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MCNA: A COMPUTER PROGRAM TO SOLVE THE ADJOINT NEUTRON

TRANSPORT EQUATION BY COUPLED SAMPLING WITH THE MONTE CARLO METHOD

Leland L. Carter

ABSTRACT

A coupled sampling technique that utilizes the Monte Carlo method

of solution has been reported in the literature.

This report extends

this coupled sampling technique to include nuclear fission and time

dependence.

In the coupled sampling, specific use 18 made of sampling

from the neutron transport equation to construct a scheme for a near-
optimal subsequent sampling from the adjoint neutron transport eque-

tion.

This procedure may be expected to be advantageous when the

phase-space volume contributing to the functional is smaller than the
phase-space volume of the neutron source.

The camputer program MCNA was written to utilize the coupled sam-

pling technique.

MCNA uses the same neutron interaction models and

cross-section library as does the Los Alemos code MCN; MCN solves the

transport equation with Monte Carlo.

I. INTRODUCTION

The central 1limit theorem asserts that the aver-
age of n independent random variables (the sum of
the rendom variables divided by n) has an approxi-
mately normal distribution when n is 1arge;1 this
holds true under suitable mild conditions specified
in the standard textbooks.
normality, a known probability may be assigned to
the statement that "the theoretical expectation
value lies within the band defined by the average

value of the n independent observations xe." Here

Under the assumption of

€ is proportional to the square root of the variance
of the distribution.
tion is proportional to the variance of an individ-

The variance of the distribu-

ual random variable and inversely proportional to n,
and, hence, any given precision (e/true value) may
be obtained simply by teking enough random samples.
The fact that the precision decreases only in-
versely proportional to the square root of the num-
ber of samples may lead to an exorbitant emount of

computation time for the required accuracy. If so,

an alternative method of reducing € is to change the
probability distributions used to obtain the random
variables so that the theoretical variance of an in-
dividual sample is reduced.

Many problems of neutron transport cannot be
solved efficiently with analog® Monte Carlo owing
to the large theoretical variance of the individual
samples. It is well known that certain advantages
are realized in some of these problems through the
solution of the corresponding adjoint equations. A
commonly occurring example is the determination of
a reaction rate in a small volume of phase space due
to a given neutron source distribution. The vari-
ance in the estimate of the reaction rate for an in-
dividual neutron history is large because only a
small fraction of the neutrons pass through the small
Solution of the
corresponding adjoint equation allows the sample his-

phase-space volume of interest.

tories to begin in the small phase-space volume.

*Analog refers to a direct simulation of neutron
transport.



These histories are traced "backward" to the phase-
space volume of the neutron source end contribute
to the estimate of the reaction rete while in the
phase-space volume of the source. The computation
time required to obtain a given confidence 1limit in
this adjoint solution depends upon the scheme ulti-
lized to sample from the adjoint equation.

The computer code MCNA is based upon a coupled
sampling approach. Near-optimum density functions
for sampling fram the adjoint equation are obtained
in this coupled sampling by approximating a theo-
retically feasible "zero-variance" scheme. The cou-
pled sampling consists of sampling from the trans-
port equation to construct the scheme for sampling
fram the adjoint equation, and then estimating the
functional(s) by sampling from the adjoint equation¥®

The coupled sampling approach discussed in Sec.
II is an extension of Refs. 2 and 3 to include fis-
sion and time dependence. A brief description of
the computer code MCNA is given in Sec. III. The
physical models utilized and the geometry routine
of the MCNA code are identical to those of the MCNA
code;k"6 MCN solves the neutron transport equeation
with Monte Carlo. The MCNA code is written in
FORTRAN IV and is presently utilized on the CDC 6600
and CDC 7600 computers.
cussed in Sec. IV.

II. SAMPLING FROM THE ADJOINT TRANSPORT EQUATION
AND COUPLED SAMPLING

A. General Discussion

An example problem is dis-

The relevant equations mey be derived by begin-
ning with the Boltzmann integro-differential neutron
transport equa.‘s;:‘.on,7

3G(R:R")

1
L&(R;R') =5 —5¢

+2-96(R;R’) + £, (R)G(R;R’)

AN SORC SR PR L
2

r’)s(E - E')8(a - a)8(t - '), (1)

where L i3 an operator as defined by Eq. (l). R is
a shorthand notation denoting the neutron space
position r, its kinetic energy E, and direction of

¥The shorthand notations "transport equation" and
"adjoint equation" will be used rather than "neu-
tron transport equation" and "adjoint neutron
transport equation," respectively.

motion Q at time t. C(E,R;r,E,0")dEdQ is the num-
ber of neutrons emerging in the phase-space volume
dE about E and in d about Q following a collision
of a neutron with energy E* and direction of motion
2’. Processes such as fission and elastic and in-
elastic scattering are included so that the colli-
sion kernel C usually will not be a normalized den-
sity function. The total cross section Et is as-
sumed independent of time and of the direction of
motion of the neutron so that the notations T, (R)
and zt(g,E) are used interchangeably. The coordi-

.nates to the left of the semicolon in the Green's

function G of Eq. (1) represent field (i.e.,
final-state) points, and those to the right of the
semicolon represent source points so that G(R;R’)
is the neutron flux at R due to a unit point source
at R’.

The neutron flux q)(i_%) may be expressed in terms
of the solution of Eq. (1) for the Green's function
as

o(R) -fG(g;_R')S(g')dg' , (2)
where S(R’) is the extraneous source density. How-
ever, rather than using the Monte Carlo method to
compute a point velue of the neutron flux, we more

often use it to estimate a functional J (or a num-
ber of such functionals) defined as

7 = [o(RIZ(R)R

=f G(R;R')S(R')S(R)AR‘dR . (3)

Here, ¥(R) is an arbitrary "cross section" of inter-
est and the lest relation of Eq. (3) was obtained by
utilizing the expression for the neutron flux as
given by Eq. (2). An estimate of the functional J
with Monte Carlo mey be obtained by selecting the
i'th source neutron coordinates Rj with the density
function S(B') and following the subsequent history
of the neutron (and progeny) to compute the estimate

3y = [a(r:r)n(RaR W(R,) (4)

where w(gi) is the initial weight assigned to the
neutron as given by/S(_l}_')dR'. The estimate of J,
as given by Eq. (4), is obtained by sampling fram
the transport equation, but e corresponding estimate




of J may be obtained by sampling from the adjoint
equation.

The adjoint equation for the adjoint Green's
function G' is obtained by finding an operator L'
that satisfies the equation

S e @rn]omr e = [¢ (r:r) a@r) e
(5)

The boundary conditions on G+(_13;3') are chosen to be
consistent with those on G(R;R’) and are such that
the bilinear concomitent is zero. The definition
of the operator L' in Eq. (5) with the associated
boundary conditions is used to obtain the adjoint
equation as

and then following the subsequent history of the
pseudoneutron (and progeny) to compute the estimate
o

I -fo (R’;R,)s(r’)aR’ W(R,) (10)
where W(R,) is the initial weight assigned to the
pseudoneutron as given by [R(R’)dR’. The roles of
the neutron source S and the scoring cross section
T have been interchanged in this estimation of J by
sampling from the adjoint equatiocn.
the role of a "source" and S the role of a scoring

"oross section." This fact has two well-known im-
plications about the computational effort required

¥, now assumes

for a problem. (1) If e response of some part of

the system as a function of the neutron source dis-

6T (r;R)
L6 (RR) = - T ——7—

(2,9 ;5,E,0)5 (r,E

c
+ LN ] =
) fn -é,c (2,043 )zt(E’E’)[ T (n,E)

—s7— - 896 (&;R’) + £, (R)G" (R;R")

)] aE’an” = 8(r - »’)8(E - E’')8(a - 2’)8(t - t'). (6)

A reciprocity relation between G+ and G may be
derived by multiplying Eq. (6) (with the source at
an arbitrary point R“ rather than R’) by G(R;R’)dR,
multiplying Eq. (1) by G (R;R)dR, extracting the
difference of the resulting two equations, and inte-
grating this difference over all of phase space.
Then the subsequent interchange of variables, re-
placing R’ by R and R” by R’, yields the familiar
form of the reciprocity theorem,

¢'(r';R) = ®(RsR') - )

The reciprocity relation of Eq. (7) may be in-
serted into Eq. (3) to obtain an alternative expres-
sion for the functional J as

3 -=ff ¢"(r;R)S(R)(R)AR‘aR . (8)

The functional J of Eq. (8) may be estimated with
Monte Carlo by selecting the i‘th source pseudo-
neutron® coordinates R; with the density function

=(R)/f (R’ )aR’ (9)

x

Pseudoneutrons are defined here as those “particles”
whose transport is described by the adjoint equa-
tion.

tribution is required, it may be more efficient to
estimate the functionals by sampling from the ad-
Joint equation. This is because only one adjoint
calculation is required rather than e number of

(2) If the phase-
space volume containing nonzero ¥ is smell, it may
be more efficient to estimate . J by sampling from the
adjoint equation because all pseudoneutron histories

separate transport calculations.

begin in the small phase-space volume.

These advantages obtained by sampling from the
edjoint equation are expected to accrue when the
phase-space volume, where the neutron source is non-
zero, is not too small® and if a reasonably effi-
cient scheme is available for sampling from the ad-
Joint equation.

B. Sampling from the Adjoint Equation

The approach used here to develop a scheme for
sampling from the adjoint equation is to begin by
finding a simple transformation that will transform
the adjoint equation, Eq. (6), into an equation
identical in form to the transport equation, Eq. (1),
Techniques for sampling from this transformed

¥
Point neutron sources may be treated with a special
point source estimator discussed in Appendix E.



equation are well known from the wealth of experi-
ence obtained by sampling from the transport equa-
tion.

The simple transformation is obtained with the
definitions ‘

t =t -t
a m
8, =-2

+
G&(E,E,Qa,ta;rl,EI,_{_)a'.,t;)

+
=G (S:E: - Qa;tm' ta3£';El; —_;Jtm" tt;.) ’ (1)

vhere tm is a maximum time of interest in the prob-
lem, ta will be the adjoint time, and Q-a will be the
direction of motion of the pseudoneutron. Substitu-
tion of these definitions into Eq. (6) ylelds the
transformed equation

condition on G is that G(R;R’) = O for t’' > t. This
boundary condition coupled with the reciprocity the-
orem of Eq. (7) and the definitions in Eq. (11) re-
quires that G:.(Ba,;-g;,) = 0 for 1;; >t

Because Eq. (12) has the same form as the neu-
tron transport equation and satisfies the same type
of boundary conditions, a possible scheme for esti-
mating the functional J of Eq. (8) is as follows.

1. Select the initial coordinates Bi. of the
pseudoneutron from the density function (see expres-

sion (9)),
' E(S)E)"Qa:tm = ta)

fz( ) ' *Yar’ ’ (14)
£ty - R,

&(R,) =

with the initial weight of the pseudoneutron given
by W as

W =fg(£',E',-_:_;;,tm - t)aR! . (15)

+ ’
1 aG&(g& ’-ga)

= . ) + )
v 3t +a, yGa(B_a,Ra) + 5, (R )G (R ;R!)

C(E”:'Q_Q;EJE:‘Q,&)Z‘.’(T)E)

-f f G:(E:E” :Qg)ta;_g;)zb(_{JE”) [

Q"B
2

)Zt(z; E* )

] dE" 4o’ = 8(z- r')8(E - B)8(-0,+0.)8(t+ ¢ ),

(12)

where Ba. is defined to be the phase-space point
r,E,Q,,%,. Equation (12) is identical in form to
the neutron transport equation, where the term in
brackets in the integrand represents the transfer
kernel.

It may also be nroved that G, satisfies the
The boundary con-
dition for G is that G(_z;s,E,g",t;I_a’) = 0 at every
point x, on the outer surface of the system, where
£ denotes any direction into the system. This
boundary condition on G combined with the require-
ment that the bilinear concomitant be zero on the
outer surface leads to the boundary condition for G+
of

same boundary conditions as G.

+ +
6 (B2 ,tR) =0 , (13)

where Q+ denotes any direction out of the systenm.
Owing to the definition of G, in Eq. (11) end the
boundary condition on G' in Eq. (13), the boundary
condition on G: is that no pseudoneutrons enter the

system from the outer surface. The time boundary

2. Sample for the distence to collision y with
the exponential density function,

X
o ROy
2(x) = T(xde ° , (16)

where this density function is determined along the
direction of flight of the pseudoneutron and ¥ = O
is the previous collision point.

3. Each collision of the i‘'th pseudoneutron
history (or its progex:w) contributes to the estimate

of the function Ji as

I, o= 30+ WS(E,-0,t - t )/ (E) , (17)

where J { is the sum of the tabulations from previous

collisions. Here a volumetric source S is assumed.
The scoring is different for a surface source as is
discussed in Sec. III.

k. At each collision of the pseudoneutron with
a precollision energy E’, direction of motion g;,

and weight W', sample for the new energy E and



direction of motion ga with the density function
f(E,Qa;r,E',_f_!;)

] c(E’,-0,;2,E, -2, )T, (1,E) . 8y
LoLpote’ 0,2 )5, (2,8 o

The new weight of the pseudoneutron is then obtained
as

w'fg,j;:,c(E”’g.;}E’Eﬂ:‘g;)zt(bE')dE' d‘_{a

W=

)L‘t(_!_‘,E') ' (19)

5. Return to step 2 if the pseudoneutron en-
ergy is less than the maximum energy of interest and
if the time ta is less than tm. Otherwise, termi-
nate the history with the estimate of the functional
J for this history given by Ji'

We will call the scheme ocutlined above an anae-
log scheme for sampling from the adjoint equation
because it is similar to an analog scheme for sanm-
pling from. the transport equation. The distance-to-
collision density function T(X) of Eq. (16) is iden-
tical to the corresponding density function utilized
for sampling from the transport equation. The roles
of the scoring cross section ¥ and the source S are
interchanged in Eqs. (14) and (17) from their corre-
sponding roles when sampling from the transport
The most important difference between the
two anslog sampling schemes involves the density
functions for selecting the energy and direction of
motion after & collision, f(E,ga;_g,E’,_f_l;) of Eq. (18)
for sampling from the adjoint equation, and the nor-
malized form of the collision kernel C(E,2;r,E’,0’)
Not only
does the density function £ of Eq. (18) have the
additional multiplier Et, but also the primed and
unprimed variables of the energy and direction of

equation.

for sampling from the transport equation.

motion in the arguments of C (the negative signs in
the direction coordinates are not considered impor-
tant in this treatment because we will consider iso- -
tropic media) are interchenged from their correspond-
ing role when sempling from the transport equation.
If the analog scheme is %o be utilized to sam-
ple from the adjoint equation, these differences be-
tween the density function f(E,g,_a ;_r_,x-:’,g; ) and the
normalized form of the collision kernel C(E,Q;r,E’,Q")
dictate the need for data that are not available in
a cross-section library that is constructed for sam-

pling from the transport equation. To see what
additional data are needed and to eventually intro-
duce the sempling scheme used in the MCNA code, we
will now consider the practicel aspects of sampling
with the density function f.

It is convenient to express the collision ker-
nel C as a sum of the respective contributions of
possible events ¢ as

’ ’ EQ(I,E) ’ .
c(E ,‘%;S:E:’ga) "Z-—("—)‘zt TE CQ(E ,-Qa;I,E,-f_Za) »
a

(20)
where za is the macroscopic cross section for an
event ¢ and Ca is the corresponding collision kernel
for the event . The events ¢ may be chosen to cor-
respond to the physical processes; for example, elas-
tic scattering with a given isotope. Alternatively,
the events may be defined less conventionally, for
example, the event defined as an inelastic scatter-
ing with any of the isotopes present, subject to the
restriction that the (pseudo) neutron is scattered
to an energy between two given limits.

The expansion of C, as given by Eq. (20), may
be substituted into the density function f of Eq.
(18) to obtain

#(E0,558"0;) = QB 0,01, (E.0,5mE0))
[+3

(21)

where Q‘a and fa are defined as

Qa(};,E',Q;)

’ ’, -
ja fE ¢ (E’,-0;1,E,-0, )%, (r,E)dEdQ,

2
IRNCE L ALV L L 4

o @
-8
(22)
and
£(E,2,;x,E".0")
. ¢ (E’,-2';r,E,-0, )% (2,E)
¢ ‘., G v " ”
j‘;a fE’ Ca(E "Qa’S)E”:'Qa)Ea(z,E YaE d:{__),a
-8
(23)

The energy E and direction of motion ga may be sam-
pled with the density function f of Eq. (21) by




selecting event ¢ with probability Qa and subse-
quently selecting the energy E and direction of
motion ga from the density function fa' Thus, the
data required in e cross-section library would be
the probabilities of events as given by the Qa of
Eq. (22) and the corresponding conditional density
functions as given by the f_ of Eq. (23).

Two difficulties are evident in this analog
scheme for sampling from the adjoint equation.

(1) A considerable amount of effort would be re-
quired to create & new library containing the fa and
functions in an acceptable format for sampling,
and (2) the analog scheme for sempling from the ad-

Joint equation may be inefficient owing to statis-
tical errors due to an unacceptably large theoreti-
cal variance of the individual samples. One can re-
duce this variance by properly altering the sampling
scheme and adjusting the pseudoneutron weight to ob-
tain an unbiased estimate. The unbiased estimate is
obtained by multiplication of the analog pseudoneu-
tron weight by the ratio of the analog density func-
tion to the alternate density function at each sam-
pling. For example, if some functions ?a and a'a
are used for sampling rather than the analog density
functions fa end Q ) the pseudoneutron weight is ob-
tained from the analog weight of Eq. (19) and the
ratio of the density functions as

functional. There is usually a trade-off between
the theoretical variance per individual random sam-
ple and the computation time required to sample from
the density functions. The MCNA code utilizes a
coupled sampling approach to try to compromise on
these requirements.

