LOS ALAMOS SCIENTIFIC LABORATORY of the
 University of California
 LOS ALAMOS • NEW MEXICO

Intersection of a Ray with a Surface of Third or Fourth Degree

by
E. D. Cashwell
C. J. Everett

INTERSECTION OF A RAY WITH A SURPACE

OF TKIRD OR FOUTIH DEGREW
by
E. D. Cashwell
C. J. Everett

ABSTRACT

It has become desirable to include, in the geometric subroutine of Monte Carlo programs, a procedure for finding the intersections of a line of flight with a toroidal surface. Such problems, for surfaces of third or fourth degree, depend in an obvious way on the solution of cubic or quartic equations. Although the Latter subject is centuries old, we give here, without apology, a careful exposition of its details, required for machine computation, and not to be found elsewhere. A routine is then derived for solution of the required torus-intersection problem.

1. The reduced cubic of a cubic. In the Taylor expension of the complex cublc

$$
f(x)=d+c x+b x^{2}+x^{3}=\sum_{0}^{3} f^{(k)}\left(x_{0}\right)\left(x-x_{0}\right)^{k} / k!
$$

one has $f^{\prime \prime}\left(x_{0}\right)=2 b+6 x_{0}=0$ for $x_{0}=-b / 3$, and then,

$$
\begin{align*}
& p \equiv f^{\prime}\left(x_{0}\right)=c-\left(b^{2} / 3\right) \\
& q \equiv f\left(x_{0}\right)=d-(b / 9)(c+2 p) \tag{1}
\end{align*}
$$

Theorem 1. For $x=y-(b / 3)$, and the p, q of (1) we have the identity

$$
\begin{equation*}
x^{3}+b x^{2}+c x+d=y^{3}+p y+q \tag{2}
\end{equation*}
$$

2. Roots of the reduced cubic. For the reduced cubic (2), we define $W \equiv(p / 3)^{3}+(q / a)^{2}$, and for the sake of uniformity,

$$
V=\left\{\begin{array}{l}
w^{1 / 2} \text { if } p \neq 0 \\
-q / 2 \text { if } p=0
\end{array}\right.
$$

Note: $a^{1 / n}$ means the principal root of $z^{n}=a$, the principal root of any equation referring to its
greatest real root, if any, otherwise to the nonreal root of greatest magnitude, and least argment θ on $\left(0^{\circ}, 360^{\circ}\right)$.

We verify at once the general relations
$v^{2}=W$, and $(-q / 2+v)(-q / 2-v)=(-p / 3)^{3}$.
Now if $p=0$, (2) reads $y^{3}+q=0$, its roots being $H=(-q)^{I / 3}, \omega H$, and $\omega^{2} H$, where
$\omega=(-1+i \sqrt{3}) / 2, \omega^{2}=(-1-i \sqrt{3}) / 2$, and $\omega^{3}=1$. Suppose $p \neq 0$ in the reduced cubic (2), let y be one of its roots, and z the principal root of the quadratic $z^{2}-y z-(p / 3)=0$, so that $z \neq 0$, and

$$
\begin{equation*}
y=z-(p / 3 z) \tag{4}
\end{equation*}
$$

Substitution of (4) in (2) shows that

$$
z^{6}+q z^{3}-(p / 3)^{3}=\left\{z^{3}+(q / 2)\right\}^{2}-w=0
$$

Hence z must satisfy

$$
z^{3}=-q / 2+v \text { or } z^{3}=-q / 2-v
$$

Since $p \neq 0$ in (3), each factor has 3 distinct cube roots, H_{m} and $J_{m}, m=1,2,3, z$ being one of these. Let

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{1}=(-q / 2+\mathrm{V})^{1 / 3} . \tag{5}
\end{equation*}
$$

Then the 3 distinct numbers $\zeta=\mathrm{HJ}_{\mathrm{m}}$ aill satisfy $\zeta^{3}=(-\mathrm{p} / 3)^{3}$ by (3), and some one must be $-\mathrm{p} / 3$ itself. We choose $J_{1}=J$ where

$$
\begin{equation*}
J=(-p / 3) / \text { н } \tag{6}
\end{equation*}
$$

and list the H_{m}, J_{m} in the order

$$
\begin{equation*}
H_{m}=H, \omega H, \omega^{2} H ; J_{m}=J, \omega^{2} J, \omega J \tag{7}
\end{equation*}
$$

noting that all $H_{m} J_{m}=-p / 3$. Since z must be one of the numbers (7), the original root y must be, by (4), one of the numbers

$$
\begin{equation*}
y_{m}=H_{m}+J_{m} ; \quad m=1,2,3 \tag{8}
\end{equation*}
$$

The formulas (5), (6), (7), (8) actually yield the roots in general, as show in

Theorem 2. A reduced cubic satisfies the identity

$$
\begin{equation*}
y^{3}+p y+q \equiv\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right) \tag{9}
\end{equation*}
$$

where $y_{1}=H+J, y_{2}=\omega H+\omega^{2} J, y_{3}=\omega^{2} H+\omega J$
$H=(-q / 2+V)^{l / 3}, \quad J=(-p / 3) / H$.
Proof. We need only compute the symmetric functions:
$\Sigma_{y_{1}}=\left(1+w+w^{2}\right)(H+J)=0$
$\sum_{y_{1} y_{2}}=y_{1}\left(y_{2}+y_{3}\right)+\left(y_{2} y_{3}\right)$
$=\left(\omega+\omega^{2}\right)(H+J)^{2}+\left\{H^{2}+\left(w+w^{2}\right) H J+J^{2}\right\}$
a- $(\mathrm{H}+\mathrm{J})^{2}+\left\{\mathrm{H}^{2}-\mathrm{HJ}+\mathrm{J}^{2}\right\}=-3 \mathrm{HJ}=\mathrm{p}$
$y_{1}\left(\mathrm{y}_{2} \mathrm{y}_{3}\right)=(\mathrm{H}+\mathrm{J})\left\{\mathrm{H}^{2}-\mathrm{HJ}+\mathrm{J}^{2}\right\}=\mathrm{H}^{3}+\mathrm{J}^{3}$
$=(-q / 2+v)+(-q / 2-v)=-q$.
Note here that $J^{3}=(-\mathrm{p} / 3)^{3} / \mathrm{H}^{3}=$
$(-p / 3)^{3} /(-q / 2+v)=(-q / 2-v)$ by (3).
3. The cubic discriminant. The discriminant Δ of a polynomial of degree n with roots z_{1}, \cdots, z_{n} is defined as

