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INTERSECTION OF A RAY WITH A SURFACE

OF THIRD OR FOURTH DEGREE

E. D. Cashwell

C. J. Everett

ABSTRACT

It has become desirable to include, in the geometric subroutine of
Monte Carlo programs, a procedure for finding the intersections of a line

of flight with a toroidal surface.

Such problems, for surfaces of third

or fourth degree, depend in an obvious way on the solution of cubic or
quartic equations. Although the latter subject is centuries old, we give
here, without apology, & careful exposition of its details, required for
machine computation, and not to be found elsevhere. " A routine is then
derived for solution of the required torus-intersection problen.

1. The reduced cubic of & cubic.
lor expension of the complex cubic

In the Tay-

£(x) md+ cx 4 bX° + X0 = ng(k)(xo)(x-xo)k/k!

one has £'(x ) = 2b + 6x_ = O for X, = - b/3, and
then,

p=£(x) = c - (b°/3),

a= fx) =a - (b/9)(er2p). (1)
Theorem 1. For x = y - (b/3), and the p,q of
(1) we have the identity

x3+bx2+cx+d-y3+py+q. (2)

2. Roots of the reduced cubic. For the re-
duced cubic (2), we define W = (',;:/3)3 + (q/2)2, and
for the sake of uniformity,

W2 120 40

- q/2 1£ p = O.

V=

Note: a.l/ % means the Principal root of 2" - a, the
Principal root of any equation referring to ite

greatest real root, if any, otherwise to the non-
real root of greatest magnitude, and least argument
8 on (o°,360°).

We verify at once the general relations

V2 2 W, and (-q/2¢V)(-q/2-V) = (-p/3). (3)
Now if p = 0, (2) reads y3 4+ q = 0, its roots
being H = (-q)™ 3, wH, and w%i, where

W o (-1+1J§)/2, u)2 = (-1-1J'3')/2, and u)3 = 1.
Suppose P ¢ O in the reduced cubic (2), let y

be one of its roots, and z the principal root of the

quadratic z°> - vz - (p/3) = 0, so that z ¢ 0, and

y =2z - (p/32). (4)
Substitution of (k) in (2) shows that
2 4 az> - (p/3)3 = {23+(¢/2)1% - W = 0.
Hence z must satisfy
zas-q/2+V or z3a-q/2-V.

Since p ¥ O in (3), each factor has 3 distinct cube
roots, B, and Iy B = 1,2,3, z being one of these.
Let




Houiy = (-a/2)Y3, (5)

Then the 3 distinct numbers { = HJm all satisfy

¢3 = (-p/3)3 vy (3), and some one must be - p/3

itself. We choose Jl = J where

J = (-p/3)/8 (6)
and 1list the Hm’ Jm in the order

H = H, wH, wH; I, = waJ, wJ (n

noting thet all H J = - /3. Since z must be one

of the numbers (7), the original rocot y must be, by
(4),. one of the numbers

Yy = Hy + I m=1,2,3. (8)
The formulas (5), (6), (7), (8) actually yield
the roots in general, as shown in
Theorem 2. A reduced cubic satisfies the iden-

tity
Y+ mytam ey ) eys) 9)
vhere y, = H+ J, ¥, an+w2J, 3 -waH-HnJ
H o= (-q/a+v)l/3, J = (-p/3)/H.

Proof.
functions:

(10)

We need only compute the symmetric

oy, = (1twtw®) (5+3) = 0
Zyy¥p = vy (yty3) + (vp¥5)

= (wie®) (B8+0)2 + [}12+(w+wa)HJ+J2}

a - (H+J)2 + [H2-HJ+J2} = - 3HS = p
¥ (vys) = (B+3) [Ho-HI+7) = B + 33

= (-q/2+V) + (-Q/Q-V) = -~ Q.

Note here that J5 = (-p/3)3/83 =
(-p/3)3/(-a/24v) = (-a/2-v) by (3).

3. The cubic discriminant. The discriminant

A of a polynomial of degree n with roots Z)y0e0,2
is defined as

n

a=s 1 (zr-zs)a

l=r<ssn
end is invariant under a translation of the roots.
Theorem 3. The discriminant of the cubics (2)

is

A3 = - (2.