C. Coupled Sampling

It is well known that a theoretical "zero-
variance" scheme exists for estimating the function-
al J by sampling from the adjoint equation. The
zero-variance scheme depends upon the neutron flux

"and thus is impractical to utilize exactly, but this

does suggest the possibility of a coupled sampling
approach to obtein an approximation to the zero-
veriance scheme.

The coupled sampling as developed here consists
of sampling from the transport equation to construct
an approximation to the theoretical zero-variance
scheme and then using this approximate scheme to
estimate the functional J by sampling from the ad-
Jjoint equation.
the zero-variance density functions and briefly dis-
cuss how sampling from the transport equation may be
used to obtain approximations to them. The actual
techniques used in the MCNA code are given in Sec.
III.

The functions go, an and fop are defined to

We will now give expressions for

’ ‘7, - 4 » 4
, _/‘;u _/;:v c(e ’_Qa.’-l—.’E”" ga.)zt(s’E )dE’an.
~a

£ (B, ;r,E'50") o (x,E',0])

ﬁ = i Z%(E,Ej

?Q(E’Qa;E’E' :2;) au(z,E' ;9,;)

CQ(E ’y 'Q,;;E:E, -Qa)Ea(z:E)

Et(EJE,)-Q-‘a(_I_':E ',Q;)?a(E:Q_a;z,E':Q;)

, (24)

where @, E, and ga were selected in the sampling.

A density function for the alternate sampling
scheme may be chosen arbitrarily from the set of
density functions that are nonzero at each point
where the corresponding analog density function is
Use of the correct weight multiplier en-
sures an unbiased estimate for any such density
functions. However, the variance in the estimate of
the functional J depends upon the density functions
chosen for the sampling scheme, so the density func-
tions should be chosen to minimize the computation
effort for a given precision in the estimate of the

nonzero.

be the density functions of the zero-varisnce scheme
which are utilized to sample for the same random
variables as the density functions g, fa’ and Q o
respectively, of the enalog scheme. The derivation
of this zero-variance scheme will not be given here
because it is available in the litero.ture.g’lo The
zero-variance density functions of interest here
are
2(z,E, -8, )olx,E,-,)

(R)=
St fffz(r',E’,-g;)d;_',E’,-Q;)dBr'dE'dﬂ;

(25)
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j‘; fECa(E :'Q‘:E:E: Q_a)
2o

T (E;E)q‘st: -_‘_la)dEdﬂa

a

Qm(_{)E’),Q;) =

¢ ’, , o v ¥ # 3 ¥
5 [ L e agn® g (T delns e e
~a

C{E'»-0)31,E, -0, )E (r,E)elz, E, -0, )

’ (26)

£ o (Esfysm,E ,0.) =

a

[ [ ol tin e elat )

(27)

where the density functions have been assumed to de-
pend only vweakly on time so the time variable has
been suppressed. The density function of the zero-
variance scheme for selecting the distance to col-
lision is not given here because we assume that the
use of the analog exponential density function of
Eq. (16) with the added option of splitting or "Rus-
sian roulette" is sufficient for most purposes.

The density functions of Egs. (25) to (27) have
an interesting physical significance. The optimal
sampling requires that, in the adjoint solutionm,
regions of phase space be sampled proportional to
the rate at which the reverse (neutron) processes
This provides & helpful picture for
obtaining useful approximations to the zero-variance

are occurring.

density functions when sampling from the transport
Such a physical aid is useful because it
is clear that, in addition to the problem of statis-
tical fluctuations in the evaluation of fop and Qon
by sempling from the transport equation, scme phase-
space averaging must be incorporated to reduce the

equation.

computer memory requirements for tabulating these
functions. The averaging techniques used in MCNA
are formulated to optimize the selection of the
pseudoneutron energy. These averaging techniques
and a general discussion of the MCNA code are given
in the next section.
IITI. DESCRIPTION OF MCNA

The computer code MCNA for solving the adjoint

equation with the Monte Carlo method was constructed

by modifying the computer code MCN ;1‘.-6 MCN solves
the transport equation with Monte Carlo. The geom-
etry routines and cross-section models are identi-
cal in the two codes.

have the same format.

The cross-section libraries
However, the actual cross
sections for reactions are always tebulated in the
MCNA library, while probabilities of reactions are
sometimes tabulated in the MCN cross-section library.

.

Figure 1 illustrates the steps in the solution
of a problem with the MCNA code. The initiation of
the problem in Step 1 is identical to the initiation
in the MCN code.h-6 The sampling from the transport
equation in Step 3 is also identical to the MCN pro-
gram with two exceptions: (1) the program has been
altered to allow cross-section data rather than
probabilities of reactions to be used in the sampling,
and (2) density functions are computed for & sub-
sequent sampling from the adjoint equation. The rest
of the discussion in this section will concentrate
on this latter difference and on steps 2, 4, and 5
of Fig. 1.

The zero-variance functions, % of Eq. (26)
and fOD of Eq. (27), are approximeted in the sam-
pling from the transport equation by first separa-
ting three-dimensional Euclidean space and the en-
The Eu-
clidean space segments are assumed to correspond to
the physical cells (regions) of the system. An en-
ergy, directional, and spatial averaging of the an

ergy coordinate into contiguous segments.

in Eq. (26) is performed over each phase-space seg-
ment in the Monte Carlo sampling from the transport
equation. These average quantities are denoted by
-Qa(;j ,k,¢++), where j is an integer denoting the en-
ergy segment, k is an integer denoting the cell, and
the -+- indicates that (depending upon the type of
event) other integers may also be used. Thus, the
Ea(j,k, +++) represents a Monte Carlo phase-space
average of Q,m(_z_',E',g;).

Four general types of events, designated by q,
are utilized in MCNA. Note that these events were
selected for convenience in the sampling and often
represent a sum of some possible reactions. The
four events with their corresponding physical inter-
pretations in the sampling from the transport equa-
tion are as follows.



Step 1 Step 2
Start PROGRAM AITMC PROGRAM ANUT
— Initiates the problem, f—————e—p | Initiates additional data et~
JIdentical to the MCN and prepares for the coupled
injitiation. sampling.
Step 3 Step 4
PROGRAM ATMC PROGRAM ANUI
———————| Samples from the trans- e, | Normalizes sampling functions L._,
port equation to con- and prepares to sample from the
struct the scheme for adjoint equation. Additional
subsequent sampling data may also be initiated.
fram the adjoint equa-
tion
Step 5
PROGRAM ATMC }—————s- END
——————

Samples from the adjoint
equation. Computes func-
tionals and error limits.

Fig. 1.

1. Elastic scattering with an isotope i. This
type of event is designated by o = 1, and 5,1(3,}:,1)
is proportional to the number of neutrons that suf-
fer an elastic collisjion in cell k with isotope i
and are scattered into energy group Jj.

2. Tnelastic scattering with a continuum den-
sity function (i.e., not a discrete level in the
laboratory or center-of-mass system) to describe
the energy transfer. This type of event is desig-
nated by o = 2, and 32(3 ,k,B) is proportional to
the number of neutrons that scatter into energy
group J, given that t.e originating neutrons suf-
fered inelastic collisions (fission not included)
in cell k with a continuum density function util-
ized to describe the energy transfer, where the
neutron loss of energy in the laboratory system
is within an energy band designated by the inte-
ger B.

3. Inelastic scattering with a discrete model
(in the laboratory or center-of-mass system) to de-
scribe the energy transfer. This type of event is
designated by o = 3, and '6,5(3,}:,1,1.) is proportional
to the number of neutrons that scatter into energy
group Jj, given that the originating neutrons suf-
fered an inelastic scattering collision in cell k
with discrete level £ of isotope i.

L. Fission. This type of event ias designated
by a = 4, and Q‘(J,k,y) is proportional to the num-

Brief flow diagram of a computation with the MCNA code.

ber of neutrons born from fission into energy group
J and cell k, where the parent neutrons were in en-
ergy group Y when fission occurred.

The indices in these definitions assume all

integer values that are within the bounds:

1 < i £ (number of isotopes in cell k),

1 <3 <J, where J is the number of energy
groups used in the subsequent sampling
from the adjoint equation,

1 £ k £ (number of cells),

1 < B £ (number of energy bands for energy
group J),

1 < £ < (number of discrete levels for isotope
i and energy group J),

1Lsy=<J.

These physical definitions of the _Q'a's are used

to evaluste them by sampling from the transport

The word "proportional" is used because
the Ea's mist be normalized before the subsequent
sampling from the adjoint equation. Hence, for a
given j and k, the su's are normalized with the con-
dition

D8 Bk + D0 TKB) + D Gyldhkoi, L)
N B

54

equation.

+Z ah(dtk"{) =1 . (28)

Y




In the subsequent sampling from the adjoint equation,
J is the energy group of the pseudoneutron before a
collision and each Qa(:] sk,°**) is the probability
that it will suffer that event. Although a form of
multigroup treatment is used to determine the type
of event that occurs, this is not a multigroup treat-
ment in the usual sense because the final pseudo-
neutron energy after the event is selected from a
continuous distribution (except, of course, for a
discrete inelastic scattering in the lé.bora.tory
system).

The conditional ?a density functions for sam-
pling the energy and direction of flight of the
pseudoneutron, given that the event ¢ occurs, (in
some cases these ?’a's are also computed by sampling
from the transport equation) are discussed in Appen-
dix A. The weights of the pseudoneutron after each
event ¢ are also derived in Appendix A.

The format of the input data in the MCNA code
is identical to that of the input data in the MCN
code. The input data are discussed in Appendix B.

Most of the effort required to set up a problem
with the MCNA code is usually involved with the con-
struction of the sources for sampling from the
transport and adjoint equations and the scoring
routine for tabulating the functional(s).

tron source routine for the sampling from the trans-

The neu-

port equation is constructed as in the MCN code;
i.e., simple routines are available in the code, or
more complicated routines may be written by the
user. However, for problems in which a number of
functionals are being computed in the sampling from
the adjoint equation, some care should be taken in
choosing the source for the transport portion of the
calculation. Generally, the density function for
selecting the energy of the source neutron should
emphasize the upper portion of the energy spectra
of the functionals.

A pseudoneutron source routine is also avail-
able in the MCNA code for simple sources, but a
separate routine, ASOURC, must be written for com-
plicated sources. To illustrate the procedure for
setting up the adjoint source, we begin with the
density function g(R ) of Eq. (14). The MCNA code
uses real time t in the adjoint calculation rather

than the adjoint time ta.’ so g is expressed as

X (2,5,-0,,t)
jfff x (x',E'-0),t ) r B 9 dt’
(29)

S(EJE’Q‘Jt) -

The corresponding zero-variance density function g,
of Eq. (25) depends upon the neutron flux
‘P(E,E,-Qa,t). When information on the general be-
havior of the neutron flux is available, it should
be used to construct a near-optimal density functim.
For illustration, we will assume that such informa-
tion is not available and that our primary interest
is to find a simple method to select the initial
pseudoneutron coordinates. The following method is
quite general, although it is not optimal from a
minimum-variance viewpoint.

The density function g may be difficult to
sample owing to the behavior of the cross section X.
An alternative is to sample from a density function
€ that is easy to sample from and is zero only in
An unbiased
estimate is obtained by assigning the pseudoneutron
an initial weight of

regions of phase space where ¥ is zero.

Z(E;E, "Qa’t)

W= (30)

&(x,8,0,,%)

vhere r, E, ga and t were selected with the density
function g.

For example, assume that

Z(E,E,-_K_Ia:t) = ¥(E) for r in a volume

v, E1<E<E2, and
tl <t < t2,
= O otherwise,

and that we choose the density function g as

fond 1 1 1 1
E(EJE)_Q st) = = v - » (31)
a I (B, - E) VIR, - t))
for r in a volume V, E; <E <E,
and tl <t< t2,
= O otherwise.

The pseudoneutron source routine would
1. select the initial position z, y, z from a
uniform distribution in the volume V,
2. 8elect the direction cosines u, v, w fron
an isotropic distribution in the laboratory
systen,



3. select the energy E from a uniform distri-
bution between El and E2,

L. select the time t from & uniform distribu-
tion between tl and t2, and )

5. assign the pseudoneutron an initial weight,

obtained from Eq. (30), of
W= Z(E)4x(E, - El)V(ta - tl) . (32)

A subroutine called SCORE({KASR) must be sup-
plied by the user to tabulate the contribution of
each pseudoneutron history to the functional(s).

The parameter KASR is used to convey what is happen-
ing to the pseudoneutron each time the subroutine is
called by the main program. Subroutine SCORE is
called with KASR = 1 each time a pseudoneutron suf-
fers a collision. The variebles X, Y, 2, U, V, W,
ERG, VL, IA, JA, T™™E, PL, and WT are the parameters
describing the pseudoneutron at the collision. Here,
X, ¥, 2 are the spatial Euclidean coordinates, u, v,
w are the direction-of-motion cosines, ERG is the
kinetic energy, VL is the velocity, IA is the pro-
gram cell number, JA is the program surface number
(if needed), T™E is the time, PL is the macroscopic
cross section, and WT is the weight of the pseudo-
Subroutine SCORE is called with KASR = 2

each time a pseudoneutron crosses a surface boundary.

neutron.

The previously named variasbles are the parameters of
the pseudoneutron at the surface crossing. Subrou-
tine SCORE is called with KASR = 3 for the point-
source estimator discussed in Appendix E. A special
"lest-flight" scoring surface option, dencted by the
first data entry of card ALE* greater than zero, is
elso available in MCNi. If this is used, subroutine
SCORE is called each time the pseudoneutron energy
is within e designated energy bin and the projected
line of flight crosses a designeted surface. The
previously named variables are the perameters at the
crossing of the designeted surface, and KASR is
equel to k.

The actual scoring proceeds as in a Monte Carlo
transport calculation except that the source S as-
sumes the role of a scoring cross section. The
i'th pseudoneutron history is used to estimate J 3
of Eq. (10), which may be expressed as

The definitions in Eq. (11) have been used to ex-
press Ji in this form.

The source 1s usually distributed either in a
volume of Euclidean space or on a surface. We now
consider these two types of sources.

The transformed adjoint Green's function G:
satisfies an equation of the same form as the neu-
Thus, the number of colli-
sions occuring in the phase-space volume d3r about
r, dE sbout E, d.(_l_a about _:_za, and dta about ta. is

tron transport equation.

given by

- 3
Ga(_{:E:_f}a,t&,_!;i:Ei:Q,ai,tai)Et(_x;,E)d rdEandta . (31")

The contribution of this volume of phase space (in
the 1limit as the phase-space volume approaches zero)
to Ji is given by

Number of collisions

occurring in the small
phase-gpace volume due
to a unit source at R,

S(x,E,-0,,t) /L (r,E) -
(35)

The number of collisions occuring in the small
phase-space volume due to a source at Bi of strength
W(Ri) is just the sum of the weights of the pseudo-
neutron each time it suffers a collision in the
small phase-space volume. Thus, the contribution
of each pseudoneutron collision to the functional

is

Ws(r,E,-0,,t) /L (5E) (38

where W is the pseudoneutron weight at the collision
point r,E,ga,t. Here, Q-a. is the direction of mo-
tion of the pseudoneutron before collision, so when
8 is not isotropic, the ga direction is reflected
to determine S. The real time t, rather than the
adjoint time %, is used in Egs. (%5) end (36)
because the real time t is the time varisble used
in MCNA.