$$
\Delta \equiv \prod_{1 \leq r<s \leq n}\left(z_{r}-z_{B}\right)^{2}
$$

and is invariant under a translation of the roots.
Theorem 3. The discriminant of the cubics (2) is

$$
\Delta_{3}=-4(27) W
$$

Proof. From Th. 2, we compute
$y_{1}-y_{2}=(1-\omega) H-(1-w) \omega^{2} J=(1-\omega)\left(H \sim w^{2} J\right)$
$y_{1}-y_{3}=\left(1-\omega^{2}\right)_{H}-\left(1-\omega^{2}\right)_{U J}=\left(1-\omega^{2}\right)(H-\omega J)$
$y_{2}-y_{3}=\left(w-w^{2}\right) H-\left(w-w^{2}\right) J=\left(w-w^{2}\right)(B-J)$.
Since $(1-w)\left(1-w^{2}\right)=3, w-w^{2}=1 \sqrt{3}$, and $(H-J)(H-w J)\left(H-w^{2} J\right)=H^{3}-J^{3}=(-q / 2+v)-(-q / 2-v)$ $=2 \mathrm{~V}$, we find $\Delta_{3}=(3 i \sqrt{3})^{2}\left(4 \mathrm{~V}^{2}\right)=-4(27) \mathrm{w}$. (cf. (3).)
4. Nature of the roots of a real cubic. If all roots of a cubic are reel and distinct, its discriminant Δ is obviously positive, and zero if any root is repented. If one root r is real, and two form a conjugate nonreal pair z, \vec{z}, then $\Delta=\{(r-z)(r-\vec{z})(z-\vec{z})\}^{2}=\left\{|r-z|^{2} \cdot 21 I(z)\right\}^{2}<0$.

Theorem 4. The nature of the roots of the real cubics (2) is indicated by the sign of their conmon discriminant thus:
I. $\Delta_{3}>0(W<0)$ implies 3 real distinct
roots.
II. $\Delta_{3}=0(W=0)$ implies 3 real roots with duplication.
III. $\Delta_{3}<0(\mathrm{~W}>0)$ implies one real root and a nonreal conjugate pair.

Proof. The cases at the right are the only possibilities for a real cubic.
5. Calculation of the cubic roots. For a real reduced cubic, the roots may be written more simply, under these cases:

Case I. $W<0$. ($p<0$ necessarily.) Here,
 $=r(\cos \theta+1 \sin \theta)$ for $r=\left\{(-q / 2)^{2}+\beta^{2}\right\}^{\frac{1}{2}}=\left\{(-p / 3)^{\frac{1}{2}}\right\}^{3}$ >0 and $\theta=\arccos (-q / 2) / r$ on $\left(0^{\circ}, 180^{\circ}\right)$. Hence $H=\mathrm{r}^{\frac{1}{3}}(\cos \theta / 3+1 \sin \theta / 3)$, and $J=\bar{H}($ since HH $=-p / 3)$. The roots y_{m} in $T h .2$ are then $2 R(H)$, $2 R(\omega K), 2 R\left(\omega^{2} H\right)$, i.e.,

$$
y_{m}=2 r^{1 / 3} \cos \psi_{m}
$$

Where $\psi_{1}=\theta / 3 \in\left(0^{\circ}, 60^{\circ}\right), \psi_{2}=120^{\circ}+\theta / 3 \in\left(120^{\circ}\right.$, $\left.180^{\circ}\right)$, and $\psi_{3}=240^{\circ}+\theta / 3 \in\left(240^{\circ}, 300^{\circ}\right)$. Since $\cos \psi_{3} \cos \left(360^{\circ}-\psi_{3}\right)=\cos \left(120^{\circ}-\theta / 3\right)$, we may write the 3 real roots in the decreasing order

$$
y=2(-p / 3)^{\frac{1}{2}} \cos \left[\theta / 3,120^{\circ}-\theta / 3,120^{\circ}+\theta / 3\right]
$$

with angles on the intervals $\left(0^{\circ}, 60^{\circ}\right),\left(60^{\circ}, 120^{\circ}\right)$, ($120^{\circ}, 180^{\circ}$), reapectively.

Case II. $W=0$. ($p \leq 0$ necessarily.) In either case, we verify that $V=0$, so $H=(-q / 2)^{\frac{3}{3}}$, $J=H$ (aince $\mathrm{H} \cdot \mathrm{H}=\left\{(\mathrm{q} / 2)^{2}\right\}^{\frac{1}{3}}=-\mathrm{p} / 3$). The roots are therefore $\mathrm{H}+\mathrm{H}=2 \mathrm{H}$, and $\omega \mathrm{H}+\omega^{2} \mathrm{H}=\omega^{2} \mathrm{H}+\omega \mathrm{H}$ $=-$ H. Since $(q / 2)^{2}=(-p / 3)^{3} \cong 0$, we prefer to conpute $K=-\mathrm{H}=(\operatorname{sgn} q)(-p / 3)^{\frac{1}{4}}$, and inst the roots as $K, K,-2 K$.

Case III. $W>0$. Here, one verifies $q / 2 \notin v \neq 0$ (for $p=0$ or not), so
$H=(-q / 2+V)^{\frac{1}{3}} \notin 0$ and $J=(-p / 3) / H \notin H$
(since $J^{3}=-q / 2-V \neq-q / 2+V=H^{3}$). The roots are therefore $H+J$ (real) and $\frac{1}{2}[-(H+J) \pm 1 \sqrt{3}(H-J)\}$ (conjugate nonreal).

Summery for all roots of the real cubics (2): $x^{3}+b x^{2}+c x+d \equiv y^{3}+p y+q$ where $x=y-b / 3$ relates the roots, and $p=c-\left(b^{2} / 3\right)$, $q=d-(b / 9)(c+2 p)$.
$W \equiv(p / 3)^{3}+(q / 2)^{2}, \quad v \equiv\left\{\begin{array}{l}W^{2 / 2} \text { for } p \neq 0 \\ -q / 2 \text { for } p=0 .\end{array}\right.$
I. $W<0(p<0) \quad \theta \operatorname{arcc} \cos \left[(-q / 2) / p^{3}\right] \in\left(0^{\circ}, 180^{\circ}\right)$,
$P \equiv(-p / 3)^{\frac{1}{2}}$,
$y=2 P \cos \left\{\theta / 3 ; 120^{\circ}{ }^{\circ} \theta / 3\right\}$ real, distinct, decreasing.
II. $W=0(p \leqq 0) \quad \mathrm{y}=\mathrm{K}, \mathrm{K},-2 \mathrm{~K}, \mathrm{~K}=(\operatorname{sgn} \mathrm{q}) \mathrm{P}$,
$P=(-p / 3)^{\frac{1}{2}}$.
Specifically,

$-P=-P<0<2 P$	for $q<0$
$-P=-P=0=2 P$	for $q=0$
$-2 P<0<P=P$	for $q>0$.