Proof. From Th. 2, we compute

¥, - ¥, = (10)E - (LwkT = (10)(Ew°))
vy - 3= 1P - (1ePhd = (10®) (5wd)
¥p - ¥3 = u®)E - @0®)7 = o®)(E-2).
Since (1<w)(1w3) = 3, w - w> = /3 , and

(H=0) (H-wT) (Bw2T) = B - B = (-q/24V) = (-qf2-V)

= 2V, we find A, = (31./3')2(1+v2) = - k(2TW. (ct.

(3).)
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4. Nature of the roots of a real cubic. If
all roots of & cubic are real and distinct, its dis-
criminant A is obviously positive, and zero if any
root is repeated.

If one root r is real, and two
form & conjugate nonreal pair z,z, then

A= [(r-z)(r-;)(z-_z.)]a = {[r-z]acei'[(z)}a < 0.

Theorem 4. The nature of the roots of the real
cubics (2) is indicated by the sign of their cormon
discriminant thus:

I. A3 > 0 (W < 0) implies 3 real distinct

roots.

II. A3=0 (W = 0) implies 3 real roots with

duplication.
III. 8y < 0 (W > 0) implies one real root and a
nonreal conjugate pair.

Proof. The cases at the right are the only pos-

sibilities for a real cubic.

5. Calculation of the cubic roots.
reduced cubic, the roots may be written more simply,

For a real

under these cases:

W< 0. (p< O necessarily.) Here,
v-wlaaia, 8>0, and - qf2 + V = - q/2 + i8
= r{cosg+ 1 8in ) for r = [(-q/2)2+82}*- {(-p/3)§}
> 0 and @= arc cos (-q/2)/r on (0°,180°). Hence
Heod (cosg/3+1 8in §/3), and J = H (since HH
= - p/3). The roots ¥, in Th. 2 ave then 2R(k),
2R(wE), 2RWH), L.e.,

Case I.

3

Vg = 2rt/3 cos V"
vhere ¥, = 8/3 € (0%,60°), ¥, = 120° + 8/3 € (120°,
180°), and ¥y = 240° + /3 € (240°,300°). Since
con*a-cos(360°-v3) =c08(120°-9/3), we may write the
3 real roots in the decressing order




VY. 2('p/3)§008{9/3312°°'9/3:12°°+9/3}

with angles on the intervals (0°,60°), (60°,120°),
(120°,180°) , respectively.

Case II. W= 0. (p= O necessarily.) In
either case, we verify that V= 0, 80 H = (-q/2)§,
J = H (since HoE = {(a/2)3% = - p/3). The roots
are therefore H + H = 2H, a.nde+w%1-w2H+wH
= - H. Since (q/2)2 - (-p/3)3 £ 0, we prefer to
compute X ® - § = (sgn g){-p/3)¥, and 1ist the roots
as K,K, - 2K.

Case III. W > O. Here, one verifies
/2 ¢ V40 (for p=0 or not), so

H= (..q/ew)it 0 and T = (-p/3)/H¥EE

(sinceJ3--q/2 ~V;¢-q/2+V=H3). The roots
are therefore H + J (real) and &{-(H+J) + L/3(8-J)]
(conjugate nonreal).

| At s it ettt ettt e’
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x +bx2+cx+dxy 4+ py+ qwhere X =y -~ b/3

relates the roots, and p=c «~ (b2/3),
q =4 - (b/9){ct2p).

1/2

W/ for p£ O

we (/33 + (@/2)% ve
-q/2 for p = 0.

I. W< O (p<o0) @=arc cosl(-a/2)/P] € (0°,18°),
Px (-o/3)%,
y=2P cos{9/3;120%9/3} resl, distinct, decreasing.
II. W=0 (p=0) y = XX, -2K, X = (sgn q)P,
P = (-p/3)2.

Specifically, “Pm -P< 0« 2P for q< O
«Pm -Pa0a=2P for g =0
“2P<O0O<P=aP for q > 0.

oI, w>0. A= (-a/2ev)¥ f 0, 7a(-p/3)/u fE
y = H+J, #-(@I)e1/3(H-T)}.

Note that case III is the only ome involving &
cube root, or reference to the definition of V.