Subroutine SCORE is shown in Fig. 2 for a fic-
titious problem in which two unnormalized source
spectra are of interest. These sources are denoted

by sl and 82 and are defined as

+
Jj_ -fGa(I:E:Qg:ta,Ei:Ei:Qn,tu)S(bE,-Qa,tm - ta)djrdEd.(_ZadtaW(_}_ii) . (33)

*
See Appendix B.
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C
c INTEGER, DINENSION, CCMMCM, AND EQUIVALENCE STATEMENTS ARE NOY
C SHOWN, BUT CCRRESPCND TQ THOSE OF THE MAIN PROGRAM ATMC
C
C SCORING FOR FICTITIOUS PROBLEM WITH VOLUME SQURCE
C KASR = 1 DENCTES A CCLLISIGN
C IA = PROGRAM CELL NUMBER WHERE COLLISION OCCURS
[ TME = TIME AT COLLISICN
C LRG = PSEUDC-NEUTRCN ENERGY AT COLLISION
C Wl = PSEUDC-NELTRON WEIGHT AT COLLISION
C 4 Pl = 12.56¢€4
Cc PL = MACROSCCPIC TCTAL CROSS SECHION IN CELL 9 FOR ENERGY ERG
C
IF(KASR.NE.1) GO TC 25
IF(IA.NE.9) GO TO 25
[F(TME.LT.Cs) GO TO 25
[F(ERG.LT.1s) GU TL 25
K =1
IF(ERG.LT.3.) GO TC 15
K = 2
[F(ERG.GT.64) GO TC 25
15 CCNTINUE
TSCOR(K) = TSCCR{K)I+WT/(12.5666%ERG*PL)
25 RETURHM
END
Fig. 2. Subroutine SCORE for a fictitious problem with &
source uniformly distributed in cell number 9.
Sl(E:E’Q:t) = E% % for 0<t< ti’ the source density per unit of area on the surfacg;
' .
1. <E<3., and Because the transformed agjoint Green's function Ga
satisfies an equation whose form is identical to the
rincell TA= 9/ , neutron transport equation, the number of "particles"
= 0 otherwise 37 crossing a phase-space element d?rs on the surface
b . .
s (E,E,Q,t) - %; 1 for o<t<t,, about xg with energies in dE about E, direction of
2 E 1 motion in d about 9 , and during & time dt_ about
3. <E<6., ta is given by
rincell IA=9] , +(
. WG (z B, b, 50,08, ,8, ot )T dag at_ , (39)
= 0 otherwise,
Here, all pseudoneutrons are assumed to begin their where My is the absolute value of the cosine of the
life histories at the time ti. Consequently, the angle between 9 and a vector that passes through
maximum time is not checked in subroutine SCORE dgr normal'bothe surface. Here we assume an infin-
beceuse the time t runs backward in the adjoint 1tesimally small volume in phase space. Thus, the
calculation. contribution of a pseudoneutron to the functional
When the neutron source S is on a surface, the Ji each time it crosses the surface is given by

SUBROLTINE SCURE(KASR)

space coordinate normal to the surface in Eq. (33)

may be integrated readily because a delta function
in the source is involved. The expression. for Ji

WS (2B -0 ,t) (392)

Subroutine SCORE is shown in Fig. 3 for a fiec-

becomes titious problem with a surface source S_. We define
2
3 =fG (2g7EsR sty 3T By s By r8, 4 )8 (2 By -0 5t - £, )d T, dEaQ at, (38)
where x denotes a point on the surface, dars de- the surface of the source to be a spherical surface
notes an element of area on the surface, and Sg is of 12-om radius and centered at x = 0, y = 0, and

11



SURROUTINE SCORE(KASR)

TMF TIME AT SURFACE CRCSSING

2 PI = 642832
CROSSING

AT SURFACE CROSSING

AOOOOOOOODOO0O0N00

IF(KASR.NEL2) GO TC 25
[F{JA.NE.6) GO TO 25
IF(TMl.LT.Ce) GO TC 25
IF(ERLLLT.2.) GO TO 25
IF{ERGLGTL 4. ) GO IC 25
UNOR = (L*X+V*¥Y+W&Z) /12,
IF(UNUR.LT.Cs) GO TC 15

INTEGERy OIMENSION, CCMMCN, AND EQUIVALENCE STATEMENTS ARE NOT
SHOWNs BLT CCRRESPUND TO ThUSE OF THE MAIN PROGRAM ATMC

SCORING FOR FICTITIQUS PROBLEM WITH SURFACE SOURCE
KASR = 2 DENCTES A SURFACE CRCSSING
JA = PROBLEM SURFACE NUMEER CROSSED

ZRG = PSEUDC-NEUTRCN ENERGY AT SURFACE CROSSING
WY = PSEUDC-NEUTRON WEIGHT AT SURFACE CRCSSING

XeY¥yly ARE ELCLIDEAN COORDINATES OF THE PSCUCO-NEUTRON AT SURFACE

UsVsw ARE THC DIRECTICN CF FLIGH1 COSINES UF THE PSEUDO-NEUTRON

TSCORU{L) = TSCOR(1) + wY=UNCR/ (6.2824ERG)

L0 TU 25
15 CCNTINUE

TSCOR(2) = TSCUR{2) + WT/(6.2832%ERG)

29 RETURN
END

Fig. 3.

Subroutine SCORE for a fictitious problem with a

source uniformly distributed on surface number 6.

z = 0. The source density for this fictitious prob-

lem is defined as
1 1(
SS(IS’E)th) "g (Q'P_) t 0<t< ti’

2. <E<L.,
r, on surface JA=6';a.ndr’

Lg_.g >0
(k0)

(2-n) %'o<t<ti, )
J2.<E<h.,

r, on surface JA=6,and (",

an<o
-~

= 0 otherwise.

Here, 9 is defined to be a unit vector, n is a unit
vector normal to the surface in an outward direction,
and all pseudoneutrons begin their life histories

at ti' For a pseudoneutron crossing the surface at
x,¥,2 and with direction-of-motion coordinates, u,

v,v, °n is given by

0+ n=(iu+ Jvrky) + (ix+ jy+ke) Vx2+y2+ 22

= (ux + vy +wz)/12.. (41)

If the neutron source Ss is isotropie, an in-
finite variance may occur in the estimate of the
functional because the scoring is then inversly pro-
portional to lg . 5|. To avoid possible infinite
veriance, it is suggested that for lg . 3] values
less than same small number € (a value for € is
problem dependent, but € = 0.1 should be satisfac-
tory in most applications) the scoring should be in-
versely proportional to €/2.

This concludes the discussion of the MCNA pro-
gram except for some additional considerations in
A special distance-to-collision
sampling option is discussed in Appendix C, and some

the appendixes.

miscellaneous probability concepts used in MCNA are
discussed in Appendix D. Scoring in the adjoint
calcenlation with a point neutron source is discussed
in Appendix E. In Appendix F, the treatment of a
neutron source containing a delta function in time
is considered.

Thig discussion of MCNA has assumed a coupled
sampling solution.
where some information about the energy dependence

There are problems of interest

of the neutron flux is available. An option exists
in MCNA to utilize this information to numerically
construct the 'c'ia's and thus, omit the sampling from



the transport equation. The numeric integration is
then done in Step 2 of Fig. 1 and Steps 3 and 4 are
bypassed.

The execution of an example problem with the
coupled sampling method is discussed in the next
section.

IV. EXAMPLE PROBLEM

We will comment on some tests of the program-
ming reliability of the MCNA code before discussing
the example problem.

It was impossible to completely check all as-
pects of MCNA for errors, and so a number of inte-
gral checks have been utilized. The integral checks
were made between the MCNA and MCN programs. We as-
sume here that MCN is & reliable program and so the

Geometricel Description

TABLE

agreement of a number of computations with MCN and
MCNA indicates the reliaebility of the MCNA program.
Comparison of the results of two Monte Carlo pro-
grams has the dissdvantage that statistical errors
are involved in both answers; in the test calcula-
tions, the relative errors (standard deviation di-
vided by the functional) are a few percent and in
some cases less than 1%. We felt that the disadvan-
tage of having statistical errors in the comparison
code was more then offset by the advantege of using
the same cross-section sets and interaction models.
Some of the comparisons made between the two

computer program are summarized in Table I. A num-

. 1
ber of additional comparisons made on classified 3
problems have revealed a few minor errors in MCNA,

which have been corrected.

I

SUMMARY OF INTEGRAL CHECKS ON THE MCNA PROGRAM

Functionals Computed

Corment s

Point source of 12.2- to
15-MeV neutrons in infi-
nite air; a shielding

benchmark problem( Rer..'ll).

Near-critical sphere of
10% enriched uranium

meta1(ReT-12) | poyen
function source at t = 0,
of fission neutrons.

Epithermel neutron source
in an infinite medium of
hydrogen at a temperature
of 1.0 eV,

Epithermal neutron source
in an infinite medium of
deuterium at a tempera-
ture of 1.0 ev.

Neutron fluence as a
function of energy and

distance from the point

source.

Total number of neutron

collisions in the time
interval from 80 to 96
shakes (~10 to 12 neu-
tron generations) that

occur in the energy in-

terval from 0.5 to 1.5
MeV.

Neutron flux spectrum
after the pulse has
thermalized; also the
total integral of the
flux after thermaliza-
tion.

Neutron flux spectrum
after the pulse has
thermelized; also the
total integral of the
flux after thermaliza-
tion

*COmpa.risons were made for 95% confidence limits.

Agreement was obtained within statistical
errors* for neutron energies of from 0.1l
to 15.0 MeV and distances from the point
source out to 1275 m. Standard deviations
for high neutron energies ranged from ~ l%
near the source to 10% far from the source.

The result of the adjoint computation was
11.1 with a relative error of 9.6%, and
the transport calculation yielded 12.8

with a relative error of 8.5%(Ref‘12).
This is a better integral check then the
relative errors indicate, owing to the
large number of collisions between source
particle and scoring. Any small errors in
the adjoint sampling or computation of
weight factors would be amplified.

The adjoint calculation was performed at
0.05-~, 1.0-, 3.0-4 and 10.0-eV energy
points and agreed™ with e Maxwellian
flux to within relative errors of about
2.9%. The total integrals of the flux
as computed with adjoint and transport
Monte Carlo also a.greed.* Here the rela-
tive errors in the adjoint and transport
calculations were 1.4 and 0.52%, respec-
tively.

Agreement with e Maxwellian flux to with-
in relative errors of about 3%.
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The examnle problem is one of a set prompted by
the need of the nuclear safeguards group to develop
computational simulation of some experiments. These
experiments involve a small amount of 2 5U métg.l
surrounded by a moderator. The delayed neutron re-
sgonse is measured after a pulse of neutrons is in-
jected into the system.

This is a difficult problem to solve by a direct
Monte Carlo calculation because the extraneous source
is outside the system and only a small fraction of
the source neutrons reach the small region of 2 51!
and cause fission. However, the computation of the
number of first-generation fission neutrons produced
in the small 255U region is an excellent application
of the adjoint approach because the histories of the
pseudoneutrons begin in the small region of 255U.

It is straightforward to subsequently compute the
number of delayed neutrons reaching a detector with
e direct Monte Carlo calculation by using this first-
generation fission source of neutrons.

The example problem is described in Table II,

TABLE II
DESCRIPTION OF THE EXAMPLE PROBLEM

Cell Descriptions (concentric spheres):

Inner Outer
Cell Radius Radius Density
Number _(cm) (cm) Element (Atoms/barn-cm)
1 0.0 0.635 Py 0.0478
2 0. 635 8. 255 H 0.0790
[ 0.0395
3 8.255 39.5 Void ———

Extraneous Neutron Sources:
S(r_,E,0) = 75—y —=— for 12 MeV<E<15 MeV
I8 T Ty T3 MeV) hﬂlr ]2 ’
=5

= 0 otherwise,
where g is any point on the outer surface of cell
number 3. The response due to a second neutron
source was also computed in the adjoint calculation

for illustration. This second source was

1 1
dgs:E,Q) =T © MoV — for 6 MeV<E < 12 MeV,

‘mlzsle
= 0 otherwise.
Functional:
Number of first-generation fission neutrons pro-

duced in the 2550’.

1

The geometry is simple; i.e., there is spherical
symmetry of both the extraneous source and the three
cells. We mey therefore concentrate on the inputi

" required for the coupled sampling without be;.cémihg

involved with geometric d_eta.ils. Those who may be
unfamiliar with the geometric capebilities of the
MCN and MCNA codes are referred to Refs. 4, 5, and
6. '
) The sampling from the transport equation for
this example problem was set up 8o ‘tha.t_ an qstimaf.e
of the functional due to the 12- to 15-MeV neutron
source was obtained while the functions for sampling
This then
provides one check between the adjoint and transport
calculations. Thus, additional adjoint calculations
can be made, with smaller 230y cell radit for example,
with confidence that the adjoint sampling has been
set up correctly. This type of procedure has also

from the adjoint equation were computed.

been found advantageous for problems involving a
given system response as a function of the neutron
Adjoint
problems of this type have been solved using hun-
dreds of neutron source distributions, but a check
on one of these distributions in the transport por-
tion of the calculation is time well spent.

The neutron source in the Monte Carlo calcula-

source distribution in space and energy.

tions was biased so that the source neutrons would
elways reech cell two. The neutron source is con-
structed in the same manner as in the MCN a::ode.h"'6
Subroutine SOURCE for selecting the initial neutron
parameters is shown in Fig. k.

The pseudoneutron source was constructed from
the built-in routines in MCNA. The initial posi-
tion of the pseudoneutron was selected from a uni-
form distribution within the cell containing 25°U.

A uniform selection is adequate at energies such
that the number of mean free paths ecross the cell
is small. However, at energies such that the num-
ber of mean free paths is large, most of the fission
This
means that one may expect to gain efficiency in the
adjoint calculation by biasing the selection of the
pseudoneutrons at these energies toward the outer

neutrons are born near the outer surface.

boundary. (This type of problem often occurs near
thermal energies, where the fission cross section
is large.) The biesing is accomplished in the ex-
ample problem by calling the subroutine AS(X&RC after

the built-in routines have been used to select the



SUBROUTINE SCURCE

SRC(1)=R3 ,

SQURCt. WIDITH

OO0

X==SRC(1)+.001 $ Vv=0. $ 130,

AMN=FRN(R)

INTEGERy DIMENSION, CCMMCN, AND EQUIVALENCE STATEMENTS ARE NOT
SHOWN, BUT CCRRESPCND TO THOSE OF YHE MAIN PROGRAM ATMC

BIASED NEUTRCN SOURCE TO STRIKE INNER SPHERE OF 16.51 CM DIAMETER

SRC (2} = SQRT(1 — R2¥%2/R3%%2)
SRC(3)=JA , SRC(4)=2lA 4, SRC(5),SRC(6) ARE LOWER ENERGY AND ENERGY

$ TME=0. § DEL=0.

U=SRC(2) + (1l.—SRC(2))}*RN ¢ V=0, $ W=SQRT(1l.-U**2)

ERG=SRC{F) + FRN(R)#*SRC(6)
JA=SRC(3) ¢ [A=SRC{4)
wWT=(1.-SRC(2))/2.

RETURA

END

Fig. 4. Subroutine SOURCE to select the initial neutron parameters.

initial parameters (the 6th gata entry of cards

ASC = 1). In ASOURC, the product of the macroscopic
fission cross section and the radius of the uranium
region is computed. If this number is less than
four, a return is made to the main program and the
parameters selected by the built-in routines are ac-
cepted. If the number is greater than four, the in-
itial distance r of the pseudoneutron from the cen-
ter of the 235 U is selected fram the density func-

tion
+ Tu +n.x’
glr) = e Ef!/f ¢ e e ar’ |, (42)
o

where zf is the macroscopic fission cross section

and T, is the radius of the uranium region. The
radius, r, is obtained with a random number & as

r=r, + Ln[l-E(l-e-zfru)]/)jf , (43)

and the weight of pseudonuetron, as obtained by a
uniform sampling,is multiplied by the ratio

h«r2 . éﬂf ﬁlgf e-zfru) (44)
% “ri g(r) rz Ef e'zf(ru-r)

The subroutine ASOURC for this example problem
is given in Fig. 5. This subroutine is written for
the more general case when the inner radius may not
be zero. Here Tl is the inner radius, T1l is the

SLBRAUTINE ASOQURC(APSC,TLl,Tl1l,XD,YD,Z0)

T1 = INNER RADIUS
Tll = NUTER RADIUS
APSC=APSC*RHC{[A)/2.43

QOO0 ON0

INTEGe R, DINENSION, CCMNMC.J, AND EGUIVALENCE STATEMENTS ARE NOT
SHOWN, BLT CCRRESPCND TGO THOSE OF THE MAIN PROGRAM ATMC

ADJUST THE SFATIAL POSIVINN CF THE SOURCE PSEUDO-NEUTRON WHEN
THE FISSION CROSS SECTICN APSC IS LARGE

IF{APSC*{T11-T1l) . LT. 4.) RETURN
PSC=APSC/(1.-EXP(—APSC*(T11-T1))}
RAN=T114+ALCG (1 .—APSC*FPN(R)/RSC)/APSC

WT=WT#3 , #RAC**2/ ({ T11%%3-T1%%3) %kpPSCHEXP(—APSC*(T11-RAD)))

X=RAD*U+XD §& Y=RAD*vV4+Y[D §

L=RAD%*W4+Z0

c SELECT NEW CIRECTICN ISOTROPICALLY

U=le=2.%FRN(R)

20931 TP(1)=1e=2+*FRN(R)} $ TP(2)=1e—2.*FRN(R) & TP(I)=TP(L)*%2+TP(2)**2
IF(TP(3)eGTale) GU TO 20931 ¢ TP{4)=SQRT((1.-U**2)/TP(3))

V=TP(L)*TP(4) $ W=TP(2)%TP(4)

RE TURN
END

Fig. 5. Subroutine ASOURC to.alter the initial pseudoneutron
position for large fission cross sections.
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outer radius, APSC is v times the microscopic fis-
sion cross section, and RHO is the density in atoms/
barn-cm of 29°U; XD, YD, and ZD aré zeré in this
problem. The last few cards select the direction
of flight from en isotropic distribution, ’

The last routine required is subroutine SCORE
for tabulating the functionals, the number of first-
generation fission neutrpns produced. Subroutine
SCORE is shown in Fig. 6. In this case, two func-
tionals are computed for illustration. The func-
tional denoted by JC = 2 is the main functional of
interest, i.e., the number of firsi-generation neu-
trons produced by a 12- to 15-MeV extraneous neutron
source of unit strength. The functional denoted by
JC = 1 is the number of first-generation fission
neutrons produced by a 6- to 12-MeV extraneous neu-
tron source of unit strength.

The appropriate score for these two function-
als, each time a pseudoneutron crosses the outer
surface, is obtained from Eq. (39a) as

1 1

L, for 6 MeV < E<12 MeV,
6 MeV) 4x(30.5 c_m)2 Uy

W
Ix (

(¥5)

W1 1
Ix

1
L. for 12 MeV< E<15 MeV .
3 MeV ) (30.5 em)? M

(46)
In subroutine SCRE of Fig. 6, the variable AJCON(1,1)

SURRUOUTINE SCORE(KASR)

NEUTRONS

aEaXesNaNeN N e

IF(KASR.NE.2) GO TC 29
[FLERG.LTa6e) GO TC 29
IF(ERG.GT.15.) LO TC 29
IF(JA.NE.3) GO TO 29

UPRIM = (L3X + V&Y + n*Z)/30.48

Jc=1

[FIERG.GTL12.) JC=2

WCON=WT*AJCCAN(JCs1)/UPRI¥

TSCOR{JCY=TSCOR(JC }+wCON
29 RETURM

END

Fig. 6.

15 1/6 and the variable AJCON(2,1) is 1/3; these
variables are a portion of the input data and will
be mentioned later. fThe 1/(ln 30.5 cm)2 is lumped

" into the initial pseudoneutron weight because it is

's'imply a constant. The varisble UPRIM in Fig. 6 is

. the cosine of the angle, pn, between the direction

of motion of the pseudoneutron and a vector normal
to the surface. By will never be close to zero,
owing to the geometry of this problem, so the pos-
sibility of an infinite variance, as discussed in
Sec. IIT for an isotropic source, will not occur.