III. $K>0$. $\mathrm{H}=(-\mathrm{q} / 2+\mathrm{V})^{\frac{1}{3}} \neq 0, \mathrm{~J}=(-\mathrm{p} / 3) / \mathrm{H} \neq \mathrm{H}$

$$
y=H+J, \frac{1}{8}\left\{-(H+J)_{ \pm 1} \sqrt{3}(H-J)\right\} .
$$

Note that case III is the only one involving a cube root, or reference to the definition of V .
6. The reduced quartic of a quartic. In the Taylor expansion of the complex quartic $F(x)=E+D X+C X^{2}+B X^{3}+X^{4}=\sum_{0}^{4} F(k)\left(X_{0}\right)\left(X-X_{0}\right)^{k} / k!$ one has $F^{(3)}\left(X_{0}\right)=6 B+24 X_{0}=0$ for $X_{0}=-B / 4$, and then
$Q \equiv F^{\prime \prime}\left(x_{0}\right) / 21=C-(3 / 2)(B / 2)^{2}$,
$R=F^{\prime}\left(X_{0}\right)=D+(B / 2)\left\{(B / 2)^{2}-C\right\}$
$S=F\left(X_{0}\right)=E-(1 / 16)(B / 2)[5 D-C(B / 2)+3 R]$.
Theoren 5. For $X=Y-(B / 4)$, and the Q, R, S of (II), we have the identity
$X^{4}+B X^{3}+C X^{2}+D X+E=Y^{4}+Q Y^{2}+R Y+S$.

7. Quadratic factorization of the reduced

quartic. We assume $R \notin O$ in (12) until $\S 10$, and aeek numbers $k \nmid 0,1$ sm such that
$Y^{4}+Q Y^{2}+R Y+S \equiv\left(Y^{2}+k Y+l\right)\left(Y^{2}-k Y+m\right)$
shall be an identity in Y. For this we require
$m+\ell=k^{2}+Q, \quad m-\ell=R / k, \quad m \ell=S$
1.e., $2 l=k^{2}+Q-R / k, 2 m=k^{2}+Q+R / k$, with
product $k^{4}+2 Q k^{2}+Q^{2}-R^{2} / k^{2}=45$, so that
$k^{6}+2 Q k^{4}+\left(Q^{2}-45\right) k^{2}-R^{2}=0$. The desired k must therefore satisfy $k^{2}=x$, where x is a root (necessarily nonzero) of the cuble

$$
\begin{equation*}
f(x)=x^{3}+2 Q x^{2}+\left(Q^{2}-4 S\right) x-R^{2} ; \quad R \notin 0 \tag{14}
\end{equation*}
$$

Conversely, for any such x_{1}, k_{1}, and the corresponding d_{1}, m_{1}, (13) splits into the two quadratic factors

$$
\left(Y+\frac{1}{2} k_{1}\right)^{2}-\frac{1}{4}(T+U) ; \quad\left(Y-\frac{1}{2} k_{1}\right)^{2}-\frac{1}{4}(T-U)
$$

with the roots

$$
\begin{equation*}
Y_{n}: \quad \frac{1}{2}\left(-k_{1} \pm(T+U)^{\frac{1}{2}}\right) ; \quad \frac{1}{2}\left(k_{1} \pm(T-U)^{\frac{1}{2}}\right) \tag{15}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
T=-\left(x_{1}+2 Q\right) ; \quad U=2 R / k_{1} \tag{I6}
\end{equation*}
$$

8. The quaxtic diacriminant. Since
$x_{1}+x_{2}+x_{3}=-2 Q$ and $\left(x_{1}^{\frac{1}{2}} x_{2}^{\frac{1}{2}} x_{3}^{\frac{1}{2}}\right)^{2}=R^{2} \neq 0$ for the roots x_{n} of (14), in any fixed order, we may define $k_{1}=x_{1}^{\frac{1}{2}}, k_{2}=x_{2}^{\frac{1}{2}}$, and $k_{3}= \pm x_{3}^{\frac{1}{2}}$ so that $k_{1} k_{2} k_{3}=R$, thus obtaining the relations

$$
\begin{equation*}
T=k_{2}^{2}+k_{3}^{2} ; \quad U=2 k_{2} k_{3} \tag{17}
\end{equation*}
$$

and hence $T+U=\left(k_{2}+k_{3}\right)^{2} ; T-U=\left(k_{2}-k_{3}\right)^{2}$.
Note that $(T+U)^{\frac{1}{e}}= \pm\left(k_{2}+k_{3}\right)$ and $(T-U)^{\frac{1}{2}}= \pm\left(k_{2}-k_{3}\right)$. The roots Y_{n} in (15) may therifore be expressed in
the form

$$
\begin{equation*}
Y_{1,2}=\frac{1}{2}\left\{-k_{1} \pm\left(k_{2}+k_{3}\right)\right\} ; \quad Y_{3,4}=\frac{1}{2}\left\{k_{1} \pm\left(k_{2}-k_{3}\right)\right\} \tag{18}
\end{equation*}
$$

(we read the upper sign for the lst subscript; the signs here are not necessarily correlated with those in (15)).

An obvious computation now shows that
$\pi_{t<u}\left(Y_{t}-Y_{u}\right)^{2}=\pi_{r<s}\left(k_{r}^{2}-x_{s}^{2}\right)^{2}=\pi_{r<s}\left(x_{r}-x_{s}\right)^{2}$, and พe have

Theorem 6. The discriminant Δ_{4} of the quartics (12):
$X^{4}+B X^{3}+C X^{2}+D X+E \equiv Y^{4}+Q Y^{2}+R Y+S, R \neq 0, X \equiv Y-(B / 4)$, is equal to Δ_{3}, the discriminant of the cubics

$$
\begin{align*}
f(x) & =x^{3}+2 Q x^{2}+\left(Q^{2}-4 S\right) x-R^{2} \tag{19}\\
& =x^{3}+b x^{2}+c x+d \equiv y^{3}+p y+q
\end{align*}
$$

where $x \equiv y-b / 3, p=c-\left(b^{2} / 3\right), q=d-(b / 9)(c+2 p)$, namely, $\Delta=\Delta_{4}=\Delta_{3}=-4(27) \mathrm{W}$, with $W=(p / 3)^{3}+(q / 2)^{2}$. Moreover, in the notation defined, the roots Y_{n} of (12) may be expressed in the equivalent forms (15) and (18).
9. Roots of the real quartic. The roots x_{m} of (19) are here restricted by the condition $x_{1} x_{2} x_{3}=R^{2}>0$, which implies at least one positive real root, and (-++), (++) as the only sign possibilities when all 3 are real. We now choose notation so that

1. x_{1} is a largest positive real root, and $x_{1} \geqq x_{2} \geqq x_{3}$ when all are real ($W \leqq 0$). If $W>0$, we take x_{2} with argument on ($0^{\circ}, 180^{\circ}$), and $x_{3}=\bar{x}_{2}$.
2. In all cases, $k_{1}=x_{1}^{\frac{1}{2}}, k_{2}=x_{2}^{\frac{1}{2}}, k_{3}$ $= \pm x_{3}^{\frac{1}{8}}$ so that $k_{1} k_{2} k_{3}=R$, as before. This insures the formulas (17), (18).

