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MCN&A CCMWIXR PROGRAM TO SOLVE THE ADJOSNT NEUTRON

TRANSPORTEQUATION BY COUPLED SAMFTJ.NGWITH IliEMONTS CARLO MSTHOD

by

L-elandL. Carter

IiBsmwf

A coupled senpling technique that utilizes the Monte Carlo method
of solution has been reported in the literature. This report extends
this coupled aaqling technique to include nuclear fission and time
dependence. In the coupled sampling, specific use is made of sampling
from the neutron transport equation to constructa scheme for a near-
optimel subsequentsaspling frcusthe adjoint neutron transport equa-
tion. This procedure maybe expected to be advantageouswhen the
phase-spacevolume contributingto the functional is smaller then the
phase-spacevolume of the neutron source.

‘lheccxsputerrn’oKramMCNA was written to utilize the couDled smn-
pling techni~ue. M~ uses the same neutron interactionmodeis and
cross-sectionlibrary as does the Los Alemos code MCN; MCN solves the
transport equationwith Monte Carlo.

I.

age

the

INTRODUCTION

The centrel limit theorem asserts that the aver-

of n independentrandom variables (the sum of

random variables divided by n) has en approxi-

mately normal distributionwhen n is large;L this

holds true under suitablemild conditionsspecified

in the standard textbooks. Under the assumptionof

normality, a known probability may be assigned to

the statementthat “the theoreticalexpectation

value lies within the band defined by the average

value of the n independentobservations*c.” Here

e is proportionalto the square root of the variance

of the distribution. The variance of the distribu-

tion is proportionalto the variance of en individ-

ual random variable ad inverselyproportionalto n,

end, hence, any given precision (c/truevelue) may

be obtained simply by teki.ngenough random semples.

The fact that the precision decreases only in-

versely proportionalto the square root of the num-

ber of samples may lead to an exorbitant amount of

computationtime for the required accuracy. If SO,

an alternativemethod of reducing

probability distributionsused to

variables so that the theoretical.

dividuel sample is reduced.

c is to change the

obtain the random

variance of an in-

Marw problems of neutron transport cannot be

solved efficientlywith anelog* Monte Carlo owing

to the large theoreticalvariance of the individual

samples. It is well known that certain adventages

are reelized in some of these problems through the

solution of the correspondingadjoint equations. A

comsonly occurring example is the determinationof

a reaction rate in a smell volume of phase space due

to a given neutron source distribution. The vari-

ance in the estimate of the reaction rate for en in-

dividual neutron history is large because only a

small fraction of the neutrons pass through the anell

phase-space volume of Interest. Solution of the

correspondingadjoint equation till.owsthe semple his-

tories to begin in the smell phase-space

*~~og refers to a direct simulation of
transport.

volume.

neutron
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These histories are traced “backward”to the phase-

space volume of the neutron source and contribute

to the estimate of the reaction rate while in the

phase-spacevolume of the source. The computation

time required to obtain a given confidencelimit in

this adjoint solution depends upon the scheme ulti-

lized to simple from the adjoint equation.

The computer code MCNA is based upon a coupled

sempling approach. Near-optimumdensity functions

for sampling ficxnthe @joint equation are obtained

in this coupled sampling by approximatinga theo-

retically feasible “zero-variance”scheme. The cou-

pled sampling consists of sampling from the trens-

port equation to construct the scheme for sampling

from the adjoint equation, and then estimatingthe

functional by sampling from the edjoint equation?

The coupled sampling approach discussed in Sec.

II is an extension of Refs. 2 and 3 to include fis-

sion and time dependence. A brief descriptionof

the computer code MCNA is given in Sec. III. The

physical models utilized end the geometry routine

of the MCNA code are identicalto those of the MCNA

code~-6 MCN solves the neutron transportequation

with Monte Carlo. ‘XheMCNA code is written in

FORTRAN IV end is presently utilized on the CDC &OO

and CDC 7600 computers. An example problem is dis-

cussed in Sec. IV.

II. SAMPLING FRCWITHSADJOINT TRANSPORTEWATION
AND CCIIPLEDSAMFTJNG

A. General Discussion

The relevant equationsmay be derived by begin-

ning with the Boltzmenn integro-differentialneutron

transport equation,7

= 5(2 -~’)6(E - E’)6(~ -Q’)5(t - t’) , (1)

where L is an operator 8S defined by Eq. (l). ~ is

a shorthandnotation denoting the neutron space

position~, its kinetic energy E, and direction of

*The shorthand notations “transport equation” end
“adjoint equation”will be used rather than “neu-
tron transport equation” and “adjoint neutron
transport equation,” respectively.

motion Q at time t. C(E,r2;r,E”,Q”)dE~is the num---
-herof neutrone emerging in the phase-space volume

dE about E and in dQ about fifollowing a collision

of a neutron with energy E“ and direction of motion

fin. Processes such as fission and elastic end in-

elastic scatteringare included so that the col.J.i-

sion kernel C usually will.not be a normalized den-

sity function. The total cross section ~ is as-

sumed independentof time and of the direction of

motion of the neutron so that the notations ~(~)

and T+(~,E) 8.reused interch=geably. ‘lhecoordi-

.natea to the left of the semicolon in the Green’s

function G of Eq. (1) represent field (i.e.,

final-state)points, end those to the right of the

semicolon represent source points so that G(Il;~’)

is the neutron flux at ~ due to a unit point source

at ~’.

The neutron fluxT@) mey be e~ressed in terms

of the solution of Eq. (1) for the Green’s function

as

IT@)= G(Il;~’)S(R’)dR’ , (2)--

where S(IJ’)is the extraneous source density. How-

ever, rather then using the Monte Carlo method to

ccmpute a point value of the neutron flux, we more

often use it to estimate a functionalJ (or a num-

ber of such functionels)defined as

(3)

Here, X(lJ)is an arbitrazy “cross section” of inter-

est and the last relation of Eq. (3) was obtained by

utilizing the expression for the neutron flux as

given byEq. (2). ~ estimate of the functionalJ

with Monte Carlo may be obtained by selecting the

i’th source neutron coordinates~iwith the density

function S(~’) and followingthe subsequenthistory

of the neutron (and progeny) to compute the estimate

(4)

where W(I?i)is the initial Weight =si@ed to the
neutron as given by~S(IJ’)dR’. The estimate ofJ~
zs g~ven by Eq. (4), is obtained by sampling from

the transport equation,but a correspondingestimate

●
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of J may be obtainedby 8ampling fksn the adjoint

equation.

!lheadjoint equation for the adjoint Greenta

function G+ is obtained by finding an operator L+

that satisfiesthe equation

f[
L+G+(~;~’)]G(~;~’)~ =

J
G+(Il;IJ’)[IO(Ii;R’)]% .

(5)

The boundary conditions on G+(R;R’) are chosen to be-.
consistentwith tho8e on G(I?;IJ’) and are such that

the biwea c~ctitanta is zero. me def’inition

of the operatorL+ in Eg. (5) with the associated
boundary conditionsis used to obtain the adjoint

equation as

and tkm followlng the subsequent history of the

pseudoneutron (and Progeny) to co141utethe est~te

JJi= G+(~’;I@S(~’)I@ w(~) , (lo)

where w(~i) is the i.nitie.l We@t assisned to the
pseudoneutron as given byjx(~’)~’. The roles of

the neutron source S and the scoring cross sectton

~have been interchangedin this estimation ofJby

sampling frcm the adjotit equation. Z now assumes

the role of a “source” end S the role of a scoring

“cross section.” This fact has two well-known im-

plications about the computationaleffort required

for aproblem. (1) If aresponse of some part of

the system as a function of the neutron source dis-

,

.

3G+(R;R’)
L+G+(R;R’) = - : a~’–—- -&”yG+(Il;IJ’)+ ~(@G+(ll;~’)

A reciproci~ relation between G+ and Gmey be

derived by multiplyingEq. (6) (with the source at
an arbitrary point & rather then~’) by G(l?;~’)dR,

multiplying Eq. (1) by G+(ll;IJW)dR,extractingthe

difference of the resulting two equations,and inte-

grating this difference over all of phase space.

Then the subsequentinterchangeof variables, re-

placing~’ by~ endFJ” by~’, yields the familiar

form of the reciprocitytheorem,

G+(IJ’;@ =G(ll;~’) . (7)

The reciprocity relation of Eq. (7) me.ybe in-

serted into Eq. (3) to obtain an dternStiVf2eXpl’es-

sion for the functione.1J as

JJ
J= G+(lJ’;ljs(ly)x(xJ)@dIj . (8)

The fYnctionelJ ofEq. (8) ~be estinmtedwith

Monte Carlo by selectingthe i’th source pseudo-

neutron* coordinateslliwith the

x(@/f X(2’)% ‘

*
Pseudoneutronzare
whose transport is
tion.

defined here
describedby

density function

(9)

as those “particlesn
the @joint equa-

tribution is required, it mey be more efficient to

estimate the functional by sampling fras the ad-

joint equation. This is because only one adjoint

calculation is required rather than a number of

separate transport calculations. (2) If the phase-

space volume containingnonzero z is small, it may

be more efficient to estimate,J by sampling from the

adjoint equation because en. pseudoneutron histories

begin in the small phase-space volume.

!Kheseadvantages obtained by sampling from the

adjoint equation are expected to accrue when the

phase-space volume, where the neutron source is non-

zero, Is not too amaJ.1*and if a reasonably effi-

cient scheme is available for sampling from the ad-

joi.ntequation.

B. Sampling fram the Adjoint Equation

The approach used here to develop a scheme for

sampling frcm the &i&Jointequation is to begin by

finding a simple transformationthat will transform

the e&joint equation, Eq. (6), into an equation

identical in formto the transport equation, Eq. (1).

Techniques for sampling from this transformed

*
Point neutron sources may be treated with a special.
point source estimator discussed in Appendix E.

3



equation are well.known from the wealth of ~eri-

ence obtained by sempling fran the transport equa-

tion.

The simple transformationis obttinedwith the

definitions

ta=tm-t

ga =-g

G:(~,E,Qa,ta;~’>E’,Q:,t:)

= G+(x’,E,- Qa,tm-ta;:’,E’, -i&tin-t:) , (XL)

where tm is a maximum time of interest in the prob-

lem, ta will.be the adjoint time, end$ will be the

direction of notion of the pseudoneutron. Substitu-

tion of these definitionsinto Eq. (6) yields the
transformed equation

condition on G is that G(l?;~’)= O for t’ > t. This

boundary condition coupled with the reciprocitythe-

orem of Eq. (7) and the definitionsin Eq. (11) re-

Because Eq. (12) has the same form as the neu-

tron transport equation and satisfies the same type

of boundary conditions,a possible scheme for esti-

mating the functionalJ of Eq. (8) is as follows.
1. Select the initial coordinatesii of the

pseudoneutron fraz the density function (see expres-

sion (9)),

with the initial.weight of the pseudoneutrongiven

bywae

-J J [
C(E”,-Q’’;r,E,-~)~(r,E)

G:(@,f&ta;R’)Y&,E” ) 1& dQQ=5(~- ~’)5(E- E’)b(-Qa+~fl)5(-t&),

~ E“
~(z,E” )

(u?)

where l?=is

r,E,Qa,ta.

the neutron

brackets in

defined to be the phase-spacepoint

Equation (12) is identical in form to

transport equation,where the term in

the integrend representsthe transfer

kernel.

