (b) from Cor. 8.1, when £;
is defined as N&/Mb. For (c), one need only choose any set of £f; > 0
with 2f; = 1, e.g., £, = 1/1, and define M; = £,M , P,
These obviously satisfy conditions (C) of Note 8.2.

= fiPo, m, = 0.
Theorem 2. (a) A system S(mi) is coherent-material if and only if
it belongs to a class {Po’Mo} with m > 0 (u.o < c), and has total ch.
WaSS My = m .
(b) The parameters of such a system satisfy the con-
ditions

m >0, Im=m, M = mimo]Mo =037y

= - = = [ )
i mimolPo myU, Tzl

(e) If {PO,MO} is a given class with m_ > O, and m >0

are any I 2 1 given rest-masses with sum m» then [Po’Mb} contains s sys-
tem S(ml,...,mI).

Proof. (a) egain follows from Th. 8.2. In (b), each particle has
the speed u_ of the representative particle, hence Mi/mi =7, = Mo/mo

yields the stated M,, and Cor. 8.1 the stated P For (c), we define

i i
the M;,P; in terms of the given m, as in (b), and easily verify (C) of
Note 8.2. For (C3), we have from the definitions P12 = migm; 02
2 =2 2 2 2 2 2 2
= m, “m “c (M0 -m )= ¢ (Mi -m, )e
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Summerizing, we have identified the coherent immaterial systems as
the entire contents of the classes with m, = O, and the material ones as
those particular systems of the classes with m, > 0 which have the maxi-
mal total ch. mass m,. Every remaining system S is therefore a non-
coherent member of a class with m, > 0, and consists of at least 2 parti-
cles of total ch. mass m < m,. We show in the following sections that

every such class does indeed contain systems of any I =2 2 arbitrarily

given ch. masses m, 0, of sum Z‘mi <m.

10. The ¥ -frame of a class. Let {PO,MO} be a particular class of

systems S(mi) in 2, with critical mass m, > 0, and class velocity Uo of
magnitude u < c. The frame %' moving with this velocity relative to &
will be called the "YL'-frame of the class." In it, the representative
system So(mo) appeers at rest, and at the origin 0’ of the axes agreed
upon in §2. (Cf. Fig. 2.1 for the standard configuration, and Fig. 2.3
for the general situation.) The transformations of §{82-6, based upon
the class parameters uo’Bo’Yo defined in §8, relgte gll events in the
frames 2. and 2. .

Thus, each system S(mi) of {PO,MO} appears in 2. as a system S'(mi)
in ¥/, with the same ch. masses m, = 0, end valid perameters (P;_,Mi,mi)
relsted to those of S(mi) by the transformations of §4. Namely, for the

standard axes $,38’,
' _ - ’ r
Pix = Yo(pix qui) piy = piy Piz = Pyy

) -2
Mi =Y°(-u°c pix+Mi).



Due to linearity, summing on i = 1,...,I yields the same relation

between the system totals Pé,M(') and P_,M_, nemely

f =y (p _~uM) p =p . =1p

Pox 00X OO0 oy oy 0z oz

’ -2
M Yo(-uoc pox+M°) .

Since P = M U  has components (Mouo’o’o)s it follows that the sys-

tem totals for S'(mi) in 2/ are

' _ ' =
P, =0 M = Mo/Yo m .

From this result, and a similar one based on the inverse transformations,
we may derive

Theorem 1. For a 2~class {P,M} with m > O the Lorentz trans-
formations based on the class velocity U o induce a one-to-one correspond-
ence S ~ 8’ between all systems S of {PO,MO] and all systems S’ of the
class {O,mo} in the X -frame of the class, m_ being the critical mass of
both classes.

Every system S therefore appears in %/ with total mass m o? total
energy e, end zero total momentum; its CM being at rest.

In particulsr, the coherent (material) systems of {PO,M o} correspond
to those of {O,mo} the latter being motionless. The representative sys-
tem S o(mo) appears as that of {O,mo} » consisting of a particle of rest-

mess m at rest at o’.
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Notes 10.

1. The transformation (cPE) of §4% relates the energy-parameters of
S and S’. In the present application we have B, = cPo/Eo and Y = Eo/eo,

- l ’
so (cPE) may be written with epy, = (Eocpix+°poEi)/eo
N ’ ’
E, = (°pocP1x+EoEi)/eo‘
We recall here again the simple device

2,

2
ep, = (E1 -;"), cosy, = cpix/cpi.

i i

2. Theorem 1 may be generalized and the proof simplified in the
following wey.

Let {P,M} be an arbitrary Y~class, of critical mass m L2 0, and
%! a second frame with any constant velocity (of magnitude < ¢) rela-
tive to 2. If S(mi) is a system in {PO,MO}, the linearity of the trans-
formations insures that (2?1)2 - cz’(ZHi)2 is invariant as well as the
individual Pia - c2M12. It follows that the L-class appears in 2. as s
single class, with the same critical mass n,s which is therefore an in-
variant also. Since My = m is the criterion for a coherent system and
t;oth quantities are invariant, coherent systems are preserved. The lat-

ter is of course obvious from (3V) itself.

11. Systems of zero total momentum. In an arbitrary frame X', let
{O,mo} be a class of systems S'(mi) with total momentum P(') = 0 and total
mass M(') = m_ > 0, vwhich 1s, ipso facto, the critical mass of the class.

(Notation is chosen for the sake of the principal application). All
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systems S'(mi) of the class are then determined (Note 8.2) from the so-

lutions of
’ ' _ 2 2 /2_ 2
(c¢”) 1. 2&3 = 0 3. Pi"=c (p& m, )
2. ZM; =m b, M; >0, m =0, Iz 1.

We know (Th. 9.2) that those with m, = Zmi = m_ are the coherent-meterial

ones, here motionless, with Mj" = m, Pj'_ = 0, while all others must have

mS < mo and T = 2. The simplest of these are completely characterized

in
Theorem 1. (a) A system S'(ml,me) of {O,mo} with I = 2 particles

of total ch. mass m, + m, < m s has the unique masses

1 2

v 2 2 2
M] = (mo +m, “-m, )/2mo> m,
¢ _ 2,2 2
ME" (mo +m2 1 )/2mo>m2

and oppositely directed momenta of equal magnitude, determined by (C'3) .

(b) For every m,m, Z Owithm + m, < m, there exists a system

1 2
S'(ml,ma) of {O,mo} with these ch. masses, and an arbitrary direction

for Pi.

Proof. (a) From (C‘1), PJ'_2 = p'2

» » Hence, by (C’3),
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Division of these equations and solution of the resulting linear system

yields the stated values of the Mi.

Fromm_ > m, + m_ alone follows: m2-2mm +m2>m2, and
o 1 2 — o] 2

ol 1

hence (m°2+m12-m22)/2m° > ml, with a similexr result for the second particle.

(v) By the last remark, we know that the M, as defined under (a)

1
are positive, indeed Mi >m 20, 80 (¢’4) holds. Also, by definition,
the M_i have sum
' ' _ '
M) + M, =m (whence ¢’2)
and difference M’ - M/ = (m 2-m 2)/m .
Ml 2 1 2 (o}

Multiplication of these equa.tions leads to the result
2. ,2 2)%

o(My"-m

Hence any two oppositely directed momentsa P{ with this common magnitude

satisfy (C’1,3), which completes the proof.

Corollary 1. The system S’(mJ,me) of Th. 1(a) has energies

2

) 2 2
E, = (eo t+e,"-e, )/2e° > e

1

2

r _ 2
E! = (eo +e,

2
5 -e, )/2eo > e

2

and kinetic energies

’ e2 + (ké/Q) ?
= o ——D . 0
kl eo 1'{S >
e; + (K/2)

4
K= S > 0
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' _ - ’
where ks = e - e is its total k.e. (strictly, ksl)0

Proof. The above Ei = M;_c2 are obvious results of scaling. From

the value of E:'L we find, for example,

. e Y2_, 2
k) =Ej - e {(e° el) e, }/2eo

(eo-el+e2) (eo-el-ee)/eeo

(eo-es+2e2)(eo-es)/2e°
(ké+2e2)ké/2e°

which is the stated result.

Note that m, > m, implies E! > E! but k! < k!, so m, has more than
1 2 1 2 2 1

half the total energy e o’ but less than half the total k.e. ké.

For the existence theorem of the next section we require the follow-
ing generalization of Th. 1(b).
Theorem 2. If {O,mo} 1s a given class, and m, = O are any I = 2

ch. masses with sum Z'mi < m, then {o,m} contains a system S'(ml,...,mI).

Proof. Group the m; in any way (there is at least one!) into non-

empty dis,joint' subsets

)y {m)

each individuslly with all m, > 0 or all m, = O. Define

my = 2y m =

where we know mK + mL < mo.
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Let S’(mK,mL) be a two-particle system of the class {O,mo}. Its particle
parameters satisfy the conditions

2,02 2
( )

1. BL+ Pl =0 3. P% = P(MPenl), PIP = oP(MfPem

L
2 ! 4 h_ ' ’
. MK'+ ML =m, . MKI> mK:E 0, N&,> u&‘z o.
By (1,2) it suffices to produce two systems:
' ! ' 7 4 ’
5'(m.) in {PK,MK} and S (mz) in {PL,ML} .

By (3,4) these classes are non-empty, with critical masses

m(¥m)  and  m(<Tm).
The desired systems must therefore be coherent, and their existence is

insured by parte (c) of Theorems 9.1, 9.2. For, the m, of each subset

i
are either all O (and we use Th. 9.1) or all positive (and we use Th.
9.2).
Note 1l.
1. The formula for Mi in Th. 1(a) may also be inferred from the

obvious relations

02(M12_m12) = Ple = Pl2

2/4,12 2 2 1,2 2
1 5 =°¢ (M2 -m, ) =c [(mo-Ml) -m,, 1.

We rely on this connection in §13.
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12. The main existence theorem. The systens S(mi) which belong to

a 2-class {PO,MO} of critical mass m_ = O have been determined as the
coherent~-immaterial ones of Th. 9.1,

In a given class [PO,MO] with m_ > 0, all systems S(mi) must have
m, = Zmi s m (Th. 8.2). Those with My = m have been characterized as
the coherent-material systems of Th. 9.2. Moreover, the correspondence
of §10 provides a one-one mapping of the systems of this Y-class on those
of 2/=class {O,mo}, and we have seen (Th. 11.2) that, in addition to its
coherent systems, the latter class contains (non-coherent) systems S'(mi)

of any given number I = 2 of arbitrarily specified m

iEOofsumZmi<mo.

These remarks establish the principal
Theorem 1. Given a 2~-class {PO,MO} of critical mass m_ > O, and
; 2 0 of sum mg Zmi

no system S(ml,...,mI) unless

I = 1 specified ch. masses m , then {PO,MO} contains

my = mg. ()

(a) If m, = Mg, the class contains such a system if and only if all
m, > 0.

(b) 1If m, > mg, such a system belongs to the class if and only if
Iz 2.

The systems S(m;,m,) with m;+m, < m_, of class {PO,MO} in 2, 8ll de-
rive, via the transformetions (4 PM), from the systems S'(ml,m2) of class
{O,mo} in the Y’~frame of {PO,MO} . The latter have the unique masses M{

and absolute momenta pi = pé given in Th. 11.1l(a). The values of Pi and
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M, in Y. vary therefore only with the direction Yi of Pi in ¥'. (For com-
putation, see Note 10.1l.) The geometric nature of this dependence is il-

lustrated in Fig. 1, which is an obvious elsboration of Fig. 6.1, allowing

FiG. l1l2.1

the simultaneous construction of Pl and P2’ together with their angle of

separation ¢ = ¥, + ¥, 0= os 18°.
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Because of the importance of the 2-body case, the following remarks

may be warranted.

1. The system S'(ml,me) is determined by‘Yi and e alone, being

independent of B_. * Since Ei = cpi is its only internal requirement (for

some ei) and E é B;lcpi determines the cases I, II, III of §6, where

7
i
-1 ‘

Bo cpl > cpl, it is clear that all 9 combinations of these cases may

occur for a two particle system in 2.

2. Gilven the values of cpi, YOCP£’ and YoBoEi in the energy ver-

sion of such a figure as Fig. 1, one may infer the values of Yo’ Bo’

4

1
puted, the relations of Th. 1l.1(a) and the identity (cpo)2 = Eéa- e

’ '3 - - -
Ei’ e, e, = E. + E2, E° = ey, CPj = EOBO. For the values so com

2
o]

are sutomatic. Note in Fig. 1 the relation

' t _ alal ' t ]
Pix ¥ Poy = 0102 - Yoqul + Yoquz Yolols = Mouo = Py

3. Either from the vector relation Po = Pl + P2, or the law of

2 2 2
pl + p2 + 2plp2 cos O,

cosines in Fig. 1, we have for the angle g, P,

and therefore
2 2|t %
sin ¢/2 = 3 (pl+p2) - B, 5/2(1)11)2) (1)
which allows computation of g, once the pi are known.

For systems with m_=1m, o has some easily verified properties to

vhich we refer later. For such systems, we know
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and it is geometrically obvious that the usual three cases
pl = u/v] = Y u M /y | = /a5 1
i o 1 Yol i i~ >
result in the following behavior:

Case I. pi < 1; o has a minimum at wi = 900, and mexima (= 1800)

at y7 = 0%, 180°.