With these provisos, we give a complete determination of the roots Y_{n} of (12), using the results of $\S 5$ without explicit reference.
I. $H<0$ (3 real distinct x_{i}).
(A) If condition $C I:\{Q<0$ and
$\left.Q^{2}-45>0\right\}$ holds, then $f(x)$ in (19) alternates in sign, and no root x_{m} is negative. Hence we must
heve $x_{1}>x_{2}>x_{3}>0$

$$
\begin{aligned}
& k_{1}=x_{1}^{\frac{1}{2}}>k_{2}=x_{2}^{\frac{1}{2}}>\left|k_{3}\right|>0, \\
& k_{3}=(\operatorname{sgn} R) x_{3}^{\frac{1}{2}} .
\end{aligned}
$$

There are 4 distinct real roots, namely

$$
\begin{aligned}
& Y_{1,2}=\frac{1}{2}\left\{-k_{1} \pm\left(k_{2}+k_{3}\right)\right\}=\frac{1}{2}\left\{-k_{1} \pm(T+U)^{\frac{1}{2}}\right\} \\
& Y_{3,4}=\frac{1}{2}\left\{k_{1} \pm\left(k_{2}-k_{3}\right)\right\}=\frac{1}{8}\left\{k_{1} \pm(T-U)^{\frac{1}{b}}\right\}
\end{aligned}
$$

The signs in the two forms are here correlated, and the first shows that $Y_{3}>Y_{4}>Y_{1}>Y_{2}$, the same order obtaining for the corresponding X_{n}. Computation: AB in §5, we obtain $y_{1}=2 P \cos \theta / 3$, and $x_{1}=y_{1}-b / 3>0$, and $k_{1}=x_{1}^{\frac{1}{2}}>0$, in any case. Now:

Method I. One may compute T, U from (16), with $T \pm U>0$ (cf. (17)), and the Y_{n} from the second form above.

Method II. One may compute as in $\$ 5$
$y_{2}=2 P \cos \left(120^{\circ}-\theta / 3\right)=-P(\cos \theta / 3+\sqrt{3} \sin \theta / 3)>$ $y_{3}=2 P \cos \left(120^{\circ}+\theta / 3\right)=-P(\cos \theta / 3-\sqrt{3} \sin \theta / 3)$, and obtain $x_{1}>x_{2}=y_{2}-b / 3>x_{3}=y_{3}-b / 3>0$, $k_{2}=x_{2}^{\frac{1}{2}}, k_{3}=(\operatorname{sgn} R) x_{3}^{\frac{1}{b}}$ and the y_{n} from the first form above. (Method II involves two more cosines, or one more square root, $\sin \theta / 3=+\left(1-\cos ^{2} \theta / 3\right)^{\frac{1}{2}}$, than Method I.)
(B) If CI fails, the x_{m} are not all positive, since this would imply $2 Q=-\sum x_{1}<0$ and $Q^{2}-4 S=\sum x_{1} x_{2}>0$. Hence, in this case, we must have $x_{1}>0>x_{2}>x_{3}, k_{1}=x_{1} \frac{\frac{1}{b}}{}, k_{2}=1\left|x_{2}\right|^{\frac{1}{2}}$, and $k_{3}=-(\operatorname{sgn} R) i\left|x_{3}\right|^{\frac{1}{3}}$. We then see from (18) that $\left(Y_{1}, Y_{2}\right)$ and $\left(Y_{3}, Y_{4}\right)$ are different conjugate imaginaxy pairs, namely

$$
\begin{aligned}
& Y_{1,2}=\frac{1}{2}\left\{-\frac{k}{1} \pm 1\left[\left|x_{2}\right|^{\frac{1}{2}}-(\operatorname{sgn} R)\left|x_{3}\right|^{\frac{1}{2}}\right]\right\} \\
& Y_{3,4}=\frac{1}{\frac{1}{2}}\left\{k_{1} \pm i\left[\left|x_{2}\right|^{\frac{1}{2}}+(\operatorname{sgn} R)\left|x_{3}\right|^{\frac{1}{2}}\right]\right\} .
\end{aligned}
$$

If required, these may be obtained by computing $\left|x_{2}\right|^{\frac{1}{2}},\left|x_{3}\right|^{\frac{1}{2}}, ~ a s ~ i n ~ M e t h o d ~ I I ~ a b o v e, ~ o r ~ f r o m ~(15), ~$ (16); i.e.,

$$
\begin{gathered}
Y_{n}=\frac{1}{k}\left\{-k_{1} \pm 1[-(T+U)]^{\frac{1}{k}}\right\} \\
\frac{k}{k}\left[k_{1} \pm 1[-(T-U)]^{\frac{1}{k}}\right\}
\end{gathered}
$$

where $-(T \pm U)>0$ (cf. (17)). Here the aigns may not be correlated with those of $Y_{1,2}, Y_{3,4^{*}}$
II. $W=0$ (3 real x_{m}, with duplication). The $x_{m} \stackrel{s i g n}{ }$ possibilities are $(-++)$ and (+++). on the other hand, we know from $\$ 5$ that the $x_{\text {m }}$ must be of the forms:

$$
\text { 1. } t=-P-b / 3<s=2 P-b / 3 \text { if } q<0
$$

2. $t=-b / 3=s$
if $q=0$

3. $s=-2 p-b / 3<t=p-b / 3$ if $q>0$

where s and t denote roots of multiplicity 1 and 2 respectively, and $P=(-p / 3)^{\frac{1}{2}} \geqq 0$. It therefore appears that the sign alternative (-+) occurs if and only if $q<0$ and $t<0$. Thus we have again two subcases; the simpler we treat first as (bicl)
(B). If condition CII: $\{q<0$ and $t<0\}$ holds, then $s=x_{1}>0>x_{2}=x_{3}=t, x_{1}=\sqrt{s}$, $k_{2}=1 \sqrt{|t|}, k_{3}=-(\operatorname{sgn} R) k_{2}$. The roots (18) are then
(a) For $\mathrm{R}>0, \mathrm{Y}_{1,2}=-\sqrt{3} / 2$ doublet,