It may also be -roved that G: satisfiesthe

same bound- conditionsas G. The boundary con-

dition for G is that G(&,E,fJ-,t;IJ’)= O at every

point gs on the outer surface of the system, where

Q’ denotes any direction into the system. ‘lhis

boundary condition on G combinedwith the require-

ment that the bilinear concomitantbe zero on the

outer surface leads to the boundary conditionfor G+
8of

G+(~5,E,fJ+,t;~’)= O , (v)

where fi+denotes any direction out of the system.

Owing to the definitionof G: in Eq. (IL) and the

boundary condition on G+ in Eq. (13), the boun~
condition on G: is that no pseudoneutronsenter the

system from the outer surface. The timeboundary

2. Sample for the distance to collision~with

the exponentialdensity fknction,

T(x) = q(x)e 0

where this density function is determined along the

direction of flight of the pseudoneutronand x = O

is the previous collisionpoint.

3. Each collision of the i’th pseudoneutron

history (or its progeny) contributesto the estimate

of the function Ji as

Ji = J:+W S(~,E,-~a,tm- ta)/~(~,E) , (17)

where J; is the sum of the tabulations fran previous

collisions. Here a volumetric source S is assumed.

The scorhg is different for a surface source as is

discussed in Sec. III.

4. At each collision

a precollision energy E’,

and weight kit,sample for

of the pseudoneutronwith

direction of motion~~,

the nev energy E end

4
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direction of motion% with the density function

f(E,~; r,E’,$)

C(E’,-~;X,E, -~)x@E)
. (1.8)

= ~,~tiC(E’,-O’;@,-~)~(Z,E”)dE’ ~

The new weight of the pseudoneutron is then obtained

as

w’~,~ C(E’,-ii’;r,ti,-f@l@E’)dE” ~=
Q E’

w= . (19)
Zt(~,E’)

5. Return to step 2 if the pseudoneutronen-

ergy is less than the maximum energy of interest and

if the time ta is less thau tn. Otherwise, tenzi-

nate the history with the esttite of the functional

J for this history given by J%.

We will call the sch~ outl.hed above an sna-

log scheme for sampling fran the adjoint equation

because it is similar to an analog scheme for salz-

pling frcm the transport eq=tion. ‘lTiedistance-to-

collisiondensity function T(x) of Eq. (16) is iden-

tical to the correspondingdensity function utilized

for ssmpling from the transport equation. The roles

of the scoring cross section X and the murce S are

interchangedinEqs. (14) end (17) from their corre-

sponding roles when sampling frun the transport

equation. The most important differencebetween the

two anslog sampling schemes involves the density

functions for selecting the energy and direction of

motion after a collision,f(E,~;r,E’,~) of Eq. (~)

for sampling from the adjoint equation, and the nor-
malized formof the collisionkernel C(E,fl;r,E’,~’).—
for szunplingfrcsnthe transport equation. Not only

does the density function f ofEq. (18) have the

additionalmultiplier ~, but al-sothe pr~ed and

unprimed variables of the energy end direction of

motion in the arguments of C (the negative signs in

the direction coordinatesare not consideredimpor-

tant in this treatmentbecause we will.consider iso-

tropic media) are interchangedfrcm their correspond-

ing role when sampling from the transport equation.

If the analog scheme is tobe utilized to sam-

ple from the ~oint equation,these differencesbe-

tween the density function f(E,~;~,E’,~) and the

normalized form of the collisionkernelC(E,O;r,E’$g’)--
dictate the need for data that are not available in

a cross-sectionlibrary that is constructedfor sam-

pling from the transport equation. To see what

additional data are nee&d and to eventually intro-

duce the ssz@ing schema used in the MCNA code, we

till now consider the practical aspects of sampling

with the density function f.

It is convenientto express the collision ker-

nel C as a sum of the respective contributionsof

possible events a as

(m)
where Ea is the macroscopic cross section for an

event a and Ca iS the correspondingcollision kernel

for the event a. The events amay be chosen to cor-

respond to the physiceJ.processes; for example, elas-

tic scatteringwith a given isotope. Alternatively,

the events may be defined less conventionally, for

emmple, the event defined as an inelastic scatter-

ing with any of the isotopes present, subdect to the

restrictionthat the (pseudo)neutron is scattered

to an energy between two given limits.

The e~ansion of C, as given byEq. (~), w

be substitutedinto the density function f of Eq.

(1.8)to obtain

f(E,Qa;~,E’.Q:)=
~% (:,E’,fiO’)fa(E,~f2;~,E’>fl:),

a
(21)

where ~andfa=e defined as

.

(22)
and

fa(E,qa;~,E’.Q:)

C (E’,-O’;Z,E,-~a)Xa(Z,E)
.

~~ ~(E’~-!:;:>~,-fl:)Xa(X>E”)~”~: “
g; M

(23)

The energy E and direction of motion Qamay be sam-

pled with the density function f ofEq. (21) by

5



selecting event a with probability Qa and subse-

quently selectingthe ener~ E and direction of

motion ~ from the density function fa. Thus, the

data required in a cross-sectionlibrary wouldbe

the probabilitiesof events as given by the Quof

Eq. (22) and the correspondingconditionaldensity

functions as givenby the faofEq. (23).

Two difficultiesare evident in this analog

scheme for sampling from the adjoint equation.

(1) A considerableamount of effort wouldbe re-

quired to create a new library containingthe faand

~ functions in an acceptableformat for sampling,

and (2) the analog scheme for sampling from the ad-

joint equation maybe inefficientowing to statis-

tical.errors due to an unacceptablylarge theoreti-

cal variance of the individualsamples. One can re-

duce this variance by properly eltering the sampling

scheme and adjusting the pseudoneutronweight to ob-

tain an unbiased estimate. The unbiased estimate iS

obtained by multiplicationof the analog p8eudoneu-

tron weight by the ratio of the analog density func-

tion to the alternate density function at each sam-

pling. For example, if some functions?aand~a

are used for sempling rather than the analog density

functions fa and Q~ the pseudoneutronWeight i8 ob-

tained from the analog weight ofEq. (19) and the
ratio of the density functions as

where a, E, end f2awere selected in the sampling.

functional. There Is usually a trade-off between

the theoreticalvariance per individualrandom sam-

ple and the computationtime required to sample from

the density functions. !lheMCNA code utilizes a

coupled sampling approach to tqv to ccaprcmise on

these requirements.

c. Coupled Sampling

It is well known that a theoretical“zero-

variance” scheme exists for estimatingthe function-

al J by sampling frcsnthe edjoint equation. The

zero-variancescheme depends upon the neutron flux

and thus is impracticalto utilize exactly, but this

does suggest the possibility of a coupled seqling

approach to obtain an approximationto the zero-

variance scheme.

The coupled sampling as developed here consist8

of sapling from the transport equation to construct

SIIapproximationto the theoretical zero-variance

scheme and then using this approximate scheme to

estimate the functionalJ by sampling fmm the ad-

joint equation. We will now give expressions for

the zero-variancedensity functions and briefly di8-

cuss how sampling from the transport equation may be

used to obtain ~roximatl.ons to them. The actual.

techniques used in the M(XA code are given in Sec.

III.

The functions go, Qm and fm are defined to

A density function for the alternate sampling

scheme may be chosen arbitrarily from the set of

density functions that are nonzero at each point

where the correspondinganalog density function is

nonzero. Use of the correct weight multiplier en-

sures an unbiased estimate for any such density

functions. However, the variance in the esthnate of

the functionalJ depends upon the density functions

chosen for the sampling scheme, so the density func-

tions should be chosen to minimize the coqutation

effort for a given precision In the estimate of the

Ifa(E,~;r,E’,fi’) c@,E’,Qfl)

?a(E,~;~,E’,~) ‘~(r)E’,~) I

Ca(E’,-O’;r,E,-Qa)~(Z,E)
-i=W (24)

Z@E’)~(Z,E’,~)~a(E,~;Z,E’,Q:) ‘

be the density functions of the zero-variancescheme

which are utilized to sample for the same rendom

variables as the denaiti ficti~s g, f~ -d Qd

respectively,of the analog scheme. The derivation

of this zero-variancescheme will not be given here

because it is available in the literature.9,10 me

zero-variancedensity functions of interest here

(25)

.
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(26)

(27)

where the density functionshave been amnused to de-

pend only weakly on time so the time variable has

been suppressed. The density function of the zero-

varience scheme for selectingthe distance to col-

lision is not given here because we assume thmt the

use of the analog exponentialdensity function of

.q. (16) with the added option of splittingor “Rus-

sian roulette” is sufficient for most purposes.

The density functions ofEqs. (25) to (2’7)have

an interestingphysical significance. The opti.mel.

WS@ins requires that, in the edjoint solution,

regions of phase space be sampled proportionalto

the rate at which the reverse (neutron)processes

are occurring. This provides a helpful picture for

obtaining useful.approximationsto the zero-variance

density functionswhen senpling fras the transport

equation. Such aphysicel aid is useful because it

is clear that, in addition to the problem of statis-

tical fluctuationsin the evaluationof fm and Qw

by sampling from the transport equation, some phase-

space averaging must be incorporatedto reduce the

computer memory requirementsfor tabulatingthese

illnctions. The averaging techniquesused inMCNA

are formulated to optimize the selectionof the

pseudoneutron energy. These averaging techniques

-d a general.discussion of the MCNA code are given

in the next section.

III. DESCRIPTION OFMCNA

The computer code M(7NAfor solving the adjoint

equation with the Monte CarlO method was constructed

by modifying the computer code MCN;4-6 M(2Nsolves
the transport equation with Monte Carlo. The geom-

etry routines end cross-sectionmodels are identi-

cal in the two codes. The cross-sectionlibraries

have the same format. However, the actuel cross

sections for reactions are alwevs tabulated in the

MCNA library, while probabilitiesof reactions are

sometimes tabulated in the MCN cross-sectionlibxary.

Figure 1 illustratesthe 8teps in the solution

of a problem with the MCNA code. The initiation of

the problem in S:? 1 is identical to the initiation

in the MCN code. - The sampling from the trensport

equation in Step 3 is also identical to the MCN pro-

gram with two exceptions: (1) theprogrem has been

altered to s.Uow cross-sectiondata rather thsn

probabilitiesofreactlcnsto be used in the sempling,

end (2) density functions are computed for a sub-

sequent sampling from the adjoint equation. The rest

of the discussion in this section will concentrate

on this latter difference and on steps 2, 4, smd 5

of Fig. 1.

The zero-variancefunctions,Qm of Eq. (26)
and f of Eq. (27), are approxtited in the s~-

On
pl.ingfrom the transport eq~tion by first separa-

ting three-dimensionalEuclidean space and the en-

ergy coordinateinto contiguous segments. The Eu-

clidean space segments are assumed to correspond to

the physical cells (regions) of the system. An en-

ergy, directional,and spatial averaging of the Qm

in ?%q.(26) is.performed over each phase-space seg-
ment in the Monte Carlo sampling from the transport
equation. lhese average quantities are denoted by

~a(j,k,...), where ~ is an integer denoting the en-

ergy segment, k is en integer denoting the cell, end

the .,. indicates that (dependingupon the type of

event) other integers may elso be used. Thus, the

~(j,k, “-0) represents aMonte Carlo phase-space

average of Qm(~,E’,~~).

Four general types of events, designated by u,

are utilized in MCI?A. Note that these events were

selected for conveniencein the sampling ~d OfteXI

represent a sum of some possible reactias. ‘lhe

four events with their correspondingphysical inter-

pretations in the sampling from the transport equa-

tion are as follows.

7
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Step 1

‘-

Step 3

PRCGRAM A!lMC
Samples fram the trma- *
port equation to con-
struct the scheme for
subsequent sampling
from the adjoint equa-
tion

step 2

PROGRAM ANUI
Initiates additional data
and prepares for the coupled
sampling. t

step 4

Step 5
I i

Fig. 1. Brief flow diagram of a canputationwith the MCNAcode.