Case II. pi = 1; o has a minimum at Wi = 900, and maxima (= 90°)
at §7 = 0°, 180°.

Case III. p; > 1; ¢ has a maximum at wi = 90°, and minima (= Oo)

In all three cases, we have from (1), for the extremal angle g oc=-

curring at wi = 90° (pl = Py ple = A2+b2)
_ % %
sin o/2 = (ple-Ae) /p, = v/p, = 1/{1+(8/0)3)
- %
or sin 5/2 = 1/{1+(y p])% (my = m,). (2)

For, 8/b = (a/a)(a/b) = piY°°

Of geometric interest under Case I is the system of two photons

(p; = B, < 1). Since both origins are then at the foci, we have

A=f=a€=aﬁ°

and it follows from the "string property" of the ellipse that there pre-

vails a constant sum p, + P, = 2a. Hence in (1),
1 2
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2
(py#9,)% = B% = 1(a%-1®) = 4aP(1-8 B) = h(ay]h)

0-2(2E1)2 = ¢ %e 2,

2
) o

4
= (2}
Therefore we obtain from (1) and (2), in energy form,

- *
sin g/2 = eo/2(ElE2)% z2 sin g/2 = l/{l+(yof3°)2] = 1/yo = eo/Eo- (3)

The underlying inequality (E,E % s (E1+E2)/2 is the simplest example of

2)
that in Note 1.5.
Another instance arises in the elastic scattering of a projectile

on a target of equal rest-mass, at rest in 2.. For the Z’ frame of the

class, the appropriate figure fglls under Case II, with both 0{ on the

ellipsoid. In such a case, since v{ =u,, p; =1,

(2) reads sin g/2 = l/(1+Y02) (&)
- 2 2

or cos o = (Yo -l)/(Yo +1) (5)

giving the minimal angle of separation for the scattered projectile and

recoil target directions in z.

Notes 12.

l. One may now deduce the following generalization of the validity
condition (Th. 1.1) for particles:
A number M and vector P are possible values for the total mass and

momentum of some system S of specified total ch. mass mS if and only if
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M> 0 & P° = ca(Mz-mSQ).

2. It should be noted that the ). parameters of a two body system
may be obtalned, as functions of the angle *1’ directly from the basic

relations

P, + P2 =P and E, + E, = Ej (6)

without introducing the frame x. However, their dependence on the >’
variable wi is essential for understanding their behavior under Cases I =

III. For example, we have directly from (6)

(epy)? = (epy)? + (epy)? = 2(cp_)(cpy)cos ¥
E22 = Eo2 + El2 - 2E°El.
Subtracting gives
- e22 = - e°2 - e12 + 2(EoEl-cp°cplcos wl)
or 2e°E1 = 2E°(El-B°cplc08 ¢l)

where we have written Ei = (e°2-+e12-e22)/2eo simply as an abbreviation.

This ylelds yo'lEi = E, - B_CP cos ¥
- 2
or cos wl = (El'YolEi)/Bo(Ele‘el )

Ei being of course in reality the energy of m, in¥'. (c£. (k.5))
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13. Many particle systems. All systems s'(mi) with T = 2 specified

ch. masses m, zZ 0 of summ < L which belong to a given class {O,mo} of

an arbitrary frame Z‘.’, must be determined from the conditions

(c’) 1. 1P =0 3. Pie = ce(M.;2 n)
4 4
2. ZM.i = m L, M; > O.

The existence of such a system, consisting of two coherent subsystems,
was established in Th. 2 of §11, in just this context. Interpreting
thet result, with Y. regerded as the L. -frame of a class, we obtained
a corresponding existence theorem for an arbitrary class {PO,MO} in §12,
Theorem 1(b). We now exploit the latter result to clarify the nature of
those systems S'(mi) of {O,mo} with I 2 3 particles. These lack the
uniqueness properties of the 2-particle systems described in $11, and
we shall determine completely the energy ranges permitted for *bhei-r par-
ticles. This, in its turn, has immediate but compliceted implications
for an arbitrary class of the same critical mass, which will be mentioned
only briefly in a later application (§23).

Suppose specified the class {O,mo], and I = 3 ch. masses m, z 0 of

sum m = Ym, < m_. We single out eny one ch. mass m;, and define

I
me = My mL=Zemi vhere m + m = m,

o (el 2 ' _ (.2, 2 2
Let MK = (mo+ml mL)/emo > m, and MI. = (ruo+mL-ml)/2mo > m be the unique

messes of any system S'(mK,mL) of {O,mo} . Note that Ml,{ < m,, since
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MI'( + M£ = m_ and M£ > 0. The possible range of values of M:’L in systems

S'(mi) of {O,mo} is given in the following two theorems.

Theorem 1, TIf S'(mi) is a system of {O,mo], with the I = 3 speci~
fied ch. masses m, Z 0 of summ= Zmi < m., and m, is any one of them
then its mass M._I'_ must satisfy

MiéM{{.

Equality obtains if and only if the residual sub-system S£ = S'(me, ces ,mI)

i,

is coherent.

Proof. Since the residual system has totals
I ¢ _ ‘ I 0 _ o’ I -
X, Pl =-P Ly My =m - M Lym = m
it follows from Th. 7.l that

c2(

i) = ()% = o {(m)® - up )
or, equivalently M_i = {mﬁ + mi - mi} /2mo

wlth equality if and only if Si is coherent.

Theorem 2. Let {O,mo} be a class in Z’, end m, = 0 any I = 3
stipulated ch. masses of sum m = Z'mi < m,. Then, for every number Mi
and vector Pi which are valid mass and momentum for o, there exists a
system S’(ml, ...,mI) of {O,mo} in which 1 has the stated parameters

! o ! ot .
(Pl,Ml,ml), provided only that Ml < MK' If the given Ml = MK’ this is

also true, provided all m,, voeyMp aTe of the same kind (> O or = 0).
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Proof. Clearly it suffices to produce & residual system
1 — _ ! YY) .
SL =S (m2, ...,mI) with Pl and mo Ml as total momentum and mass

Since we sre given in any case M]'_ s MIl( < m, certainly m - Mi > 0.

Moreover, the inequality M._'L s M}'{ is equivalent to

2 2 2\ . 2 M Y2 _ 2
c (Ml -ml> =c g<mo Ml) mL$
. 2 2f(.42 2
vwhich, in view of the given validlty condition Pl = C M'.L -m:L s Is in

turn equivalent to

(-p)% s ® §<m°-mg)2 - m§$ :

This insures that the class {- Pi,mo-Mi} in which we seek S£ is at
leest non-empty, and moreover has a critical mass m* = m (Th. 8.1).
Clearly, this last inequality is equivalent to the given one, Mi = Ml'c

But m is the total ch. mass 2.12: m, of the desired system Si, and
its existence follows from Th. 12.1 and Th. 9.1. In detail: if M:’L < MII{
is given, then mt > m, the above class has critical mass m* > O, and
contains & non-coherent S£ by Th. 12.1(b), since the My e e,y aTre
I -1z 2ch. masses; 1f M) = M!'{ is given, then m* = m, and s£ exists
as a coherent system, by Th. 9.1(c) if m = 0, or by Th. 12.1(a) if

m. > O, since we have stipulated, in this limiting case, that the

L
mi(ié2) are of a single kind.
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Notes 13.
1., Under the conditions of Th. 1, the k.e. of m, must lie on the

range

e + (k'/2) Cxt

0s kié kl'(E

= I - R
vwhere e = 22 e; and k' = e_ Z‘.l e,. The latter is of course the total

0

k.e. of the two particle system S'(ml,mL), and. kll( its k.e. for m,. (cor.

1l.1.) Note that k’ is also the total k.e. of all systems S'(ml, ...,mI)

of {O’mo] .

2. Under the conditions of Th. 2, all values of ki on the range
ki s kk are attainable, under the same provisos. The lower bound ki =0
is attainable if n, > 0, the residual system then being of class

{o,mo-ml} .
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CHAPTER III

TRANSMUTATIONS OF SYSTEMS

14, Traensmutations. A transmutation in an event-space 2 is a

localized, “"black-box," physical process, of short duration, in which
a set of free physical particles is converted into a second such set,
with conservation of total momentum Po and mass Mb.

We idealize such a process as an event (R,t), denoted by
A-s (t)

at which two systems A and S of the same class {Po’MB}’ and concurrent

at (R,t), interchange "reality," A becoming "virtual" as S becomes "real."
Thus the reverse process S — A does not here connote "time-reversal,"

but simply a reversed interpretation of "reality" for the same two "mathe-

matical objects" A and S, as indicated in Fig. 1.

\ s '
\\ // l/A
\ 7 I
NI e !
|, ]
//
| / \
| 7 \
| // \
A I % ) N
A-S S—A
(fusion) (decay)

FIG. 14,1

T



While other conservetion laws (for charge, spin, ...) may impose
further restrictions on the physical process, we shall regard two arbi-
trary systems, as defined in §7, to be interconvertible if and only if
(1) they are concurrent at an event, and (2) belong to the same class.

In particulaer, if S* 1s a system of class {PO,MO} consisting of a
single particle, hence with perameters (Po,Mo,mo) , end A and S are arbi-
trary systems of this class, concurrent with S* at some event (R,t) of
its trajectory, then the fusion A - S¥*, and the decay S* - S are equally
possible. Indeed, every transmutation A = S may be regarded, msthemati-
cally at least, as a composite process A — S* - S, where S* is of negli-
gible duration.

The present chapter is, in the main, only an elaboration of Ch. II,
which dealt with the systems belonging to a given class {PO,MO} , that is
to say, having a given total momentum Po and mass Mo' Now, we emphasize
the dependence of Po and Mo on the particle parameters of the initial
system A(mh) » end (although irrelevant for the dynamics) the necessary
concurrence of A and S, a property not required before. We shall also
consider in detall the problem of orientation on given spatial axes,
and, to facilitate computation, a graduasl transition to energy-parameters
will be made.

We state below without proof the principal implications of Ch. ITI
for transmutations.

Theorem l. In any transmutation A - S, S is coherent-immaterial 1f

and only if A is. For such a system A, all possible resulting systems



are "coalesced," with the single trajectory of A, and parameters deter-
mined to the extent indicated by Theorem 9.1.

Thus a free photon of energy hv can only transmute into a system of
immaterial particles of total energy hv, all superimposed on its own line
of flight. It cannot produce, for example, an electron-positron pair,
nor g divergent set of photons.

Theorem 2. If A —» S is a transmutation between systems of class
{PO,MO}, both A and S have the same CM velocity, namely the class ve-
locity U = M;lPo, and indeed, identical CM trajectories. If |Uo| <e
(mo > 0), then A » S appears, in the %! -frame of their class, as a trans-
mutation A’ —» S’ between the corresponding systems of class {O,mo} s OC=
curring at their statlonary CM. The latter systems, of zero total mo-
mentum, both have total mass m and total energy e ~ Conservation of

energy in 2, is expressed by the equation
eA+kA=E°=eS+kS
end in ' by

’ '4
eA+kA=eo==eS+ks.

As a consequence of Th. 12.1, we have, in terms of energy parameters,

the principal

Theorem 3. Let A be a system, of class {cPo,Eo} with e > 0, and
let e Z O be any I = 1 specified ch. energies. Then, a transmutation

of form
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A - 8(e,) ()

1s impossible unless

eo = es = Zeio (T)

(a) It e, = &g (+) 1s possible if and only if all e, > O.

(b) If e, > &g (t+) is possible if end only 1if I = 2.

eg |
In case (a), S is a completely unique, ccherent-material system,

coalesced, with the single trajectory of the CM of A, and the parameters

given in Th. 9.2. Fusion, with I = 1, is the only case of physical in-

terest.,

In case (b), details on the nature of S will be found in §§11-13.

Notes 14.

1. (Notation) In a transmutation A(eh) - S(ei) , subscripts h and
1 designate the H particles of A, and the T particles of S, respectively.
When H2 2 and I 2 2, we adopt for simplicity the numbering convention
h=1,e00,H; 1 = H+l, eee,H+I}

2. To avoid constant repetition, we summarize here for reference
purposes, and in broad outline, the main procedures involved in most of
the problems occurring in the present chepter.

(a) For the initlal system A(eh) , given with respect to definite

spatial axes G = [X,Y,Z] in X, we find the totals

cP = ZcPh, E, = ZEh, e, = Zeh,' cp, = |cP°| .