The control cards and cerd input data for the
CDC 6600 run are as shown in Fig. 7. The first few
Before discussing the in-
put data for the coupled sampling, we will consider
the magnetic tapes required to run MCNA.

Two magnetic tapes, CODETP and RUNTP, are used.
CODETP contains the following five files.

File 1 ~-- The symbolic form of the MCNA program
in UPDATE format.

File 2 -- Binary deck of ATMC (see Fig. 1,
steps 3 and 5) and related subrou-
tines.

File 3 -~ Binary deck of ANUI (see Fig. 1,
steps 2 and %) and related subrou-
tines.

File 4 -- Binary deck of ATTMC (see Fig. 1,
step 1).

File 5 -- The MCNA cross-section library.
The general procedure for the use of CODETP is:

J. Using an old CODETP, make any necessary
changes in Subroutines SOURCE, ASOURC, and SCORE
and generate a new CODETP to include these changes.

cards are control cards.

IMTEGLR, DIVMENSION, CCMMC:ly, AND EQUIVALENCE STATEMENTS ARt NUT
SHOWN, BUT CCRRESPCND TQ THOSE OF. THE MAIN PRUOGRAM ATMC

COMPUTE CUNTRIBUTICN CF FSEUCC—~NEUTRON TC FIRST GENERATVION

Subroutine SCORE to compute the centribution of the pseudoneutron

history to the first-generation source of fission neutrons.
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ASSIGN MT,CUDETP(NLB,LGILELOO,SHH)
ASSIGN MTRUNTP(NLByLIS39LOC,,ShH)
COPYBF(CODETP,DISCARD)
CUPYBF (CODETP,D3)
REWIND(D3)
COPYBF (DIL,RUNTP)
COPYBF (CODETP,ANLI)
COPYBF{CODEIP,A1TMC)
AITMC.
COPYBF (RUNTP,DISCARD)
RFL,277000.
ANUL .
COPYBF (RUNTP,ATMC)
RFL,y 320000Q.
ATMC.
COPYBF {RUNTP,DISCARD)
RFL,277Q00.
ANUI .
7
TEST CASE FOR GENERATING FIRST GENERATIGN FISSION SOURCE

1 41 .0478 ~1,2

2 42 .1185 -=-2,3 1,1
3 0 =34 2,2

4 0 3,3

1 SO 635

2 SN B.255

3 S0 39.448

Y6 0 2R C

[0 1. 1. 1. 0.

DO +.5E-6 Q. 15

RO 1.£8

Rl O. 2.5E-8 0. 0.
Mal 923 1.
M42 11  .666667 3006 .33333%
ST 30.48 .9626 1 3 12. 3.

TYP ~1y1,!

ASC 3530925191,1

ASP Ce90e30030e9Ce30e9CesVe9les0esves0.
ASI -1921171.9157-410.y1oy1.

ST 1 0. 2.5-6 1425~ Z.5-8 3.75-8 6.25-8 1.-7

2e-7 3.-7 Se—T 3.06—6 24265 L00C167 .00123
«0248 « 0674 «1t3 <498 «821 1.35 2.23
3.h8 4,12 6.0C7 7. 79 1C. 12, 13.5
C. +UC6 +038 « 195 o134 204 0268
«337 » 3€S ol &2 b o 47 «5
524 «£33 «559 «6H05 «65 «67 +695
«715 « 721 « 736 « 752 «T77 8 852

AF 6

MN 1 03040509Colslslsl,l

AE 0 31,15.

AE 1 2.5-9 .041 .959 9., 5.

AE 2 1.25-8 041 .959 9. 5.

AE 3 2.5-8 «04l .959 9. S

AE 4 3.75-b 4041 4959 9. S

AE 5 6.25—-% +041 .959 9. &,

At 6 1.-7 « 041l .959 9. S.

AE 7 1.5-7 «041 959 9. 5.

AE 8 2.7 «C4l .959 9, S.

AE 9 3.-7 « 041 +959 9., 5.

AE 10 5.-7 «041 .959 9. S.

AE 11 2.059-6 041 .959 9. 5.
AE 12 2.26-% 041 .959 S. 5.

157
«00912
2.87
15.
<312
«514

« 706

Fig. 7. Control cards and input data for the example problem.

(cont.)
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AC 13 .C001%7 .04l 959 9. 5.
AE 14 .00123 .041 .959 9. 5.
AE 15 .009lZ <041 .959 9. °%.
AE 16 .Q248 «041 .959 9. S
AE 17 0674 «476 o5 le5 3.5 6. 3.

AE 18 +1R3 «433 .5 1.5 3.5 6. - 3.
AE 19 .498 «317 .5 le5 3.5 6. 3.
AL 20 .821 «5C2 1.5 245 4. 3. 3.
Ac 21 1.35 <68 1. 2.5 4o 3. 3.
AE 22 2.23 1.15 2.5 4. 3. 3.

AE 23 2.37 127 2.5 3.5 2.5 3.

AF 24 .58 1.13 2. 3¢5 245 3.

AZ 25 4.72 1.32 3. 3.5 2. 1l.%

AFE 26 (.07 2028 245 245 1e5 1le5

Ac 27 T7.79 1.53 2. 2 2. 1.

AE 28 10. 2.21 2. 2. l.

At 29 12. 1. 1.5 1. 1.

AL 3C 13.5 l. l. «5 W5

AE 31 15. 1. 5

SCC Q0p0e=1,-1

l. +0R 1, -C8 10.

TYP  2,1,3

ASSIGN MT,C IDETP(NLB,LGYILBLOO,SHY)
ASSTGUN MT,RUMTP (NLP4LI939L00sSHN)
CUOPYBFICODETP4DISCARE,2)

CJIPYBF (CLUDETP,ANLE)

COPYBF (RLNTP,NISCARD)

AMLT o

COPYHF (RUNTP,ATMC)

RfLy32CClu.

ATMC .

7

TYP 4yl et

aF 1 <1666666606E6€E67

AF 2 «33333333333233

ALE 1 le-6 6. 3

)
-l. +0R L.
T

-15 5.2

10000

100C0

500000

500000

Fig. 7 (continued)

The necessary control cards for doing this with the
UPDATE program are shown in Fig. 8

2. Write the second file of the new CODETP
onto the first file of RUNTP and use the other files
as needed. This is illustrated in the control cards
of Fig. 7.

3. Skip to the cross-section library before
running ATTMC.
The first file of RUNTP contains the program ATMC.
This has been found convenient, and generally saves
same tape handling. However, it does require that
one skip past this record before execution of each

program. The subsequent records of RUNIP, on the

END DATA
2 500000
+e4ee
5 500000
+E et

second file, are generated during the problem.
These records are:

Record Number

Comment

1

2
3-n
ntl

n2 tonm

Tape dump after initietion; Step 1
of Fig. 1.

Tape dump after Step 2 of Fig. 1.
Tape dumps during Step 5 of Fig. 1.

Tape dump after Step 4 of Fig. 1.

Occasionally there will be another
tape dump here (usually signified

by & 3 or 4 in the first entry of

cl;.rd TYP, as described in Appendix
B).

Tape dumps during Step 5 of Fig. 1.




ASSIGN MY ,,OLDPLIALELB247L00,SHB)
ASSEIGN MY, ,CODETP(NLB ,LGI18LO0,SHE)
UPDATE(N=COLETP)

RUM( Sy » o COMPILE)
REWIND(LGO)

REWIND (OLOPLY
REWIND(CNDETP)

CUPYUF LOLDPLLUISCARD)
COPYBF (DLDPLJNENWL)
COPYRF (OLOPL yNEW2)
CUPYBF (OLOPLNEWS)
COPYBF (OLDPL¢NEw4)
ReW{ND(NSHKI)
RUWIND({NFW2)

REWIND {N:w3)
REWINDINE wa)

COPYBF (CODETP,DI SCARD)
COPYBR(NFWL,DVISCARC,, 7}
CUPYBF(LGUaNEWLY
REWIND(MEWL)
CUPYBF(MNEWL,CNCETF)
COPYBF(NY W2,CODETP)
COPYBF (M w3,CORETP)
CUPYHBF (NFr4,CORETP)

7
ce UPDATE CCRRECTINNS GC HERF
?
Fig. 8. Control cards required to utilize the

UPDATE program to alter subroutine SOURCE,
ASOURC, or SCORE.

After some file manipulation, the program
AITMC is called by the ninth control card of Fig.
7. The input data, between the first and second
7-8-9 cards, for ATTMC ere identical to that for the
initiation of the MCN program and so are not dis-
The AITMC program initiates the data,
selects the pertinent cross sections from the fifth
file of CODETP, and writes the blank common block
onto the first record of the second file of RUNTP.

The program ANUI is called by the 12th control
card of Fig. T {the MCNA program now uses ECS so
that the RFL memory allocation is normally less than
156K) and initiates the input data for the coupled
sampling between the second and third 7-8-9 cards;

cussed here.

see Appendix B for a description of the input data.
The following comments on the input date for this
example problem may be useful:

1. The second data entry on card TYP is 1, in-
dicating that only the first generation is consid-
ered. For most neutron multiplication problems,
this entry would be O.

2. The sixth datae entry of card ASC is 1, so
the main program, ATMC, calls subroutine ASOURC
after generating the initial pseudoneutron source
parameters from the built-in routines.

3. The pseudoneutron energy selection table,

ST1, was obtained from previous calculations on this
type of problem. In many problems, it is worth-
while to change this table after the transport por-
tion of the calculation because useful information
is often obtained there.

Lk, The initiel pseudoneutron weight is com-
puted from Eq. (38). Here E in the cell containing

255U is given by

&(x,E,2) =l*—:zl3_u; g(E) (7)
3

where gE(E) is the energy spectrum as input on card
ST1. The code automatically multiplies the initial
weight constant, input as the fourth data entry on
card ASI, by vzf/gE(E). The initial weight constant
for the fourth data entry is given by

4
3 <, b _0.655 em

(4x 30.5 anf® 3 X 30.5 .
where the factor 1/(l4n 30.5 cm)® has been included.
5. The floating-point number at which the

= 0.9187 x 10‘1‘ em , (U4B)

pseudoneutron weight is split, as given by the sixth
data entry on card ASI, provides an opportunity for
It should ordi-
narily be set large enough so that splitting occurs

splitting when large weights occur.

infrequently, one split per hundred source pseudo-
neutrons, for example.

6. A hydrogen transfer matrix is used in this
problem because of the large amount of leakage, but
this is usueally unnecessary.

7. Six functionals are designated on the AF
card because the transport portion of the calcula-
tion was altered slightly to compute the number of
Thus,

a check can be made between the adjoint and trans-

first~generation fission neutrons produced.

port calculations for one geometric configuration.

8. The adjoint calculations usually tend to be
insensitive to the energy mesh utilized on the AR
card. The infinite number of possibilities makes
this very difficult to optimize.

The program ATMC is called by the 15%h control
card of Fig. 7 to begin the sampling from the trans-
port equation. The program ANUI is called again by
the 18th control card to normalize the sammling
functions. Additionel input data are not required
at this stege, so only & TYP card is needed.
ever, after the normalization, the program ANUI is

called again {note that the last tape dump from the

How-
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previous celculation is used) and the number of
functionals is also changed from six to two with the
oroper functional constants inserted. The special
leakage option is also introduced here with the ALE
Note that we could have made these changes in

the previous step, but this illustrates the use of

caxrd.

tape dumps at any point in the calculation.
The program ATMC is now called again for the
final sampling from the adjoint equation. The

* printed output of the adjoint calculation is given

in Fig. 9. The number of first-generation fission
neutrons of 0.742 X 10'1" (£ 0.078), as camputed by

TEST CASE FOR GENERATING FIRST-GENERATION FISSION SOURCE

SOURCE NO. TIME CUTOFF WEIGHT CUTOFF RUN TIME D.P. CYCLE DUMP CYCLE DUMP NO. CUTOFF CYCLE
7 -1.0000E+08 1.0000E-15 5 . 2000E+00 10000 500000 5 500000
TEST CASE FOR GENERATING FIRST-GENERATION FISSION SOURCE
TIME = 5.003 MINUTES
NUMBER OF TOTAL RANDOM TOTAL TOTAL COLLISIONS TRACKS NEUTRONS
NEUTRONS NUMBER OF NUMBERS WEIGHT ENERGY PER NEUTRON PER NEUTRON PROCESSED
STARTED COLLISIONS GENERATED STARTED STARTED STARTED STARTED PER MINUTE
21450 97290 917428 8.1714B+00 T7.8982E+04  L4.535TE+00 1.0001E+00 4, 2878E+03
TOTAL LOSS TO LOSS TO 1088 TO LOSS 10SS TOTAL
TRACKS ENERCY TIME WEIGHT TO TO TRACKS
STARTED CUTOFF CUTOFF CUTOFF ESCAPE SPLITTING LOST
21452 2105 0 312 1098k 8051 21452
WEIGHT 10SS TO LOSS TO 10S8 TO LOSS 10Ss WEIGHT
STARTED ENERGY TIME WEIGHT TO TO LOST
PER NEUTRON CUTOFF CUTOFF CUTOFF ESCAPE CAPTURE PER NEUTRON
3.8095E-0k 2.84898-05 O. 0. 1.7732E-05 -1.4766E-03  3.2506E-Ob
ENERGY LOSS TO 10SS TO 10SS TO LOSS L0SS
STARTED ENERGY TIME WEIGHT TO TO
PER NEUTRON  CUTOFF CUTOFF CUTOFF ESCAPE CAPTURE
3.6821E +00 L4.7522E-04 0. 0. 1.0364E-02 6.6719-03
TOTAL NUMBER OF EVENTS
ELASTIC FISSION INEL. C.M. INEL. D.M.L. INEL. D. M. C.
85585 o] 2170 1484 o] 30886

FUNCTIONAL ESTIMATES OBTAINED BY SAMPLING FROM THE ADJOINT EQUATION

VARTANCE
RELIABILITY

+39626E+00
.52021E+00

NN NN NN NN NN NIEHRH NN INHE NN NN AN NN HIEIREOEEE NN HHHIEHHK 3

FUNCTIONAL FUNCTIONAL RELATIVE
NUMBER ESTIMATE ERROR
1 .8754%0E-04 +11933E+00
2 Th2bhE-Ok SI771hE-01
TAPE DUMP NO. 6 NPS = 21450

HHHINNH NN NI NHIEHHIHNIEHNNNIHNIHHAENH NI RN HHHEEHEEEEHAEEEEEEEEREEEEEEEHOEERHOOEREEHEEEHEECOEEEEE:

Fig. 9.

Printed output of the adjoint portion of

the calculation for the example problem.




the adjoint calculation, compares favorably to the
transport result of 0.854 X 1o“u(i 0.12). Here the
errors quoted are relative errors (stendard devia-
tion divided by the functionals). These relative
errors are large owing to the importance of leakage
in this problem. The relative error of the func-
tional due to the 12- to 15-MeV source could be re-
duced by a factor of ~ 0.8 in the adjoint calcula-
tion by extending the energy range to 12 MeV for
samling so that leakage would not occur; i.e., the
third data entry of card ALE would be set to 12.
instead of 6. This was not done here to illustrate
the computation of the two functionals. An alter-
nate aoproach for this example problem is to alter
subroutine SCORE to tabulate the functionals only

when KASR is equal to 4, and to multiply the scoring
by the leakege probability ANL. Then, with the
third data entry of card ALE set to 15., both func-
tionals could be tabulated and the leakage treated
sdequately.

For the nuclear safeguard problems, the program
ATMC was altered so that different radii could be
input for the 23 5U cell and the moderator cell. A
paremeter study was then made for different radii by
sampling from the adjoint equation and using the
sampling scheme constructed in the one transport
calculation.
limited to this simple geometry, which was an incen-
tive for using the Monte Carlo method.

Of course, the adjoint solution is not
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APPENDIX A

DENSITY FUNCTIONS AND WEIGHT FACTORS FOR SAMPLING FROM THE ADJOINT EQUATION

The computation of the Ea's and their subse-
quent use in the sampling from the adjoint equation
were discussed in Sec. ITI. The corresponding T o
density functions are discussed here, and the pseudo-
neutron weight following each type of event o is de-
rived. The four ¢ events are considered in the same
sequence as in Sec. III.

1. Elastic Scattering with an Isotope

a. Epithermal Elastic Scattering. A superscript i

denotes that the elastic scattering event is with
isotope i. Ei is the macroscopic elastic scattering

cross section of isotope i, Ci ig the collision ker-

. 1
nel, and T+ is the corresponding density function

to sample Jéhe energy and direction of motion. It
is convenient (assuming isotropic media) to expand
each density function into the product of a margin-
al density function for the leboratory scattering
angle u; and a conditional density function (a Dirac
delta function for the energy).

pansions are

The relevant ex-

i
Cl(E', - Q;;EJE: - Qa)

1

Ef(r-au  + 1+6J
E—— i . L [ cm
= & Dy(upnE) BE

5 o’ (A.1)

+i
£,(E,,;r,E%,07)

2EI

- 3 » (A.2)
(l-a)ucm + l+a]

=L nitu :r.E’ .
=3z hl(uL,I_:E )L5 E - [

E
where

A -1 e
o= (A + 1) ’
Ham is the scattering angle in the center-of-mass
system, end the subscripts E’ and E on the delta

functions serve as & reminder that they are normal-
ized as

(A.3)

El(1 -« + 1+
fs E’ - [ a)u;m a] &’ =1, (ad)
EI
fs E - 5 _ZE' dE =1 . (A5)
[(1-a)p.cm+l+a]
E

A transformstion to the center-of-mass system is
useful as



" -3
Dy (M 52HE) o = Di (upszsE) ETI; , (a.6)
ny(u_sx,E) = b (N 10 EL—,’; ) (a.7)

where the subscripts cm end L on DI and 151_ denote
density functions in the center-of-mass and labora-
tory systems, respectively. The density function
hi of Eq. (A.7) may now be specified, and in MCNA it

is chosen to be

m=ni|}m,r, ) <1+ )] . {(a.8)
* cm

This density function is easy to sample and has some
other useful properties.

i d

i
hy @ 5r,E")

It is the exact zero-vari-
ance density function in regions of phase space where
the neutron flux is isotropic, q)(r,E)):i(r,E) is in-

versely proportional to E, and D (p. ’r’E)cm
not change for E' < E £ E'/a. Although these con-
ditions are seldom met exectly, this approximation

does

is expected to be adequate for most problems.