1. Elastic scatteringwith an isotope i. This

t~e of event is designatedby a= 1, and-~(j,k,i)

is proportional to the number of neutrons that suf-

fer an elastic collision in cell kvith Isotope i

and are scattered into energy group j.

2. Inelastic scatteringwith a continuum den-

sity function (i.e., not a dl.scretelevel in the

laboratory or center-of-masssystem) to describe

the ener~ trensfer. This @pe of event is desig-

nated by a= 2, and~(j,k,f3) isproportional.to

the number of neutrons that scatter into energy

group j, given that t.~ originatingneutrons suf-

fered inelastic collisions (fission not included)

in cell k with a continuum density function util-

ized to describe the energy transfer,where the

neutron loss of energy in the laboratory system

is within an energy bsnd deaignatedby the inte-

ger &

3. Inelastic scatteringwith a discretemodel

(in the laboratory or center-of-masssystem) tode-

scribe the energy transfer. This type of event is

designatedby CY= 3, end- ~(j,bb~) iS proportional
to the number of neutrons that scatter into energy

group j, given that the originatingneutrons suf-

fered an inelastic scattering collision in cell k

with discrete level 2 of isotope i.

4. Fission. This type of event is designated

by a= 4, ad-~(j,k>Y) iS propofiioti to the n~-

8

ber of neutrons born from fission into energy group

j and cell k, where the parent neutrons were in en-

ergy group Y when fission occurred.

lhe indices in these definitionsassume all

integer values that are within the bound8:

1 s i < (number of isotopes in cell k),

1 S j s J, where J is the number of ener~

groups used in the subsequent sampling

from the adjoint equation,

(number of cells),

(number of energy bends for energy

group j),

(number of discrete levels for isotope

i and energy group J),

J.

These ptisica.1definitionsof the ~a’s are used

to evaluate thereby sazpling frmn the transport

equation. The word “proportional”is used because

the~a’s must be normal.izedbefore the subsequent

sempling frcsathe adjoint equation. Hence, for a

given j and k, the ‘~’s are normalizedwith the con-

dition

● I

\



In the subsequentsampling fran the adJoint equation,

J is the energy group of the pseudoneutronbefore a

co~ision mdeach Qa(j,k,”””) is the probability

that it will.suffer that event. Although a form of

multigroup treatmmt is used to detemine the type

of event that.occurs, this is not a multigroup trea~

ment in the usual sense because the final pseudo-

neutron energy after the event is selected frcsna

continuous distribution(except, of course, for a

discrete inelastic scatteringin the laboratory

system).

The conditional?a density functions for sam-

pling the ener= and direction of flight of the

pseudoneutron,given that the event a occurs, (in

some cases these ~a’s are also ccunputedby sampling

frcm the transport equation) are discussed in Appen-

dix A. The weights of the pseudoneutronafter each

event a are also derived in Appendix A.

The format of the input data in the MCNA code

is identicalto that of the input data in the M(7N

code. The input data are discussed in Appendix B.

Most of the effort required to set up a problem

with the MCNA code is usually involvedwith the con-

struction of the sources for sampling from the

transport and adjoint equations and the scoring

routine for tabulating the functional.(s).The neu-

tron source routine for the saqling frcsnthe trans-

port equation is constructedas in the MCN code;

i.e., simple routines are available in the code, or

more complicatedrdsines may be written by the

user. However, for problems in which a number of

functional.sare being computed in the sampling from

the adjoint eqution, some care should be taken in

choosing the source for the transportportion of the

calculation. GeneralJy,the density function for

selecting the ener~ of the source neutron should

emphasize the upper portion of the ener~ spectra

of the functionels.

A pseudoneutron source routine is also avail-

able in the MCIW code for simple sources,but a

separate routine,ASUJRC, must be written for com-

plicated sources. To illustratethe procedure for

setting up the adjoint source, we begin with the

density function g(~) ofEq. (14). The MC!NAcode

uses real-time t in the @joint cshul.ationrather

than the adjoint the ta, so g is expressed as

(29)

The correspondingzero-variancedensity function go

of Eq. (~) depends upon the neutron flux

q(~,E,-~t). When informationon the general be-

havior of the neutron flux is available, it should

be used to construct a near-optimal density functicn.

For illustration,we will assume that such informa-

tion is not available and that our primary interest

is to find a simple method to select the initial

pseudoneutron coordinates. The following method is

quite general.,although it is not optimal from a

minimum-varianceviewpoint.

The density function g may be difficult to

sa@e owm to the behavior of the cross section X.

An eltemative is to sample from a density function

~ that is easy to sample from and is zero only in

regions of phase space where z is zero. An unbiased

estimate is obtained by assigning the pseudoneutron

an initial weight of

(30)

where r, E, flaand t were selectedwith the density

tiction ~.

For example, assume that

X(~,E,-~a,t)=X(E) for ~ in a volume

V, El < E <E , end
2

t1<tct2,

= O otherwise,

snd that we choose the density function~

for ~ in a volume V, El <

andt1<tCt2,

= O otherwise.

The pseudoneutron source routine would

as

(31)

E < E2,

1. select the initial position z, y, z from a

uniform distributionin the volume V,

2. select the d3.rectioncosines u, v, w from

an isotropic distributionin the laboratory

system,

9



3. select the energy E frcxsa uniform distri-

bution between El end I@

4. select the tjme t frcuna uniform distribu-

tion between tl emd t2, end

5. assign the pseudoneutronen initial weight,

obtained from Eq. (~), of

ii= Z(E)4J((E2- El)V(t2- tl) . (32)

A subroutine celled SOORE(XASR)must be sup-

pliedby the user to tabulate the contributionof

each pseudoneutronhistory to the functional(s).

The parameter XASR is used to convey what is happen-

ing to the pseudoneutroneach time the subroutineis

celled by the main program. Subroutine SCORE is

celled with XASR = 1 each time a pseudoneutronsuf-

fers a collision. !Chevariables X, Y, Z, U, V, W,

RRG, VL, IA, JA, TME, PL, andWl? are the parameters

describingthe pseudoneutronat the collision. Here,

X, Y, Z are the spatiel Euclidean coortiates, u, v,

w are the direction-of-motioncosines,ERG is the

kinetic energy, VL is the velocity, IA is the pro-

gram cell number, JA is the progrem surface number

(if needed), ‘IMEis the time, PL is the macroscopic

cross section, and WT is the weight of the pseudo-

neutron. Subroutine SCORE is called with XASR = 2

each time a pseudoneutron crosses a surfaceboundaxy.

The previously nsmed variables are the parameters of

the pseudoneutron at the surface crossing. Subrou-

tine SCORE is cal.ledwith XASR = 3 for the po3nt-

source estimator discussed in Appendix E. A special

“last-flight”scor~ surface option, denotedby the

first data entry of card ALE* greater then zero, is

also available inMCNA. If this is used, subroutine

SCORE is called each time the pseudoneutronener@y

is within a designated energy bin end the projected

line of flight crosses a designated surface. The

previously named variables are the parameters at the

crossing of the designated surface, and XASR is

equal to 4.

!Cheactusl scoringproceeds as in aMonte Carlo

transport calculationexcept that the source S as-

sumes the role of a scoring cross section. lhe

i’th pseudoneutronhistory IS used to estimate Ji

of Eq. (10), which may be expressed as

The definitionsin Eq. (n) have been used to ex-

press Ji in this form.

The source is usually distributedeither in a

volume of Euclidean space or on a surface. We now

consider these two types of sources.
The trmsformed adjoint Green’s function Q:

satisfies sn equation of the same form as the neu-

tron transport equation. Thus, the number of COl.li-
3sions occuring in the phase-spacevolume d r about

~, dE about .E,m- about $a, snd dta about ta IS

given by

t ) (r,E)d3rdEdfladta. (34)G:(x,E>~,ta;~>Ei,$i# ai ~-

‘l!hecontributionof this volume of phase space (in

the limit as the phase-apace volume approaches zero)

to Ji is given by

(Number of collisions

)

occurring in the small
phase-space volume due

s(~,E,-!2a,t)/~(r,E).

to a unit source atIli
(35)

The number of collisionsoccurhg in the smell.

phase-apace volume due to a source at Ilfof strength

W(Ri) is just the sum of the weights of the pseudo-

neutron each time it suffers a collision in the

smell phaee-space volune. Thus, the contribution

of each pseudoneutron colJ.isionto the functional

is

%S(~,E,-~,t)/\(~,E) , (36

where ~ is the pseudoneutronweight at the colliaicn

point r,E,~,t. Here, ~ is the direction of mo-

tion of the pseudoneutronbefore collision, so when

s is not isotropic,the~ direction is reflected

to determine S. The reel time t, rather then the

adjoint timeta, isusedin Eqs. (35) and (36)

because the real time t is the time variable USed

in MCNA.

Subroutine SCORE is shown in Fig. 2 for a fic-

titious problem in which two unnormelizedsource

spectra are of interest. These sources are denoted

by S1 -d S2 and are defined as

Ji =
J

G:(z)E)Qa)ta;zi)Ei)~i)td)s(~,Ej-&a,tm- ta)d3rdEd.0.0dtaW(~i). (33)

*See Appendix B.

10
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c
c
c
c
c
c
c
c
c
c
c
c

SUPROLTINE SCORE(K~SRl

INTEGER, D~PENSION, CCWCrJ, AhD EQIJIVALEhcE STATEMENTS hRE NOT
SHOWN, BUT CCRRESPCND TO THOSE OF THE MA[N PROGRAM ATMC

SCOR1dG FOR FICTITIOUS PROBLEP wITH VOLUPE SOURCE
KASR = 1 DENCTES A CCLLISION
IA = PROGRAP CELL NUMBER kJHERE COLLISION OCCURS
TME = TINE AT COLLISICN
ERG = PSEUOC-NCUTRCN ENERGY 6T COLLISION
hT = PSELDC-hELTRCIN hEIGHT AT COLLIS1ON
4 PI = 12.5664
PL = MACROSCOPIC TCTAL CROSS SECIION IN CELL 9 FOR ENERGY ERG

c
IF(KASR.NE.1) GO TC 25
IF(IA.NE.9) GO TO 25
[F(TME.LT.C. ) GO TU 25
IF(ERG.LT.l. ) GLI TL 25
K=l
IF(ERG.LT.3. ) GO TC 15
K=2
IF(ERG.GT.6. ) GO TC 25

15 CCNTIIWE
TSCOR(K) = lSCCRIK)+biT/(12.5664*ERG*PL)

25 RETIJRt!
ENP

Fig. 2. Subroutine SCOHE for a fictitiousproblem with a
8ource uniformly distributedin cell number 9.

[

1.<E<3., and

\~incel.lIA=9 ,

= O otherwise (37)

[

3.cE<6.,

1Xince13_IA=9 ,

= O otherwise.

Here, U pseudoneutronsare assumed to begin their

life histories at the tine tf. Consequently,the

maximum time is not checked in subroutineSCORE

because the time t runs backwu’d in the adjoint

calculation.

When the neutron source S is on a surface, the

space coordinate,normal to the surface h Eq. (33)

may be integratedreadily because a delta function

in the source

becomes

is involved. The expressionfor Ji

the source density per unit of area on the surface.