6. The reduced quartic of a quartic.
Taylor expansion of the complex quartic

In the

F(x) = E + DX 4 CX® + BXO + X'= EI;F(k) (xo)(x-xo)k/k!

one has F(3)(Xo) = 6B + 24X = 0 for X = - B/, and
then

Qs F(x )/21 = C - (3/2)(8/2)%,
Rw F/(x ) = D+ (B/2) (8/2)-c}

S « F(x) = E - (1/16)(B/2){5D-C(B/2)+3R} . (11)

Thearem 5. For X = Y ~ (B/4), and the Q,R,S
of (11), we have the identity
xl‘+nx3+cx2+nx+E-Y"'+Q1r2+ay+s. (12)

7. Quadratic factorization of the reduced
quartic. We assume R ¢ 0 in (12) until §10, and
seek numbers k ¢ 0,4,m such that

v + QYP+RY + 5 = (Yrkyss) (Y-kven) (13)

shall be an identity in Y. For this we require

n+slak+Q m-LaRk m=S

l.e., 24 = X2+ Q - BR/k, 2m = K> + Q + R/k, with

product k* + 20 + @2 - B°/i2 = s, so that

© 4 20 + (Q2-4s)® - BZ = 0. The desired k must

therefore satisfy K u x, where x 18 & root {neces-
sarily nonzero) of the cubic

£(x) = 3 4 2Qx2 + (Q‘?-us Ix - 32;

R #O. (14)
Conversely, for any such xl’kl’ and the corre~
sponding 4,,m,, (13) splits into the two quadratic
factors
(v )? - 3(1e0);

with the roots

(¥-3k)? - 3(1-0)

Y dkam0D); pagar?) (15)
where we have set

Te - (x1+2q); U= 23/1:1. (16)

8. The quartic discriminant. Since

2
X+ Xy + X3 2 - 2Q and (xléx;xs) = R° #£ 0 for
the roots x of (14), in any fixed order, we may de-

fine kl = xlé, k2 = xak, and k

3 = 3 x3é so that

k1k2k3 = R, thus obtaining the relations
= k2 2,
'J.‘—k2 +k3, U-2k2k3
2, 2
and hence T + U = (k2+k3) i T-Um (kz-k3) . an

Note that ('mv)’b = & (k2+k3) and (T-U)é =+ (ka-k3).

The roots Yn in (15) may theréfore be expressed in




the form
N2 ™ Hogrlghegl) Yy, = Higrlii)} (0)

(ve read the upper sign for the 1lst subscript; the
signs here are not necessarily correlated with
those in (15)).
An obvious computation now shows that
2
2 2.2 2
"ku(Yt'Yu) ™ s (kr'ks) = "xs(xr'xs) » aad

we have

Theorem 6. The discriminant All- of the quar-
tics (12):

Kt EX34OX4DXAE = Yl‘+Qy2+RY+s, R #0, X = Y-(B/4),
is equal to A3, the discriminent of the cubics
£(x) = x3 + 20x° + (Q2-48)x - R°

3

(19)

3

= X +bx2+cx+d!y + py + q

where x = y -~ b/3, p=c - (b2/3): q = d-(b/9)(e+2p),
= -4(27W, with W = (p/3)3+(a/2)%.

namely, A = Ak = A3

Moreover, in the notation defined, the roots Yn of
(12) may be expressed in the equivalent forms (15)
and (18).

9. Roots of the real quartic. The roots x
of {19) are here restricted by the condition

xlxzx3 = Ra > 0, which implies at least one posi-

tive real root, end (--+), (+++) as the only sign
possibilities when a1l 3 are real. We now choose
notation so that

1. is a largest positive real root, and

*

X] & X, 2 X, when all are real (W= 0). IfW>O,

we take x, with argument on (00,1800), and X3 = ;2

-xt &
2. In ell cases, k, x5 Ky = x5, k3
= 3 x3* so that k1k2k3 = R, a8 before. This in-
sures the formulas (17), (18).

With these provisos, we give & complete deter-
mination of the roots Y of (12), using the results

of §5 without explicit reference.
I. W< 0 (3 real distinct xi).
(A) If condition CI: {Q < O and

Q2 - 48 > 0} holds, then £(x) in (19) alternates in
sign, and no root X is negative. Hence we must

ha.vexl>x2>x3>0

-x? %

k) =X, >k, =X, >|k3]>o,

k. = (sgn R)x3h.

There aere 4 distinct real roots, namely

1,2 = H-kli(k2+k3)] = %f-lﬁi('l‘ﬂl)i]

Yy = #ligx(ly-ks)} = %{kf:('r-u)*} .