(i



(b) For its class {cPo,Eo}, we obtain the class parameters (§8)

2 2
Bo = CPO/EO: € = {Eo ‘(CPO) }%: Yo = Eo/eo) YO = CPO/CPC,'

(c) The necessary condition e, Zei = e, for formation of a
proposed system S(ei) is tested. (Assuming the transformation to S(ei)
possible, in accordence with Th. 3, its actual formation, rather than
that of competing systems of other particles, rests on relative values
of cross sections.,) |
() If indeed a non-coherent system S(ei) results, with e > eg
and T = 2 (the only non-trivial case), we require the Z-pa.rameters of
its particles. From these, the trajectories are obvious and S is de-
termined.
In general, it is necessary to consider for this purpose the cor-
responding transmutetion A’ = 8’ in a second inertial frame Z', ususlly
but not always the ¥ -frame of the class, and relsted to 2. via Lorentz |
transformations based upon their relative velocity.
Even in the simplest cases (I = 2), S’ is not completely determined,
and at this point we shall suppose physically stipulated, for the i~-th
particle of S/, its energy E;. (hence slso cpj'.) , and its direction ‘i’i re-

ferred to the 2.’ axes employed in the problem. In cases of "non-

polarized emission" of i about a given basic direction ¥’ in L', we

will show how the direction V¥ j'_ may be chosen for Monte Carlo purposes.
The following Note 3, applied in the frame Z', should make this proce- ¢

dure clear.
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(e) From the values of Ei and cPi = cp{‘f{ obtained in (d), we will

indicate how to compute the X energy Ei’ and the components of cP:l re~
ferred to the original axes G. For this, we shall require the appro-
Priate (cPE) transformation, either in the simple form of §k&, with
auxiliary rotations from Appendix III if necessary, or in the vector

form of Note 4.1

3. ("Standard device") Suppose a basic direction ¥ = (a,x,a,y,a.z )G.

is given relative to axes G in an arbitrary frame 2, and a second direc-

tion ¥ 12 in a "non-polarized distribution" about ¥, is to be chosen by
sampling. This means, in effect, that the "latitude" angle §(0° =g = 180°)
which Y 1 makes with ¥ may be drawn from a given distribution, and that

& second "longitudinal engle" ¢, uniformly distributed on 0° s o < 360°,

and measured from any plane through ¥, may be used to locate ¥ 4 on the

"cone" of angular opening 6 with axis ¥. Since the auxiliary direction

(Fig. 2)

) = (cos 8, 8in 6 cos 9, sin 6 sin cp)a

is distributed sbout X as ¥ i should be about ¥, it is clear that ¥ 4 may
be chosen as the point Y ;1 = 82, vhere 3 is any rotation which takes X
into Y. The explicit rotation & of Appendix III, Cor. 1, based on the
given G-coordinates of ¥, and having the metrix given there as D s 1is

designed for this purpose, and the G-coordinates of V¥ 4 are obtained from

(¥;). = D(@Q);

i )G.
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in accordance with Th. I(b) of A III. If the basic direction Y is, or

mey be chosen to be, X itself, one simply sets Y g = Q.

The choice ¥ = X is always possible in case of an "isotropic" direc-
tion distribution, cos 8 being equi-distributed on [-1,1].

i, The following problem illusfra.tes many of these points. The
energy unit is arbitrary, as usual.

PROBLEM. A photon (h = 1) of energy 4 strikes a particle (h = 2)

of rest energy 3 and k.e. 2 at right angles, their directions being

¥y = (I3, 14/, o) ¥, = (N3, - 142, o),

on given 2. axes G.
The collision results in two particles (i = 3,4) of rest energies
2,4 resp. The angles §’ = 1&50 and cp’ = l35° are chosen for location of

! in the %' -frame of the class

¥! about the stipulated photon direction Yl

3
(Fig. 3). Following Note 2, we have

(a) for the initial system A(el, e2)

82 = 3} k2 = 2) E2 = 5, Cp2 = l‘" Yg = (l/"/-é) < 1/\/5) O)G’ CP2 = CP2Y2

with totals cP_ = (W/2, O, 0);» E, =9 e, = 3, cp, = W2 .

(b) For the class of A,

Bo = )"\/5/9: € = Ts Yo = 9/1, .Yo = (1, O, O)G°
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Since Yo = X, the given axes G are standard ones, and we define parallel
axes G’ in X' in the standard configuration of Fig. 2.1.
(¢) For the proposed S(e3,eh), we have ey = 2, ¢ = L, eg = 6<

e, = 7, I = 2, and the process is possible with a non-coherent result.

(d) Since I = 2, the scalar parameters of S'(e l+) are unique,

3’¢
as in §11. In one of many ways, we find its parameters from ké = eo-eS

= 1 to be
k3 = {eyr(i/2)} /e = 9/1k K =k - kL= 5/14
Eg = ey + kg = 37/1k Eli = e, + kﬂ = 61/14

cpf = {Kj(alre 1T = 3/B5 /s 1 = 3,k

Fig. 3 makes plain why the latitude 6’ of \yé about ‘i’i does not

alone determine the angle wg upon which E. depends. Although we return

3
to this type of problem in §2h, we indicate here the remaining steps.

To find the basic direction Yi we compute from the inverse of (cPE),

Note 10.1,
'4 - - -
epl, = (Eg cp, - CP, El)/eo = 2/2/7
4
E; = (- P, CPy, + E El)/eo = 20/7

%
cp:'L = (Eia - ei) = 20/7

cos wi

cpix/cpi = /2/10.




Therefore ‘1’1 = (J2/10, T/2/10, 0)g/+ Arplylng the device of Note 3,
with the given 68’,0’, we have 0’ = (14/2, ~ 1/2, 1/2)0,' for the auxiliary
direction, and

(‘i’é)ﬁ, = D(Q')G, = (1 + N2, T - L2, + S)g

V2/10 - %Z/10 o0
where D= wa/1o J2/io o

0 0 1

is the matrix of A III, Cor. 1, based on ‘1’;_. (A1l vectors are understood
t0 be column vectors, despite appearances.)
(e) Since cp:'3 and E:'3 are known from (d), we have only to apply

[ ! 4 '4
(cPE) of Note 10.1l to (cP3)G, = cp3(‘¥3)a, and E3 to obtain (cP3)G and E3.

N.B. The scalar parameters of A’(el,ea) mey be obtained, if desired,

just as were those of S'(e3,eh) in (d). Thus k;‘ =e -e = I
k;_ = {e, + (kA/e)}kA/eo = 20/7 ké = kA - xl = 8/7
E] = 20/7 Ej = 29/7
cpy = 20/T; h = 1,2,

For the direction of ‘1’1, we must use the transformation (cPE) itself at
least for p;_x, as in (da). (It is a good exercise to sketch Fig. 12.1
for both A and S.) If the PROBLEM is carried through completely, the

equations
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E1+E2 E3+E1+

qu + cP‘,2 cP3 + cPu

should provide a final check. Alternatively, they may of course be

used to obtain °P1L’Eh by default,

15. The Q-value. The Q-value of a (proposed) transmutation

A(e,) —+ S(ey) (t)

i1s defined as the intrinsic difference
Q=¢e, - e (1)

in the total ch. energles of the two systems. The required equation
ey + k, = E = ey + ki (2)
for energy conservation in 2 is thus expressible in the form -

Q = ks - kA (3)
emphasizing that, in the conversion of A into S, the "loss" in ch. energy
must balance the "gain" in kinetic energy. This alsc makes obvious the
invariance of the kinetlc energy difference for two systems of the same
class, under arbitrary Lorentz transformations.

If A and S are in a class with e, > O, then, for the corresponding

transmitation A’ - S’ in the L'-frame of the class, the required energy

conservation is expressed in L' by

e +k’=e = e

p * Ky = e, = eg + koo (%)




It may be noted that this version makes obvious the necessity of the

condition e Z e (1)

and at the same time shows its equivalence with the condition

kAEe -e = «Q (')

in the L'-frame, signifying that the k.e. of A’ must suffice to make up
the ch, energy excess of S over A.

The transmutetion (1) is said to be elastic in case the total kinetic
energy 18 conserved, as well as E o and Po' Such a change is therefore one

for which we have the additional stipulation that

ky = kg (5)
or, equivalently, Q = O, (6)

Clearly a transmutation A -+ S appearing elastic in Y. must so appeaer in
all inertial frames.,

Note De
1. The (invariantly expressed) condition (T) is equivalent to the

inequality kA z (-Q) + (yo-l)eS

in an arbitrary frame 2, and reduces to k, = -Q when U, =0 (=12,

as it must. It is tempting, but misleading (cf. §16) to assert that (T)
requires A to have k.e. kA sufficient to supply -Q plus the k.e. of a
particle of ch. energy eq riding at 1its CM.
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16. Decay. By a decay we understand here any transmutation of

form

A(eo) - S(el,...,eI) (D)

in wvhich a single material particle is converted into a system S of an
arbitrary number I 2 2 of particles. If the decaying particle has mo-
mentum Po and mass Mo’ then its rest mass is of course the critical mass
m, > 0 of its cless [PO,MO} » and indeed all class parameters cPo, Eo’
Bo, ey Yor and ‘1’0 are simply the parameters of the particle itself.
Moreover, the L'-frame of the class is the rest frame of the par-
ticle, in which it appears stationary, with energy ey and intrinsic life
time T<’>° From §2, we recall that its apparent 1life time in X is

= ’ = ’
To = YoTo? during which it travels a distance '60 = U Boyoc’ro.

The Q-value of (D) is

so that the necessary condition e, = e is here simply

Qz 0. (Tp)
From Th. 14.3, we conclude that the decay is prohibited if Q < O (eo < es),
regardless of the k.e. of the particle. If Q = O, the decay is possible if
and only if all e, > O, with a trivial coherent result. If Q > O (the only
case of interest), then (D) is always possible (since we have stipulated
Iz 2). Such a process appears in Y ae an "explosion" of a particle at

rest, with a conversion of characteristic to kinetic energy indicated by
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'
the equation Q= e, - es = ks.

Notes 16.
l. We list some examples of physical decays forbidden by the laws

of energy snd momentum conservation.

(a) For a stable nucleus (gx ) of charge Zq "containing" A nucleons

(Z protons p+, N = A - Z neutrons n°) the decay

(%) — 26" + 82®) (0,

is impossible, since

e = e (gx) < Ze(p"') + Ne(n®) = eg

and 80 Q = e, -~ eg < O. Here Q > 0 is called the "binding energy" of

the stable nucleus.

] -
Note: If AX denotes the neutral atom, with Z electrons (¢) in

ground-state about the bare nucleus, the process

— (Qx) + 2(c)

has negative Q-value, “Q being the "binding energy of the electrons.”

b o

In nuclear processes this is neglected. Thus in (Dl) one takes

Q= e [;x] - Ze []lx] - Ne(n®).

Table IIT gives the values of e [QX] for a few neutral atoms in "atomic
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mass units."” For example, the binding energy (2.225 Mev) of the deuteron

(laﬂ) may be found in this way.

(b) The decay p+ —_— n° + e+ + ve, where e+ is a positron and \)€

a neutrino, has Q@ = - 1.8 Mev (Table II). While therefore forbidden to
the free proton, this 1s nevertheless the underlying process in positron
emission from unstable nuclei.

(¢) The electron decay ¢ —=c + Y has Q = O but is forbidden by
m(y) = O, Hence an electron can neither "emit" nor "absorb" a photon.

Remark. A transmutation ¢  + y—ee is obviously impossible, as
the reverse of (¢). It is all the more curious that the impossibility
appears to lie deeper where A(e',Y) is regarded as the initial system.

(d) The process p+—-e+ has Q > 0 but is impossible since I = 1
(Th. 1%.3). Consider the reverse here!

2. We indicate two methods of deallng with a "Monte Carlo" type decay
problem in which the given axes G = [X,Y,2] of X are (here for the first
time) not in standard configuration. The first is based on an auxiliary
rotation of axes, provided for in A III, Cor. 1l; the second on the "vector
form" of the (cPE) transformation in Note 4.l1. The generalities of Notes

14.2,3 should be consulted as required. All energies are in (say) Mev.

PROBLEM. A particle of rest-energy. e, = 3, kee. ko = 2, and direction

¥, = (;aLox,za.oy,aLoz)GL = (2/3’2/3’1/3)6 on given X~axes G = [X,Y,2], de-

cays in flight into two particles of equal rest-energy el = e2 =1, If,

as we shall assume, the decay product 1 is emitted isotropically in the
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rest-frame L' of the decaying particle, the "basic direction of emission"
Y’ 1s ours to choose, and we shall do so in different ways in the two
methods. We shall suppose chosen the coordinstes (2/7,6/ Ty 3/ 7) for the

"guxiliary direction" Q’ in either case, i.e., cos 8’ = 2/7, etc.

(a) The totals for the initial system A(eo) are e ) = 3, Ej = 5,

%
cpo = (Eoe-eoa) =L,

(b) The class parameters are those of the decaying particle:
Bo = CP/Ey = 4/5, e = 3, vy, = E fe; = 5/3, ¥ _ = (2/3,2/3,1/3); .

(¢) The proposed system S(el,ee) has e, = e,=1, eg=2<e =3
and T = 2, so non~-coherent decay into S is possible.

(d) sSince e, =e,, s’ 1in %' obviously has E/ = e/2 = 3/2,

1 i

%
cpi = (Eia-eie) =.5/2; 1 = 1,2. Now:

Method I. Suppose spatial axes G = (X,Y,Z] = [5X,5Y,52] determined

in 2, by the rotation & of A III, Cor. 1, with 8X = ¥ _, the direction of

o’
the class velocity (Fig. 1). The associated matrix D, based on Y o 1s

fqund to be
2/3 - 2/3 - 1/3
D= 2/3 11/15 - 2/15
1/3 - 2/15 14/151

Defining L' axes @’= [X’,¥/,Z’] in standard configuration (§2) with G,
we select Y o= X’ as the basic direction for emission of 1l, and hence

define Yi immediately as the auxiliary direction itself:
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¥) = (2/7,6/7,3/T)g:

Thus Ei = 3/2, and cPi = (ﬁ/a)vi on standard L' axes, are determined.
(e) To these the simple (cPE) of Note 10.1 applies, ylelding
E, = &/5/21 + 5/2, cP| = (5/5/21 + 2, 3/5/7, 3/5/14)= on the standard

axes G of L. (Note the check: E.° - (cPl)2 =1=e.?2.)