Because the transformedadjoint Green’s function G:

satisfies an equation whose form is identical to the

neutron trarmport equation, the number of “particles”

crossing a phase-space element d2rs on the surface

about ~s with energies in dE about E, direction of

motion in dilaabout ~, and during a time dta about

ta is given by

where pn %s the absolute value of the cosine of the

angle between ~a and a vector that passes through

d%smrmel tothe surface. Here we assume an infin-

itesimally small volume in phase space. Thus, the

contributionof a pseudoneutron to the functional

Ji each time it crosses the surface is given by

(39a)

Subroutine SCORE is shown in Fig. 3 for a fic-

titious problem with a surface source S=. We define

where ~e denotes a point on the surface, d2rs de- the surface of the source to be a spherical surface

notes an element of area on the surface, end Ss is of 12-cm radius and centered at x = O,y=O, snd

u.



SL8ROUTINE SCORE(KASR)
c
c INTEGER, LIIPENSION, CCPMCN, ANO EQUIVALENCE STATEMENTS ARE NIIT
c SHOW, f3LT CCRRESPCN!Y TO Th(JSE OF THE MAIN PROGRAM ATNC
c
c SCORING FOR FICTITIOUS PRCltlLEI! WITH SURFACE SOURCE
c. K.ASR = 2 OEACTES A SURFACE CRCSSING
c JA = PROBLEP SURFACE hUtJL?ER CROSSEO
c TMF = TIPE AT SURFACE CRCSSIhG
c ERG = PSELOC-NE[JTRCN ENERGY AT SURFACE CROSSING
c MT = PSEUIJC-NEtJTRON MEIGhT AT SURFACE CRCSSING
c z PI = 6.~fi~2
c X,V,Z, ARE E(.CLIOEAN CooRIj[NPTEs OF THE Pscuco-?4EUTRON Al SURFACE
c CROSSING
c U,V,h ARE THE OIRECTICN [F FLIGJil COSINES UF THE PSEUI)O-NEUTR1)N
c AT SURFACE CROSSING
c

IF(KASR.hE.2) G(1 TC Z5
IF(JA.NE.6) CO TO Z5
lF(lM:.LT.C. ) GO TC Z5
lF(~Rb.LT.2. ) GO 10 25
[F(ERf;.GT.4. ) GO [C 25
lJNOR = (L*X+k*Y+h*Z)/L2.
IF(UNUR.LT.C.) GO TC 15
TSCOK(l) = TSCOR(l) + hT*LNCRf (6.282*EllG)

(Al Tll 25
15 CCNTIINJE

TSCLIR(2) = TSCCR(2) + MT/(6.2632*ERG)
25 flETUKr~

krlo
. .

Fig. 3. SubroutineSCORE for a fictitiousproblem with a
source uniformly distributedon surface number 6.

z = O. ne source densi~ for this fictitiousprob-

lem is defined as

S#r,E,Jl,t)=A

[

~(fi”;)$ O<t<ti,

for
2.<E<b.,

~~ on surface

12. <E<k.,

}

JA=6,tid ‘

(46)

1

L

= O otherwise.

Here, ; is defined to be a unit

vector normal to the surface in

1surface JA= 6,LUXI ,

0

vector, 2 is a unit

an outward direction,

snd d pseudoneutronsbegin their life historien

at ti“ For a p~eudoneutron crossing the surface et

x,y,z and with direction-of-motioncoordinates,u,

V,W, O. n is given by.-

Q“rJ=(~u+$7+_h) ● (_ti+fi+l@ /m

=(ux+vy+wz)/1.2.. (41)

If the neutron source S8 is isotropic, an in-

finite varisnce may occur in the estimate of the

functionalbecause the scoring is then inverslypro-

portional to IQ o ~1. To avoid possible infinite

variance, it is suggested that for IQ . ~1 values

less than some small number E (a value for c is

problem dependent,but c = 0.1 should be satisfac-

tory in most applications)the scoring should be in-

versely propotiionslto c/2.

‘Ibisconcludesthe discussion of the MCNA pro-

gram except for sane additional considerationsin

the appendixes. A special.distance-to-collision

s~ling option is discussed in Appendix C, and some

miscellaneousprobability concepts used in MCNA are

discussed in Appendix D. Scoring in the adjoint

calculationwith apoint neutron source is dl.scussed

in Appendix E. In Appendix F, the treatment of a

neutron source containinga delta function J.ntime

is considered.

Thi8 discussion of MCNA has assumed a coupled

sanpling solution. ‘Ihereare problems of interest

where BC6M information about the energy dependence

of the neutron flux is available. An option exists

In M(7NAto utilize this informationto numerically

constructthe~sandthua, canitthe saa@i.ngfran

12
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the transport equation. The numeric integrationis

then done in Step 2 of Fig. 1 and Step8 3 and 4 are

bypassed.

The execution of an example problem with the

cou@ed samplingmethod is discussed in the next

section.

IV. EXAMPLE PROSLEM

We will ccmment on some

ming reliabilityof the MCNA

the example problem.

tests of the program-

code before discussing

It was impossible to cctqletely check all. as-
pects ofMCNA for errors, and so a number of inte-
grsl checks have been utilized. The integral checks
were made between the MCNA and MCN programs. We as-

sume here that MCN is a reliable program and so the

GeometricalDescription

Point source of 12.2- to
15-MeV neutrons in infi-
nite air; a shielding

benchmark problem(Ref.Il)o

Near-criticelsphere of
lC$ enriched uranium
~td(Ref.12). Delta

fiction source at t = 0,
of fission neutrons.

agreementofa number of c~utations with MCN and

MCNA indicate8the reliability of the MCNA program.

Ccepariso?of the results of two Monte Carlo pro-

grams has the disadvantagethat statisticalerrors

are involved in both amwers; in the test calcula-

tions, the relatfve error8 (standard deviation di-

vided by the functional)are a few percent and in

sane cases less than 1*. We felt that the ti8sdVSn-

tage of having statisticalerrors in the comparison

code was more than offset by the advantage of using

TABLEI

SUJQ4ARYOF INTEGRAL CRECKS

the same cross-sectionsets and interactionmodels.

Some of the c~arisons made between the two

c~uter program are sunmmrized in Table I. A num-
13

ber of additional ccsqprisonsmade on classified

problems have reveeled a few minor errors in MCNA,

which have been corrected.

Functional Computed

Neutron fluence as a
function of energy and
distance from the point
source.

Total number of neutron
collisions in the time
interval from 80 to 96
shakes (-10 to 12 neu-
tron generations)that
occur in the ener~ in-
terval fromO.5 tol.5
MeV.

EpithermaJ.neutron source Neutron flux spectrum
in an infinite medium of after the pulse has
hydrogen at a temperature thermalized;also the
of 1.0 eV. total integral of the

flux after thermsJiza-
tion.

Epithermal neutron source Neutron flux spectrum
in an infinitemedium of after the pulse has
deuterium at a tempera- thermallzed;also the
ture ofl.O eV. total integral of the

flux after thermsJ.iza-
tion

ON THEMCNA PROGRAM

(hmnent.s

Agreement was obtained within statistical
errors* for neutron energies of from O.11
to 15.0 MeV and distances from the point
source out to 1.275m. Standard deviations
for high neutron energies ranged from-1$
near the source to 1~ far from the source.

The result of the adjoint computationwas
I..l..lwith a relative error of 9.6$, and
the transport calcul.ationyielded 1.2.8

with a relative error of8.5~(Ref”u).
This is a better integral check than the
relative errors indicate, owing to the
large number of collisionsbetween source
particle and scoring. Any small.errors in
the a&ioint samolimz or commutationof
weight-factors~oul~ be amp~ified.

The adjoint calculationwas performed at
0.05-, 1.0-, 3.0-4 and 10.O-eV ener~
points and agreed with a Maxwel.lie.n
flux to within relative errors of about
2.%. The totel integrals of the flux
as cozqmtedwith .@oint and transport
Monte c~lo also agreed.* Here the rela-
tive errors in the adjoint and trensport
calculationswere 1.4 and 0.5~,respec-
tively.

Agreement with ahlaxwel.lisnflux to with-
in relative errors of about 3%.

*
Comparisonswere made for 95? confidencelimits.
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lhe examole problem is one of a set prapted by

the need of the nuclear safeguardsgroup to develop

computatione3simulationof scme experiments. ,These

experiments involve a small amount of 235U ~etd

s~ro~d?d by a moderator. The delayed neutron re-

s~onse .ismeasured after a pulse of neutrons is in-

jected into the system.

This is a difficultproblem to solve_by a dinxt

Monte Carlo calculationbecause the extraneoussm.rce

is outside the system end only a small fraction of

the source neutrons reach the small region of 235U

and cause fission. However, the computationof the

number of first-generationfission neutrons produced

in the smsJ.1235U region is en excellent application

of the adjoint approach because the histories of the
235Upseudoneutronsbegin in the small region of .

It is straightforwardto subsequentlycompute the

number of delayed neutrons reaching a detector with

a direct Monte Carlo calculationby using this first-

generation fission source of neutrons.

Cell

The example problem is described in Table II.

TABLE II

DESCRIPTION OF THE EXAMPLE PROBLEM

Descriptions (concentric spheres):

Inner Outer
cell. Radius Radius
Number (cm) (cm) Element (At~~~-cm~— . . —
1 0.0 0.635 235U 0.0478
2 0.635 8.255 H 0.0-(%

c 0.0395

3 8..255 SQ.5 Void ----

Extraneous Neutron Sources:

— for 12 MeV<E<15 MeV,s(~s,E,Q)=~&]hl: 12

-s

=0 otherwise,

where ~s is,any point on the outer surface of cell

number 3. The response due to a second neutron

source was also computed in the adjoint calculation

for illustration. This second source was

1 3.
— for 6MeV<E< 12MeV,dzs@?) =* TV ~lzs12

=0 otherwise.

Functional:

Number of first-generationfission neutrons pro-

duced in the 235U.

The geometry is simple; i.e., there is spherical

s-try of both the extraneous source end the three

cells. liemay therefore concentrateon the inpu~

required for the,coupled samplingwithout b~c&.i.hg

involvedwith gecmetric details. ~ose who maybe

unf-”iar with the geanetric capabilitieso~,the

MCN and MCNA codes are referred to Refs. k, 5, and

6.
The sampling from the ,traneportequation for

this exenple problem was set up so that an estimate

of the kctionel due,to the K?- to 15-MeV neutron

source was obtained while the fuqctions for ssmpling

from the adjoint equation were computed. This then

provides one check between the adjoint end transport

cahulations. Thus, additional adjoint calculations

can be made, with smaller
235U Cen radii for tile,

with confidencethatthe adjoint sampling has been

set up correctly. l?ni.stype of procedure has also

been found advantageousfor problems involving a

given system response as a function of the neutron

source distributionin space and energy. Adjoint

problems of this type have been solved using hun-

dreds of neutron source distributions,but a check

on one of these distributionsin the transport por-

tion of the calculationis time well spent.

The neutron source in the Monte Carlo calcula-

tions was biased so that the source neutrons would

always reach cell two. The neutron source is con-
4-6

strutted in the same manner as in the MCN code.

SubroutineSOuRCE for selecting the initial neutron

parameters is shown in Fig. k.

The pseudnneutronsource was constructedfrcm

the built-in routines in MCNA. The initial posi-

tion of the pseudoneutronwas selected from a uni-
235Uform distributionwithin the cell containing .