$$
Y_{3,4}=\sqrt{B} / 2 \pm \pm \sqrt{|t|} .
$$

(b) For $R<0, Y_{1,2}=-\sqrt{s} / 2 \pm 1 \sqrt{|t|}$, $Y_{3,4}=\sqrt{8} / 2$ doublet.
Hence two Y_{n} are real and equal, and two are nonreal conjugates.
(A) If condition CII fails, then we must have the sign case (+++), with $x_{1} \geqq x_{2} \geqq x_{3}>0$, and $k_{1}=x_{1} \frac{\frac{1}{2}}{2} k_{2}=x_{2}^{\frac{1}{2}}, k_{3}=(\operatorname{sgn} R) x_{3}^{\frac{1}{2}}$, as in (IA).

All Y_{n} are real, but with duplication, since $\Delta_{4}=0$. In detail, we heve the following possibilities in (18):
(1) $q<0 ;==x_{1}>x_{2}=x_{3}=t>0 ; k_{1}=\sqrt{B}$, $k_{2}=\sqrt{t}, k_{3}=(\operatorname{sgn} R) k_{2}$
(a) $R>0 ; Y_{1,2}=-\sqrt{\Delta} / 2 \pm \sqrt{t}$,
$Y_{3,4}=\sqrt{8} / 2$ doublet
(b) $R<0 ; Y_{1,2}=-\sqrt{B} / 2$ doublet,

$$
Y_{3,4}=\sqrt{s} / 2 \pm \sqrt{t} .
$$

(2) $q=0 ; s=x_{1}\left(=x_{2}=x_{3}=t\right)>0$; $k_{1}=\sqrt{B}=k_{2}=\sqrt{t}, k_{3}=(\operatorname{sgn} R) k_{2}$
(a) $R>0 ; Y_{1,2}=\sqrt{8} / 2,-3 \sqrt{8} / 2, Y_{3,4}=\sqrt{8} / 2$
(b) $R<0 ; Y_{1,2}=-\sqrt{B} / 2, Y_{3,4}=3 \sqrt{8} / 2,-\sqrt{8} / 2$.
(3) $q>0 ; t=x_{1}=x_{2}>x_{3}=s>0$;
$k_{1}=\sqrt{t}=k_{2}, k_{3}=(\operatorname{sgn} R) \sqrt{s}$
(a) $R>0 ; Y_{1,2}=\sqrt{B} / 2,-\sqrt{3} / 2-\sqrt{t}$,

$$
Y_{3,4}=-\sqrt{B} / 2+\sqrt{t}, \sqrt{s} / 2
$$

(b) $R<0 ; Y_{1,2}=-\sqrt{8} / 2, \sqrt{8} / 2-\sqrt{t}$,

$$
Y_{3,4}=\sqrt{8} / 2+\sqrt{t},-\sqrt{8} / 2
$$

Hence, if $q>0$, the Y_{n} are
(a) for $R>0, \sqrt{8} / 2$ doublet, $-\sqrt{8} / 2 \pm \sqrt{t}$
(b) for $R<0,-\sqrt{s} / 2$ doublet, $\sqrt{s} / 2 \pm \sqrt{t}$.

If $q=0$, then the Y_{n} are
(a) for $R>0, \sqrt{3} / 2$ triplet, $-3 \sqrt{3} / 2$
(b) for $R<0,-\sqrt{8} / 2$ triplet, $3 \sqrt{8} / 2$.
III. $\mathrm{W}>0\left(\mathrm{x}_{1}>0 ; \mathrm{x}_{2}, \mathrm{x}_{3}=\overline{\mathrm{x}}_{2}\right.$ nonreal con.ju-
gates). Under our provisos, we shall have $k_{1}=x_{1}^{\frac{k}{2}}>0, k_{2}=x_{2}^{\frac{k}{2}}=\xi+i \eta$ with $\xi, \eta>0$, and $k_{3}=(\operatorname{sgn} R) \bar{k}_{2}=(\operatorname{sgn} R)(\xi-\eta 1)$. The roots (18) are then
(a) For $R>0 ; Y_{1,2}=\frac{1}{2}\left\{-k_{1} \pm 25\right\}$,

$$
y_{3,4}=\frac{1}{2}\left\{k_{1} \pm 2 i \eta\right\} .
$$

(b) For $R<0 ; \gamma_{1,2}=\frac{1}{\frac{1}{2}\left\{-k_{1} \pm 21 n\right\} \text {, }, ~ \text {, }}$

Thus there are two distinct real roots, and a pair of munreal condusates.
Computation: is in $广$, we find $H=(-q / 2+V)^{\frac{1}{3}}$ real $\neq 0, J=\left(-p_{1}^{\prime} 3\right) / \mathrm{H}$ real $\neq \mathrm{H}, \mathrm{y}_{1}=\mathrm{H}+J$, and $x_{1}=j_{1}-b / 3>0, k_{1}=\sqrt{x_{1}}>0$. Now:
(a) For $R>0 ; T+U=\left(k_{2}+k_{3}\right)^{2}=(2 \xi)^{2}>0$, $\xi>0$ implies $2 \xi=(T+U)^{\frac{1}{2}}>0$. Similariy, $T-U=\left(k_{2}-k_{3}\right)^{2}=(2 i \eta)^{2}$ $=-(2 \eta)^{2}$ implies $2 \eta=[-(T-U)]^{\frac{1}{2}}>0$.
(b) For $R<0$; one finds $Z_{1}=[-(T+U)]^{\frac{1}{2}}>0$, $2 \xi=(T-U)^{\frac{1}{2}}>0$ in the same fashion.

This gives the $25,2 n$, required for the Y_{n}, in terms of $T \pm U$ computed from (16).

Schematics of real roots of the real guartic.

I. $\mathrm{w}<0$
(A)

$$
\begin{array}{llll}
x_{n} & \dot{x}_{2} & \dot{x}_{1} & \dot{x}_{4} \\
\dot{x}_{3}
\end{array}
$$

(B)

II. $W=0$

(B)

III. W > 0

$X_{n} \longrightarrow 1$

The X_{n} are not ordered except in IA.
10. Procedure for real roots of the real quar$t \operatorname{tic} X^{4}+B x^{3}+C x^{2}+D X+E=0$.