1 1
The components of cPl relative to the original axes G are then ob-

tained from (cpl)G = D(cPl)é_ » a5 in Th. 1(a) of A III.

Method II. We may equally well choose axes G’ = [X/,Y’,z’] in X'
parallel to the given X axes G = [X,Y,2], and now select X’ as the basic

direction ¥/. We now take the ), direction of 1 as

‘i’i = (2/7,6/7, 3/7)0.'

(it is of course not the same absolute direction as in Method I) and so

have Ei = 3/2, and cP:'L = (ﬁ/a)‘i’i on the axes G'.

(e) These may be substituted directly into the vector form (cPE)
of Note 4.1, based on the class parameters in (b). The inner product re-
quired is cPi-‘i’o = 19/5/42. The energy is found to be E, = 38/65/63 + 5/2,

while the vector equation
(cP)) = (cP]) + {19/65/63 + 2} (¥ )
a G G

indicates how the components of cP; on L axes G are to be computed.
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1l7. Decay into two particles. In a decay

Ale,) —S(ep,e,)

!
vhere Q=e - (el+e2) = ky >0

the products emerge in opposite directions in the 2'-frame, with the

unique energies E/ and k!’ of Cor. 11l.1. If e, 1s at rest in 2, the

i i
frames L and ' coincide, and all parameters of S are of course those
of 8’.

I. In the simplest cases, e

e,y SO that Q = e, - 2e

1 1

(eoz-helz)%; i=1,2,

and k;. = Q/2, Ej'. = e°/2, cpi

Thus, in the kaon decay (TABLE IT)

Klo—— 7+

Q = 218.8 Mev, and each pion has k.e. 109.4 Mev in 2. .

In particular, vhen e, = e, = O, the decay involves a total conver=

1 2
sion of the rest-energy e, into kinetic energy

Q=e°=ké

with k{ = Ei = cpi = e°/2. This is the case for which we have the simple

result of §12,

sin g/2 = e /2 (ElEe)% = eo/Eo

for the angle ¢ between the two lines of flight in X.
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For example, the decay
11° — Y

of a 135 Mev (k.e.) neutral pion yields photons with a minimum angle of

separation of 60° in L. In this case, each has energy hvi = 135 Mev in
Z.

A second instance is provided by the decay of “parapositroneum":

{ett,e74) — vyt + Y. Neglecting its binding energy, each vhoton in L'
has energy h\a; =e_= 511006 Mev and wavelength x; (py definition, Note
1.4t) the Compton wavelength of the electron.

Note. Although a free positron e’ is stable, it comes to rest lo-
cally when liberated (as in pair production and positron emission) in
the presence of matter, and mey then combine with an electron e to form
a very unstable "double star' complex {e+, €} called positroneum. When
the component spins are opposite {the usual case) the result is para-
positroneum, with the decay mode above, the photon spins also being op-
posite. Spin conservation is indicated by the equation 3 - # =0 =1 - 1,
The alternative result is "orthopositroneum”, with the decay {e+t se t}

—= vyt + yt + y!, and the spin conservation 3 + ¥ =1 =1+ 1 - 1.

II. In another important case, one has ey > 0 and e, = 0, with
Q=e -e = ké > 0. Here, the formula (§11) for the L' k.e. of e,
becomes

, -— =
kl = Qp where p = Q,/2eo

and the relations
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'4 4 ’r _ - '4 ' - ']
cpi=E2=k2-Q,(lp), E} =k +e =e ~E,

indicate an easy computational scheme for the remsining parameters of s’.

Since Q = e - e; < e, it is clear that p < %, and consequently

k:lL< ké/2< ké.

On the other hand, & glance at the energy formulas (Cor. 1l.l)
’ 2
Ey = (e /2){1+(e;/e )}

Bp = (e/2){1-(ey/e )3

shows that

’

Ey

']
> 60/2 > E20

(These inequalities are true whenever e; > e,

The last equation correlstes the rest-energies ey ey of the two

material particles with the k.e. ké = Eé = hvé of the immaterial one.

, &s noted in §11.)

For example, the implied relation

? 2 2 %
e, k2 + (k2 +e, )

may be used to determine the rest energy of the decaying particle from
e, and ké = hvé in cases of y-emission.
The decay modes (TABLE II) of some of the "fundamental" particles
fall under Case II, e.g.
¥ — 7% 4y,
In this decay, Q = 77 Mev, p = .0323, k] = 2.49 Mev, and ké = hv/ =

2
74 .51 Mev.




In nuclear decay of this type, Q = e, = e may be thought of as a

1
difference in energy levels of the "same" nucleus, having rest-energies
e, > ey in the two corresponding states, In such a photon emission, it
1s interesting to compare the photon wavelength ké = c/\aé with the
"normal" wavelength A = e/v o’ Vhere by definition
hv . Q

is the difference in energy levels. Dividing this equation by

NN ’

hv2 =k, = Q(1-p)

4 4

ylelds xe/xo = vO/v2 = 1/(1-p)

and therefore
' - I- - = ') [ = - -
2’ = (NN )/ = 0/(1-p) = K /i) = @/(Qv2e)) = (e -e))/(e te,)
is the "red shift due to recoil” (in L').
For example, in the y-emission

(%) — (%) + v

with Q = 2.225 Mev, one finds z! = 6 x 10'1‘.

III. When e; > e, > O, the general formulas of §11 are required.

1
The decay modes 2~ —= A® + 1~ and &" —= n° + n~ of TABIE IT, and the

classical nuclear emission of « particles ( :He), are of this kind.
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18, Decay into three perticles. In a decay

A_(eo) — S(el,eg,e3)
'4
where Q=e - (el+e2+e3) = k>0

the Z' energies of s’ are not unique, and as shown in §l3, any one of

its particles (i = 1) may have for its k.e. values on the range

e + (x'/2)

’ ? o 1/
0< k]. < kK = ——e-;——- k

vhere e, = e, + ey and k/ = e, - (el+e2+e3), which is here (as in all
decays) Q itself. We recall that ki is the unique k.e. of e, ina 2
particle system S'(el, eL) of class {0O,e o} o« (The technicalities in-
volved in attainment of the bounds are given in §13, but are of no physi=-
cal interest.)

For example, the .. energy range of any one of the three photons
produced in orthopositroneum decay (§17) is 0 < h\)i = 511 Mev.

Perhaps the most famous instance is the decay
n° e + D+ Ve (Q = .783 Mev)

of the free neutron, which is unstable, with mean lifetime 1013 sec.

The electron should have a k.e. range
0s ki < k}'( = (938.648/939.550)(.783) = .782 Mev,

which indeed is observed experimentally.



Note. A decay of form n° —e ¢~ + p' has the same positive Q-value,
and is also mechanically allowed, but would result in a unique k.e.
kj'. = kll( for €, in conflict with experiment, and would violate conserva-

tion of spin, since: + ## + &+ % for any choice of signs.

Neutron decay is the basic process involved in electron-emission

from unstable nuclei:

- A -
(‘;X) —-c + (z_'_lY) + ve
e.g., in the decay of the "triton"

(iﬂ')—oe’ + (;ﬂe) + Ge (Q = .0182 Mev).

The anslogous nuclear positron emission

(;X)—-e" + (g_ly) + v,

is observed, although the process for the free proton is forbidden.
(Note 16.1.) An example is

(léc) —~c s (1;3> + v (Q = .96 Mev).

G
Note here that, for such decays, "adding" Z electrons to each side re-

sults in the neutral atom "reaction"

[ix] —~ct e+ [g_lY] + v,

so that Q == e[i‘x]- 2e - e [;_IY] where e, = 511 Mev. (cf. Note 16.1.)
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19. Collisions with target at rest. Every transmutation

A(eh) —"S(ei) in which A consists of a single particle (H=1) may be re=
garded as a "decay." All others, with H Z 2, are called "collisions, "

and we shall consider only those of the form
A(el,ee)—vs(ei) (e)

where particle 1 will be called the "projectile" and 2 the "target."
We study first (§§19-23) the important special case in which the
target is a (necessarily) material particle at rest in its own rest
frame Z, with the projectile moving toward it on collision course. As
a common basis for the sections referred to, we consider given an ini-

tial system A(el, e2), with particle parameters

2 2%
kl>0 E,>e, =0 cpy El-el >0 cPl=cp‘i’

1 1

k2=0 E2=e2>0 cp2=0 cP. = 0.

Following Note 1l4.2, we see first that

(a) +the totals of the system are

cP_ = cP withcp=E2-e2)k‘ E = HE, + e,; e =e, + e
o 1 o 11/’ o 1 2’ = °

(b) Hence its class {cPo,Eo} has parasmeters
> 2\F 2 2 # 2 G
Bo = (El -ey ) /(El+e2), e, = (el -&-e2 +2e2El> = (eA +2e2k_|_) s
Y, = (El+e2)/eo; and the direction of the class velocity is ¥ _ =Y

% 1’
It is convenient to know (Yoe-l) = YoBo = cPo/eo = (El2_e12)’l‘ /eo.
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(¢) The ch. energies e,, of sum e, = Zei, being stipulated for

i S
the proposed system S(ei), it appears from (b) that the (invariantly

expressed) necessary condition
e, Z eq (T)
assumes, in the rest frame of the target, the significant form

e, +e

- A8 (=0 =
L=Ek= 2, Q) = x; (Teg)
where Q= eA-eS

is the Q-value of the reaction (C). The energy ky, s0 defined is called

the "kinetic energy threshold" for the process, and one speaks accord-

ingly of kl as below, on, or gbove threshold in the cases }Ll é 1;1,. Note

the analogy between the form of condition (T) as it appears in the tar-

get rest frame, and its form kA = ("Q) in the zero-momentum freme ' (§15).
Since the inequality e ° = eq is here strictly equivalent to k. = lgI,,

we may interpret the results of Th. 1k.3 in the following convenient form.
I. When Q < O ( eA<eS) » then k, is positive, and the necessary condi-

tion k) 2 ky "has teeth," to wit:
(1) it k) < Ky (eo < es), (c) is forbidden.

(11) 1if k, =k (eo = es), (C) is possible iff all e, > O. (Fusion,
with I = 1, is the case of interest, and must occur exactly "on threshold.")

(111) if k > Ko (C) may occur iff T z 2.

It should be noted that, when Q < 0 (e, < eS), one has
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eA+eS
kn = ("Q) > (2e /2e ) (7Q) = (Q), so necessarily kT > ("Q).

II. WhenQ 2z O (eA = eS), then k; = 0 and its value is irrelevant.
For, collision then occurs above threshold, with k, > 0 Z k, (eo > es) R

and (C) is possible iff I = 2, just as in (iii) above.

Only in the case Q = O (eA = eS) under (II) is the collision elastic,

with kl = kS’ In general, the energy equation reads
eA"'kl:Eo:"eS'*'kS
or kl + Q = ks

so that k,Sk as Q E 0

(a) If the collision is to be studied in the ¥/ -frame of the class,

VIA

the following informastion may be required, in addition to the class pa-
rameters in (b), governing the Lorentz transformations between L and L .
In '/, the collision A'(el, e2) _.S'(ei) involves two systems of

’ _ 2 i’
class {O,eo}, the colliding system A’, with e, < e_ = (eA +2e2k1) , nec=

essarily (§11) having the unique energies Etl1 = (eh2+e2El)/e h = 1,2,

O’
or, more simply,

El = e

seE/e o2 1% % " Yob2

and oppositely directed vectors cP}'1 of equal megnitude:

%
‘ ¢ 2\° _ .
cph = (Ea-e2 ) = yosoe2 = (ee/eo)cpl, h=1,2.
The above form Eé = e2Y ° reflects the physically obvious fact that
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4
2 in 2 has the speed vé = u  of the CM of A in Y. This accounts for
the position of O on the ellipsoid € in Fig. 1, showing the relation
between the initial systems A and A’. (Cf. §§6,12.)

(¥, = ¥, = ¥)

’
%BoEl cp’ %cp,

A

(24

o
o

"

(23

>
\

FIG. 19.1 (el > ea)

In the figure, the sphere radil are cpl Y S oo ¥ cpl Y 280 e,

and the origins Oj'. are at distances O 0' = Yp El’ 0 Oé = Y8, 2 =y, 23
from 0’.

These details are of importance in the elastic case S = S(el,ee) s
since the resulting system S'(el, e2) will then differ from A'(el, e2)
only in direction. (Such a result is indicated by dashed lines in the

figure.) With this in mind, we will further note here that 01 falls
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(I) inside, (II) on, or (III) outside & according as

i.e., in the cases of a projectile of ch. mass 'lighter" than, equal to,
or "heavier" than thet of the target. To see this, we need only note

that, in the present instance,

’ = = = '
olol - YoBo 1 > Y (CPI) o’ 0 YoBoEe

VIA

7 7
as El E2
and the remark follows from the equation

12 e _ 2
El -e = cpl = CP, = E2 e, -

Notes 19.

1. There are good reasons for considering first, in some detail,
collisions in the rest frame of the target, aside from their grester
simplicity.

(a) In many physical collisions, the target may be assumed essen-
tially at rest in the laboratory frame 2.

(b) If the target is a material particle moving with velocity
V2 # 0 in Z; a Preliminary Lorentz transformation based on V2 will carry
the colliding system into a frame in which the target is at rest, and to
which the simpler theory applies.