A uniform selection is adequate at energies such

that the number of mean free paths across the cell

is small. However, at energies such that the num-

ber of mean free paths is large, most of the fi88im

neutrons are born near the outer surface. This

means that one ~ expect to gain efficiency in the

adjoint calculationby biasing the selection of the

pseudoneutronsat these energLes toward the outer

bo~~ry. (~is type ofproblmofien occurs near

thermal energies,where the fission cross section

is large.) The biasing is acccmpl%ahed

a@e problemby calling the subroutine

the built-in routines have been used to

in the ex-

ASUJRC after

select the

14



c
c
c
c
c
c
c
c
c

SUBROUTINE SCURCE

INTEGER, D:PENSION, cCMMCN, ANO Equivalence statements ARE NOT
SHOWN, 14UT CCRRESPCND TO THOSE OF THE MAIN PROGRAM ATMC

1.I14sE1)NEbTRCN sOURcE TO STRIKE INNER SPhERE OF 16.51 CM DIAMETER
SRC(1)=R3 , SRC(21 = SORT(1 - R2**2/R3**21
SRC(3)=JA , SRC(4)=IA , SRc(5)OSRC[6) ARE LOHER ENERGY ANO EtJERGY
SOURCk W!DTH

X=-SRC(l)+.001 S V=o. $ Zao. $ TME=O. $ DEL=O. .
3N=FRN(R)
U=SRC(2) + (1.–SRC(2))*RN % Vso. $ W=SQRT(l.-U**2J
ERG=SRC(5) + FRN(R)*SRC(61
JA=SRC(3) $ IA=SRC(4)
hT=(l.–SRC(2))/2.
RETbRrd
END

Fig. ~. SubroutineSCURCE to select the initial neutron parameters.

initial parameters (the 6th data entry of cards and ru is the radius of the uranium region. The

Asc=l). In ASOURC, the product of the macroscopic radius,

fission cross section and the radius of the uranium

region is computed. If this number is less than r=
four, a return is made to the main program and the

parameters selectedby the built-in routines are ac- and the

cepted. If the number is greater then four, the in- Uniform

ititil.distance r of the Dseudoneutronfrom the cen-

ter of the 235U is selec~ed frcsrtthe density func-

tion

r, is obtained with a random number ~ as

[( +ru

‘u +Anl-?l-e )1/%’ (43)

weight of pseudonuetron,as obtained by a

mimpling,ismultiplied by the ratio

/f

+r
% ‘ue+v’ti,g(r) = e /

o

The subroutineASOURC for this example problem
(42)

iS giVeIl tiFig. 5. This subroutine is written for

the more general case when the inner radius q not

where ~f is the macroscopicfission cross section be zero. Here Tl is the inner radius, !EU.is the

SL6RUUT1NE ASOURC(APSC,T1, T1l,XD,YO, ZO)
c
c lNTE(AR* DIPENSION, CCYPCI, AND LCUIVALEhCE STATEMENTS ARE NUT
c SHtlhN, BLT CCRRESPCNO TO rtiOSE OF THE MAIN PROGRAM ATMC
L

c ADJUST THE SPATIAL POSITIIIN CF THE SOURCE PSEUOO-NEUTRON hHEN
c TPE FIS$ION CROSS SECTICN APSC IS LARGE
c
c

c

20931.

T1 = INNER RADIUS
111 = OUTER RADIUS
APSC=APSC*RHC(IA)/2.43
IF(APSC*(TIL-T1) ● LT. 4.) RETURN
PSC=APSC/(1.-EXP(-APSC*( T1l-rll)l
RAP=T1l+ALCG (l.-APSC*FRN (R)/PSC)/APSC
hT=MT*3.*RAC**2/(( T11**3-TL**31 *PSC*EXP(-APSC* (T1l-RAO)))
X=RAO*U+XO S Y=RAO*V+VL S Z=RAO*W+ZLI
SELECT NEh CIRECTICN ISOTROPICALLY
u=l.-2.*FRh(Rl
TP(l I=l.-2.*FRN(R) $ TP(2)=1.-2.*FRN(R) $ TP(3)=TP( 1)**2+TP(2)**2
IF(TP(3).GT.1. I G(I TO 20931 $ TP14)=SQRT((l.-U**2)/TP( 3))
v=TP(L)*TP(4) $ M=TP(2)*TP(4)
RE fURN
END

Fig. 5. SubroutineASCXJRCto.alter the initial pseudoneutron
position for large fission cross sections.
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outer radius, f@SC is v tj.mesthe microscopic fi8-

sion cross section, end RHO is the density in ataas/

barn-cm of 235U; X0, YD, and ZD are ,zero.@ this .

problem. The last few cards select the direction

of flight from an isotropic distribution: “

The last routine required is subroutineSCORE

for tabulating the functionels,the number of first-

generation fission neutrpns produced.’ Subroutine

SCORE is shown in Fig. 6. III th>s case, two func-
tional.ssre computed for illustration. The func-

tional denoted by JC = 2 ix the main functional of

interest, i.e., the number of first-generationneu-

trons produced by a 12- to 15-MeV extraneousneutzvn

source of unit strength. The functionaldenoted by

JC = 1 is the number of first-generationfission

neutrons produced by a 6- to 12-MeV extraneousneu-

tron source of unit strength.

The appropriatescore for these two function-

sls, each time a pseudoneutroncrosses the outer

surface, is obtained from Eq. (39a) as

ii 1“1 —
‘*kt(30.5 cm)2%

, for 6 MeV< E“<12 MeV,

In subroutineSC~ of Fig.

(t5)

for 12 MeV< E<15 MeV .

(46)

6, the variable AJCON(l,l)

is 1/6 and the variable AJCQN(2,1] is 1/3; these

variables are a portion of the input data and will

be mentioned later. tie i/(~ 30.5 cm)2 is lumped

into the initial pseudoneutronweight because it i.8
.,
si.qly a cohstant. !Eievariable UFRIM in Fig. 6 is

the cosine of the angle, pn, between the direction

of motion of the pseudoneutronand a vector normal

to the surface. P= will never be close to zero,

owing to the gecm&ry of this problem, so the pos-

sibili~ of an infinite variance, as discussed in

Sec. III ior an isotropic source, wiJJ.not occur.

The control cards and card Input data for the

CDC 6600 run are as shown in Fig. 7. me first few

cards are control cards. Before discussing the in-

put data for the coupled sampllng,we will constcb?r

the magnetic tapes required to run MCNA.

TWO magnetic tapes, CODETP and RUNTP, are used.

CODE!CPcimtains the folhwing five files.

File 1 -- The symbolic form of the MCNA program
in UFDA!CEformat.

File 2 -- Binary deck ofATMC (see Fig. 1>
steps 3 end 5) and related subrou-
tines.

File 3 -- Binary deck ofANOI (see Fig. 1,
steps 2 and 4) and related subrou-
tines.

File k -- Bfnsry deck of AITMC (see Rig. 1,
step 1).

File 5 -- ‘IheMCNA cross-sectionlibrary.

The general procedure for the use of CODEl!Pis:

1. Using an old CODETP, make any necessary

-es tisfiroutines SCUIKS, ASOURC, end SCORE

and generate a new CODETP to include these changes.

SLRRIJUTINE SCORE(KASR)~
c [NTEGLR, OIPENSION, CCPPC;l, AAO EQUIVALENCE STATEMENTS ARt. N(IT .
c SHOtiN, BUT CCRRE5PCN0 TO THilSE OF THE MAI?l PROGRAM ATMC
c
c CflMPUTE CUATRIU(JTICN CF FSEUCC-NEUTRON TC FIRST GENERATION
c NEUTRONS
1,

IF(KASR.hE.2) GO TC 29
IF(ERG.LT.6. ) 60 TC 29
IF(ERG.GT.15.) bO TC 2q
IF(JA.NE03) GO ro 29
LPRIM = (L*X + V*Y + n*2)/30.48
JC=l
IF(ERG.GT.12.) JC=2
hCr3N=WT*AJCCh(JC~l)/upRIP
TSC[lR(JC)=lSCOR( JC)+hC”ON

29 KCTURI’I
END

Fig. 6. SubroutineSCORE to ccanputethe
history to the first-generati=

contributionof the pseudoneut-
source of fission neutrons.
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ASSIGN MT*CI10ETP(NLB$LG918LOOsSHH)
ASSIGN MT,RIJNTP (hLMtL1939LO@s ShH)
COPYBF(COOETP,DI SCARD)
cLlPYBF(coDErP,D3)
REMINO(D3)
COPY8F(L13,RUNTP)
CLIPY13F (CODETP,ANLI )
COPYBF( COOEIP,AIIPC)
AITMC.
COPYBF(RUNTP,OISCARD)
RFL,277000.
ANU[ .
COPYBF(RUNTP,ATMC)
RFL,32000@.
ATMC .
COPYBF(RUNTP,DI SCARD)
RFL,27701?0.
4NUI .
7

TEST CASE FOR GENERATING FIRST GENERATION FISSION SOURCE
1 41 .0478 -1,2
2 42 .1185 -2,3 191
30 -3,4 2,2
4 0 3,3

1 Sll .635
2 Sn U.255
3 Srl 3CI.48

Vb
10
00
RO
F?l
M41
M42
s?

O 2R C
1. 1. 1. 0.
.5E-f~ O. 15.
l.ftl
o. 2.~E-8 o. 0.
923 1.
11 .666667 3006 .333333
30.48 .9626 1 3 12. 3.

7
TYP -1,1,1
ASC 3,0,2,1s1,1
ASP C.9G. ,0.90.*C. ,0., C. SO. ,C. ,O.,U. ,9.
ASI -1,2, 17,.91E7-4,0. , 1.,1.
ST L O. 2.%5 L.25-& Z.f,-e 3.75-8

2.-7 3.-7 5.-7 3.06-0 ?.26-5
.0248 .0674 .LL3 .498 .821
3.68 4.72 6.G7 7.79 1P.
0. .uC6 .038 .295 .134
.3?7 .36s .4 .42 .44
.524 .533 .559 .h95 .65
.715 .727 .736 .-52 .777

AF 6
MN 1 OSOOOSO?CS L119111?I
AE o 31!15.
AC 1 2.’-~ .041 .959 q. 5.
AE 2 1..?5-8 .041 .959 9. 5*
AE 3 2.S-8 .041 .959 9. ~.
AE 4 3._f5-b .041 .959 9. 5.
AE 5 6.25-H .041 .959 9. 5.
AE 6 1.-7 .041 .’359 9. 5.
AE 7 1.5-7 ●041 .959 9. 5.
AE 8 2.-7 .C41 .959 9. 5.
AE 9 3.-7 .041 .959 9. 5.
AE 10 5.-7 .041 .959 9. 5.
AE 11 3.059-6 .041 .95q 9. 5.
AE 12 2.26-5 .041 .q59 9. 5.

6.25-8 1.-7 L.5-7
.090167 .00123 .i)0912
1.35 2.23 2.87
12. 1305 15.
.204 .268 .312
.47 .5 .514
.67 .695 .706
.8 .852 1.

Fig. 7. Control cards and in@t data for the example problem. ( cent.)
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AC 13 .C@Ol:>7 .041 .Y59 9. 5.
AE 14 .OC’123 .041 .959 Y. 5.
AE 15 .00~12 .041 .959 q. 5.
AE 16 .0248 .041 .959 9. 5.
AE 17 .0674 .416 .5 1.5 3.5 6. 3.
AE 15 .193 .433 .5 1.5 3.3 6. 3.
AE 19 .4q8 ●317 .5 1.5 3.5 e. 3.
AC 20 .821 .5C2 1.5 2.5 4. 3. 3.
At 21 1.35 .68 1. 2.5 4. 3. 3.
AE 22 2.23 1.15 2.5 40 3. 3.
AE 23 2..37 1.27 2.5 3*5 2.5 3.
Ati 24 3.68 1.13 20 5.5 2.5 3.
AZ 25 =4.72 1.32 3. 3.5 2. 1.5
AE 26 L.C7 2.2e 2.5 2.5 1.5 1.5
AL 27 7.7q 1.s3 2. 2* 2. 1.
AE 28 10. 2021 2. 2. 1.
4t 29 12. 105 1.5 1. 1.
AL 3C 13.5 1. 1. .5 .5
AE 31 150 10 .5
>Cc 0?0,-1$-1

7
1. +re 1. -C8 10.