The signs in the two forms are here correlated, and

the first shows that Y3

order obtaining for the corresponding Xn-

> Yh_> Yl> Y2, the same

Computation: As in §5, we obtain y, = 2P cos8/3,
andxl-yl-b/3>0, andkl-x15> 0, in any
case., Now:

Method I. One mey compute T,U from (16), with
T+ U>0 (cf. (17)), and the Y, from the second
form above.

Method II. One may compute as in §5

y,=2P cos(120°-/3) = -P(cosg/3 + /3 sin §/3) >
y3=2P c08(120°49/3) = -P(cos6/3 - /3 sin 6/3), end
obtain x; > X, = ¥y, - b/3>x3=y3 - b/3 >0,

k, = xeé, k3 = (8sgn R)x35‘ and the Y from the first

form above. (Method II involves two more cosines,

or one more square root, sin §/3 = +(l-cosae/3)i,
than Method I.)

(B) If CI fails, the x are not all posi-
tive, since this would imply 2Q = - Ix, < O and

Q2 -iS = lex2 > 0. Hence, in this case, we must
3 ¥
ha.vex1>0>x2>x3, k = x%, k2-i|x2| , and

k3 = - (sgn R)i|x3|é. We then see from (18) that

(Y,,Y,) and (Y3,Yu) are different conjugate imagi-

nary pairs, namely
LPEE CREUPALACESIPRLY
Yy ), = il x| e (oga )| B}
If required, these may be cbtained by computing

|x2|i, |x3|k, as in Method II above, or from (15),
(16); i.e.,




Y = g{-klﬂ[-(m)]i}

picsil-(r-u)1h
vwhere = (T4U) > O (cf. (17)). Here the signs may
not be correlated with those of Y1,2’ Y3,h°
II. W =0 (3 real x , with duplication).

The x sign poseibilities are (-—+) and (+++). On
the other hand, we know from §5 that the X, must
be of the forms:

1. ts-P-b/3<8=2P-b/31£q<0O

-~ +

t s
s ;
2, t=-b/3=s if g =0
ts
A

3. 8mm-2P-b/3<ctaP-b/31iLg>0

S ¥

+

+ + +
where 8 and t denote roots of multiplicity 1 and 2

respectively, and P o (-p/s)b =z 0. It therefore
appears that the sign alternative (-—+) occurs if
and only if q < 0 and t < O. Thus we have agein
two subct;.ses; the simpler we treat first as (sict)
(B). If condition CTI: {q < O and t < O}

holds, thens-xl>0>x2=x3-t,k1=,,/§,
k, = L/|:| s k3= - (sgn R)kz. The roots (18) ere

then
(a) For R> 0, Y o= J/8/2 dcublet,
Y= JB8/2 £ i./[q
(o) For R< O, Yo" - J8f2 & 1./[?,

Yo J8/2 doublet.

Hence two Yn are real and equal, and tvo are non-~

real conjugates.

(A) If condition CII fails, then we must have

the sign case (+++), with X B Xy 2 x3> 0, and

k = xlk, k2 - xaé, k3 = (sgn R)x3k, as in (IA).

All Yn are real, but with duplication, since 8, = 0.

In detail, we have the following possibilities in
(18):

(1) g<o0; s-x1>x2-x3-t>o;k1aﬁ,
ky = 8, &y = (sgn Rk,
(e) R > 0; yl’en-ﬁ/etﬁ,
Yo = f8/2 doublet

{b) R< 0; Yl,z =

Yo, =NB/2 5 E -

(2)q-0;s-x1(=x2=x3

- J8/2 doublet,

=t} >0;

I =8 =k =/E, k= (sgn R,

(a) R > 0; Vo= J8/2, - 3/s/2, Yy = J8/2
(b) R<O; Y o= J8/2, Yy = 3/8/2, - .faf2.

(3)q>0;t=xl-x2>x3=>o;

Iy =8 =Xk, &y = (sgn RWB
(8) R>0; Y, ,=/8/2, -.f8/2- &,
Yo, = - NE2+ B2
?
(b) R< O; Yy o= J8/2, Je/2 - &,
Y3u"~/;/2+~[€: ‘JE/2°
2’
Hence, 1f q s 0, the Yn are
(a) for R > 0, ./s/2 doublet, - J3/2 + &
(b) for R < 0, ~./8/2 doublet, J5/2 + Jt.
Ifq=0, thentheYnare
(e) for R > O, ./8/2 triplet, - 3/3/2
(b) for R < 0, - ./8/2 triplet, 3/3/2.
III. W>0 (x;L > 03 XXy = §2 nonreal conju-
gates). Under our provisos, we shall have
k1=xl§>0’ k2=x2§=§+ in with £,n>0, and

ky = (egn R)Za = (sgn R)(£-ni). The roots (18) are
then
(a) For R > 0; Yl’a = Q{-klizg},

Y, ) = dkE2in}.