After the center-of-mass scattering angle Hem
is selected and the energy E is computed, the pseudo-
neutron weight is obtained from Eqgs.(24}, (a.1),
(A.2), (A.6), (A.T), and (A.8) as

CH(E’, - 8055F, - 9,)5(xE)

Et(-l:’E’)—d’l(J’k’ i)Ti(E,Qa;g,E':Q;)

(a.9)

W'zi(;,E)D(umss,E)cm E

) gt(z,n’)al(j,k,i)n[ucm:s: E (e é)_l 4

cm

where the factor E/E’ arises owing to the ratio of
the delta functions,

E[(l-&)ucm+1+&]

8jE’ - 2 ’
E_ % _E
- pviae . (A.10)
8lE - 25
[(l-oz)ucm+1+a]

A special option for hydrogen is available for
. i .
choosing a density function other than hl(“cm’r-’E)cm
of Eq. (A.8). With this option, the sampling from
the transport equation is used to campute the number

22

of neutrons in energy group y that suffer a scatter-
ing collision with hydrogen in cell k and are trans-
ferred to energy group j. In the subsequent sam-
pling from the adjoint equation, each time a pseudo-
neutron suffers a collision with hydrogen in ene;cgy
group j and cell k, the postcollision energy group
Y is selected with a probability proportional to the
number of neutrons that scattered with hydrogen and
were trensferred from Y to j. The pseudoneutron en-
ergy E within group Y is selected from a density
function proportional to l/E and the pseudoneutron

weight computed as

_ WS (@E ) N L
T Ty (3, 1)8(3,k,Y) (EL) ) () =
’ t Y Y

(A.11)

where 8(J,k,y) is the probability of selecting en-
ergy group Y, (EL)Y is the lower boundary of group
Y, and (Eu)Y is the upper boundary of group Y.

b. Thermel Elastic Scattering. The MCNA code uses
the same simple scattering models as the MCN code

for energies below a thermal upper bound designated
by the quantity (EBR) in the code; i.e., the labora-
tory angle is selected isotropically and the energy
remains unchanged for neutron collisions with nuclei
of mass A > 2, and the free-gas model is used for
hydrogen and deuterium.

The free-gas model is used in the MCNA code by
sampling from the neutron transport equation to con-
struct a thermal transfer matrix for each cell con-
taining hydrogen or deuterium (two trensfer matrices
Let isotope i be either
hydrogen or deuterium and assumed to be in region k
and let the transfer matrix be T(j,3’) s Then the
matrix T(J3,3°) 4x 18 computed in the sampling from
the transport equation as

for a cell containing both).

Number of neutrons suffering a
collision with isotope i in en-
ergy group J’ and cell k that
emerge from the collision in

- thermal energy group J.

“ Sum of the numerator over all 3’

T(J:JI)-

(A.12)

Ten thermal groups* must be used in MCNA, so J as-
sumes values from 1 to 10 end j’ from 1 to 11 (in

¥See input card AEQ of Appendix B for the thermal
group boundaries.




this discussion of thermal scattering, ell epither-
mal energies are denoted by energy group 11). In
the subsequent sampling from the adjoint equation,
the new energy group j' of the pseudoneutron, after
suffering a collision with isotope i in thermal en-

ergy group J, is randomly selected from the proba-
bilities

™33y > 1S3 su . (a.13)

The final energy E of the pseudoneutron within group
3'(3’ # 11) is then selected with density function

from a density function inversely proportional to
E2.

Eqs. (A.12) to (A.15) are derived for the free-
ges model with A < 2.
Given that A > 2 and thet the precollision energy
of the pseudoneutron is less than (EBR)¥q, the
‘pseudoneutron energy remains unchanged at the elas-

tic collision, the new direction of flight is se-

We will now consider A > 2.

lected from an isotropic distribution, and the

pseudoneutron weight is obtained as

i i
T (xE)C(E, - 2751,E, -

ga)é(E)j,

i
b,(E,9 5r,E',07) =

(%),
Ly,

(1) 5

i © i I ’, v " ” "
0 - . - < <
El(r,E )Cl(E 5 Qa,r,E ) Qa)é(E )J,dE” dna for (EL)J.: E (Eu) )

where the user may specify Q(E)J, within group j’ to
be either proportional to a Maxwellian flux Ee_E/T
In Eq. (A.1%4),

5 (x,E)CL(E’, - 9/ix,E, - 2) is the free-gas scat-
tering kernel; see Eq. (2.19) of Williams.lh This
scattering kernel is a function of the temperature

or inversely proportional to E.

T in the medium, but that dependence has been sup-
pressed here for compact notation. An option is
also available in MCNA to allow the temperature T
to change with time, as in the MCN code.

The pseudoneutron weight after the collision
with isotope i (hydrogen or deuterium) is obtained

from Eqs. (24) and (A.14) as

JI
(A.14)
_ W s(zE) 16
W= . A.
2 (B (45K, 1)

If the precollision energy of the pseudoneutron
is less than (EBR) but greater than (EBR)a, with
probability

1 1
’
y=E(EBR) (A.17)
i _a
E' E

the energy does not change at the elastic collision,

the new direction is sampled isotropically in the

il 1
Wr (r,E)e (B, - 0055,k - 2)

):t(_l_')El)al(J)k)i)T(J,:j ‘)ik bi(E)ga3£JE)_f_2;)

¢,
S

(5, )J.”

i W\ ALt v, " 7 “ “
5 (r,E)C (B, - alir,E", - 07)3(E ) j+aE" ag

(A.15)

"

£y(x,E ) (3,5, 1)2(3,37) 1, 3(E) 5

If the pseudoneutron scatters to an epithermal en-
ergy (3’ = 11), the density function Ci is taken

from the tabulated values in the cross-section 1i-

brary and the energy of the pseudoneutron is selected -

laboratory system, end the weight is given by the
right-hand side of Eq. (A.16) except that the prob-
ebility Y is inserted in the denominator. With

probability (1 - v), the center-of-mass scattering
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angle is selected from a uniform distribution be-
‘tween the limits

28’ LG+
(1 -a)EBR) (L-0)

-1

the energy E of the pseudoneutron after the colli-
sion is
2EI

E = — — R (a.18)
(1- ah¢cm +1+q

‘and the weight is obtained as

W’

S (EEDG iR oy
% (5E)Q (5,k,1) B

. (A.19)

2. Inelastic Scattering with a Continuum Density

‘Function )
The random selection of a 3_2(3',}(,8) probability

restricts the final pseudoneutron energy to the seg-

ment from
8-1 B
E'+,E- AE,, to E’ + E LEgr (A.20)
8'=1 g’=1

Where AEq, is the width of the inelastic energy
‘band 8‘. The density function within this band may
foe chiosen to be constant, and the energy E may be
Belected as

(a.21)

‘where £ is & random number on the unit {hterval.
"i‘he new direction of motion is selected from an iso-
t'ropic distribution in the laboratory system, and
‘the pseuddneutron weight is obtained from Eq. (24)

as

Wy ziz(s,E)c;(E,uL;‘g,E, - 8, ) g,
4 - » (A.22)

n

! (5B )Q,(d,%,8)

Sihere the subscript 2 denotes inelastic sca.tfering
‘Wwith a continuous-type energy transfer density func-
tion and the superscript i is asgain used to desig-
‘hate isotope 1.
%hat this density function is in the laboratory sys-
“tem and the Wy is used in cé rather than -Q;

"for convéhience (the physical ‘model ‘assumes that

y

The L subscript on C; is a remindexr

the density function depends only on - _r_za- - Q; =

pL). However, this density function is sometimes
If the cen-
ter-of-mass density function is denoted by C;(E',u em’

tabulated in the center-of-mass system.

E, - 'Qa)cm’ the corresponding density function in
the laboratory system mey be obtained by the trans-

‘ i
C(E'MpsT,E, - 8.); = Co(EL

cm;EJE: - Qa)cmlJl "
(a.29)
: 15
where J is the Jacobian,
’
aEcm ap.cm
FYok oE
|g] = , (A.24)
¢
%y My
AL Y

‘and the variables in the transformation are related
as

E'=Eém+[E+2Hm(A+1)V[E¥m-] (A+l)2 s

(A.25)
'
" cm E 1
HL = 10 —E;- + ;:—'- A+ 1 . (A-26)

Equations (A.25) and (A.26) may be used to obtain
the relationships

2, VEE/

p E
E' =E" + - (A'27)
em (a+ )2 A+ 7
E 1
4= ML oVET R D (.3
cn 2 1/2 ? :
E L [E
1+ - =
[ A+ 1)2 A+ 1) }:-::l
aEcm N Ry, £
3E’ r+1 Vg
1, B
=z4+ 2 L1 E 1 .
2 2E 2 B (a4 1)2 s (A:29)
3E’ V' .
cm= _ 2 EEI (A-}O)
3y, A+ 1



3u energy dE’ about E’ by an event of type 2 is nearly
Mom E’ . B’ 3/2 1 1 .
auL = Ec':x_n (m (!JL ‘Jg A+1 mJEﬁ-r independent of E. This is not usuelly true if the
function
i Teor . }
o E L YE' P Z T (T E)C(E sy s2sEs - 2 (A.34)
= S tEIEeT (A.31) 3
om cm
Hem 1 [E 1 1(_}:’_')3/2(u Jj, 1) E uy, 4B
—_ = : - = - _
% "2 VN5, TR T2, V1T VRREY T ERae 02 s 0erl
= l I 1 . ’ E
"N T A+1) T RELE [Ecm TRt 1)2] (a.32)
and
o ’
[J] -~ BEcm chm ) BEcm aucm
- 7 14
3E’ Wy 3 3E
’ R ——
|r JE i lqfm 1 __E I R E IO S
= 7
2 VE, 2VE "2 /———EE(A+1)2 2E., A+1 2VE A+1
1 P + _E 1, 1 JE 1 1 VEE' _1
- = ’
2 E £’ A+l)5 "EémEl (A+1)2 2 B A+ 1 2 Ecm A+ 1
+ L (E13/2 1 ]
2 ) 7 3
Ecm\/E (A+1)
El
1 ‘}_E_’ L1qfem, 1 __E 1, E _ 1
cm
EI
- Vo (A.33)
cm

which is the Jacobian required in Eq. (A.23).

A constant-density function was used in Eq.
(A.21) tq sample for the pseudoneutron energy E
within an inelastic band AEB. This is a reasonable
approximation to the zero-variance density function,
provided that the rate of transfer of neutrons from

an energy E, E’+SZ)lAE s <sESE'’ +8

EAEB,toan.

changes rapidly over the permissible limits of E.
A more optimal sampling mey then be expected through
sampling proportional to the function of Eq. (A.34).
An option is available in MCNA to randomly select

eight energies EY as

B=1

4
E, = E +2 Qg +
B'=L

£ (E+v-1) , (a.35)
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where € is a random number on the unit interval (the
seme random number is used in computing the eight
energies).

The energy E = EY of the pseudoneutron is ran-

domly selected with probability

i b .
zi: EZ(I’EY)CQ(E JUL,EJEY) - Qa)L

el i b ) ’
>, 2 T B (B sy sr B
y=1 i

. (a.36)

-0)
) “a'y,

‘The pseudoneutron weight is computed as

8
W’ Z ?2(r E, :)c (BB 00 - 8,) umEa

Y =1 i
Zt(z:E')—QQ(J,k, 8)8

=1
!

(A.37)

This method of selection tends to produce a smoother
weight than that obtained from Eq. (A.22). The com-
putational effort required to select the energy E
is nearly a factor of 8 greater, but if Asome of the
‘C;‘s are rapidly varying functions, this additional
computation time may be worthwhile. This method of
selection should be necessary only for isotopes of
large A and for energies E less than about 2 MeV.
‘Hence, these events may be rare, and the additional
‘time required may be negligible compared to the to-
tal computation time.

5. Inelastic Scattering with a Discrete Model

g. Laboratory System. A model used in the MCN and

MCNA computer code$ is that of an inelastic scatter-

ing reaction in which the neutron is assumed to
Uose a discrete amount of energy in the laboratory
"sy‘stf:m. The postcollision neutron energy E’ is re-
lated to the precollision neutron energy E in this
fodel as

E' =

(E-¢€)/m , (A.38)

where € and 7 are constants at an energy E.
In sampling from the adjoint equation, E’ is
the precollision energy, and the postcollision en-

ergy E of the pseudoneutron is determined as
E=nE +¢ . (1.39)

The new tirection of flight is selected from ean iso-
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tropic distribution, and the pseudoneutron weight
after the collision may be obtained from Eq. (2k)

as

W zr,E) ,ClE’, - 2%55,E, - 2)
- ):3 - 173 —g '~ a’t
£y (/B (3%, 1,4)8(E - M’ - €)p

—7 <1 1
~w Zj(E’E)LEE

n;(uL;g,E) BB - (E-e)/n), V;(E,E)z

; T
2w

Et(EJEI)BS(J:k:i:!')NE - 1E

VT" %(r,E)

i - ]
Dy (upsr,E) ) 2v(n,E) (A.50)

(E,E)@j(d,k,i,’«)

where the subscript £ denotes the inelastic level,
D (“L’r’E)L is the density function for the cosine
of the scattering angle u;, and v (r,E), is the to-
tal number of neutrons that emerge from the reac-
tion.

b. Center-of-Mass System. A model used in the MCN
and MCNA computer codes is that of an inelastic

scattering reaction with the neutron assumed to

lose a discrete amount of energy in the center-4f-
mass system. The relevent equations for the neutron

are

E = T‘Eém +¢ |, (A.51)

E‘=E ;m+[E+a1 (A+ 1) VEE ]/(A+l) » (A.42)

EI
-, ‘/E_ 1
Mom Y 7E7 Ef \a+1/) "’

where E is the precollision neutron energy in the

(A.43)

E’ is the postcollision neutron
is the
postcollision neutron energy in the center-of-mass

laboratory system,
energy in the laboratory system, and E;m

system. € is the minimum neutron energy required

to excite the level, and n is the constant
2
A+ Ll
n ( X ) .

The inelastic threshold € depends upon the isotope

(A.lub)

and ‘level, but for notational convenience these

‘subscripts are suppressed.

The relevant collision kernel cé may be ex-
pressed as the number of neutrons that emerge from
the reaction v%(s,E)z multiplied by a marginal



density function P%(E';E,E) for the energy E’ and a
conditional density function, a Dirac delta func-
tion, for the cosine of the scattering angle uL.

If the scattering is assumed isotropic* in the cen-
ter-of-mass system, the density function Pi is giv-

The energy width from ﬁL(E') to EXE’) is usu-
ally narrow so that a reasonsble assumption is that
the product of the neutron flux and the cross sec-
tion for this event is nearly constant over this en-

ergy width. With this assumption, the approximation

3
en by
2 2
2 E(A‘h-ﬁ-l) E(A‘/l--§+l)
Pi(E" ) — (A + l) 1 E ’ )]
S(BY1,E) = 25y > <SE’s< > s
2 T (A + 1) (A +1)
E¢/1 - z

0 for all other E’.

In the adjoint solution, E’ is the precolli-

sion energy, and the problem is to choose a density

function to select the postcollision energy E of the

pseudoneutron. The first step is to determine the
bounds of E for a given E‘. The following results,
Egs. (A.46) to (A.51), are from a derivation by
Kalos et al.l
lover bound EY(E’) and an upper bound EY(E’) given
by

The energy E must fall between a

E(z’) = —— (A.46)
1 - y(1)
M) = ——— (A.47)
1 - y(-1)
where
l) = I S— ’ (A-IJ-S)
y(1) e )
y(-1) = (L + A * kab)/2v
= E;%i? s (A.49)
2,
a = [(L*"—t—)—-E— - 1:l 28, (A.50)
b = [-(A;t)iﬁi + A2] 24 . (A.51)

*This requirement will be removed later.

(A.45)
to the zero-variance density function is
i/
. Py (E"ir,E)
hi(Esr,E’) = 2 (A.52)
T EYE’) |
/‘ P3(E";x, " )aE"
L
(7(e’)
=—% _ fy, for EXE)<E<EYE’') ,
€
EY1l - b
where
EY(E’)
U = z d "(A.53)

————— dE
O

_, {[l + (0P - y(1)?) }
n 5 > .
(- y(-1)711 + fy(1)]]

The density function h; of Eq. ( A.52) may be
sampled analytically for E. The analytic expres-
sion is obtained by setting the cumulative distri-
bution function to a random number £ and solving
for E:

E
F o= 1 dar” U
Loy & M- efE
E'(E’)
‘/ 2
- + -
= fn E €E E €/2 v . (A-sh)

3 o+ /0 - 1)?)

Hence, solving for E, we obtain



E = 82/(28 -e) (A.55)
where
2
B:%Mﬂm]_em-y% . (A.sé)

1 - y(1)?