(c) The "general" methods presented later (§24) really require the

target to be moving (with a well-defined direction), specializing to the
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rest case only in a limiting sense, and it would be witless to treat the
simpler case in such a way.

2. In Note 16.2 we gave two methods of dealing with a general de-
cay problem. Strictly analogous methods may be used for collisions with
target at rest in I, as indicated in the following

FROBLEM. A projectile of rest emergy e, = 5, k.e. k, = 8, and direction
¥, = (2/3,2/3,1/3)G on given X-axes G = [X,Y,2] strikes a particle of rest-
energy e2 = 7 which is at rest in ... The result is an elastic scattering
A(el,ee) — S(el,ee), which is to be treated in the L -frame of the class,
with the direction ‘i‘i of the projectile as the basic direction ¥’ for non-

polarized scattering of E;. The coordinates (2/7,6/7,3/7) will ve used
for the auxiliary direction Q’.

For A(e,, ee) in Z, we are given

& =5 k =8 E

ey = Ty & =0, E,

1l

T cp2 = 0, cl’2 = 0.

(a) The totals of A are cP_ = cP, with cp = 12, E, = 20, ¢, = 12.

(b) Its class therefore has parameters
2 2 %
By = cPo/Eo = 3/5, e, --x{Eo -(cpo) } = 16, Yo = Eo/eo = 5/k, ¥, = ¥,.
(e) Elastic collision of this type is trivially possible; obviously
we may have A = S. Note that, in general, we need only verify e o = eqe.
Computation of kT is a "luxury."
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(a) For A'(el,eg), kA =e -e = b, ki = {e2+(kA/2)}kA/eo = 9/k,

k'2 = kA - k:'L = 7/4. Hence

E! = e, + k| = 29/h, El=e,+k)=35/h opf = (Eee-eze) = 21/h.
For S'(el, e2) therefore

Eé = B, B =E], cp_"L = cpl'ls i,h = 1,2.

We have now the two methods: (Fig. 2,3):

Method I. As in Note 16.2, standard axes 5‘.',5' are chosen, using -

the same 5 and matrix D. Since X = 8X = ‘i’_fL is the basic direction for

scattering of ey, we take

¥2=0' = (2/7,6/7,3/T)5 -

Then from (d), Eé - 29/k4, cpé = (21/&)&'3.

(e) Applying (cPE) of Note 10.1 to E and (cPé)G_' ylelds E; and

3
(cP,) . Finally (cP,) = D(cP,) , on the original axes G.
3’g 3 3F
G G
Method II. The vector method of Note 16.2 also applies, and could
be used just as before if we were free to choose X’ as the basic direc-
tion ¥’ (as for example in isotropic scattering in X' ). However, since
the stipulated ¥’ = Y # X', we use the device of Note 1li.3. From the
auxiliary direction Q‘ = (2/7,6/7, 3/7)0.' and the same matrix D as in
Method I (the rotation & being the same, although used here for a dif-

ferent purpose) one finds

(‘i'é)a, = D(’ )54, (ch)G' = (21/‘*)(‘1':'3)6,, Ef = 29/k.
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Hence, in step (e), we substitute the latter vector and energy directly

in 2. The required values

into (cPE) of Note 4.1 to obtain (cP3) and E3
G

of B_,Y (¥ °)a are those in (b) above.

Note that we have purposely used only the basic principles. The
dismayling plethora of special "formulass" in the current sections are
helpful in understanding the nature of the collision process, but may
usually be bypassed in computation if desired.

3. The following collisions (with the second particle at rest in:
the lgboratory frame Z) are historical landmarks in artificisel transmu-

tation. The Mev values of Q and kT may be verified from TABIES IT and

III.
N
A :He + ll,;N - lgo + ]l‘a - 1.19 | 1.53 | Rutherford, 1914
B le‘He + EBe-olgc +10° | 5.7 | ===- | Chadwick, 1932
¢l n°+ 117*1\: - 12(: + .63 | === |Feather, 1932
p X 4+ Trs - o® 1 Cockeroft, Walton, 1932
1 4 3 - 2He Te3 - ockeroft, Walton, 193
E g}‘{e + %’Al-o igp +1° | - 2.65 | 3.05 |Joliots, 1934
F % - Ha+n® y*
Yy + [H- jH+n - 2.225 [(~Q Chadwick, Goldheber, 1935
G| D+ B =30 +p |- 1877.| 5630 |Segré, Chamberlain, 1954
- + o +
H| Vv + P = n +e - 1.805| 1.807 | Reines, Cowan, 1956
- + o, +
T vy + P - n +u - 107 113. | (Brookhaven) 1962
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20. Fusion. For an arbitrarily given colliding system A(eh), of

class {cPo,E o} with eritical mass e = (an-(cpo)e) > 0, a fusion is

o
always possible, provided only that the single perticle resulting has
a rest energy precisely equal to e While methematically the reverse
of a decay process, there is here the physical implication that the
fused particle incorporates into its own rest energy the given critical
energy e o? vhich can hardly be regarded as an intrinsic property of

- unique species of perticle,

In a collision with target at rest, therefore, we may consider the

fusion Ale, ea) —= s(e_) (F)

vhere by definition

> #
=
e, (eA +2e21ﬁ) > e
is the rest energy of the resulting particle.
Technically, the Q-value of (F) is then the negative number
Q = eA - e <0

and the "threshold" energy k'l' is kl tautologically, the fusion (F) nec-
essarily occurring precisely "on threshold." (§19)

The fused particle rides at the CM of A, with the class velocity
U o’ and energy E o’ indeed with all its parameters those of the class
{cPo,Eo} of A.

The energy conservation equation

K +Q= kg <k
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indicates a conversion of kinetic energy to rest energy. (We recall that

a coherent system has the least k.e. and greatest ch. energy of all sys-
tems in its class.) A .
In the X -frame of the class, the two particles of A’ fuse into a

motionless one, with a total conversion of kinetic energy into rest-energy:

9 _ 4 '4 -
kg = k& + k= (7Q).
A fusion sometimes results in a particle which possesses a (more or

less) stable “ground state" of minimal rest energy eg. In such a case,

one has necessarily

e = e
o g

and the fused particle is said to be formed with an "energy of excitation"

If the fusion occurs st vanishingly small incident energies kl, as it

does for example in the neutron-capture

*
n® + (33%y) — (2%)
_ .2 %
then, since e = (eA +2e2&_|_) —» ¢, as k; —= 0, necesserily

=
eA_ eg

and the (intrinsic) energy

* = -
eg eA egEO

is the "minimum energy of excitation" with which the perticle can be .

formed. In the case cited, one finds from TABLE III
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e = e(®Py) + ex) - e(33%) = 6.4 Mev.

This is more than (23611) cen stand, and results in fission.
In "radiative cepture” (= neutron capture followed by y emission, a

less drastic result), the excited nucleus formed in the fusion
*

2+ (B) —~ (%) (®)

has & ground state to which it may drop by emliting a photon:
*

(M3)" — (5% vy o)
The Q-value of the latter "decay" is then precisely the energy of exci-
tation with which (A;1x> was formed in the fusion (F).

Nuclear y absorption
*
v+ (3x) —~(%)

effords s further example. Here, the ground state rest energy e g is e,

itself, and the energy of excitation has the simple form
o %
e¥ = e, - eg = (e2 +2e2kl) - e,

- - *= o,
= e, { 141+ (2k_l_/e2)} ze*=0

Notes 20.
1. If the collision of Note 19.2 results in fusion, the particle

formed hes E_ = 20, e = 16, k = 4 and cP_ = (8,8,&)0.
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21. Elastic collision. We consider in this section in general,

and in the next, with e, = O, the important case of elastic collision

1
on target at rest, of the simple form

A(el,ea)——>s(e3,eu)

where el = e3 z 0 e2 = eh >0

and hence Q = 0, kl = k.3 + kh'

Tn the corresponding collision A’ —> 8’ in the I'-frame of the

class, even the individual kinetic energies are unchanged:

' _ 0 oyt
kl = k3 k2 ku
and indeed, as we know, A’ and S’, as systems of class {O,eo} with

ey + e, < e,» can differ only in direction. From §19 we may therefore

write immediately

(a) El - E3 = €5 T Yoo 2 Eh = Yo
and cpy = cp3 = Y03062 = CP, = CP) -

Once the direction Yé is specified in Z’, the systems S’ and S are fully
determined, and a complete computationel procedure has already been out-
lined in the PROBLEM of Note 19.2. To understand the physical nature of
such collisions, it is important to_study them further as they appear on
the standard asxes involved in Fig. 19.1, and here denoted by $,8’. In
particular, we will consider the dependence of the final system on the

physically meaningful angle wg(o s wé s 180°) at which the projectile
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scatters from its L' line of flight. (The initial direction Yi of the
latter, under the present "target at rest" assumption, is of course
¥ =Y;.) The mathematical limiting case ¥3 = 0 end ¥ = 180° will be
referred to for obvious reasons as a "miss", and a "direct hit", re-

spectively.

Since cp = - cPéx = - cpé cos ¢3 = = Y B e, COB wé, end Ey = e Y

(o]

ve find first (as easier) the I target parameters

By = YoleRBEL) = ¥, Boey(1-cos v)) = 2y B e sin®(44/2) (1)

B, = Yo (8 o0m #Ey) = v e, (1-8 Poos 4

2 ’
ep {1+ (v,21) (1-cos ¥} . (2)
The “"recoil k.e." of the target is therefore
2 ’

k =E - e, = eg(yo -1) (1-cos ¢3). (3)
From these, the energies

k= ky -k (&)

E3=el+k3=Eo-ElL (5)
of the scattered projectile in 2 mey be inferred, as they depend on ¢§.

From E3 and Eh we may also obtain formulas for the magnitudes
2 2 £ 2 2 &

cpy = (E3 -€y ) and cpy, = (Eh e, ) (6)
of the corresponding vectors cP3,cPh.

For the scattered projectile in ZL we £ind directly from conserva-

tion of momentum
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CPgy = OB, - OBy, = BB = Yo Boep(lncos ¥5). (7)

If desired, the results of (1), (6), and (7) may be used to obtain

cos §5 = cp3x/cp3 and cos | = cphx/cpu (8)
for the 2 angle of deflection of the projectile, and the recoil angle of
the target, as they depend on wé. In amplification of (8), one should
note the following remarks.

l. The position of Oé on the ellipsoid € of Fig. 19.1 indicates |
that Case II (§6) always obtains for the target, which therefore scat-
ters forward in ., its angle ¥), ranging from (e 1imiting) 90° to 0° as
the projectile angle wg ranges from 0° (miss) to 180° (direct hit) in v
In (8), the exceptioral case cp, = O (Eh =e, I = 0) occurs only in the
event of a miss, with the trivial result S = A.

2. As we know from §86, 19, the dependence of the projectile angle

¢3 on wé is more complex, the range of ¢3 depending on the cases

I. e

4 (o]
1< & (0] inside ) with 0= 3= 180

II. e, = ¢, (0] one) with 05 5 < 90° (see Note 2)

1

III. e °

1> & (01 outside &) with 0 s \y3 s 53 < 9

as explained in §6. (The value of W3 is given in Note 3.) In (8) the
exceptional case cp3 = 0 (E3 = el, k3 = 0) occurs only in the event of a

direct hit on a target of equal rest mass (¢§ = 180°% e, = e_ ). In this

1 2
case, we see from (4) that k, = k,, showing that the projectile is stopped

"dead in its tracks," while the target recoils with its entire k.e. (See




Note 1.)

3. While the values of cos wi are perhaps most easily computed from

(8), we may recall that (3Y1) gives the explicit formulas

cos §, = (cos ¢1+pi)/Di i= 3,4 (9)
) 1, 132 -2 21%
where D = {(cos wi+pi) + Y, (1=cos ¢i)}
’ ' _ ‘ 't
and here pi | u.o/vi = BoEi/CPi = Ei/Yoeg'

Now pﬁ = 1, and cos ¢ﬁ = = cos ¢§, 80 that, for i = 4, (9) reads

- %
cos ), = (1l-cos wév/{(lrcos wg)a + Yoe(l-cosew§ } . (10)
On the other hand, pé = Ei/yoea = (eo-yoega/yoez, which may be used in
(9) to obtain cos Y3+ We know from 83 that, in the case e, = 0 (imma-

terial projectile, pé = Bo) the latter result reduces to the simpler form

cos ¢3 = (cos ¢§+B°)/(B°cos ¢§+l). (10¢)
4. Finally, we recall from §4 the formula (L.5)

cos §, = (Ei-Y;lEi%/bocPi 1= 3,4

which gives cos ¢1 directly in terms of Ei and the fixed E;, by eliminat-
ing the 2' parameter ¢1. Substituting the present values

r _ - ’
E3 = e, Yoea’ Eh &= Yoe2

and remembering that

Yo = Eo/eo’ Bo = cPl/Eo’ E

o = El + €5 o 1 t e, + 2eFE,, ve

o
obtain from (4.5)
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cos ¢, = (EOE3-e12-e2El)/cplcp3 (11)

cos *u = Eokh/°p1°Ph°
These may also be used to obtain the cos *1’ once the Ei are known.

Again in the special case e, = 0, to which we turn in the next section,

1
(11) reduces to

cos §5 =1+ (ez/El) - (e2/E3) (11c)
cos ), = {l+(e2/El)] kl;/cl’b,
The first of these is the polar equation of the ellipse (Note 6.2), with
01 at the left focus.
Notes 21.