7
TYP 2,1,3

7

10000 506000,

ASS[G:d MT,C1OETP [NLt3,LG91MLOOs SHM)
ASSIGN MTsRUNTp (hLP*L1939L00 sshf;)
ClJpY6F (c[lfiE [P,D[scdP.c, 2)
CJPVUF( C11OETP,ANL1)
coPYbF(P.l,’JTp,nI schRll)
ANLI .
COPVHF(RLJNTP,ATNC)
UFL,32CCPC.
ATML.
-t
TYP 4,194
&F 1 .16666666666667
AF 2 .3333.%333333333
&LE 1 1.L-6 6. 3

7
-L. +(JR L. -15 502
7

The necessary control cards for doing this

UF3)ATEprogram are shown in Fig. 8

Looco 5oc)cJo@

Fig. 7 (continued)

with the

2. Write the second file of the new CODETF

onto the first file of RUNTY end use the other files

as needed. This is illustratedin the control cards

of Fig. 7.

3. Skip to the cross-sectionlibre.zybefore

running AI!D4C.

l!hefirst file of RUNTP containsthe progrem A’IMC.

This has been found convenient,and generally saves

some tape handling. However, it does require that

one skip past this record before execution of each

program. The subsequentrecords of RUNTP, on the

second file, are

END OATA

2 500000

+++++

These records are:

5 500000

generated during

++++++

the problem.

Record Number Consnent

1 Tape dump after initiation;Step 1
of Fig. 1.

2 Tape dump after Step 2 of Fig. 1.

3-n Tape dumps during Step3 of Fig. 1.

n+l ‘l’apedump after Step 4 of Fig. 1.
OccaaioneJlythere will be enother
tape
bya
card
B).

n+2 to n Tape

dump here (usually signified
3 or4 tithe first entry of
‘HP, as described in Appendix

dumps during Step 5 ofFi.g. 1.
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ASSIGN MT, CILL)PL (hLL!~Ltj247 LO@g SH}\)
ASSIGN MT, Cl)@ ET P(h LS, LG918LOG, SH6\
U~OATt(N=CO\/ETP)
R(lN(S, ,, Compile)
RLhIN[l(LGCI)
:{CWINCI(CILDPLI
RChINO(C(?IIETP)
CIIPVIJF (OLIIPL,DISCAKO)
CUPYf3F (lJLDPL,NEWl)
C17PvHF [OLOPL,NEh2)
CUPYfiF(UL@PL,NEh3)
C1lPYHF (OL[IPL,NCM4)
Kch[Nn(NShIl
RLW[ND(NFh2)
RthINO(N!:h3)
K:hlNll{NFh4)
C(lPYbF(CnOETP,D1 SCARD)
C[lPYDR(NrNl,DI SCARC,”7)
C[lPY13F (LG(),NEkl}
R:hIND(NEhl)
C(lPYOF (NFhl,COCEIF)
C(7PV5F (N~h2,CO[)ETP)
CllPYBF (~lFh3,cOD&lP)
C[JPVtJF (NFh4,Cf10ETP)
7
cc tiPllArF CCRRECrfONS GC HEKr
7

Fig. 8. Control cards required to utilize the
UPDATE program t: alter subroutineSOURCE,
ASOURC, or SCORE.

After some file manipulation,the program

AI’JMC is ctiUed by the ninth control cerd of Fig.

7. The input data, between the first and second

7-8-9 cards, for ASIMC ereidenticsl to that for the

initiationof the MCN program and so exe not dis-

cussed here. The AI!U4Cprogram initiates the data,

selects the pertinent cross sections frfmlthe fifth

file of CODETP, and writes the blank comnon block

onto the first record of the second file of RUNTP.

The program ANLllis called by the I@h control

card of Fig. 7 (the MCNA program now uses ECS so

that the RFL memory allocation is normally less than

156K) and initiatesthe input data for the coupled

sampling between the second and third 7-8-9 cards;

see Appendix B for a descriptionof the input data.

The following comments on the input data for this

example problem may be useful:

1. The second data entry on card ‘HP is 1, in-

dicating that only the first generationis consid-

ered. For most neutron multiplicationproblems,

this entry wouldbe O.

2. The sixth data entzy of card ASC is 1, so

the main program, AlMC, calls subroutineASOURC

after generating the initielpseudoneutron source

parameters frcm the built-in routines.

3. ‘lMepseu~oneutronenergy selection table,

STl, was obtained from previous calculationson this

type of problem. In many problems, it is worth-

while to change this table after the transportpor-

tion of the calculationbecause useful information

is often obtained there.

k. The initial pseudoneutronweight is com-

putedfrom Eq. (X). Eiere~ in the cell containing

235U is given by

where %(E) iS the energy spectmas input on card

ST1. The code automatically multiplies the initiel

weight constant, input as the fourth data entry on

cardASI, by vX##E). The initial weight constant

for the fourth data entry is given by

;X+tn -= 0.6353 cm -4= 0.9187 X 10 ‘m, (~)
(h 30.5 an)z 3 X30.5Z .
where the factor l/(4Y(30.5 cm)e has been included.

5. The floating-pointnumber at which the

pseudoneutronweight is split, as given by the sixth

data entry on card ASI, provides an opportunity for

splittingwhen large weights occur. It should ordi-

narily be set large enough so that s~litting occurs

infrequently,one split per hundred source pseudo-

neutrons, for exemple.

6. A hydrogen transfer matrix is used in this

problem because of the large amount of leakage, but

this is usually unnecessary.

7. Six functionslsare designated on the AF

card because the transport portion of the calcula-

tion was eltered slightly to compute the number of

first-generationfission neutrons produced. Thus,

a check can be made between the ad~oint and trans-

port calculationsfor one geometric configuration.

8. The adjoint calculationsusually tend to be

insensitiveto the energy mesh utilized on the AE

card. The infinite number of possibilitiesmakes

this very difficult to optimize.

‘he progrem A’J34Cis called by the 15th control

card of Fig. 7 to begin the sampling from the trans-

port equation. The progrsm ANUS is called again by

the 18th control card to normalize the sampling

fictions. Additional input data are not required

at this stage, so only a TYP card is needed. How-

ever, after the normalization,the progrsm ANUI is

called again (note that the last tape dump from the
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previous calculationis used] end the number of tape dumps at any point in the calculation.

functionels is also chsnged from six to two with the The program A’IMCis now cfled again for the

FroPer functional constants inserted. The special final sampling from the @oint equation. The

leakage option is elso introducedhere with the ALE printed output of the adjoint calculationis given

card. Note that we could have made these changesin in Fig. 9. The number of first-generationfission

the previous step, but this illustratesthe use of neutrons ofo.7k2x 10-4 (+ 0.m8), as ccmputedby

SOURCE NO.
7

NUMBER OF
NEUTRONS
STARTED

21450

TOTAL
TRACKS
sTARTED
29.k52

WEIGHT
sTA.R’l!ED
PER NEUTRON
3.8og5E-ok

ENERGY
sTARTED
PER NEUTRON
3.6821E +00

TIME Cumm?
-1.0000E+08

ToTAL
NUMBER OF
COLLISIONS
97m

Loss To
ENERGY
CUTOFF
2105

Loss TO
ENERGY
CUTOFF
2.8@zM5

Loss ‘m
RNERGY

Y%L04
TO’LALNUMBEROF EVEN!lS

ELASTIc FISSION
85585 0

TEST CASE FOR GENERATINGFIRST-GENERATIONFISSION SCURCE

WEIGHT CUTOFF RUN TIME D.P. CYCLE DUMP CYCLE DUMP NO.
1.OCOOE-15 5.mwm 1000O 5cQoOo 5

TEST CASE FOR GENERATINGFIRST-GENEMTION FISSION SOURCE

RANIxM

GENERATED
917428

Uxis To
TIME
CUTOFF

o

LCK5STO
TIME
mm
o.

Lass ‘m
TIME

o.

TIME= 5.003 FmuTES

TQTAL
NEIQiT
sTARTED
8.1714EHKI

Las To
WEIGHT
CUTOFF
33.2

Las To
WXtGIiT
CXJTOFF
o.

Loss m
WEIGHT
CUTOFF
o.

‘BmAL
ENERGY
STARTED
7.89%EuYI

LQss
To
ESCAPE
10984

ms
To
ESCAPE
1 .7732E-03

Luss
To
ESCAPE
1.0364E-02

COLLISIONS
PER NEUTRON
sTARTED
4 .5357E+O0

LOSS
To
SPLITTING

8051

Loss
To
CAPTURE
-1.4766E-03

Luss
To
CAPTURE
6.6719-03

TRACKS
PER NEUTRON
STARTED
1.000.LE+OO

TOTAL
TRACKS
ILIST
=452

WEIGHT
LOST
PER NEUTRON
3.2506E-04

INEL. C.M. ~E; D.M.L. INEL. D. M. C.
2170 0 3c886

CxJ!romCYCLE
50mm

NEuTRONS
PROCESSKO
PER MINUTE
4.2878E+03

FUNCTIONAL RSTIMATES OBTAINED BY SAMPIJNG FROM THE ADJOINT EQUATION

FuNcmoNAL FUNCTIONAL RELATrvE VARIANCE
NUMBER ESTIMATE ERROR RELIABILITY

1 .87540E-04 .l1933E+oo .396261H0
2 .7424.4E-04 .77714E-01 .52021E+O0

TAPE DUMP NO. 6 NPs = 21450

Fig. 9. Printed output of the ad30int portion of
the calculationfor the example problem.



the @joint calculation,comparea favorably to the

transport result of O.854 x 10-4(+ 0.12). Here the
errors quoted are relative errors (standarddevia-

tion divided by the functions). These relative

errors are large owing to the importanceof leakage

in this problem. The relative error of the func-

tional due to the 12- to 15-MeV source could be re-

duced by a factor of- 0.8 in the a~oint ca.LcuJ.a-

tion by extending the ener= rsnge to 12 MeV for

samnling so that leakage would not occur; i.e., the

third data entry of card ALE would be set to 12.

instead of 6. This was not done here to illustrate

the computationof the two functionsls. AIIalter-

nate approach for this example problem is to alter

subroutineSCORE to tabulate the functionslsonly

when KASR is ecp.ia.ltob, and to multiply the scoring

by the leakage probabilityANL. Then, with the

third data entry of cardALE set to 15., both func-

tional could be tabulated and the leakage treated

adequately.

For the nuclear safeguardproblems, the program

A’J14Cwas titered so that different radii could be

input for the 235U cell and the moderator cell. A

parameter study was then made for different radii by

SSMPling fr~ the adjoint equation and using the

samplfng scheme Constncted in the one transport

calculation. Of course, the adjoint solution is not

limited to this simple geometry, which was an incen-

tive for using the Monte carlo method.
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APPENDIX A

DENSITY FUNCTIONS AND WEIGHT FACTORS FOR SAMPLIITGFROM THE ADJOINT EQUATION

The computationof the ‘~’s and their subse-

quent use in the sesnplingfrom the adjoint equation

were discussed in Sec. III. The corresponding?a

density functions are discussed here,and the pseudo-

neutron weight following each type of event CYis de-

rived. The four a events are consideredin the same

sequence as in Sec. III.