The pseudoneutron weight is obtained from Eqgs. (24),
(A.45), and (A.52) as

8’ s
2, (2B )5 (3,%,1,4)%, (B, 2, 5x,2,0,)

w %(E)E)LC;(EI: - QQ;E:EJ -8 )

(A.57)

W E(E) i, B) DS s B) (A + 1)

B (LB )G (3K, 1,402 ’
where the density function D;'(u.cm;_g,E)m for the
center-of-mass scattering angle has been inserted
in Eq. (A.57) to include the more general case of
anisotropic scattering. The pseudoneutron energy E
is selected from the density function obtained with
the isotropic scattering assumptions. However,
this should not introduce large statistical errors
unless the scattering is highly anisotropic.

The expression for U in Eq. (A.53) may be sim-

plified as

2
N A+ 1
U= 2n (;rfjji) N

and

- 1+ y(-1) 1+ y(1)
U= in ,1 —y-1) T WD)

(a+1)%'fe>1 , (A.58)

R (A+l)2E'/e<1 .

(A.59)

4. Fission
The treatment of fission is simplified by the
assumption that the energy spectrum of fission neu-

- trons is independent of the energy of the parent

The selection of a fission event with the
probability 'Q_u (3,k,3’) requires that the final
pseudoneutron energy E be within the boundaries of

neutron.

energy group j’, designated here as (EL)J, and
(Eu)dl. The energy E within this group is selected
from a uniform distribution as

E= (E'),, + [(E“) . - () ,]é s (A.60)

3 3 3

where £ is a random number on the unit interval.
The final pseudoneutron direction of motion is se-
lected from an isotropic distribution in the labora-

tory system, and the weight is obtained from Eq.
(2k) as

W’ EVE(E’E)EBLE)Y(E’)[(Eu)j, ~ (EL)JI]
i

W:

— 2
Xt(E:E,)Qh(J:k:J,)

(a.61)
where the subscript 4 denotes fission, Y(E') is the
spectrum of fission neutrons, and the fission neu-
trons are assumed to have an isotropic distribution

in the laboratory system.

APPENDIX B
INPUT DATA FOR MCNA

The card format of the input data is identical
to that of the MCN code except that there are no
provisions for R(repeat) or I(interpolate) options.
A brief description of the format of the input data
follows.

Columns 1 to 5 are used to identify the input
data on the card (a blank field in these col-
umns indicates a continuation from the previ-
ous card, but a data entry may not be split
between cards),

28

Data entries are contained in columns 6 to 72
with a comma or at least one blank column sep-
arating the entries,

A completely blank card in columns 1 through

72 designates the end of a block of data. Col-

umns 73 to 80 are ignored and therefore may be

used for sequencing.

The input data required for the initiation
(Step 1 in Fig. 1) of MCNA are identical to those

required for the initiation of the MCN code. A




description of the input data for the initiation is
given in Refs. 4, 5, and 6. The following addi-
tional comments pertinent to MCNA may be useful.

1. An RO card should not be supplied if a
thermal treatment isn't being used; i.e.,
EBR s ECF.

2. The F, E, T, and C cards are not usually
required in MCNA. An exception occurs
during scoring in the adjoint sampling for
a point neutron source; for this option
see the description of the DFS input card
in this appendix.

The input data pertinent to the coupled sam~
pling in MCNA (Steps 2 and % of Fig. 1) will now be

Cexd

Identifier Data Entry

described. The usual procedure is to input ell the
required data for the céupled sampling in Step 2 so
that additional input data ere not required in Step
L unless it seems adviseble to change some data
after the initieal sampling from the trensport equa-
tion. The ANUI progrem is called in Steps 2 and k,
and, in turn, reads the input deta. The sequence
of input card types is not important except that the
first card must have the identifier TYP and the code
expects to read this card each time the program ANUI
is called. A blank card designates the end of input.
The input data are as followvs.

Description of Data

Columns (1-5)

Columns (6-72)

Yp Type of Calculation Card.

1st = -1, Initiation is completed, and preparation is now made to
begin coupled sampling. After this input data, the cou-
pled sampling will proceed to Step 3 of Fig. 1. Cards
ASI, AE, and SCC must be input, and the rest of the data
may be input as needed.

= 0, Initiation is completed, but only sampling from the trans-
port equation will be done. Steps 4 and 5 of Fig. 1 will

be omitted.

No more input allowed.

= 1, Injtiation is completed. Construct the adjoint sampling
functions numerically and proceed directly to Step 5 of

Fig. 1 (i.e., skip steps 3 and &)

, sampling from the ad-

Joint equation. Cards ASC, ASI, AF, AE, SCC, and F4E
must be input, with other cards as required.

=2, Step 3, sampling from the transport equation, has been

completed.

Normalize® sampling functions and proceed to

Step 5, sampling from the edjoint equation. No more input

allowed.

= 3, Same as = 2 except that changes in any of the cards ASC,
ASP, ST, ASI, AF, ALE, and MN may be made.

=4, Sampling functions have already been normalized, but
changes in any of the cards ASC, ASP, ST, ASI, AF, ALE,
end MN may be made.

Multigenerations are assumed.

= 1, The calculation will be made for only one (pseudo) neutron

generation.

This effectively sets the number of neutrons

per fission to zero.

3rd = Tape dump number. Usually this entry = 1 if the first entry
on this card is -1, 0, or 1. This entry usually equels
the last tape dump if the first entry is 2, 3, or k.
Exceptions sometimes occur when one tries sampling from
the adjoint equation with slightly different input data
from those used in a previous sampling.

*A sampling probebility may be estimated as exactly zero after sampling from the transport equation. The
code will check the corresponding trensfer cross section, and if it is nonzero, the sampling probability
will be normelized to a certein fraction of the total (usually ebout 1%).
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Card

Identifier Data Entry Description of Data
ASC Adjoint Source Control Card
1st Energy Control
= 0, Select the initial pseudoneutron energy with a density func-
tion proportional to 1/E between the first and second data
entries on card ASP.
= 1, Initial pseudoneutron energy set to lst data entry on card
ASP.
= 2, Linear selection of initial energy between the first and
second data entries on card ASP.
= 3, 1Input an energy density table on card STl.
2 4, Supply source routine ASOURC. The remainder of this card
is not used in ANUI, except to specify tables STl to ST7.
2nd Spatial Position Control
=1, X = 3rd data entry on card ASP
Y = 5th data entry on card ASP
Z = Tth data entry on cerd ASP.
= 2, Linear selection from 3rd to 4th, 5th to 6th, Tth to 8th
data entries on card ASP for X,Y,Z, respectively.
= 3, Input X,Y,Z density tables on cards T2, ST3, ST4, respec-
tively.
= 0, Constant-volume source in the cell specified by the 5th
data entry of this card. Only the volume between concen-
tric spheres presently evailable.
3rd Direction-of-Motion Control
=1, = cos {9th data entry on card ASP)
wa= \1- v2 cos (10th data entry on card ASP)
u= \1- v2 sin (10th data entry on card ASP).
= 2, Isotropic distribution.
= 3, Input density tables on cards STS5 and ST6.
4th Time Control
=1, TE = 11th data entry on card ASP.
= 2, LINEAR selection of ™ME from 1lth to 12th data entries on
card ASP.
= %, Input time density table on card ST7.
5th = Cell number of pseudoneutron source, IA.
6th = 0, Ignore.
= 1, Call subroutine ASOURC after “built-in" routines are used
to select initial pseudoneutron parameters (see e le
problem of Sec. IV for an epplication of this option).
ASP Adjoint Source Parameter Card
1st to 1l2th Entries as specified on card ASC. Those not specified on card ASC

will not be used in sampling, but must be input as zeros.



Card

Identifier Data Entry Description of Data
ST1 Adjoint Source Energy Table (Required if the first data entry of
card ASC = 3).
lst to Nth N/2 energy values from low to high and the corresponding N/2 cumu-
lative)probabilities (the first probability is zero and the last
is one).
NOTE: If this table is used with the first data entry on card
ASC set to 3, then the initial pseudoneutron weight is divided
by this density function. This is not true for tables ST2 to
ST7.
ST2 Adjoint Source X Table (Required if the second deata entry of card
ASC = 3).
1st to Nth Not necessarily the same N as for card STl. N/2 X values from low
to high and the corresponding N/2 cumulative probabilities.
ST3 Adjoint Source Y Table
1st to Nth Same as card ST2 for Y.
STh Ajoint Source Z Table
1st to Nth Same as card ST2 for Z.
STS Adjoint Source ?irection Table (Required if the third data entry
of card ASC = 3).
v = cos (selection from this table).
1st to Nth N/2 values and corresponding N/2 cumulative probabilities.
ST6 Adjoint Source Direction Table (Required if the third data entry
of card ASC = 3).
w=Y1 - v2 cos (selection from this table)
w=VL - v2 sin (selection from this table)
1st to Nth N/2 values and corresvonding N/2 cumulative probabilities.
ST7 Adjoint Source Time Table (Required if the fourth data entry of
card ASC = 3).
lst to Nth N/2 time values from low to high and corresponding N/2 cumula-

tive probabilities.

NOTE on cards STL to ST7. Any or all of these tables may be used and the tables may have
different lengths, but the total storage required (sum of the N's) must be less than

Lo1.
AST

1st

Adjoint Sampling Information Card

= -1, Select the pseudoneutron energy after inelastic scatter-
ing from a density function, Eq. (A.36), proportional to
the transfer cross section each time the energy, E, is
less than 2 MeV. For energies greater than 2 MeV, use
constant-density functions, Eq. (A.21).

= 0, Same as -) except that for energies greater than 2 MeV,
select the energy E from within the energy band using a
density function proportional to the fission spectrum for
both fission and inelestic scattering. This is a useful
option if the neutron source is a fission spectrum.
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Card
Identifier Data Entry

Description of Data

AST

2nd

3rd

hth

5th

6th

Tth

Oth to
< 8th

lst

= 1, Assume constant-density functions in intervals.
Comment: -1 suggested for most applications.

= 0, 1Initial pseudoneutron weight set to the fourth data entry
on this card.

1,2,3,4, The initial pseudoneutron weight is set to the fourth
data field on this card multiplied by zf(_z_-,E),vZ‘.f(z,E),
):c(z,E), or Et(g,E), respectively.*

0, Hydrogen transfer tables will not be constructed; B(J,k,ﬂ
of Eq. (A.11).

Energy group number (see card AE) to start hydrogen transfer
tables. For groups less than this number, the center-of-
mass scattering angle is selected isotropically. This num-
ber must elways be less than the total number of groups and
must be greater than 10 when a thermal-energy treatment is
used.

Initial pseudoneutron weight as defined by the 2nd date entry on
this card. -

Terminate the pseudoneutron with this probability at each colli-~
sion when the energy is greater than 6 MeV. The surviving pseudo-
neutrons have their weighlt divided by one minus this probebility.
Zero suggested for most epplications.

A positive floating-point number will force the pseudoneutron
weight to be split each time the weight exceeds this entry. A
negative floating-point number will force splitting or "Russian
roulette"” to keep the weight at exactly the negative of this
entry. For most applications it is recommended that this number
be positive, and of such a magnitude that only occasionally will
a pseudoneutron weight exceed it.

The total number of fission neutrons produced in the transport
sampling will be divided b{ this number to construct the functions
for sampling from the adjoint equation. Usually set to 1.0.

Functional Card for Function N, N < 350.

Constants to describe this functional (< 8). These constants are
set to (AJCON(N,J), J = 1, K) for use in scoring in subroutine
SCORE. Here, K is the number of constants entered on this card.
The present dimensions allow as many as 350 functionals, but only
a maximum of 50 sets of constants may be input. Cards for ell the
functionals need not be input, but the card for maximum N must

be input.

Adjoint Leskage Card.

= 0, Special leakage computations are not utilized {in which
cese this card is not required). X
£ 5008

> 0, Computes leakage probability ANL = e after
each collision when the pseudoneutron energy is such that
ESURL < E < ESURH and calls subroutine SCORE with KASR = k4.
Here ¥y is the distance to a surface(s) of interest. ESURL
and ESURH are the 2nd and 3rd data entries on this card,

respectively. If E is not within these bounds, the usual
distance-to-collision geometry routine is used.

*If subroutine ASOURC is supplied, the weight must be set in ASOURC. If Table Tl is used, the weight given
by the second data entry on card ASI is also divided by the energy-density function as computed for each
source pseudoneutron. If the first data entry on card ASC is zero, the weight given by the second data
entry on card ASI is also divided by the energy-density function as computed for each source pseudoneutron;
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Card

. Identifier Data Entry

Description of Data

ALE

3rd

kth to
< 23rd

lst

2nd to 10th

1st

"

1,

2,

3,

For ESURL < E < ESURH, sample the distance to collision from
the exponential density function normelized so that leekage
does not occur.

Sample the distance to collision from the usual exponential
density function, Eq. (16), using the special leakage rou-
tine when ESURL < E < ESURH. This is faster than returning
to the geometry routine, when ANL must be computed anyway.

Special optimal distance-to-collision sampling, Eq. (C.5)*.

Return to geametry routine for distance-to collision sam-
pling after computing ANL

As defined on the first data entry of this card.
As defined on the first date entry of this card.

Scoring surface numbers, JA. ANL is computed, and subrou-
tine SCORE is called each time the projccted pseudoneutron
flight path, with ESURL < E < ESURH, crosses one of these
surfaces. The nseudoneutron is expected to cross one, and
only one, scoring surface if the first entry on this card is
1, 2, or 3.

Thermal Flux Weight Card (required only if the thermal free-gas
model is used).

]

0,

1,

NOTE:

Maxwellian weight factor for thermal group 1 gnd time incre-
ment N; i.e., 3(E) of Eq. { A.1%) equals Ee~E/T. 1If N =1,
this weight factor is used for times less then the first
data entry on the RO card of the initiation input data.
N = 2, this weight factor is used for times between the
first and second data fields of the RO card, and so forth.

It

Weight factor of l/E for thermal group 1 and time increment
N.

Same as the first data entry description for subsequent ther-
mal energy grouvs, low to high energies.

A weight factor of l/E is not presently allowed for the
first group if hydrogen is present, or for the first three
groups if deuterium is present.

Energy Group Bounderies Card

>

*The volume of each cell VOL(IA) must

0,

0,

-2,

-1,

Equal to the total number, < 50, of energy groups (for con-
structing the functions for sampling from the adjoint equa-
tion) that are read on card AE_N. If a thermal treatment
is used, the first ten grouvs must be thermal.

A routine in the code will construct the energy group
boundearies.

For energies greater than 20 keV, construct one-quarter
lethargy energy group widths and one-quarter lethargy energy
increments for the inelastic scattering with a continuous
model.

Same as -2 control except that the inelastic increments are
one-half lethargy.

be supplied in Program ANUI in order to use this option.
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Card
Identifier

Data Entry

Description of Data

ARQ

AE N

Sce

DFS

2nd

3rd to 12th

1st

2nd to 51st

1st

2nd to the
number of
cells

1st

= 0, For energies greater than 20 keV, construct one-half leth-
argy energy group widths and one-half lethargy energy in-
crements for the inelastic scattering with a continuous
model. This option has been found adequate for most prob-
lems.

NOTE: If this data entry s O, the energy group widths from ther-
mal to 1 keV are constructed at one lethargy unit, and from
1 to 20 keV at one-half lethargy unit. Only four inelastic
increments are used in this range.

Maximum energy for constructing the energy-group structure (gen-
erally the maximum energy of interest in the problem).

These data entries are required only when a thermal treatment is
utilized and the first data field on this card is £ O. These
entries are the top boundaries of the 10 thermal groups, from
low to high (group number 10 must be EBR). These energy groups
are used in cells where hydrogen or deuterium are not present.
In regions where hydrogen or deuterium are present, the upper
boundaries are set by the code &s: 0.1T, 0.5T, T, 1.5T, 2.5T,
L, 61, 6T + (EBR-GT)/7, 6T + 3(EBR-6T)/7, and EBR, where T is
the temperature of the medium at the time of interest and EBR
is the upper boundary of the thermal treatment.

Energy Group Boundaries Card (required only if the first data
entry on card AEQ > 0). These AE N cards must be input in
sequential order with N assuming integer velues from 1 to the
number of energy groups specified by the first data field on
card AEQ. The energies (first data entries) are input mono-
tonically increasing from low to high values.

Upper energy boundary of group N. For a thermal treatment with
N < 10, these are thermal bounderies, and for N = 10 this data
entry must be set to EBR.

Widths of the energy increments (Low to high) for inelastic scat-
tering of the pseudoneutron with a continuous model for energy
group N, 1. e., the ABg, of Eq. (A.21). The sum of these incre-

ments plus the upper boundary of group N-1 should be greater
than or equal to the second data entry on card AEQ. This is
checked by the code.

Sampling Cell Control Cerd
Control parameter for cell No. 1; IA = 1. It controls the con-

struction and use of the density function for sampling from the
adjoint equation.

-1, Cell is a vacuum.

0, Construct sampling functions for this cell.

= I, Lump this cell with cell I for the construction and use of
sampling functions, I < IA. This option is available only
if the same isotopes are in both cells and is useful if
one cell is very small because the statistical fluctuations
in the density functions are reduced with this option.

Same as the first data entry for subsequent cells.

Delta Function Scoring Cerd

= O, Speclal neutron point source option for scoring in the ad-
joint calculation is not utilized (in which case this card
is not required).