1. In the exceptional case cpy = 0 in (8), we have from (3,4)

2 2
k) =X = e,y -1)(1-cos ¥3) 5 2e,(v 1) = 2e,(E,%~e %)/e © =

2 2
=
; t e, + 2e2El = 2e2El + 2e2e1,

2 2
2e2kl(El+el)/eo and so also, e e

2 o = L.
or (el e2) = 0. Hence e, = e, and cos 11:3 = - 1. The result is of

course geometfically obvious.

2. In Case II, e, = e, > 0, the minimum angle g of separation oc-
) (o} 2 2
curs when y3 = 90", with cos T = (v, -l)/(\(o +1) = kl/(kl-i-h-el). cf.

(12.5).

3. TIn Case IIT, the value of the maximum angle Fa of deflection is
= 2_ " _ -
given (Note 6.3) by tan ¥ = 1/y (p3°-1) , where p% = (e_-v e,)/v e,

as shown under (10). Hence

tan ¥ = 1/{(e,/e) - 1};’, e > e,
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22. Compton scattering. It was first noted by Compton and Debye

that the laws of elastic collision govern the scattering of x-rays by
free electrons, provided the "rays" are regarded as particles of mass
M= hv/c2 and sbsolute momentum Mc = hv/c.

For the present section, we define "Compton scattering” as any
elestic collision of form A(O,ea) —5(0,e,) in vhich an immaterial
particle scatters from a material target, and consider, under the target

at rest assumption, an initial system A(O,ea) with paremeters

hvl = kl = El > e = o, cpy = kl’ cPl = k1$];

P 0

o2

the basic scalars being kl and ey.

]

Specializing 8§19 to the case e, = 0, we have

(a) A totals: cP = cP, cp =k, E =k +e, e =e,

5 %
(b) Class parsmeters: B = kl/(kl+e2), e, = (e2 +2e2k1) ,
(k.+e,)/e 2-1)é = B =k /e
Yo = \Eyt€// € Yo =Po¥o T kl o’
(c) e > egs OF ky > ky = Q = O indicates the possibility of elas-
tic collision for I = 2.
() %'-parameters of A‘,S’ (§21)
) ’ A A r _ ’ - . ‘o p! o
kl = El = E3 = k3 = cp, = Cp; = Yoﬁoeg (kl/eo)ez, E2 E, = Yoo

In the ellipsoid construction, one has

ot . 2, _ 2 ’
010" = Yy B E] = (YyB,) e = (kl/eo) e, with O] at the left focus.
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o’ 0 =Y cPJ_ = Yo /B oo = (kl/e )Yoez’ cpi = (kl/eo)ea° Since the

figure falls under Case I, we know that, as the deflection angle ¥ 3 of
the projectile in ! ranges from 0o to 1800, s0 does its deflection angle
¥ 3 in Z, while the recoil angle of the target ranges from (a 1imiting)
90° to 0°.

(e) The formulas (3,4%,10,10¢c,11c) of §21 yield the following L

perameters of the resulting system S(O, e2) , as they depend, in effect,

'
on ¢3.
The recoil k.e. of the target is
_ 2 ’
k, = (kl/eo) e2(l-cos 1113) (1)
with a range
2
05 Ky = 2(k /e )%, = k /{1+(e,/2k )} - (2)
The energy of the scattered projectile is therefore
ky = Eg=k -k (3)

with a corresponding range

k) 2 k32 k /{2+(2k /e,)} - (1)
The deflection angles §, as they depend explicitly on ¥ _f_; may be ob-
tained from
cos ¢3 = (cos ¢§+Bo)/(l-l€ cos $3) (5)
%
cos §) = (1l-cos 1113)/{ (1-cos ¢3) + Y, ~2(1-cos” 11:3)} (6)

while thelr dependence on k, and k“ is indicated by

3
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cob ¥ = 1+ (eyfi)) = (e fiy) (1)
coB §), = kh{1+(e2/k1)}//(Eh2-e22)é
= (1+(ey/i )} /{24 (20, /1 1 ¥ ®
Note here that 1+ e /k = B_", and therefore (7) may be written as
cpy = k3 = e /{18 cos §.} = Y;lEé/{l-Bocos ¥3). This is of course the
polar ejuation of the ellipsoid, as shown in Note 6.2. Equation (7) may
also be| expressed in the form
ky = kl/{l+(kl/e2) (1-cos ¢3)}. (72)
The engles Y,y are correlated by the equation
ten ¥, = <é§§EI> cot w3/2 0<yy< 180°. (9)

tions (c

This may be obtained by division of the self-evident "momentum" equa-

Py = k3, ep, = k)
cpy, sin ¢,+ = k3 8in 413

cp, cos q;h: kl - k3 cos ¢3

and ‘substitution of kl/k3 from (7a) into the result.

1.

as Bo

VHIA

falls 1

| Notes 22.
t

I ! ry < Y _ pt
Since u_ is the target speed in L, end (YOBOEl) g (cpl) E]
1/A/2 , it follows that, in the ellipsoid figure, the focus O’

1l
18ide, on, or outside the smaller sphere as the Compton wavelength

17




of the target compares with the common wavelength of both particles in
2', i.e., as
hc/e2 = Moo ; ki = h/pi.
(cf. Note 1.k.)
2. Setting k = h(c/kl) end k., = h(c/x3) in (7), one obtains

3

2
A= k3 - Kl = hzc(l-cos ¢3) = 2x2c sin ¢3/2, where A, 1s the Compton

2¢c

wavelength of the target. For ¢3 = 900, AN = Kec

3. We have indicated general methods in Note 19.2 for dealing with
target at rest problems when treated in the Y -frame of the class. We
now show how such collisions are handled if we need not leave the target
rest frame. The method is then quite simple, since the Lorentz trans-
formation is not invoked, and will be sufficiently obvious from the fol-
lowing "Compton collision" example, which neglects polarization effects.

N.B. Since the "Klein-Nishina' differential cross section (Note U4)
for photon scattering on free electrons is given in the electron rest
frame, it is natural to deal with such elastic collisions in this way.
Moreover, since the energy distribution has the simpler form algebraically,
one customerily samples the energy k3 on its range (4), obtaining cos ¢3
a fortiorifrom (7). Finally, use of the energy unit e, = .511006 Mev al-

lows the formulas of this section to be read with e, = 1.
PROBLEM. A photon of energy k, = b (i.e., 2.044024 Mev) and direc-
tion ¥, = (2/3,2/3, 1/3)G on given X axes G, collides elastically with &

free motionless electron. The energy k3 = 4/5 is chosen on the renge
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4 = ky 2 4/9 by sampling the K - N energy distribution for k, = 4. By
(7), the corresponding deflection angle 1s ¥ 3" 90°. The direction ¥ 1
being basic for scattering of the photon, ¥ 3 is itself the latitude anéle

8 for location of \1'3 and Yl. If the longitude ¢, here assumed uniformly
distributed, is chosen as 300°, then

0 = (0,1/2,-/3/2);
is the auxiliary direction about X, and
(¥ 3)(i = D(Q);

locates Y3 about ¥,, where D is the matrix of Note 16.2.

The final photon momentum is therefore given by

4
(cP3)G = -5- (‘1’3)G

" on the L axis G.
If desired, one may obtein ky = k) - Ky = 16/5, By, = 1 + Iy = 21/5
%
cp, = (Eu2_1) = L,/26/5, and (cPk)G = (cPl)a - (cP3)G, where
(cPl)G = h--(‘i’l)a.
All energies may be converted to Mev on multiplication by

4. Neglecting polarization effects, one obtains from the "Klein-
Nishina® formula (A IV) the differential cross section

o(kl;a)da a nrz(k/k-l)a{kl/k + k/kl - (l-a?)'}da. o

for the Compton scattering of a photon of energy IL_L = hvl/ee from g
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motionless free electron, where k = k3, & E cos ¢3.' (For r = r., see

TABLE I.) A more convenient cross section, defined by

o(k.;k)dk = Ao(l&;a)da

is obtained by using the relation (7), a = 1 + 1/“1 - 1/k, with
da/dk = 1/%°, namely
e oY) L 2/, 2yp1=2 po-l -1 -2 .. -1 -1
o(kl,k) = ('rrre /k1 Mk -(21;l +2-kl)k + (1:l +2k ) + k) Kk} .
Integration on the range (k4), kl/(l+2kl) = k = k;, ylelds the (total)
cross section

c(kl) = awrea{akf + (1+kl)(1+2k1)'2 - (kz3+k12-2-lk11)$n(l+2kl)} .

Norming gi&es the probability density function p(k. ;k)= c(kl;k)/c(kl),
and the equation
r= JHP(H; k)dk
k
indicates the dependence of k on the random number r in Monte Carlo prac-
tice.
The inverse function k = F(klsr) hes been fitted by B. Carlson

(kl < 4) and E. D. Cashwell (kl < 24k) as follows

k1 = k= Fl
h<kl§8.5 k=F, +F,
8.5 < k1 =15 k= Fl + F2 + F3
15<k s 24 k=Fl+F2+F3+Fh
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where

Fo= k/(1+rls + (2k-8)r%l}, s= k) /(1+.5625 k,)
F, = (i -4)r?(1-r)?
F, = -6(k-8)r(G-r) (1or)"

g, = klra(l-r)(.h-r)(.SS-r), r< .85
Fl& =
£y, + 6(1-r)(.85-r), r> .85.
For higher energies (> 12 Mev), scattering is extremely forward,
and a rejection technique employed on two subranges of p(kl,k) seems
indicated. The cross sections for energies < 500 Mev are graphed in
N.B.S. Circular 542.
In Appendix IV, we consider the Compton collision of plane polarized
" photons. In this more general case, the cross Bection G(Jﬁ; k) of Note k4
is used as Jjust indicated to obtain the scattered photon energy and de-

fection angle ¢ in X.
kl
5. For tables of the integral f p(kl;k)dk, k £ 25, see H. Mayer

k
et al, IAMS 1199.

23. Pair production. As a final example of a collision with target

at rest, we consider the case of "palr production,” in which a suffi-
clently energetic photon interacts with a charged particle, the trans-

mutation, of form A(o,ea)—> S(e2,ee,ee)_,

resulting in the recoil unexcited target, of rest energy e3 = e, together
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with an electron-positron pair, with rest energies e, = e5 =e = .511006
Mev.

The reaction is seen to have a Q-value
Q= -~ 2ee = = 1.022 Mev

and consequently an energy threshold condition

e te_
€2
which is here sufficient as well as necessary (§19(c)). Note that

hvl = El = k1.§ kT =

(2e€) = (aee){l+(ee/e2)}
szz 2ee for a nuclear target (the usual case), whereas kT = hee for a

target electron. We shall assume that k1 > kT’ with S non-coherent.

The initial system being identical with that of §22, all particle
parameters of A, and of A’ in the L'-frame of its class, as well as the
parameters of the class itself, are already given there.

The system S'(eg,ee,ee), of class {O,eo} in ', has a total k.e.

r _ - = 2
ki = e (e2+2ee) >0, where e (e2 +2e2kl) .

The sharing of this among the three particles is of course not unique.
The target, for example, may recoil in Z' with any k.e. on the range

, , 2e_+ (ké/a) ,
0% k= Ik = € S kg -

o

Technically, both end points are attainable. The limiting case k3 = k&
would demand the coalesced emission of the charged pair in the direction
opposite to that of the target recoll, which is physically absurd. How-

ever, their nearly parallel emission in L is indeed observed. If the
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target were left motionless in Z’, with ké = 0, the palr would then form

a two particle system of class {O, eo-ea} s having the unique energies
’
E; = (eo-ee)/2, k;_ = ké/E, i=14h,s5

and oppositely directed moments of equal magnitude, with

' _ 2 2 t

2k, Collision with terget in motion. Finally, we turn to collisions

A(el, ee) —>S(ei) in which both particles of a non-coherent system A are

in motion in 2, hence with parameters

kh > 0, E‘h > e, z 0, ey, = (Eha-ehz)% >0, cPh = cph‘l’h; h=1,2. (1)
(a) The totals of A are then

| cP, = cP, + cP,, vith cp = lcpol, E,=E, +E, € =€ + e, (2)

While computeble in the usual way, it is sometimes convenient to ex-
press cp and quantities depending upon it, in terms of the physically
meaningful angle ¢ (0 = o = 180°) between cP, and cP,, vhich may either be
given, or easily obtained from

cos ¢ = ‘Yl-‘i’e- (3)
Thus, (cp°)2 = ]cPl+cP2\2 = (cpl)2 + (cp2)2 + 2cP, P,
= E12 - e12 + E22 - e22 + 2cplcp2 cos o
= (E1+E2)2 - el2 - e22 - 2(E]_E2-cplcp2 cos ¢)
80 cp, = (Eoe-ela-eaa-aEaa) (%)
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where by definition

2
- z L]
E," = E;E, - cpjep, cos ¢ > eje, Z 0 (Note 1) (5)

(b) We write therefore for the parameters of the class {cPo,Eo]

of A,

2 2 af (2 2 -
Po = cPo/Eo’ €0 ~ (el *ey 2B ) N 3eA +2(Ec eleQ)?> €’ Yo Eo/eo' (6)
The direction of the class velocity is ‘i’o = cPO/ cp s as always.