(b) For R < 0; Y, = ¥ -k#2in},
2
Yiu ™ Bk Y.

Thus there are two Jdistinct real roots, and a pair

of nonreal conjugates.

Computation: As in §9, we find H = (-q/2+V)§ real
#0, J= («p/3)/H real # 1, y,=H+J, and
X, =y - b/3 > 0, k) = ,/xl > 0. Now:

{8) For R>0; T+ U= (k2+k3)2 = (2§)2 > 0,
€ > 0 implies 2¢ = ('m-u)é > 0.

Similarly, T - U = (ke-k3)2 = (2111)2

= - (27)? implies 2n = [-(r-0) 1 > o.
{(b) For R< O; one finds 29 = [-('MU)]é > 0,
X = (T-U)i > 0 in the same fashion.

This gives the 2£,2n, required for the Yn’ in terms
of T + U computed from (16).

Schematics of real roots of the real quartic.

o X3 X X,

I. W<O (A)

X X XX

X; X, O X

(B) + + +
Xa
[+ X, X X
IT. W=0 (A) AN
{q<o) t s
X, " —
(o] szzx(
(qg=0) ts
X, +
0 X3 XX
(q>o0) s t
Xa

III.

(8) X%, O X

X

W>0

The )(n are not ordered except in IA.

10. Procedure for real roots of the real quar-
b 3

+CX2+DX+E=0.

tic X + BX
1. Q=C- (3/2)(8/2)% RuD+ (8/2){ (B/2)2~C},
S = E - (1/16)(B/2){5D-C(B/2)+3R]} .
2. R#0-(3) R=0- (13).
3. b=, caQ’-bS, d=-R5 puc- (67/3),
g = - (b/9)(ct2p), W= (9/3)3 + (a/2)%
L. ws=o0-(5) W >0~ (12).
5. P=(-p/3)} W<0=(6) W=o0-(8).
6. {b<c0&ec>0} - (7)
fb<0&cs 0} or foz O} ~ No real X .
7. § =arc cos(-a/2)/P3 € (0°,180°)
x = - bf3 + 2Pcosd/3, k = Jx
T = - (x+b), U = 2R/k
Y) o = A -ka/TT} Y, | = ¥ TTY,
ooty
8. Q< 0~ 8= 2P-b/3, t = ~P-b/3
{q Z 0 - 8 = -2P-b/3, t = P-b/3 }k = o/2 = (9).
9. {g<0&t<0} ~ (10)
fa<0&t=z=0} or {gz 0} - (11).
10. (R>0 =X = -k - B/l) (doublet)
{R <0-Xa=k- (B/4) (doublet).
1. {gfo0} - (11.1) ({q=o0}~ (11.2)
1.1 k' =/t~ {MY B k’-l&k'} —~X=Y-B/k (1st doublet)
R<O+Y = -k, kik’




11.2 (R>0~ Y=k, =3k
- X=wY-B/4 (1lst triplet).

R<O—=Y= -k, 3k

3
-q/re} - = o/,

12. (ppO-sVa=W
{puO-tV-

[
[}

(-p/3)/H, y = BT = x = y-b/3, k = Jx ,
- (x#b), U = 2R/k

R> 0= Y = f k)47
{R<o~y=§{uﬁ-‘ﬁ

=]
]

Vv

}~x=Y-B/u

(two real, distinct).

The following provide the resl roots in the trivial
case R = O.

13. b=@/2, cab> -5 ().

. c<0(NorealXi) ¢c=0-(15) e¢> 0 - (18).
15. b>0(NorealXi) b=0- (16) b< 0= (17).
= - Bf4
g = £ /0 - (B/k)

18, A=, e, r=-1b+4a-(19).

6. X (1 4-tuplet).

i
17. X (2 distinct doublets).

19. r< 0 (No realxi) r=0- (20) r>0- (21).
20. X, = - (B/4) (1 resl doublet).