Cerd

Identifier Data Entry Description of Data
DFS = 1, Special neutron point source tion for scoring in the ad-
Joint calculation is utilized (see Appendix E for a discus-
sion of the scoring). The F5 card in the initiation (with
program ATTMC) is utilized to specify the X, Y, Z, and
neighborhood of the point sources. Only one energy entry
and one time entry, respectively, are required on the E5
and TS cards. These entries are ignored in the adjoint
sampling but are required for memory allocation.
2nd Minimum energy of the point sources, i.e., energy below
which no neutrons are emitted. This energy must be greater
than the thermal cutoff energy, EBR.
3rd Maximum energy of the point sources.
NOTE: The ALE card, with the first entry equal to 1, may be used
with this point source scoring option.
10 Cell Importance Card (mey be used to change cell importances
from those specified in the initiation).
1st to the Importance of the respective cells.
number of
cells

The following two cards are used only if the first data entry on card TYP is 1.

FWE

Flux Weight Card

Control parameter for cell No. 1, IA = 1. This parameter con-
trols the numerical computation of the density functions for
sampling from the adjoint equation. The analog density function
is multiplied by an estimate of the average energy dependence of
the neutron flux in this cell.

= 0, Constant flux as a function of energy.

= -1, The neutron flux ¢ is given by

El/2 e_o°?76E for E > 1,

®=
@ = (0.7315 + 0.117% #n —lE-a)/E for 0.0k < E <1,
¢ = 0.08328/E for E < 0.0k.

= -2, o= JE e-o.776:»:

= -3, p=JE e O TT8E oor £ > 0.1
@ = 0.029262/E for E < 0.1

=k, o= oE 0T pr g > 0.1,
¢ = 0.29262 for E < 0.1

= -5, o= 1/E

= -6, o= JE e O TT6E ¢0r & > 0.6443
¢ = 0.3136/E for E < 0.6443

=Ty p=+E e"o'776E for E > 0.6443

@ = 0.4868 for E < 0.6443
= .8, 9= 1/V

= N, A teble of length N, N >0, is input on card FIB 1 for a
tebulation of the neutron flux.
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Caxrd

Identifier Data Entry Description of Data
FWE 2nd to the Same as the first data entry for subsequent cells.
number of
cells
FIB_I Flux Value Card
1l toN N/2 energy points followed by N/2 flux velues for cell I. The
energy points are from low to high, and the code linearly inter-
polates between energy points.
Blank Card END OF INPUT DATA

A few additional comments may prove worthwhile.
l. The maximum dimensions of input quantities
These are usuelly
simple to change, and the code checks the dimension
quantities to see that storage is not exceeded. The
memory required by the sampling functions is checked
after loading, and the problem is terminated with
an error messege if any dimensions are exceeded.

are given for the present code.

This is checked prior to sampling from the trans-
port equation.

2. Blank columns are ignored when reading the
card identifier in columns 1 to 5. Thus, the card
AF_N with N= 3 could appear as

AF3 L
AF 3
AF 3
AF3
AF 3 .,
etc.

The units used in the MCNA code and in the in-
put data are consistent with those of the MCN code;

i.e., energies are in MeV, time is in shakes, mac-
roscopic cross sections are in cm-l, medium temper-
atures are in MeV, and spatial dimensions are in cm.
The units of the functionals may be controlled by
the functional constants of card AF and the initial
pseudoneutron weight of card ASI.

The use of the pseudoneutron source subroutine,
ASOURC, with the first date entry of card ASC 2 &,
automatically bypasses all the built-in adjoint
source options on cards ASC and ASP. The following
information must be supplied (an exception ocecurs
when the sixth data entry of card ASC = 1 and the
first data entry of card ASC < 4) when ASQURC is
used.

X,¥»2 - the space coordinates

u,v,w - the direction coordinates, these are

isotropic if not supplied

™E - the time
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ERG - the energy

WT - the initial weight. The initial weight
as input on the fourth data entry of card
ASI is the parameter ASRWT, and WT =
ASRWT at entrance to ASOURC. Options 1,
2, 3, 4 of the second data entry of card
ASI are not availeble when using ASOQURC
unless the sixth data entry of card ASC
= 1.

IA - the cell number

JA - surface control (usually 1)

DEL - surface control (usually 0.0).

Special. care should be used in writing subrou-
tine SCORE, to tabulate the functionals. The funec-
tional K is tabulated in the dimension variable
TSCOR(K). The general procedure each time SCORE is
called is as follows.

1. Check to see if the collision or surface
crossing is of interest; determined by KASR as des-
gribed in Sec. III. If not of interest, return to
the main program.

2. Check to see if the collision or surface
crossing is of interest for functional K. If so,

score as
TSCOR(K) = TSCOR(X)

+ [contribution of this collision or surface]
crossing to the functional X.
(B.1)

3. Repeat step 2 for all functionals and re-
turn to the main program.
amples.

The scoring in Eq. (B.l) may require some con-
stants for the particular functional K. These con-
stants mey be input on the AF card in the dimen-
sioned veriable AJCON(K,J), where J assumes values
from 1 to the number of required constants for the

See Sec. III for two ex-




functional K.

At the end of each source (and progeny) pseudo-
neutron history, TSCOR(K) and the 2nd, 3rd, and 4th
moments of TSCOR(K) are added to e rumning sum of
the respective first four moments for each function-
al K. TSCOR(K) is then set to zero before selec-
ting the next source pseudoneutron. Periodically
during the sampling from the adjoint equation, these
moments are divided by the total number of source
pseudoneutrons to obtain the estimate of the func-
tional T end the estimate of the moments Tl%, T?(
and X The estimated relative error is computed
as

Relative error =v _T:z( - T§ /[-'fK ﬁ]

where n is the total number of source pseudoneu-

(B.2)

error involved in the estimate of the relative

error. An attempt is made in MCNA to estimate this
asl7
—_ —_— L =2 — /2
T = 32 3 { - ;
\/ 'uﬁch+6TxTx'ETT(’TK “/’_‘ch"rxzc y

(8.3)

Experience will tell whether Eq. (B.3) is of any
help in determining the reliability of the relative
error estimate of Eq. (B.2).

Two magnetic tapes are usually required to run
a problem with MCNA.
these tapes is given in the example problem in Sec.
Iv.

The program ATMC that semples from the transport
or adjoint equations requires one input card, as in
the MCN code.

A description of the use of

The input on this card is as follows.

Adjoint Sampling (Step 5)

trons. Unfortunately, there is also a staetistical
Columns Transport Sampling (Step 3)
1-10 Neutrons are terminated at this

entry of maximum time.

11-20 Neutrons are terminated when their
weights fall below this entry.

21-30 Running time in minutes.

31-40 Number of neutron histories per
print cycle.

41-50 Number of neutron histories per’
tape dump cycle.

51-60 Tape dump number (usuelly 2 for the
first time in Step 3 of Fig. 1).

61-70 Total number of neutron histories.

Pseudoneutrons are terminated at
this entry of minimum time.

"Russian roulette" is played each
time a pseudoneutron weight falls
below this entry. The weights of
survivors are increased.
Running time in minutes.

Number of pseudoneutron histories
per print cycle.

Number of pseudoneutron histories
per tape dump cycle.

Tape dump number.

Total number of pseudoneutron his-
tories.

APPENDIX C

DISTANCE-TO-COLIISION DISCUSSION

Use of the exponential density function T(Y)
of Eq. (16) has the practical advantage that the
distance to collision ¥ may be sampled from a sim-
The fact that it also
simulates the physical process, when sampling from

ple enalytic expression.

the transport equation, adds to its versatility

in numerous applicetions.

The use of T(x) for sampling the distance to
collision of pseudoneutrons has also been found
adequate in many adjoint problems. However, the
use of T(X) is not so satisfactory in some cases.

This is apparently because T(X) is a poor approxi-
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mation to the corresponding zero-variance density
function in these problems.
The zero-variance density function To(x) is
given by
T
2 = (x)8(x) /2, (%) e
| T(x)8(x ") /5 (X" Jax’

where 8(X) is an appropriate limit of the rate at
which neutrons (in the transport problem) suffer
collisions and emerge from the collisions with the
energy of the pseudoneutron and with their direc-
tion of flight opposite to that of the pseudoneu-
trons. The function B(X) generally depends upon
the direction of motion of the pseudoneutron, its
energy, and the spatial position X. Here the en-
ergy and direction of motion are suppressed in the
arguments of B(Y¥) owing to notetion difficulties.
It is understood that B is evaluated along the pro-
Jected flight path of the pseudoneutron and at the
pseudoneutron energy.

The directional dependence of B(X) is often

~letjm'Axml

(l - e-ztijxm>ﬁJm r‘tJm .

(c.u)

Here, the notation has been simplified by numbering
the subsequent cells of the flight path of the
pseudoneutron by k=1, 2, 3 + * - N. The corres-

‘ponding total cross sections are denoted by zt:]k

(this is poor notation because it really denotes
the total cross section at the energy of the pseudo-
neutron), and the distances across the cells by Axk
The distance to collision ¥ may be sampled with the
density function T(y) of Eq. (C.3) as

k-1
X =Z AXk/
k=1

nearly isotropic within most of the phase space, ;] _ )
- in l~*-y (y =’ -1 V! b)
and, for the applications in MCNA, it is assumed to z't.'jk k- ol zt;jm
be isotropic. It is also assumed that, within a
cell and an energy group, B(YX) is approximately con- (c.5)
stent. With these assumptions, B(¥) mey be approx- ¢.5
imated by its average value within a cell k and en- where § is & random number on the unit interval,
Nz is computed as
ergy group J as m
(E, )
f[ f ff o(z,E,9) £, (R,E)C(E,0'51,E,0) &’ ag’ & rdEdn
cell
’3;jk = IEu)d . (C-Q)
dE'®r
cell  (E,)
k EL 3
An option is availeble in MCNA to coampute the quan-
’
tities B 3k by sampling from the transport equation. n
These average values for B(x) are subsequently used "Zztjm" By
Eq. (C. to t - m=
in Eq. (C 1) to obtain an approximation to the zero y e =e , m' >0 , (.6)
variance density function as
- vy =1
T(X)x in cell k ° ?

k-1
Eztak'AXk' X- ZAXK'

. K=l o Ttgk \ k=1

.53 H, {c.3)

where

and the cell k is determined by finding the cell
that satisfies the requirement
k-1

2@;,,_1 ym)—ﬂ—<gs—2( ym')ii;_ :

(c.7)




The pseudoneutron weight is then obtained as

Wew o)/ T () ,

=W’ Topd/By - (c.8)

The indications (from the problems that have
been solved using this procedure to sample for the
distance to collision) are that the variance per
source pseudoneutron is reduced from the variance
obtained by sampling from the adjoint equation with

the analog density function T(Y¥). However, the sam-
pling time per source pseudoneutron may increase by
as much as a factor of two or even more. It is for-
tunate that the analog density function T(X) is sat-
isfactory for most applications. For problems for
which it is not satisfactory, the density function
T(x) of Eq. (C.3) mey help, but the added sampling
time required to sample from T reduces its effec-
tiveness. However, the option is available in the
MCNA code.

APPENDIX D

MISCELLANEOUS PROBABILITY CONCEPTS

L. Linear Interpolation of Density Functions

A density function g(y’;y) is sometimes tabu-
lated in MCN and MCNA at the points X and xe with
X <X < X5t The sampling of the neutron history
requires that the random variable Y’ be selected
from g(x’;%). This is accomplished with a random
variable £ on the unit interval and linear interpo-

lation as
xo=oxg X X MXG - x) (%, - %) 5 (De1)

vhere xi and xé satisfy the inverse relations

X
§=f g(x"sxJax" (p.2)

X2
€=f a(x"sx)ax” . (p.3)

The sampling of the pseudoneutron history re-
quires computation of the actual density function
g(x';x) to compute the weight of the pseudoneutron.
If 'G(x';x) is defined to be the cumulative distri-
bution function, then, from Egs. (D.2) and (D.3),
it must satisfy

&(x %) = 6lx 5% ) = 6(x5%) (D.4)

where x',xi and xé are related by Eq. (D.1). The

distribution function g(X’;X) may be expressed as

s ’
oy aex’sx) a6{x3 5%, ) oy
g(x’sx) = '—dixrlx— = ——d')q—' x (D.5)

The derivatives may be obtained from Eq. (D.l),
(p.2), and (D.3) as

I
ac(x{3%;) X1

L. _d o, " ’.
axy 'E{{f g(X"5x)ax’ = a(x{5%)  (D.6)

I
axl L, x o
dxl axl 9 dxl

R SO I CUC ) e v B -1

where d)(é/d)(:'L was obtained by combining Egs. (D.2)
and (D.3). With Eqs. (D.6) and (D.7), the density
function of Eq. (D.5) may be expressed as

8(%3%)
(X - %) (X - %) 8lx5%)
1 - +
Oam %7 O™ X7 8(x5x,)

glx’s%) =

&%y 3% )8(%53%,)

X=X , (x-%)
1- E S(X25X2) + W g(xl;xl)
(D.8)
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2.  Sampling the Weighted Free-Gas Density Function
The density function b;'_ of Eq. (A.14) may be

expressed as the product of a marginal density func-

tion gi for selecting the energy E and a conditional:

density function h.}_ for selecting the laboratory
scattering angle uL. These density functions are

determined in the usual menner as
b ’ i N
8y(Esz,E’) = [ bi(E,Q ;r,E’,07)dn,

Ei(_I_‘,E)Ci(E‘;z,E)Q(E) p

(E ) s
f e )6,
(EL) ’
(D.9)
orbi (2,0 sr,EfL,0f)
hi(uL;z,E’,E) = —2 i’—“ Z e
’
&, (E;z,E)
2xCi(z’,-0'5r,E,-0 )
i e Ll , (p.10)

L
c)(E’;z,E)

where Ci(E';z,E) is defined as

i 3 L
C;(E’;x,E) =ﬁ:l(n',-g;;z,E,-ga)@a . (p.a).

The density function g]i_ of Eq. (D.9) may be cb-
tained by replacing T, (r,E) C(E’;r,E) with the free-
gas kernel as given, for example, by Eq. (2.19a) of

1
Williams:

Si(E;E,E') = % §(E)J»ie-(€1_c)[Erf (8- C )
£ Ere(6/€ + C JE7) + Erf(By/e’ - CJE)

(D.12)

F Erf(a/E’ + gﬁ)s/u

where U is the integral of the numerator of the
right-hand side of Eq. (D.12) from (EL)J, to (E )

the ¥ signs are used for E < E’ or E > E’, respec-
tively, and

’ = EI/T

€ =E/T

(p.13)
(p.14)

ko .

6= (A+1)/2,A
g=(a-1)/2Ja .

(p.15)
(D.16)

An anelytic expression for the corresponding
cumulative distribution ﬁmction Gi may be obtained
when 3(E),, = Ee~ E/T » but c must be tabulated for
§(E) 3= 1/E. In either case, it is impossible to
cbtain an expression for the inverse E in terms of

1. The technique used in the MCNA code is to di-

a; .

1

vide the range from (EL);]’ to (Eu)J' of E into
i

.equal segments, evaluate G; at the segment bound-

1
aries,, and linearly interpolate for E.

The analytic expression for G with $(E) , =

1
ge E/T 15 given by 4
Gi'(E;r,E')
v "(E“)J'
- 4 2., .2 (APspA-l
= i_T’ e € (A+i—)2 [e [ - C € -~ A T]
[Er£(867 - ¢ JE)£Erf(s/e +{We)]
(/&7 - (Ve
+ CWE )
(m)%ﬁ?[ (8E7 e
~(8/E7 + /e ’
L (/6" - CWE)e
+ e(e_e’)[Erf(C.,/c—' -8 4E)
£ Erf (C e’ + 848 )]
L _J(EL)JI
(p.17)

where the expression in Eq. (D.17) must be evalu~
ated at the limits (Eu)J and (EL)J'. For in-group

scattering (i.e., E and E’ both in group j’), the
expression must also be evaluated at the inner 1limit
E’, owing to the sign changes.