(¢) The necessary condition e, & eg for the proposed transmutation

here takes the form

e +e
2 S A /.
Eo‘ z e,e, + —3 (-Q)

(1.)

c

vhere Q = e, - € is the Q-value of the reaction. We shall suppose
e, > eq» and I = 2, so that a non-coherent result S(ei) is possible
(Th. 1L4.3).

(d) If the collision A’(e;,e,)—>5’(e;) is to be studied in the

¥/ -frame of the class, we may require the (unique)parameters

) 2 2 r s 2 2 % . _
B = (eh +E )/eo, cpy = (Ea -e, e, )/eo, h=1,2 (7)
of A’, given by §11, and the angles | N 1 vwhich cP, and cPi meke with

the direction ‘i’o of the class velocity.

The first of these is obtained from

cos |, = (cpo°°P1)/°po°p1 = {(cPl+cP2)-(cPl)} /cpocpl

{(cpl)2 + cp;cp, cos o} /cpocpl. (8)

Ignoring §3, we will obtain | 1 directly from the Lorentz transforma-
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tion for °p1x on standard exes (Note 10.1).

c:pix = (E ocplx-cpoEl)/eo = (EocPl cos | l-cpoEl)/ ey
Hence, using (8), we find
)2

cpo(eocpix) = Eo{(cpl + cpycp, cos o} - (cpo)eEl.

Substituting E = E, + Epy (cp,)® = E12 - &% cp,cp, CO5 ¢ = EE, - E®,
and (cp'._,)2 = E 02 - el2 - ea2 - 2E02, we obtain upon simplification
cpoeocpix = e22‘r‘.l - elaE:2 + Eca(El-Ee).
But CPZ'Lx = cpi cos d’J’.’ so we f£ind from this and (7) the result
cos \bi = e22El - elaE2 + Eag(El-E2)‘/cp°(Edh-eleeag)k. (9)
Note that formulas (4~9) involve only the given scelars E,»€, and cos o.
With the general objective and plan of Notes 14.2, 14.3, and reliance
on basic principles as far as possible, some procedures are given below
for various kinds of collision problems with target in motion in z.
Method I. Assumptions: °Ph given on Y, axes G; collision treated in
%! -frame of cla_sa; Y;_ gpecified as basic direction for non-polarized emise-

gion in L'; 8/,p’ chosen for location of ‘fé about ‘i’i. (Fig. 1.)
1. (cPO)G o (c1>l)(3 + (cPa)G and cp = |cP°| yield (\yo)G = (cPo)G/cpo
for direction of class velocity.

2. (cp)_= DT(cPl)G gives components of cP; on standard L-sxes
G

g = [X,Y,Z) = [5%,5Y,52], where D is the matrix of rotation &, based on

(‘Yo)a, as in AIII, Cor. 1.
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3. For standard X' axes G’ = [X',¥’,Z) parallel to G,
' = -
(CPl)-G-/ = ((Bgepyz = epcEy)/eys cpizy cpz)
then gives the G'-components of cPi in 2. (Note 10.1.)

2 2 %
Here one computes E_ = E, + By e = (Eo -(cpo) ) » where cp_ is
known from step (1). The necessary condition e, = eq may be tested at
this point.

boo (Y1)

- = (cPi)—a-, /cpJ'_ is obtained for the basic (projectile) di~

rection in L', where cp! = | (eBZ)_ |
1 1 ol

5. If collision is elastic, we set cpé = cpi, Eé = E."L’ where

Ei = (..cpocp_.II + EoEl)/eo' In any case, we must suppose Eé, cpé, 6', cp'
determined at this point.
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The matrix D’ of the rotation 8’ (AIII, Cor. 1) taking X’ into

(‘1’1)_', and based on the latter unit vector, is applied to the auxiliary
G

direction Q' = (cos 8/, sin 8’ cos ', sin 8’ sin Cp’)&'/, to obtain the

direction of emission

4 l‘ 4
(¥3)., = @)

and the vector (cPé)_' = cpé(‘i‘é)_', on Y axesG’.
G G

6. The transformation of Note 10.1 (with i = 3 and barred x,y,z)

applied to E/ and (cPé)__' yields E
G

end (cP.) on standard X axes.
3 3

3,
7. Finally, (cP3) = D(cP3)_ gives the components of cPy on the
G G

original 2, axes G, where D is the matrix of step (2).

Except for the complication of non-~standard axes, this is the scheme
used in Note 1h.h.

Method IIL. This is a modification of (I) which simplifies the work
in %) at the expense of a more complicated rotation in L.

1. From cP_ and cP, we obtain both directions (¥ ) , (¥.) .
(o} 1 — o G 1 G

2. The rotation 61, with matrix Dl based on these unit vectors,
(AIII, Th. 3) defines axes G in L such that X ®5.X = Y  es before, and
with ¥, lying in the upper half of the ¥,Y~-plene, which now contains
the parallelogrem of Fig. 1. The matrix Dl is (not used until the final

step.
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3. We now compute cos wi from (9), and, if required for elastic

7

1

principles from which these formulas were derived, namely

collision, also E! and cPi from (7). Here one may prefer to use the

cos wl = Yo-Yl

)

cplx cpl cos wl

4

CPix = (EOCPIx-CPOEl)/eo

L -
E] ( cPocP1k+EoEl)/eo

2 2
op] = (2%e,*

14 14 1l
cos wl = cplx/cpl.

4. The basic direction Yi = (cos wi, sin wi, 0)=/, on L' axes G’

5
= ’ 2 ‘b
parallel to G, is now known. Note that sin ¢ = + (1-cos wi) .

5. The matrix D’ of the rotation 85’ taking X’ into Yi is here simply

cos wi - sin wi 0
D’ = |sin w:'L cos q;i 0
0 0 1

and just as before (Y!)

3, = D'(Q')G-l yields the ¥ -direction of 3.
G

The final steps (6,7) are those of (I), except that the matrix D, is

used in place of D in (7).

Method ITTI. In one type of problem, the parameters (cPl) s El’ e
G
of the projectile are given, but the nature of the target is subject to

chance. Suppose cp2, E2, e, sultably chosen, and that the direction Y2
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is in & non~polarized distribution about ‘i’l. Finally, suppose the (1ati-

tude) angle of separation ¢, and a longitude ¢ chosen for location of ‘1'2
sbout the "basic direction" ‘Yl.
We may of course proceed by (I) or (II) if we first specify (‘i’z) ’
: G
vwhich may be done by using the device of Note 14.3, with Q =

(cos g, sin o cos 9, sin ¢ sin cp)a, and D the matrix of AIII, Cor. 1,

based on ‘i’l.

However, the problem admits a simpler strategy outlined in IAMS 2360
(Metropolis, Turkevich, et al.) and slightly modified here.

1. We first define 2, axes

G, = [alx,sly,alz] = [x,x,z]n1

vwhere 8,X = ¥,, and D, is the matrix based on (‘i’l) , as in AITI Cor. l.
G

(See Fig. 2.)

Y (3,7)
{8,8,Y)
\
\
¢ \ \I/°=83828|X:Y
-y \
Y,
[+
(8,
X
FIG. 2k.2
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2. We now specify (Ye) = (cos o, sin ¢ cos @, sin o sincp)(1 on
G 1
l «

the 2, axes G,, where 0°s ¢ = 18°, 0s @< 360°

3. The rotation 8 about Yl through ¢ + 180° is defined, relative

2’
to the Gl axes, by

G, = ae[slx,aly,alz] - [SlX,SlY,SlZ]D2

1 0] 0
vhere D,=10 cos(p+180°) - sin&p+1809)
0 sin(p+180°) cos(w+180°) | .

The directions Yl and Y2 appear in the 5.5 X,628

7 Y~-plane, with Yl = 9,5,X,

1 271
and Y2 in its lower half.

4, The angle ¥, between cP_ and Py is next computed from (8), and

used to obtain the matrix

cos(-wl) - sin(-wl) 0
D3 = sin(-wl) cos(-wl) 0
0 0 1

of the rotation 5,, about 62812 through -wl, vhich determines final 2.

3
axes:

[X,¥,2]1 =G = 83(8261X,8281Y,82812) = (azslx,aesly,szslz)%.
The situstion is now precisely that of Method IT, with X = Yo, and cPl
in the upper half of the i}YFplane, although no computing has been done .

aside from evalustion of the three matrices Di'
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We now follow steps (%,5,6) of (II), relying on the formulas (4-9)

for required parameters, and so obtaining E3 and (cP3)__.
a
T. It only remains to compute the components
(eP,) =D, (cP,)
3 ¥ 3%
on the original Y, axes G , using the matrix Dh defined by
Su[X,Y,Z] = [X,Y,Z]Du

where 51;, is the composite rotation 838251. Retracihg our steps, we see

830.2 = G.2D3
31,03 =G;D D,
5,GDD, = GD,D.P,

so that we must use Dh = D1D2D3 in the final step.

that 3 = 83(82810,)

Method IV. With the data given in Method I, the vector form of cPE
in Note 4.1 may be used, with the parameters Bo,yo,‘l’o of the class com-
puted from first principles.

1. Its inverse, applied to (cPl) gives (cPi) , in %! on axes G’
G G

parsllel to G, with direction (‘1’1) = (cP!) Jep!.
G’ l a’ l

2, The rotation &, with matrix D based on the latter unit vector
(AIII,Cor. 1), takes the auxiliary direction Q' into an emission direc-

tion ‘i’é with ¥/ coordinates

)

’ — 7
(Y3 a’ = D(Q )G-'.

131




3. From the stipulated E., and ch = cpé(Yé) ,» the direct (cPE) of
G

Note 4.1 yields E, and (cP.) . This method requires a minimum of "for-

3 3
G
mulas" and may well surpass the others in speed.

Method V. Assumptions: cPh given on Y~axes G, collision treated in

rest frame %' of target (with e, > 0); Yi specified as basic direction for
non-polarized emission in 2'; §’,0’ chosen for location of Yé about Yi.

The method is indicated when differential cross sections are given for
the target at rest, as in Compton scattering.

The appropriate Lorentz transformations between 2. and Z' are those
of §4 or Note 4.1, the parameters BO,YO,YO being, in the present case,

the target parameters

62 = CPE/EE’ Y2 = E2/e2, Ye = cP2/cp2.
It was shown in Note 4.4 that

4

E] = (ElEe-cPl-ch)/ez

is the projectile energy in the target rest frame . Tne geonmetric
procedure is that of Method I or Method IV, with the target rest frame
playing the rdle the ¥/ -frame of the class. The emission parameters
Zg,cpé,e',w' must of course be stipulated in Y . The procedure for

Compton collision has been indicated in Notes 22.3, 22.4.

Notes 24,

l. The "colliding" system A is understood to be non-coherent. It

is easy to verify for the quantities defined,
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(a) Eca 2 eje,, With equality if and only if e, = eE, ead
o = 0%, which 18 a necessary and sufficient condition for coherence of
A(el,ea).

(v) E02 = 0 1f and only if A is coberent-immaterial.

2. We have assumed cP_ # 0, with a well-defined direction ¥ . This
indeed fails in the single case ¢ = 180°, ep, = cp,. The frame 2 is then
identical with the L' -frame of the class, and Methods I, IV by-pass the
Lorentz transformation.

3. We have assumed cP2 # 0, with a well-defined direction Ye. If
o 1s fixed, and cpa-——»o, the general formulas reduce in the limit to the
"target at rest" relations (819).

4, PFigure 1 is only schematic. The true relations between the sys-
tems A,A’ may be seen as ususl from s suitable ellipsoid figure, based on
sphere radii cpi,yo(cpi) and distances |0£0'| = YoﬁoEﬂ‘ The initial pro-
Jectile angle ¥ 1 with ¥ is given by (9), from vhich the rest of the fig-
ure may be drawn. Here of course we are given the cPi gnd *1’ a priori.

In such a figure, one can show that
YPE] 5 Yolep))
as CP,CP,COS @ ; (E2-el)kl.
(The relation may be derived from the equivalent condition e,y é Ei of

2

§6, using v_ = Eo/eo, E] from (7), and E " from (5).)

1
As usuai, this governs the position of Oi relative to the ellipsoid,
and hence the behavior of ¢3 under Cases I, II, IIT (§6) in case of

elastic collision A(el,e2) —*-S(el,ee).
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5. (The colliding beam problem.) For a collision
A(el,el) -—-S(ei) (c)

between two particles of equal rest energy e = €y and fixed energies
El’EQ’ in the lab frame Z, the total energy of the system in the X -

frame of the class is given by (6) as

_ 2 %
e, = (2el +2E,E-2cp; cp, cos o)%.

This energy, which is critical for the production of new particles, as

witnessed by the necessary condition

e, = eS (’1‘)

naturally reaches its maximum value
2
eo(El’EE) = (2el +2E1Eé+20plcp2)
in the case of head-on collision, with ¢ = 180°.
Now suppose El > ey is fixed, say at the greatest energy to which
such a particle can be accelerated in 2, by present methods. Then, if
the tergel energy varies from E2 = e (1imit case, target at rest) to

E, = Ey (as in two optimal colliding beams), this 2’ energy rises from
e (E, e ) = (2e 2roe. B
o' 1’71 1 171

to its maximal value

2 2 2 %
eo(El’El) = (2el +2El +20pl )
2 2 2 2
= ;2el +2El +2<El -e; )fk= 2El.