1. Elastic Scatteringwith an Isotope

a. Epithermal Elastic Scattering. A superscripti

denotes that the elastic scatteringevent is with

isotope i. ~ is the macroscopic elastic scattering

cross section of isotope i, C: is the collisionkex=

rd., emd ?: is the correspondingdensity function

to sample the energy and direction of motion. It

is convenient (assuming isotropicmedia) to expmd

each density function into the product of a margin-

al density function for the laboratory scattering

angle~ and a condit”lonsl density function (aD&ac

delta function for the energy). The relevant ex-

pansions are

C~(E’, - fl;;r,E, - ~)

1“ 1[‘@+ PL;5E’)L6 E -
2E’

II
, (A.2)

(l-a)ua+ l+E
E

where

(A.3)

pm is the scatteringangle in the center-of-mass

system, end the subscriptsE’ and E on the delta

functions serve as a reminder that they ark normal-

ized as

JI [E(l- ~)~m II+1+5
#- dE’=1, (A.4)

t

~~-&/:=l. (A.5)

E

A transformationto the center-of-masssystem is

useful as

a.



(A.6)

where the subscripts cm end L on D; and ~ denote

density functions in the center-of-massand labora-

tory systems, respectively. tie density function

h: ofEq. (A.7) mey nowbe specified, end inMCNA it

is chosen to be

This density function is easy to semple and has some

other useful properties. It is the exact zero-vari-

ance density function in regions of phase spacewhere

the neutron flux is isotropic,p(~,E)~(z,E) is in-

versely proportional to E, end D~(Ma;X,E)a does
not &aylge for E’ s E < E1/~. ~though these con-

ditions are seldom net exactly, this approximation

is expected to be adequate for most problems.

After the center-of-massscatteringangle pa

is selected and the energy E is computed, the pseudo-

neutron weight is obtained from Eqs.(2k),(A.1),

(A.2), (A.6), (A.7), =d(A.8) as

=’C;(E’, - Q2;r,E, - Qa)j#(~,E)
G=

~(Z,E’)~(j,k,i)Y~( E,~;r,E’,Q~)

(A.9)

where the factor E/E’ arises owing to the ratio of

the delta functions,

p E(l-z)lm+l+E
6E’- 2 ‘ 1E’&E.—.—
II

6E- 2E’

II
dE’E’

(1-E)p +l+E
E

(A.1O)

A special.option for hydrogen is available for

choosing a density function other than ~(ua;~,E)a

ofEq. (A.8). With this option, the sampllng frcsu

the transport equation is used to cmnpute the number

of neutrons in energy group y that suffer a scatter-

ing collisionwith hydrogen in cell k and are trans-

ferred to energy group j. In the subsequent s~-

pling from the adjoint equation, each time a pseudo-
.

neutron suffers a collisionwith hydrogen in energy

group j and cell k, the postcollisionenergy group

y is selected with a probability proportionalto the

number of neutrons that scatteredwith hydrogen and

were transferredfrom Y to j. The pseudoneutronen-

er~ E within group y is selected fran a density

functionproportional.to l/E2 end the pseudoneutron

weight conputed as

-t i
w X-@)D:(IJm;Z,E)mii=
~(r,E~al(j,k,i)B(j,k,Y) [1@- Q ’E’

(A.1.1)

where p(j,k,y) is the probability of selecting en-

ergy group y, (EL)Y is the lower boundary of group

y, and (~)y is the upper boundary of group Y.

b. Thermal Elastic Scattering. The MCNA code uses

the same simple scatteringmodels es the MCN code

for energies below a thermal upper bound designated

by the quantity (EBR) in the code; i.e., the labora-

tory angle is selected isotropical.lyand the energy

remains unchanged for neutron collisionswith nuclei

of mass A > 2, and the free-gas model is used for

hydrogen and deuterium.

The free-gas model is used in the MCNA code by

SSU@inS from the neutron transport equation to con-

struct a thermel transfer matr5x for each cell con-

taining hydrogen or deuterium (two transfer matrices

for a cell containingboth). Let isotope 1 be either

hydrogen or deuterium.andassumed to be in region k

and let the transfer matrix be T(j,j’)ik. Then the

matrix T(j,j’)fi is computed in the sampling from

the transport equation as

Number of neutrons suffering a
collisionwith isotope i in en-
ergy group j’ and cell k that
emerge frcm the collision in
thermal enera group j.

T(&j’)fi= Sum of the numerator over all.jr “

(A.I.2)

‘l’enthermal groups* must be used in MCNA, so j as-

sumes values from 1 to 10 and j’ from 1 to 1-1.(in

-ee input card AEQ of A~endix B for the thermal
group boundaries.

I
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this discussion of thermal scattering,all epither- from a density function inverselyproportional.to

nuilenergies are denotedby energy group l-l). In ~2.

the subsequent sampling from the adjoint equation, Eqs. (A.12) to (A.15) are derived for the free-

the new energy group j’ of the pseudoneutron,afker gas model with A S 2. We will now consider A > 2.

suffering a collisionwith isotope i in thermal en- Given that A > 2 and that the precollision energy

ergy group J, is randomly

bilities

T(j,j’)ik , 1

The final energy E of the

selected from the proba- of the pseudoneutron is less than (EBR)@ the

pseudoneutron energy remains unchanged at the elas-

<j’sl.1, (A.13)
tic collision,the new direction of flight is se-

lected from an isotropic distribution,and the

pseudoneutronwithin group pseudoneutronweight is obtained as

j’(j’ # 11) is then selectedwith density function

Y~(z,E)C~(E’,- fll;~,E, - Qa)$(E)j,
b;(E,~a;~,E’,QSl)=

Eu

Ji )
@z,E”)C;(E’, - fll;~,E”,- _aO“)@(E’’)j,dE”dfl”–a ‘0’ @.; E<pu)j, ‘

‘“ (EL)j,
J

(A.14)

where the user may speci~ *(E) I within group j’ to
d -E/T V <(:,E’)

be either proportionalto a Mexwellian flux Ee i= (A.16)
~(Z,E’)~l(j,k,i) “or inverselyproportional to E. InEq. (A.14),

~(x,E)c~(E’,-Q~;z,E, -f)a) iS the free-;~ scat- If the precollislon energy of the pseudoneutron
tering kernel; see Eq. (2.19) of Williams. This is less than (EBR) but greater than (EBR)~, with
scatteringkernel is a function of the temperature probability
T in the medium, but that dependencehas been sup- 1
pressed here for compact notation. AIIoption is

-—
~=~ (;R)

also available in MCNA to allow the temperatureT 1 E—-—
to change with time, as in the MCN code. E’ E’

) (A.17)

the elastic collision,The pseudoneutronweight after the collision the ener~ does not change at
(hydrogenor deuterium) is obtained the new direction is samoled isotro~icallvin thewith isotope i

from Eqs. (24) and (A.14) as

[J
(Eu)j,,

F x:(@)c&, - fll;r,E”,- _aQ“)@(E’’)j,dE”dfl”
-a

fla(EL)~ti. d

~(z,E’)<(d,k, i) T(j, j’)ik*(E)j,

(A.15)

If the pseudoneutronscatters to an epithermalen- laboratory system, and the ~ieightis given by the

ergy (j’ = U.), the density function Ci is taken right-hsnd side of Eq. (A.16) except that the prob-

from the tabulated values in the cross-sectionli- ability y is inserted in the denominator. With

brary and the energyof the pseudoneutronis selected probability (1 - Y), the center-of-massscattering



angle is selected from a uniform distributionbe-

“tweenthe limits

-1 and 2!3‘ (1 + a)-—
(1- G)(EBR) (1-~) ‘

the energy E of the pseudoneutronafter the collis-

ion is

E= 2E’
{A.i8)

(l- E)vm+l+E ‘

‘andthe weight is obtained as

-2. Inelastic Scattering with a ContinuumDensi~

.’Function

The rendom selection of a~(j,k, p) probability

restricts the

ment from

i3-1

‘here ‘q’ ‘s
‘b”&d8’. The

final pseudoneutronenergy to the seg-

B

&n, to
z

E’+. LEB, , (A.20)
p ‘=1

the width of the inelastic energy

density function within this band may

\e chosen tobe constant, sndthe ener~Emay”be

~dlected &s

B-l
E=E’+

x
&p, +CZBs , (A.21)

!3’=1

“where5 is a random number on the unit “fitervsl..

%e new direction of motion is selected from an iso-

$ropic distributionin the laboratory system, and

‘thepseudonetitronweight is obtairiedi’r6mEq. (24)

as

%here the subscript 2 denotes inelastic scattering

~ith a continuous-typeenergy transfer density func-

t’{onand the superscripti is again used to desig-

nate isotope i. The L subscript on C; is a reminder

%hat this density function is in the laboratory sys-

‘i%m”end~he VL is used in C: rather than -!l~

?or ’conve~ience(the physi’ti’rnodel”aisume-s’that

the density function depends only on - ~a. - $1~=

llL). However, this density function is sometimes

tabulated in the center-of-masssystem. If the cen-

ter-of-massdensity function is denoted by C~(E’,Ma;

~,E, -Jla)a, the correspondingdensity function in

the laboratory system may be obtained by the tranS-
.-–—.
formatfon

C:(E’)PL;Z,E,- _aQ )L= C:(E&,Pm;~,E, - Qa)alil “,

(A.*)

15
where J is the Jacobian,

(A.24)

‘andthe variables in the transformationare related

as

EI=EJ
cm [ +=]/

+ E+2~m(A+l) & (A+1)2 ,

Equations (A.=) and (A.26) nuyfbe used to obtain

the relationships

3E~ _ v~
1 T

E—- -—
aE ‘ A+l ~

(Am)

(A.i$)

(Ao29)

(A.30)

.

.

.



$.@+(&)’’’(pL-&A)&j- - ~.~j-o.
ener~ dE’ about E’ by an event of type 2 is nearly

independentof’E. This is not usually true if the

E’+@”. (A.31)
~#(2,E)C;(E’,VL;:,E, -~)L (A.3~)

=
E& E&m ‘ i

and

+ (E)3/2 1

E&@ (A+ 1)31
.

.

(A.32)

(A.35)

which is the Jacobian required in Eq. (A.23).
changes rapidly over the permissible limits of E.

A constant-densityfunctionwas used in Eq.
A more optimal.ssmpling may then be expected through

(A.21) tQ sample for the pseudoneutronenerk3YE
sampling proportional to the function of Eq. (A.3~t).

within an inelasticband LIE. This is a reasonable
M option is available in

B
approx-tion to the zero-variancedensity function,

eight energies E as
Y

provided that the rate of transfer of neutrons from
B

an energy E, E’
‘z

ZWB, SE5E’+ ~dEB, tosn
B‘=1

Ey=E’+B~l LLEp,+

p‘=1

MCNA to randomly select

‘I=J~(~+Y- 1) , (A.35)
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where ~ is a random number on the unit intervql{the tropic distribution,end the pseudoneutronweight

same random number is used in computing the eight

energies).

The energy E = Ey of the pseudoneutronis ran-

domly selected with probability

The pseudoneutronweight is computed as

(A.37)

This method of selectiontends to produce a smother

weight than that obtained from Eq. (A.22). The com-

putational.effort required to select the energy E

is nearly a factor of 8 greater, but if some of the

‘C~’sare rapidly varying functions,this additional

computationtime may be worthwhile. ‘IIIismethod of

selection should be necessary only for isotopes of

huge A and for energies E less then about 2 MeV.

~ence, these events maybe rare, end the additional

‘timerequired hay be negligible compared to the to-

tal computationtime.

2“ Inelastic Scattering with a Discrete Model

a. .LaboratorySystem. A model used in the MCN snd

MCNA ccnnputercode$ is that of an inelastic scatter-

ing reaction in which the neutron is assumed to

~bse a discrete amount of energy in the laboratory

‘8y-stfm. The FostcolJ-isionneutron energy E’ is re-

lated to the precol.lisiohneutron energyE in this

?nodelas

E’=(E-~)/?l } (A.38)

Where c and q are constants at an energy E.