2. B=-b-4d 8<0-(22) 8a0~ (23)

8> 0 ~ (21“)0
22. x, =~ (B/4) ¢ Jr (2 distinct singlets).
= - (B/4) + {o, 'ﬁ:}

23. X

(3 distinct,
1st a doublet).

2h. x, = - (B/4) £+ J7, - (B/4) £./8 (& distinct).

11. Equation of the elliptical torus. If
r,s,a > 0, and y°=<>= O are arbitrary, then

(x-a)2/2 & (y-yo)z/ s% = 1 is the equation of an

Yo ky

ellipse in the X,Y-plane, centered at (a,yo), with
X,Y semi-axis lengths r and s. Rotation of the el-
lipse about the Y-axis generates an elliptical torus,
which we call proper if a > r, and degenerate if

a8 ¥ r. The two have essentially different "primi-
tive" equations:

{(x2+z2)i-a] 2/x'2 + (y-y°)2/82 =1 a>r (a)

3 (20)
[(x2+z2) $a.}2/r2 + (}’-}’0)2/52 =1 asr. (b)

In the degenerate case, the upper sign ylelds the
equation of the outer surface, the lower, that of
In the limiting case a = O, these sur-
faces coincide, and (20b) is an ellipsoid of revo-
lution.

the inner.

Vriting p = r°/a° >0, p 2 1, equstions (20)
may be written in the form
2)’«’

2a({x°+z a>r
2

x +22+py2~2py°y+no = o (21)
)

t2a.(x2+z as

where Bo = 32 - r2 + pyoa. It 1s notable that, in

squaring both sides, an extraneous factor, with no
real solution x,y,z, may be introduced in the first
case only, so in either case, a point (x,¥,z) is on
the complete surface if and only if

2
[x2+z2+py2-20y 4B} = A (x2+22),' azr (22)
o’ o o

vhere Ao = ld-ae.

AV

12. Intersection of & line with the torus.
A point (x,y,z) on the line {x = Z4aX, y = m8X,
z = (+yX;-® < X < o}, through the point (&,n,(),

with direction (a,8,v), a.2+32+~(2 a 1, lies on the
torus (22) if and only if X satisfies the quartic
equation

([(1-62)+982]x2 + [2(ag+vC) + 208n - 208y Ix
2
+ [g%¢3eon®-20my #8,]}
a Aot(l-aa)x2+2(ag+yg )x+(g2+g2) ]. (23)

Setting F = 1-32, G = Fﬂ)Ba, L = 2(aEw(),
M= L+208(n-y ), T = g%c?,

Um 'I\i-p'n(n-2y°)+Bo, (23) becomes

(@xPnxav)® = A_(FXP4Ix+T). Since ¢ = (1-83(1)+8%(p)




Bx2, X, =Y, - 1/2 alweys.

Examples for & debug.
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is '"barycentric", with 0 = 82 s 1, G is between 1
and p > O, hence G > 0. Defining M’ = M/G,
U'=U/G, A= AO/GZ, the latter quartic becomes

2,02 P 2 2
(XM %4UY) = A(FX“+IX+T), or

x‘*+2M'x3+(M’2+zu'-AF)X2+(2M’U’-AL)X+(U'2-AT) a 0.

(24)

Theorem 7. All points (x,y,z) of intersection
of the ray {x = Z+aX, y = n#8X, z = (+yX; X > 0O}
with the torus (22) are determined by the positive
real roots X of the quartic
Xu+BX3+CX2+DX+Ea0
vwhere we set

2
Fal82, La=2(EtyC), T =245,
2 2

G=TFpB, A=A/fe", M =(L+2p8(n-y )}/G,

U’ = {on(n-2y 4B} /G, and

Ba2W, CaMZ42U'-AF, D = 2M'U’-AL, E a U'2-AT.

Here A = 1&&2, B, = az-rawyi are stored constants

of the torus.
Finally, we state without proof the obvious

Theorem 8. (a) An arbitrary point (x,y,z) is
(properly) inside the outer surface of a torus, if
and only if

3
£+ 22 + pya - 2y ¥ + B < 2:1(::2-;-22 .

(v) A point (x,y,z), on a degenerate torus
(a < r) is on the (open) inner surface if and only
if

x2+z2+py2-2py°y+ Bo<0-

Thus the points (x,y,z) of intersection of a
ray with e degenerate torus may be tested for the
part of the surface on which they lie.
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