13k



In the latter case, the oppositely directed momenta are of equal magni-
tude, the frames L and Y’ coincide, and of course the total Z' energy 1s

eo = El+ Elo

%
Thus a factor 2K /(2e +2e E ) > 1

in the critical energy e o is attained. To appreciate this factor, one
must ask what 2 projectile energy EI would be required for collision on

target at rest to achieve the same energy 2El in Z’ +« The ansvwer is Ob~

viously provided by the equation

2 )%
(2e +2el 1 = ZE]_

* 2 2
El = <2El el )/el.

It is interesting to evaluate these quantities (in Bev) for energies

namely,

El in the range of present design for proton beam-proton target systems

(e:L = e, > 1 Bev).

%

Ey eo(El,el) 2F, EJ
10 o7 20 199
5 7.2 50 12kg
100 1k .2 200 19,999




CHAFTER IV

CROSS SECTIONS

25. Mean free path in a gas. If, in traversing a distance dd in
3

Z, through a medium of n, identical particles 2 per cm”, a projectile 1

of k.e. k1 > 0 has probability n.o.dd of collision, we call o; = ci(kl)

193

the cross section of the second particles for the first. More generally,

for a medium of total density n, composed of I Z 1 such submedis i, pre-
sumed independent, with densities n, = fin and cross sections 045 the
corresponding collision probability is the sum

% n,0,d5 = nsdd

where 8 = s(k,) = L. £,0, is the "effective cross section."
ivi

The aessumption of an "infinitesimal' collision probability nsdd is
equivalent to the law 4T = - T(nsdd) for the probasbility T(5) of trans-
mission (without collision) through a finite distance 5, l.e.,

T(5) = e 2%, In this situation

P(6) =1 - &P = 1 - 7(5)

is the appropriate "probability distribution function" for (first) colli-
sion distance = . Accordingly, in Monte Carlo practice, for a random
number r uniformly distributed on (0,1), the equation r = P(5) deter-

mines the distance & = - (1/ns)fn(l-r) of particle 1 to collision. The
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length L = 1/ns, naturally scaling the above formulas, is called the

mean free path, since for the “"density function"

p(s) = P'(3)

for collision on (5,5+d5), the average collision distance is seen to be

5= r’ 5p(5)ad = 1/ns = L.
(o]

For media at rest in 2, the cross sections o'r(kl) 8o defined are
those ordinarily listed, and used as indicated in problems warranting
the rest assumption. If the medium consists of a "gas" of particles in
a known k.e. distribution, the "cross section" required by Monte Carlo
procedure is an "effective" one determining a transmission probability
T(5). An attempt is made below to derive such a cross section for a
pure material gas, in terms of its k.e. distribution and its rest cross
sections O

As a preliminary step, consider a projectile 1 of k.e. k1 > 0, di-

rection ‘i’l, traversing distance d5 through a medium of n
3

1 identical par-

ticles 2 per cm”, all with energy E2 and direction V¥ o In the common

rest frame of the targets, the projectile has energy and k.e. (Note 4.h4)
‘ =mn 2/l . Y
E] = (ElEa-cplcpecos c)/ea— E, /e2, kl =E] - e;. (1)

Here, E0'2 is the abbreviation (5) of §24, with cos ¢ = ¥,*¥,. The cor-

responding momentum magnitude in X' is therefore given by

cp) = (Eie’ele)é = (Eou'eleeaz)lk/eé' (2)
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The projectile undergoes a corresponding displacement (Note 6.6)
ds’ = as cpi/cpl (3)
through a medium at rest in %', with density (Note 2.6)
ni = ni/y2 vhere vy, = Ee/ee. (4)
We might therefore expect a probability of collision
njo (kj)as’ (5)

on @5’ in Y, and hence on d5 in L. Substitution of (2), (3), (&) in

(5) ylelds

%
ny {"r(ki) (th_eleeee) /Eecpl}da (6)

where we shall regard

%
o, = o, (k5k,,0) = {cr(ki) (th’eleeee)%:ecl’l} (7)

as the cross section of the medium particles for the projectile, in 2.
Now consider the traversal of the same projectile 1 through distance
d5 of an isotropic gas of n particles 2 per cm3, in a k.e. "distribution"

f(ke)dkz. There are then a fraction
£, = £(k,)dk, d‘i'e/lm

on (ke,ké+dk2), (YQ,Y2+dY2), which we regard as a submedium contributing
the cross section o, of (7). The argument at the outset would then lead,

in the limit, to an "effective cross section"

5 = s(kl) =ffci(hl;ke,a)f(k2)dk2d‘y2/hn
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for the gas, and hence a free path L = l/ns determining first collision

distance 8 = ~ L fn(1l-r) for the projectile.
Adopting spherical coordinates g, for location of Y2 about the

projectile direction Yl, and setting a = cos g, we see that
® ] k
s = (k) = (2cp)) lJ. J' ar(ki)(Eok-eleeee) B, £(k,)dk, da. (8)
o Y=l

The involved dependence of the integrand on the variables of integration

is provided by the relations

ot ‘ 2 2 2 2 %
k=) - ey By =E /e, E=EFE,-cpcps, cp,= (Ee =€ ) )

E2 = k2+ e2,

2 2 %
where El = € + k1 and cpl = (El -ey ) are constants of the projectile.

Notes gg.

1. A non-relativistic analogue of (8), which is "well-known," reads

® 1
s(iy)= i+ f“r(ki)lvl'va'pa(va)dva = (gvl)-lfo [1 0,1 Jvi£(v,)av da,

’ 2 2 ’
where vy = (vl +v2 -2vlv2a) « In case ar(kl) is constant, one can show

that s(kl) > o, for arbitrary distribution f(va). This answers the ques-
tion (C. Mark) whether it is easier to cross Times Square with traffic

in motion or at rest. For a Maxwell distribution,

f(ve) = (h523/¢ﬁ7)v22 exp (-Beevea), with B, = (m2/2kBT)§, one finds
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s(k ) = cr{(l/wﬁ?) exp (-v2) + [1 + (1/2v%)1 Ert(w)}
v 2
where W = Bv,, Erxt(w) = (2//7) J. exp(-x“)dx. The "mean free path"
()
of kinetic theory, with particles of types 1 and 2 both in Maxwell dis-

tributions involves the surprisingly more tractable integral
¥ o= | ||V, |F (V)R (v, )av.av, = (8 T/ﬂp.)k where
1 1 ettt et eI s ’
no= mlma/(m1+m2).
2. The cross section (8) for the case of a photon beam reduces to

® 1
s(kl) = (1/2) J; J:l Gr(ki) {1 - (cpa/Ee)alf(kQ)dkeda, where

4 .
k] = kl(EE-cpea)/ee. Here, in the physically uninteresting case o con-
stant, one sees that s(kl) = g, regardless of f(ka). Hence, for a photon

crossing Times Square see

3. Unfortunately no adequate reference for (8) has been found, and
some manifest subtleties may vitiate the result, which is offered tenta-

tively. It should be emphasized in any case that the "cross section"

here considered is not Lorentz invariant, and is only a means to a free
path. In the following section we revert to standard practice, regard-
ing (non-differential) cross sections as intrinsic properties of the

target particle, as measured in its rest frame.
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26. Transformation of differential cross sections. Let 0‘1‘ = OT(kl)

denote the (total) cross section for collision of a particle 1, having
k.e. k), vith particles of a single species 2, at rest in Y. Various
types of trensmtation may result from such a collision, the probability

pK of each defining the partial cross section Op = pKaT for its occurrence.

We now focus attention on any one such process

Aey,e,) —S(ey) (x)

of cross section g = Ok’ the resulting system S consisting of T 2 3 par-
ticles, of which u =H j are of the same species j. Then the probability
of emission f(E,Y)dEdY of a j-particle, with E,Y on the indicated ranges
in Z, has the operational meaning that, in a large number N of K-processes,
one expects to find uNfIEAY such particles of species j. The corresponding

differential cross section is then given by

o(E,Y )AEdY = uofdray cm®
with the integral
ffo‘(E,Y JAEQY = po (o = O'K).

1f £/(E/,¥')aE’a¥’ denotes the corresponding probability of emission
for the K-process A’ —» S’ as it appears in a second frame L' moving with

constant velocity U = u ¥ relative to 2, then the equation
£/(8’,¢')aE‘ay’ = £(E,Y)aray (1)

is dictated by the invariance of j~particle counts. Regarding o = GK as

invariant, the same relation is seen to govern the corresponding differen-
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tial cross sections ¢’ and o. For the standard axes of Fig. 2.1, and
polar coordinates (§,p), (¥/,p’) for location of ¥,¥’ about ¥ =X= x’,

we may write (1) in the form
£ (8,4 0’ )aE’ sin §'ay’ap’= £(E,¥,p )aE sin yaidyp.

Setting a’ = cos U/, a = cos §, and noting that ¢’ = ¢ for standard axes,
this becomes

£’ (B',a' ,0)dE'da’ap = £(E,=,p)dEdady. (2)
It follows that

£'(B',2'p)dE’da’ = £(E,a,0)|3(E,a)/3(E',a’)|aE da’ (3)

where the factor denotes the absolute value of the Jacobian

dERE’ 3a/aE’
det

3E/3a’ dafae’

&
i}

()

of the transformation E = E(E/,a’), a = a(E’,a’) from ' to L. The lat-

ter is concealed implicitly in the (cPE) transformation, namely

- ’ + ’
cpea = Yo(cp -a’+p E )
(5)
_ Y
E=v,(B,cp’a’+E")
where (cp)2 = E° - e2, (cp')2 = E'° . &2,
Since dcp/dE = E/cp we obtain formally
d(cp-a)/3E’ = (E/cp) RE/RE’)a + cp(d3afdE’)
(6)

d(cpealda’ = (E/cp)(3E/32’)a + cp(3afoa’).

Hence, multiplying the second column in (4) by cp, and adding to the re-
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sult the multiple (E/cp)a of the first, we see that
JdE/AE’ 3(cp.a)/dE’

cp J = det
d3E/3a’ 3(cpea)fda’].

These partials are readily found from (5) to be, respectively,

Yo(ﬁoE'a'/CP'-Pl) YO(E'a'/cp'+f3°)
YP P’ YoeP’
so that epJ = cp’. Thus (3) reduces to the symmetric relation

f'(E',a’,cp)dE'da'/cp' = £(E,a,p)dEda/cp. (7)

Anslogous formulas obtain for other variables. Thus one may prove

in similar fashion

£'(cp’,a’ ,0)E a(cp’ )da'/(cp')2 = f(cp,a,cp)Ed(cp)da/(cp)e.

The condition I 2 3 imposed above on the system S(ei) was necessary
for the independence of the variables E',a' « For a two particle system
S, E’ is uniquely determined by the initial system A, and one speaks of
a probability of emission

£/ (a',p)da'ap = £(a,p)dadp
related by

£ (a’',0)da = £(a,p)(da/da’)da’.
We have derived in §3 the required formulas

a= (a’+p’)D' da/da’ = Y;2(1+p'a’)/D'3
1, 112 -2 12 é ’ ’ ’
vhere D = {(a ')+ Yo (1-a )} 5 o' =BE /cp (constant)

with the simpler version
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(a:"*'ﬁo)/d' da./da' - Y;e/d.'2

el
i

dl

4
Boa + 1
for the case of an immaterial Jj-particle.
Note 26 .

1. For a more complete discussion, including singularities, see

K. G. Dedrick, Rev. Mod. Phys. 34, 1962, 429-4k42.
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APPENDIX I

A REIATIVISTIC GAS

Consider a homogeneous, isotropic gas of n particles per cm3 s each
of ch. mass m, of which the fraction f(k)dk have kinetic energy on
(k,k+dk), O < k < @, The numerical
£lux N(k,0 ,0)dkdsdp/cn® sec of par-
ticles, in the indicated ranges of k
and (direction spherical-coordinates)

8,p 1s seen from the figure to be

2
AA n(AA«vAt cosd )f(k)dk(singdndp/brr)/ArAt
d¢ = (n/Un)vE(k)dk sinfcos8ddde, where
VAL v = v(k) is the speed. Successive inte-

grations, on 0 S < 27, 0= 9 = T\'/E,
and 0 < k < » show the various result-
ing (one-way) numerical fluxes to be

1. N(k,6)dkds = (n/2)ve(k)dk si.necoseo:is/cm2 sec

2. N(k)dk = (n/4)vf(k)dk /cxn2 sec

3. N= (n/4)v /cm2 sec

while for the kinetic energy flux,

k., g = I N(k)dk = (n/%)kv erg/cm2 sec.
o
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Regarding pressure P at a "wall" as the total change of normal

component of momentum per sec, per cma, we find from (1)

o /2 -
5. P = J J (2p cosB )N(k,8)dkdd = (n/3)pv = (n/3)Mv2 erg/cm3

o
where p = p(k) is the absolute momentum.

The kinetic energy per unit volume, on the interval (k,k+dk) is

6. K(k)dk = kenf(k)dk erg/cm3

the total being
T« K= I K(k)dk = nk erg/cm3.

(o]

For a gas of photons (m =0, v=1c, k = E = hy) at "temperature"
8 = kT ergs, the function K(k) in (6) is known as the Planck distribu-

tion, namely
-1
8. K(k)d.k:&T(hc)-3k3(ek/e-l) dk erg/cm3.

From this as a starting point, we infer from (6) that

-1
9. nf(k)ak = 8r(ne) 3k2(eX/0.1) ax e

and upon integration, we find that (Note 1)

0. n= léng(S)(hc)-363 photons/cm3
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