The density functiaon h;'_ of Eq. (D.10) is the
ratio of the free-gas scattering kernel for the en~
ergy and scattering angle, as given by Eq. (2.19)
of Williems ,l to the free-gas scattering kernel for
the energy alone as given by Williams' Eq. (2.19a).
The algebra involved in substituting these defini-
tions into )‘Ll and ev&luating the cumilative distri-
bution function Hl is tedious and will not be given




here. The result is that

Hi(uL;_I;,E',E) = {Erf(ﬁ - %) - Erf(’q - -}1)

+ ™Y prp [(ﬂ + ‘13) - Erf (n - %)]}/
{Eri‘ (B - %) - Erf(nl - n—‘f—l)

L [(B + %) - Eri‘(nl - % )]} , (D.18)

where

= 1 + R
a-zﬂ(ﬁf VET)

(D.19)

ne g (e A (.20)

AT

|

nl=—;-:(E+E‘-3/ﬁ:—'>l/2= = WE- A

AT 2/AT
v=(E-~-E)MNT , (p.21)
y 2
Ert(y) = 2 f e %au . (D.22)
S J,

It is impossible to obtain an inverse solution of
Eq. (D.18) for Wp. The technique utilized in the
MCNA code is to divide the range from -1 to +1 of
M, into equal segments, evaluate H]l_ at the segment
boundaries, and linearly interpolate for My

APPENDIX E

SCORING IN THE ADJOINT CALCULATION

FOR A POINT NEUTRON SOUCE

1. Derivation of Scoring Equations at a Pseudoneu-

tron Collision

The neutron souce is assumed to be of the form

S(r,E,Q,t) = se(E,g,t)a(x - xe)s(y - ye)s(z -zg)

(g.1)

where SB(E,_Q,‘(:) does not contain a delta function.
A possible scoring technique in the adjoint calcu-
lation is to compute the density of neutrons emer-
ging from their first collision and use this as the
neutron source. At each pseudoneutron collision,

the score is

W*(first-collision neutron source at r,E’,-n’,t’)

Zt(_r_',E')

(E.2)

where the pseudoneutron collision occurs at g' sE,
a’,t’.
A more practicel procedure is to select the

event ¢ prior to the scoring with probability

?

aa(j,k,“')- Then the score is given by

W*(first-collision neutron source at r’,E’,0’,t’
due to event of type a)

Xt(E'E’) Ea(j)k: M )

(E.3)

This gives the correct expectation; the expectation

value of the score at the collision is given by

Z W f:}rst-col.lision neutron source at \- (3,k, - .)
a r’,E’,0’,t’ due to event of type o) ik,

Zt(f_‘:E') —éa(d)k:“')

W(first-collision neutron source
at r;E',07,t")
= . (BB
Zt(sl;E')

The scoring in the adjoint calculation for the
four types of o events will now be considered (the

notation is the same as in Appendix A):

by



a. FEpithermal Elastic Scattering with an Isotope. where
The first-collision elastic scattering source may

be derived by beginning with an expression for the E = 28’ (E.8)
first-flight neutron flux at r’,E",0",t", due to a . (1 -2 Hop ¥ 1+ «
unit neutron source at r,E,Q,t, as given by
“ 2 2 2
r =
I _[..1+p,+ u -(l-A)] A, (E.9)
[ 5 (s,Bas cm A A L
x
8(_1:”)E” ’_Q”Jt” §£:E’2:t) = << p ) 5(2 -_(_Z”)
=" - =l W, =-g-2 (E10)
r -r
= -6
f =—————| - l . (B.11)
(" - x) r - . r -Ig
slo - o S(E-E')’
- “ v
I - xl

Therefore, the contribution that an elastic colli-
sion of the pseudoneutron mekes to the estimate J
(E.5) is given by
where s denotes an integration along a straight-line
path. If 8y is defined to be the first-flight neu-
tron flux due to the source S, 8y may be expressed

as
gg(z",E",2",t";8) =ffffg(;_”,£:”,g”,t” s2,E,2,t) S(r,E,2,t)d° rdEdnat
I‘/I
-‘/. Ek(s,E”)ds
r o "
] " - r,l (" - rp,)
e n " " - —e " bt _e
r -Zp =0

The first-collision elastic scattering source at

r’,E’,-0’,t’ is then given by

i. 7 /2 4 - -
; py(-0" - 2;z,E") E[(l-a)u +l+a]
/f ce(zl’Ell,gll’tI;s) 2:l(}_‘l’Eﬂ) 1 - L slg' - cm aE” an”

2
EI
rl
Sf meE)as " - z |

T, i i
e B Sq\EsByt” - —— / T (2", ED (upsm,E") E
B [z’ - r |2 ox &' ’ (E.7)

= " =8
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E'
[ mlemas
Txe 8 , 2 - o (27, 5)pd '
. e 8g \EsRrt" - —F——) £ (', EDy(up;r,E") B
=3+ (E.12)
2
5, (z’,E ex|z’ - £6,2 Q,(3,k,1) E
where
. . a
i _ i . cm
Dy(RpsEsE)y = Dk s2,E) Crag
2
1 2 2 My,
= Dl(ucm;z’E)cm up + Yy - (1 - A°) + A . (E.13)
ui - (1 - A%

b. Inelastic Scattering with a Continuum Density Function. The first-collision source for an event of

type 2 is given by

f/ =’ E,09",t;8) E (r ,E”)Cl(E’ -9’:x’ B ,0" )aE" an”

’
T

e | ) mtemnes

. e -8 ” ' II, '58| i oyl
= T S \Et - Y5 (& E)CHE, -2 0) @ | (E.14)
R i
L

where
 -x
Q= (E.15)
B-1
E = E'+ AEﬁ, , (E.16)
B'=1
B
E, = E' + Z AEB, . (E.17)
g'=1

The numerical evaluation of the integral in Eq, (E.14) mey be avoided by selecting an energy E from the
density function
1
X4 = —
£(E;E’) P -T B forELSESEu . (E.18)

The score is then given by
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r
fr Et(s,E)ds
x :, (

|x'- r,| i s Ignt ot..?
) B2t - — Lg E Tz’ ,E)C,(E’ ;-0 52", E, 2)(E - )
, ~ i

We

IJ=J" +

Et(zl:E’) 62(3:}(:6) Izl - 2612

(E.19)
This yields the correct expectation value for a collision at 5',E',_r_l',t'.
c. Inelastic Scattering with a Discrete Model.
(1) Laboratory system. The first-collision neutron source for this event is given by
PR ) v’ i, ¢+ o _l_ i [P Y Jev X ’ SE” - C! i/ “ ”
ff ge(}_: SEL,Q,t ,S) 23(}_'_ »E )l o DB('.'Q 2 ;r',E )f, 5 I:E - 1 V3(£:E’)!’ dE” 4a
. E’
4
x
-j' 1, (s,E)ds
T v’ - x| .
=0 i ? ¢ —_ = __l_ p S oyt i ’
2" - 2]
= -8
where
HL = - 2' - 8 4 (E'2l)
z’ - Xy
4= ’ (E.22)
Iz’ - zgl
E=v' +€ . (E.23)
The contribution of the collision to the estimate is given by
r ’
'./‘— Et(s,E)dS
by Iz' - I ] . N
ke O Sy \E2,t" - ———2] £i(z’,E) Dl(uL;r',E) wi(x’,E)
=3+ ] = \ 3= 473 L3 L (E.24)
— 2 L2
Et(E'JE') QB(j;k:i)z)IE’ - Eel 2x
(2) center-of-Mass System.
The first-collision neutron source for this event is given by
USQ(E')E,I:Q’:t'ss) ):;(E’yE”)z C;(E’)'_Qli_}'_l)E”:Q”)L o dQ”
rl
-/‘— £, (s,E")as
T 7
I Iz’ - xyl
e v} 'L = —6 i ’ i o [
=f o 59]2 Sg (E 2Rt - ) 5 (z',E"), C5(E%,-0"5x",E',0), " . (E.25)

The integration over E” may be performed by expanding C; as Cé was previously expanded in Eq. (A.23) for

Ly




the continuous case. Thus, cé may be expanded as

1 1
C3(E%,-2%5x",8",8) ) = CY(BL e psx B ,0) |01

1 i ” » i ”
= 5 Ol sz E"0) , 8(E - gl - c}Eém vy(zsEY 9l (E.26)
where
5] = & . (E.27)
E(.‘-m

The integration over E’ may now be performed to obtain the gontribution of the collision to the estimate as

’
r

-[ Et(S,E)dS
4 W Ee ’ 15"3:6') ’ i ) B’ i, .
J=J3"+|Te Sq\Bs@st’ - —— 5z’ E) Dyl ir B, n "-E_'_ viz',B),
- <= (E.28)
[%(E':E‘)-é.}(d’k’i’z) 2x|r’ - '1:9'2]
where
=2 - . ’
up= -8 -9

e [t o] e, yhie s o]
[(A +A1221_ ]2 T

Eem = (E.30)

E’ E
= - —= [/(a+1) s (E.31)
Mo HL"Eém ‘/E{m/ 3

for energies such that E > € and Iucml < 1. There is no contribution if E is less than € or lucml > 1.

The salution for E in Eq. (E.29) was obtained by inserting E:m, as given by Eq. (E.30), into Eq.
(A.27), and solving for E. Note that two solutions for E may be obtained, where each solution has E > €
and lucml < 1. If this is the case, the right-hand side of Eq. (E.28) shoyld be written as a sum of the
contribution from each E.

> (E.29)

d. Fission. The first-collision neutron source for this event is given by

f/ 86(}:':an_‘_}':t'QS)Zvi(I',E”) zlj;(:_“.I’Eﬂ) v(E') IJ;;_" ar’ d_.Q”
i

s




(Eu) ’ I

S T e

by |z’ - x| .
(%) e ° sq | B0t - —'._v'l qu(g',E") Ei(z’,E") v(E’)dE"
- b i . (E.32)
N

The evaluation of the integral in Eq. (E.32) may be avoided by selecting the energy E from the density func-
tion, ..

1

F(EE) = — % for (EY),, <E< (BY),, . (£.3%)
(0 - D, or (£")y¢ < E < (EV)y
The score is then given. by ’ ' 3 N
£I
-'[ ):t(s,Ell)dS l-!-' _d.el |
We 78 Se E)Q:.t" - - a8 Zv!‘t(sl’E) E)j;(_l_";E) Y(E') [(Eu):j' _ (EL)J,]

[z;t(g',E')Ekix,k,a’) b |z’ - 5912]
(E.34)

This gives the correct expectation value for a collisivm at 5' sE’ ,5_!' ,t0.

2. Derivation of the Scoring Equation for the First #Flight of the Pseudoneutron
The results in part 1 do not include the first flight's contribution to the functional. The first-
flight contribution to the functional J mey be obtained from Eq. (8) as

Tp= f f 6"(8"B) s(r) £(R) 4R’ @& (.75)

where G' in Eq. (E.35) is obtained as the solution of Eq. (6) with the collision source term omitted; this
yields the first-flight contribution. The transformed adjoint Green's function satisfies the same equation
as the corresponding Green's function for the transport equation. Therefore, by using the relationship be-
tween the transformed adjoint Green's function and the adjoint Green's function of Eq. (11), one may use
Eq. {E.5) to express the adjoint Green's function as

rl
-/— ):t(s,E)ds

X ’

. e T , (' - ) ' -zl\ -
G (I':E':Ql:t';I’E:Q’t) = F 5('9. +a )8 _21 — )|ttt - —— 5(E - E) .

Iz’ - £|? T -2l v

(E.36)

+
This expression for G may be inserted into Eq. (E.35), with S given by Eq. (E.l), and the integration may
be performed over the R’ and © variables to cbtain

v

’

r
/7 w.(s,E)as
46 * Iz -zl
Jf 'fff ) oo e\t - =5 )’ amee (E.57)
E
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where some varisble changes (r = r’) and

s (£.38)

have been made.

This first-flight contribution may be estimated in the sampling from the edjoint equation by selecting
the initial pseudoneutron perameters from a density function g(r’ JE,Q7 »t), assigning an initial weight of

):(}'_"E: 'Qg:t)

W o=

= " ’ (E.39)
e(z’,E,q;,t)

and computing the contribution to J as
’

/{ zt(s,E)ds
IEI = ze]) E(}_‘l:E:Q’;:t) E(}'_’:E’Qyt) e 29

— 2
[ez om0 e gl Iz - g

. (E.40)

The expectation value of J, in Eq. (E.LO) is simply J, of Eq. (E.37).
5. The Point-Source Estimator Utilized in MCNA

Equations (E.12), (E.19), (E.24), (E.28), (E.34), and (E.40) express the point-source score for the
event, or first flight, as a given factor, denoted by ANL in the program, multiplied by the source density
Se(E,K_?.,t' - lg' - gel/v) The MCNA program computes the factor ANL*, describes the vector Q by the cosines
-u, -v, and -W(_f}_ =-uw - vj - wg), sets the variable TME to t’ - ]5' - _z_-elv, sets KASR to 3, and calls sub-
routine SCORE. This procedure is performed for the source pseudoneutron and at each subseguent pseudoneu-

tron collision for each neutron point source.
The point neutron source number for a given call into subroutine SCORE is denoted by the variable
IDETX. The general procedure in SCORE is to set
TSCOR( IDETX) = TSCOR(IDETX) + ANL¥ (neutron-source density of source IDETX) (B.41)

each time subroutine SCORE is called.
As an example, the following fictitious problem is considered with the two point neutron sources:

*
For source pseudoneutrons, the factor ANL is computed as

r T
-/ Et(S;E)dS
We

ANL = .

“ﬂls' _£e|2

The assumption here is that T and g in Eq. (E.lO) are independent of Q. If this is not true, the quantity

&(x,E,97,t) (z’,E,0,t)

— ’ ”
fS(EI:E)Q;:t)d:Q; z (Z ,E,-Qa,t)

of Eq. (E.kO) must be computed in subroutine SCORE and multiplied by ANL.

by




6 =1

11 1
S, (E,0,t) = = 55— == shakes, for 1 MeV < E
1 Ix 3 Mev 100 <L Mev
0<t<
100 shakes
=0 otherwise;
8 =2
11 1 .
s (E,q,t) = 7——— —=— shakes, for 1 MeV < E
o Ix 5 MeV 1000 <6 Mev
0< t <
1000
shakes

=0 otherwise.

Then subroutine SCORE mey be written as shown in
Fig. E.1l.

O  ao aoaaaa

SUBROUTINE SCORE (KASR)
INTEGER, DIMENSION, COMMON, AND EQUIVALENCE state-
ments corresponding to those of the main program
ATMC.

SCORING FOR FICTITIOUS PROBLEM
WITH POINT NEUTRON SOCURCE
ANL = FACTOR TO MULTIPLY BY
SOURCE DENSITY
-u, -V, -w ARE THE DIRECTION
COSINES FROM THE POINT DETECTOR
70 THE COLLISION POINT
IF(KASR.NE.3) GO TO 25
IF(ERG.LT.1.) GO TO 25
IF( TME.LT.0.) GO TO 25
IF( IDETX.GT.1) TO TO 19
IF(ERG.GT.4.) GO TO 25
IF(™ME.GT.100.) GO TO 25
TSCOR(1) = TSCOR(1) + ANL/(12.566%300.)
GO TO 25
19 IF(ERG.GT.6.) GO TO 25
IF( TME.GT.1000.) GO TO 25
TSCOR(2) = TSCOR(2) + ANL/(12.566%5000.)
25 RETURN
END

Fig. E.1 Subroutine SCORE for a fictitious
problem with two point neutron
sources.

APPENDIX F

NEUTRON SOURCES CONTAINING A DELTA FUNCTION IN TIME

An extraneous neutron source, consisting of a
pulse in time, presents a problem for scoring in
the adjoint calculation because all scoring must Ve
made at a fixed time in the life history of the
pseudoneutron. Provided that the functional of in-
terest is not also discrete in the time domain and
assuming that the medium is stationary, it is pos-
sible to find an equivalent problem that does not
involve a discrete neutron source in time.

The nuetron source is assumed to be of the form
S(E)E)E.vt) = So(}:,E;Q) 8(t) ) (r.1)

where SO(E’E’Q) is independent of time. The func-
tional of interest is assumed to be given by

48

s
J=f ff @(E,E,g,t)z(g,E,g)d3rdEdgdt s (F.2)
¥

> .
where t2 tl

An equivalent problem is now proposed. The
geometrical end material characteristics of the
original problem remain unthanged in the equivalent
problem. The equivalent source is given by
S (E:E;g)

So{DEt) = =—— foro<t<at

= 0
where At = t2 - tl. Then the equivalent functional
is

(F.3)

otherwise,



G(x,E,2,t,;r',E',0', t, - t)
= f f f 0, (£,E,0,8,) Xr,E,0)d’rdEdgat ,  (F.4) 2 2

vl Tt
where @ is the neutron flux in the equivalent prob- = ¢(r,E,Q,t;x",E',07,0) . (r.12)

Lem. The right-hand sides of Egs. (F.7) and (F.10)

The proof that J.e = J 1is obtained by expressing are identical, which proves that J = Jo as postu-

. L
P 1 terms of Green's functions and noting that the lated. Therefore, the reciprocity relationship may

be substituted into Eq. (F.8) to evaluate the func-
tionel, by sampling from the adjoint equation, as

Green's functions G and Ge are equal for identical
arguments; this follows because the geometricel and
material characteristics are identical in the two

problems. The neutron flux in the two problems may

olx,E,9,t) ffffc(r,E,n, ;x',Eh00t') s(x’,E’,0%,4") a>r'aE ‘an’at’
=jff6(z,E,2;t;_z;',E';ﬂ',O) s (x',E',0') a’r'as’an’ (F.5)
O(— ’ , ) B Vol gl oyt
0 (r,E,,t,) = fG(r,E,Q, 032 sE07,t") ————— a’r'ak’d’at’ (r.6)
where the expressions for S and S_ in Egs. (F.1) and £t
e J= (' E',0,t 5, E,0,t,)
(F.3) were used. The equivalence of G and G, vas = EAR AR AR Sl )
o]

utilized to obtain the latter expression in Eq. (F.6).

be expressed as

The expressions for the neutron flux in Egs. So(r',E',g')
(F.5) and (F.6) may be used in Eqs. (F.2) and (F.4), At
respectively, to obtain

(x,E,0)0t87r /a8 an’ a>raranat '] .

(F.12)

=f f/ff/:[ G(r,E Q,t r )E }9 }0) S (1‘ ,E ,Q ) Z(r)E;Q)dBrIdE d-Qld !'dEd.th] , (F'7)
s(z',E",2") 5
f fff‘[ff G(r E Q) 2,1‘ )E ,Q >t ) o t E(E,E,Q)Atd l"dE'dﬂ'd rd.Ed.th ] . (F.S)

In Eq. (F.8) the change of variables, Therefore, in the sampling from the adjoint equation,
= (t, - £y, (F.9) the initial time is set to t,, the remaining initial
coordinates of the pseudoneutron may be selected

is now made to obtain

t
2
Je =f ff f '/:[ f [G<3,E,g,t;z_’,E’,g',o) s,(z’,E,2") z(r,E,g)d3r'dE'dg'd3rdEdgdt] , (¥.10)
t.
1 ’

where a stationary system has been assumed so that with the density function
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BEe) = s e®) § (F.13)

for r in the volume V conteining nonzero §, and the
initial weight may be set to

_  =x,E,-2)
i - SR

= (F.1%)
g(r:E:Qa)

Here an isotropic selection of the direction of
flight and a uniform selection of the position have
been specified for illustration.

If a volumetric source is assumed (i.e., not
a surface source), the score at each collision is
obtained from Eq. (36) as

w*so(zy E, 'Qa)

_Et-(zﬂ— s (F.15)

whenever 0 < t < At.

This derivation is valid under the assumptions
that:
and {2) the scoring cross section ¥ is independent
of time.

(1) the system is not changing with time,
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