1. $Q=C-(3 / 2)(B / 2)^{2}, R=D+(B / 2)\left\{(B / 2)^{2}-C\right\}$,
$S=E-(1 / 16)(B / 2)\{5 D-C(B / 2)+3 R\}$.
2. $R \neq 0 \rightarrow(3) \quad R=0 \rightarrow$ (13).
3. $b=2 Q, c=Q^{2}-4 S, d=-R^{2}, p=c-\left(b^{2} / 3\right)$,
$q=d-(b / 9)(c+2 p), w=(p / 3)^{3}+(q / 2)^{2}$.
4. $W \leqq 0 \rightarrow(5) \quad W>0 \rightarrow$ (12).
5. $P=(-p / 3)^{\frac{1}{2}} \quad W<0 \rightarrow(6) \quad W=0 \rightarrow(8)$.
6. $\{b<0 \& c>0\} \rightarrow(7)$
$\{b<0 \& c \leq 0\}$ or $\{b \geq 0\} \rightarrow$ Nc real X_{n}.
7. $\theta=\arccos (-q / 2) / p^{3} \in\left(0^{\circ}, 180^{\circ}\right)$
$x=-b / 3+2 P \cos \theta / 3, \quad k=\sqrt{x}$
$T=-(x+b), U=2 R / k$
$Y_{1,2}=\frac{1}{2}\{-k \pm \sqrt{1+U}\} \quad Y_{3,4}=\frac{1}{f}\{k \pm \sqrt{T-U}\}$,

$$
\begin{gathered}
x_{n}=Y_{n}-(B / 4) \\
\left(x_{3}>x_{4}>x_{1}>x_{2}\right)
\end{gathered}
$$

8. $\quad\left\{\begin{array}{l}q<0 \rightarrow s=2 P-b / 3, t=-P-b / 3 \\ q \geq 0 \rightarrow s=-2 P-b / 3, t=P-b / 3\end{array}\right\} k=\sqrt{B} / 2 \rightarrow(9)$.
9. $\{q<0 \& t<0\} \rightarrow(10)$
$\{q<0 \& t \geqq 0\}$ or $\{q \geq 0\} \rightarrow(11)$.
10. $\begin{cases}R>0 \rightarrow X=-k-B / 4) & \text { (doublet) } \\ R<0 \rightarrow X=k-(B / 4) & \text { (doublet). }\end{cases}$
11. $\{q \neq 0\} \rightarrow(11.1) \quad\{q=0\} \rightarrow(12.2)$
$11.1 k^{\prime}=\sqrt{t} \rightarrow\left\{\begin{array}{l}\mathrm{R} \sim O-Y=k,-k \pm k^{\prime} \\ R<O-Y=-k, k \pm k^{\prime}\end{array}\right\} \rightarrow X=Y-B / 4$ (1st doublet)
$11.2\left\{\begin{array}{l}R>0 \rightarrow Y=k,-3 k \\ R<0 \rightarrow Y=-k, 3 k\end{array}\right\} \rightarrow X=Y-B / 4$ (lat triplet).
12.

$$
\begin{aligned}
& \left\{\begin{array}{l}
p \neq 0 \rightarrow V=W^{\frac{1}{2}} \\
p=0 \rightarrow V=-q / 2
\end{array}\right\} \rightarrow H=(-q / 2+V)^{\frac{1}{3}}, \\
& J=(-p / 3) / K, Y=H+J \rightarrow x=y-b / 3, k=\sqrt{x}, \\
& T=-(x+b), U=2 R / k \rightarrow \\
& \left.\begin{array}{l}
R>0 \rightarrow Y=\frac{1}{2}\{-k+\sqrt{T+U}) \\
R<0 \rightarrow Y=\frac{1}{2}\{k \pm \sqrt{T-U}
\end{array}\right\} \rightarrow X=Y-B / 4
\end{aligned} \quad \begin{aligned}
& \text { (two real, distinct). }
\end{aligned}
$$

The following provide the real roots in the trivial case $R=0$.
13. $b=Q / 2, c=b^{2}-S \rightarrow(14)$.
14. $c<0$ (No real X_{1}) $c=0 \rightarrow$ (15) $c>0 \rightarrow$ (18).
15. $b>0$ (No real X_{i}) $b=0 \rightarrow(16) \quad b<0 \rightarrow$ (17).
16. $X_{1}=-B / 4 \quad$ (1 4-tuplet).
17. $X_{i}= \pm \sqrt{-b}-(B / 4) \quad$ (2 aistinct doublets).
18. $d=\sqrt{c}, r=-b+d \rightarrow$ (19).
19. $r<0$ (No real X_{i}) $r=0 \rightarrow$ (20) $r>0 \rightarrow$ (21).
20. $X_{1}=-(B / 4)$ (1 real doublet).
21. $s=-b-d \quad s<0 \rightarrow(22) \quad s=0 \rightarrow$ (23)

B $>0 \rightarrow(24)$.
22. $X_{i}=-(B / 4) \pm \sqrt{r} \quad(2$ distinct singlets).
23. $\mathrm{X}_{1}=-(\mathrm{B} / 4)+\{0, \pm \sqrt{\mathrm{r}}\} \quad \begin{aligned} & \text { (3 distinct, } \\ & \text { Ist a doublet). }\end{aligned}$
24. $X_{1}=-(B / 4) \pm \sqrt{r},-(B / 4) \pm \sqrt{B}$ (4 distinct).
11. Equation of the elliptical torus. If $r, s, a>0$, and $y_{0} \sum 0$ are arbitrary, then $(x-a)^{2} / r^{2}+\left(y-y_{0}\right)^{2} / s^{2}=1$ is the equation of an

ellipse in the X, Y-plane, centered at (a, y_{0}), with X, Y semi-axis lengths r and s. Rotation of the ellipse about the Y-axis generates an elliptical torus, which we call proper if $a>r$, and degenerate if a. I . The two have essentially different "primitive" equations:
$\left\{\left(x^{2}+z^{2}\right)^{\frac{1}{2}}-a\right\}^{2} / r^{2}+\left(y-y_{0}\right)^{2} / s^{2}=1 ; \quad a>r \quad$ (a)
$\left\{\left(x^{2}+z^{2}\right)^{\frac{1}{2}} \mp a\right\}^{2} / r^{2}+\left(y-y_{0}\right)^{2} / s^{2}=1 ; \quad a \leq r$. (b)
In the degenerate case, the upper sign yields the equation of the outer burface, the lower, that of the inner. In the limiting case a $=0$, these surfaces coincide, and (20b) is an ellipsoid of revolution.

Writing $p=r^{2} / s^{2}>0, p \geqslant 1$, equations (20) may be written in the form
$x^{2}+z^{2}+\rho y^{2}-2 \rho y_{0} y+B_{0}= \begin{cases}2 a\left(x^{2}+z^{2}\right)^{\frac{1}{2}} & a>r \\ \pm 2 a\left(x^{2}+z^{2}\right)^{\frac{1}{2}} & a \leq r\end{cases}$
where $B_{0}=a^{2}-r^{2}+\rho y_{0}^{2}$. It is notable that, in squaring both sides, an extraneous factor, with no real solution x, y, z, may be introduced in the first case only, so in either case, a point (x, y, z) is on the complete surface if and only if

$$
\begin{equation*}
\left\{x^{2}+z^{2}+p y^{2}-2 p y_{0} y+B_{0}\right\}^{2}=A_{0}\left(x^{2}+z^{2}\right) ; \quad a \gtreqless r \tag{22}
\end{equation*}
$$

where $A_{0}=4 a^{2}$.
12. Intersection of a inne with the torus. A point (x, y, z) on the line $\{x=\xi+a x, y=\eta+B X$, $z=\zeta+Y X ; \infty<X<\infty\}$, through the point (ξ, η, ζ), with direction $(\alpha, \beta, \gamma), \alpha^{2}+\beta^{2}+\gamma^{2}=1$, lies on the torus (22) if and only if X satisfies the quartic equation

$$
\begin{align*}
& \left\{\left[\left(1-\beta^{2}\right)+\rho B^{2}\right] x^{2}+\left[2(\alpha \xi+\gamma \zeta)+2 \rho 8 \eta-2 \rho \beta y_{0}\right] x\right. \\
& \left.+\left[\xi^{2}+\zeta^{2}+\rho \eta^{2}-2 \rho \eta y_{0}+B_{0}\right]\right\}^{2} \\
& =A_{0}\left[\left(1-\beta^{2}\right) x^{2}+2(\alpha \xi+\gamma \zeta) x+\left(\xi^{2}+\zeta^{2}\right)\right] . \tag{23}
\end{align*}
$$

Setting $F=1-\beta^{2}, G=F+p \beta^{2}, L=2(\alpha \xi+\gamma \zeta)$,
$M=L+2 \rho \beta\left(\eta-y_{0}\right), T=F^{2}+S^{2}$,
$U=T+\rho \eta\left(\eta-2 y_{0}\right)+B_{0}$, (23) becomes
$\left(G X^{2}+M X+U\right)^{2}=A_{0}\left(F X^{2}+I X+T\right)$. Since $G=\left(1-B^{2}\right)(1)+\beta^{2}(0)$

Examples for, a debug. $B \equiv 2, X_{1} \neq X_{1}-1 / 2$ always.

C	D	E	Q	R	5	b	c	d	p	q	W	$\mathrm{x}_{\text {m }}$	Real Y_{n}	
-3/2	$-\frac{5}{2}-\sqrt{6}$	$-\frac{19}{16}-\frac{\sqrt{6}}{2}$	-3	$-\sqrt{6}$	-1/2	-6	11	- 6	-1	0	$\left\lvert\,-\frac{1}{27}\right.$	1,2,3	$\frac{-\sqrt{3}+(\sqrt{2}-1)}{2}, \frac{\sqrt{3}+(\sqrt{2}+1)}{2}$	
-3	$-4+\sqrt{5}$	$-\frac{5}{4}+\frac{\sqrt{5}}{2}$	-9/2	$\sqrt{5}$	- $\frac{3}{16}$	-9	21	- 5	-6	4	-4	$25 \sqrt{3}, 5$	$\frac{-\sqrt{5} \pm \sqrt{6}}{2}, \frac{\sqrt{5}+\sqrt{2}}{2}$	"
3	5	$\frac{13}{4}$	3/2	3	$\frac{21}{16}$	3	-3	-9	-6	-4	-4	$-3, \pm \sqrt{3}$	None	IB
2	0	0	$\frac{1}{2}$	-1	$\frac{5}{16}$	1	-1	- 1	- $\frac{4}{3}$	- $\frac{16}{27}$	0	-1, -1,1	$\frac{1}{2}, \frac{1}{2}$	IIB
2	2	1	$\frac{1}{2}$	1	$\frac{5}{16}$	1	-1	- 1	- $\frac{4}{3}$	- $\frac{16}{27}$	0	$-1,-1,1$	- $\frac{1}{2},-\frac{1}{2}$	"
$-\frac{1}{2}$	$-\frac{3}{2}-\sqrt{2}$	$-\frac{11}{16}-\frac{\sqrt{2}}{2}$	-2	$-\sqrt{2}$	- $\frac{1}{4}$	-4	5	- 2	- $\frac{1}{3}$	- $\frac{2}{27}$	0	1,1,2	$-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \pm 1$	IIA
- $\frac{1}{2}$	$-\frac{3}{2}+\sqrt{2}$	$-\frac{11}{16}+\frac{\sqrt{2}}{2}$	-2	$\sqrt{2}$	- $\frac{1}{4}$	-4	5	- 2	- $\frac{1}{3}$	$-\frac{2}{27}$	0	1,1,2	$\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2} \pm 1$	"
-1	-4	-2	$-\frac{5}{2}$	-2	$-\frac{7}{16}$	-5	8	-4	- $\frac{1}{3}$	$\frac{2}{27}$	0	1,2,2	$-\frac{1}{2},-\frac{1}{2}, \frac{1}{2} \pm \sqrt{2}$	"
-3	0	0	- $\frac{5}{2}$	2	- $\frac{7}{16}$	-5	8	- 4	- $\frac{1}{3}$	$\frac{2}{27}$	0	1,2,2	$\frac{1}{2}, \frac{1}{2},-\frac{1}{2} \pm \sqrt{2}$	1
0	-2	-1	- $\frac{3}{2}$	-1	$-\frac{3}{16}$	-3	3	- 1	0	0	0	1,1,1	- $\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \frac{3}{2}$	"
0	0	0	- $\frac{3}{2}$	1	- $\frac{3}{16}$	-3	3	- 1	0	0	0	1,1,1	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{3}{2}$	"
-3	$-4-\sqrt{19}$	- $\frac{11}{4}-\frac{\sqrt{19}}{2}$	- $\frac{9}{2}$	$-\sqrt{19}$	$-\frac{27}{16}$	-9	27	-19	0	8	16	1,4土i $\sqrt{3}$	$\frac{1}{2} \pm\left(2+\frac{\sqrt{19}}{2}\right)^{\frac{1}{2}}$	III
-3	$-4+\sqrt{19}$	$-\frac{17}{4}+\frac{\sqrt{19}}{2}$	- $\frac{9}{2}$	$\sqrt{19}$	- $\frac{27}{16}$	-9	27	-19	0	8	16	1,4 $4 \pm \sqrt{3}$	$-\frac{1}{2} \pm\left(2+\frac{\sqrt{19}}{2}\right)^{2}$	"
3	$2-\sqrt{7}$	$\frac{1}{4}-\frac{\sqrt{7}}{2}$	$\frac{3}{2}$	$-\sqrt{7}$	- $\frac{3}{16}$	3	3	-7	0	-8	16	1, $-2 \pm \pm \sqrt{3}$	$\frac{1}{2} \pm\left(-1+\frac{\sqrt{7}}{2}\right)^{\frac{1}{2}}$	*
3	$2+\sqrt{7}$	$\frac{1}{4}+\frac{\sqrt{7}}{2}$	$\frac{3}{2}$	$\sqrt{7}$	- $-\frac{3}{16}$	3	3	-7	0	-8	16	1, $-2 \pm \pm \sqrt{3}$	$3-\frac{1}{2} \pm\left(-1+\frac{\sqrt{7}}{2}\right)^{2}$	"
0	-1 $-\sqrt{14}$	$-2-\frac{\sqrt{14}}{2}$	$-\frac{3}{2}$	$-\sqrt{14}$	- $\frac{27}{16}$	-3	9	- 3.4	6	-7	$\frac{81}{4}$	$2, \frac{1 \pm 34 \sqrt{3}}{2}$	$\frac{\sqrt{2}}{2} \pm\left(\frac{1}{4}+\frac{\sqrt{7}}{2}\right)^{\frac{1}{2}}$	"
0	$-1+\sqrt{14}$	$-2+\frac{\sqrt{14}}{2}$	$-\frac{3}{2}$	$\sqrt{14}$	$-\frac{27}{16}$	-3	9	-14	6	-7	$\frac{81}{4}$	2, $\frac{1 \pm 34 \sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2} \pm\left(\frac{1}{4}+\frac{\sqrt{7}}{2}\right)^{\frac{1}{2}}$	"
$-\frac{5}{2}$	- $\frac{7}{2}$	$\frac{65}{16}$	-4	0	5	-2	-1						None	$\mathrm{R}=0$
$\frac{15}{2}$	$\frac{13}{2}$	$\frac{369}{16}$	6	0	9	3	0						None	"
$\frac{3}{2}$	$\frac{1}{2}$	$\frac{1}{16}$	0	0	0	0	0						0,0,0,0	"
$-\frac{2}{2}$	- $\frac{11}{2}$	$\frac{121}{16}$	-6	0	9	-3	0						$\sqrt{3}, \sqrt{3},-\sqrt{3},-\sqrt{3}$	"
$\frac{15}{2}$	$\frac{13}{2}$	$\frac{105}{16}$	6	0	5	3	4						None	"
$\frac{11}{2}$	$\frac{9}{2}$	$\frac{17}{16}$	4	0	0	2	4						0,0	"
- 1/2	$-\frac{3}{2}$	$-\frac{55}{16}$	-2	0	-3	-1	4						$\pm \sqrt{3}$	"
$\begin{aligned} & -5 / 2 \\ & -9 / 2 \end{aligned}$	$-\frac{7}{2}$ $-\frac{11}{2}$	$-\frac{15}{16}$ $\frac{57}{16}$	$\left\lvert\, \begin{aligned} & -4 \\ & -6\end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 5	-2	4 4						$\begin{aligned} & 0,0, \pm 2 \\ & \pm 1, \pm \sqrt{5} \end{aligned}$	"

Is "barycentric", with $0 \leqq \beta^{2} \leqq 1, G$ is between 1 and $\rho>0$, hence $G>0$. Defining $M^{\prime}=M / G$, $U^{\prime}=U / G, A=A_{0} / G^{2}$, the latter quartic becomes $\left(X^{2}+M^{\prime} X+U^{\prime}\right)^{2}=A\left(F X^{2}+I X+T\right)$, or $\mathrm{X}^{4}+2 M^{\prime} \mathrm{X}^{3}+\left({M^{\prime}}^{2}+2 U^{\prime}-A F\right) \mathrm{X}^{2}+\left(2 M^{\prime} U^{\prime}-A L\right) X+\left(U^{\prime}-A T\right)=0$. (24)

Theorem 7. All points (x, y, z) of intersection of the ray $\{x=\xi+\alpha X, y=\pi+\beta X, z=\zeta+\gamma X ; X>0\}$ with the torus (22) are determined by the positive real roots X of the quartic

$$
X^{4}+E X^{3}+C X^{2}+D X+E=0
$$

where we set
$F=1-\beta^{2}, \quad L=2(\alpha \xi+\gamma \zeta), \quad T=\xi^{2}+\zeta^{2}$,
$G=F+\rho B^{2}, \quad A=A_{0} / G^{2}, \quad M^{\prime}=\left\{I+2 \rho B\left(\eta-Y_{0}\right)\right\} / G$,
$U^{\prime}=\left\{T+\rho \eta\left(\eta-2 y_{0}\right)+B_{0}\right\} / G$, and
$B=2 M^{\prime}, \quad C=M^{\prime}+2 U^{\prime}-A F, \quad D=2 M^{\prime} U^{\prime}-A L, E=U^{\prime 2}-A T$. Here $A_{0}=4 a^{2}, B_{0}=a^{2}-r^{2}+\rho y_{o}^{2}$ are stored constants of the torus.

Finally, we state without proof the obvious
Theorem 8. (a) An arbitrary point (x, y, z) is (properiy) inside the outer surface of a torus, if and only if

$$
x^{2}+z^{2}+\rho y^{2}-2 \rho y_{0} y+B_{0}<2 a\left(x^{2}+z^{2}\right)^{\frac{1}{2}}
$$

(b) A point (x, y, z), on a degenerate torus
($a \leq r$) is on the (open) inner surface if and only if

$$
x^{2}+z^{2}+\rho y^{2}-2 \rho y_{0} y+B_{0}<0
$$

Thus the points (x, y, z) of intersection of a ray with a degenerate torus may be tested for the part of the surface on which they lie.

General Reference

L. E. Dickeon, Elementary theory of equations (1914), John Wiley and Sons, Inc., New York, N.Y..