In sampling from the edjoint equation,Et

the precol.lisionenergy, and the postcoll.ision

ergy E of the pseudoneutron is determinedas

is

en-

E=qE’+c . (A.39)

‘l’he new direction of flight is selected frcm an iso-
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~erthe col..lis~on,msybeobtained fr6mEq. (24)

as

~=i@z>E)#E’} -Q’;z>E> -Qa)l

~(z,E’)~(j,k,i,l) b(E-fiE’ - C)E~

4= (Z,E)J@L>_w ‘r,.)g21V~(~,E)2
. (A.40)

q(z,E)~(j,k,i,f) ‘

where the subscript .Edenotes the inelastic level,

D~(UL;Z~E)A is the density function for the cosfne

of the scatteringangle UL, md v~(z~E), is the to-.,
tal number of neutrons that emerge from the reac-

tion.

b. Center-of-MassSystem. A model used in the M@l

and MCNA coqmter codes is that of en inelastic

scatteringreaction with the neutron assumed to

lose a discrete emount of energy in the center-8f-

mass system. The relevant e~uations for the nehtron

are

(A.kl)

(A.43)

where E is the precol.lisionneutron energy in the

laboratory system, .~ is the postcollisionneutron

energy in the laboratory system, end EL fS the

postcollisionneutron energy in the center-of-mass

system. c is the minimum neutron energy required

to excite the level, and TIis the constant

(A.44)

The inelastic threshold c depends upon the isotope

and level, but for notational conveniencethese

subscriptsare suppressed.

The relevant collision kernel C; maybe ex-

pressed as the number of neutrons that emerge from

the reaction v~(~,.)t multipliedby a =ginel



density function P~(E’;~,E) for the ener~ E’ and a 2The energy width from , (E’) to EU(E’) is usu-
conditionaldensity function, a Dirac delta fMlIC- al.lynarrow so t}lata reasonable assumption is that
tion, for the cosine of the scatteringangle WL. the product of the neutron flux and the cross sec-

If the scatteringis assumed isotropic* in the cen- tion for this event is nearly constant over this en-

ter-of-mass system, the density function P; is giv- ergy width. With this assumption,the approximation

en by

P’(E’;.,E)=.@-# 1 , ‘(’(fi; ’)’ .E’.’=+=f’f ,
3

E ~~
(’ + 1)2

In the

sion ener~,

= O for all other E’. (A.45)

adjoint solution,E 1 is the precolli- to the zero-variancedensity function is

and the problem is to choose a density

function to select the postcoll.isionenergy E of the . Pl(E’:~,E)

pseudoneutron. The first step is to determine the hj(E;~,E’) = (A.52)
EU(E’) .

bounds of E for a given E’. ‘Thefol.1.owfigresults, f P~(E’;r,E’’)dE”

Eqs. (A.k6) to (A.51), are from a derivationby ~EL(E,) ‘ -

Kales et zL16 The energy E must fall between a

lower bound E?’(E’)and an upper bound EU(E’) i3iven 1. —b for EL(E’)~E~Eu(E’) ,
by

9

EL(E’)= c
1 - y(l)2 ‘

E%’) = e
1- y(-1)’ ‘

where

2a
y(1) =

(l+Jii)

~1El+
(A.46)

where

EU(E’)

(A.47) u=
J

1 d’
EL(EI)E“~

(A.h8)

{
=An [1+ y(-l)f’[1 -fil)’ ‘1[1-y(-1)’][1+ IY(1)I]2 “

“(A.53)

Y(-1) = (1 + @i)/2b ,
The density function ~of Eq. (A.52) maybe

s-led ~~ic~ for E. The ~~ic e~re~-

‘* ‘
(’.k9) sion is obtained by setting the cumulative distri-

bution function to a random number c and solving

) for E:

[
a= (A+1)2E’ 1 /- 1 2 ’ ,G

[ 1 /b= (A+1)2E’+A2 ~ .
c

*
This requirementwL1.1.be removed later.

(’.50)

(’.51)

/

E
~= 1

/

m“ u
E“ w

EL(E’)

I =+E-c/2= h 1 /u . (A.5k)
; [1+ lY(l)112/[1-y’(1)2]

Hence, solving for E, we obtain
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E= P2/(2~ - C) , (A055)
k. Fission

The treatment of fission is simplifiedby the
where

assumptionthat the energy spectrum of fission neu-

P =:J1+ lY(0112 em+: . (A.56) trons is independentof the energy of the parent

1- Y(1)2 neutron. The selection of a fission event with the

The pseudoneutronweight is obtained from Eqs. (24),
probability~ (j,k,j’) requires that the find

(A.45),end(A.52) as pseudoneutronenergyE be within the boundaries of

energy group j’, designatedhere as (~)j, end

~I$@gC~(E’, -~;;z,E, -~a)l (E”)j,. l’he,energyE within this group is selected

~= (A.57) from a uniform distributionas
~%(~,E’)—~(j,k,i,g)?(E,~a;Z,E’,~:)

3

where the density function D~(Ma;~~E)m for the

center-of-massscatteringangle has been inserted

in Eq. (A.57) to include the more generil case of

enisotropic scattering. The pseudoneutronenergy E

is selected from the density function obtained with

the isotropic scatteringassumptions. However,

this should not introducelarge statisticalerrors

unless the scattering is highly enisotropic.

The expression forU in Eq. (A.53) Wbe s~-

plified as

()
2

U=h~ , (A+l)2E’/C>l , (A058)

and

E = (EL)j, +
[ 1(EU)3, - (EL)jI ? , (A.60)

where ~ is a random number on the unit intervel.

The final pseudoneutrondirection of motion is se-

lected frcssan isotropic distribution in the labora-

tory system, and the weight is obtained from Eq.

(24) as

ii= i
)

Yt(@)64(Vk,3’)
(A061)

where the subscript4 denotes fission, y(E’) is the

spectrum of fission neutrons, and the fission neu-

trons are assumed to have en isotropic distribution

in the laboratory system.

(A.59)

APPENDIX B

INTU’l!DA!l!AFORMCNA

The card format of the input data is identical

to that of the MN code except that there are no

provisions for R(repeat) or I(interpolate)options.

A brief descriptionof the format of the input data

follows.

Columns 1 to 5 are used to identify the input
data on the card (a blank field in these col-
umns indicates a continuationfrom the previ-
ous card, but a data entry may not be split

Data entries are contained in columns 6 to 72
with a ccsmnaor at least one blank column sep-
arating the entries,

A completelyblank card in columns 1 through
72 designatesthe end of a block of data. Col-
umns 73 to 80 are ignored and therefore may be
used for sequencing.

The input data required for the initiation

(Step 1 in Fig. 1) ofMC!NA are identical to those
between cards), required for the initiationof the MCN code. A
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descriptionof the input data for the initiation is

given in Refs. k, 5, and 6. The follwj.ng &di.

tionsl commentspertinent to MCIOImay be useful.

1. An RO card should not be supplied if a
thermal treatment~n’t being used; i.e.,
~< Em.

2. The F, E, T, and C cards are not usually
required in MCNA. An exception occurs
during scoring in the adjoint sampling for
a point neutron source; for this option
see the descriptionof the DFS input card
in this appendix.

The input data pertinent to the @uPled sam-

pling inMCNA (Steps 2 end 4 of Fig. 1) will.nowbe

card

described. The usual procedure is to input all the

required data for the coupled sampling in Step 2 so

that additional input data are not required in Step

k unless it seems tivi.sableto change some data

after the initial sampling from the transport equa-

tion. The ANUI program is called in Steps 2 and 4,

and, in turn, reads the input data. The sequence

of input card types is not important except that the

first card must have the identifierTYP and the code

e~ects to read this card each time the progrsm ANUI

is called. A blank card designates the end of input.

The input data are as follows.

Identifier Data Entry Description of Data
columns (l-5) columns (6 -72]

!rYF’ Type of Calculation Card.

1st

2nd

3rd

..

= -1,

= o,

= 1,

= 2,

= 37

= 4,

= 0,

= 1,

= Tape

Initiation is completed,and preparation is now made to
begin coupled sampling. After this input data, the cou-
pled samplingwill proceed to Step 3 of Fig. 1. Cards
ASI, AE, and SCC must be input, and the rest of the data
may be input as needed.

Initiation is completed,but only sampling from the trsns-
port equationwill be done. SteCs 4 and 5 of Fig. 1 will
be omitted. No more in~ut allowed.

Initiation is completed. Construct the adjoint sampling
functionsnumericallyand proceed directly to Step 5 of
Fig. 1 (i.e., skip steps 3 and 4), sampling from the ~-
joint equation. Cards ASC, ASI, AF, AE, SCC, and FJE
must be input, with other cards as required.

Step 3, sampling from*the transport equation, has been
completed. Normalize ssmpling functions and proceed to
Step 5, ssmplinfjfrom the adjoint equation. No more input
allowed.

Same as = 2 except that changes in any of the cards ASC,
ASP, ST, ASI, AF, ALE, end MN may be made.

Sampling functionshave already been normalized, but
changes in any of the cards ASC, ASP, ST, ASI, AF, ALE,
andMNmsy be mnde.

tflultigenerationsare assumed.

The calculationwill be made for only one (pseudo) neutron
generation. This effectively sets the number of neutrons
per fission to zero.

dump number. UsuaJ2y this entry = 1 if the first entry
on this card is -1, 0, or 1. This entry usually equels
the last tape dump if the first entry is 2, 3, or 4.
Exceptions sometimes occur when one tries sampling from
the adjoint equation with slightly different input data
from those used in a previous sampling.

a’
A samplingprobability w be estimated as exactly zero after sampling from the trsnsport equation. The
code will check the correspondin~transfer cross section, and if it iS nonzero, the sampling probability
will be normalized to a certain fraction of the total (usually about 1$).
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Card
Identifier Data Entry Description of Data

Asc Adjoint Source Control Card

1st Energy Control

. 0,

= 1,

= 2,

= 3,

2 4,

Select the initial pseudoneutronenergy with a density func-
tion proportional.to l/E between the first and second data
entries on card ASP.

Initial pseudoneutronenergy set to 1st data entry on card
ASP.

Linear selectionof initial.energy between the first and
second data entries on card ASP.

Input an energy density table on card ST1.

suppb source routine ASOURC. The remainder of this -d
is not used inANUI, except to specify tables ST1 to ST7.

ASP

2nd

3rd

kth

5th

6th

Spatial Position Control

= 1,

. 2,

= 3,

= o,

X = 3rd data entry on card ASP
Y = 5th data entry on card ASP
Z = 7th data entry on card ASP.

Linear selectionfrom3rd to 4th, 5th to 6th, 7th to 8th
data entries on card ASP for X,Y,Z,respectivel!f.

Input X,Y,Z density tables on cards ST2, SD, ST4, respec-
tively.

Constant-volumesource in the cell specifiedby the 5th
data entry of this card. Only the volume between concen-
tric spherespresently available.

Direction-of-MotionControl

= 1,

= 2,

= 3,

Time

. 1,

= 2,

= 3,

v = cos (9th data entry on card ASP)

w = ~~ cos (1.th data entry on card ASP)

u= ~ sfn (Klth data entry on card ASP).

Isotropic distribution.

Input density tables on cards ST3 end ST6.

Control

‘IME= I.lthdata entry on card ASP.

LINEAR selectionof !U4Efrom llth to 12th data entries on
card ASP.

Input time density table on card ST7.

= Cell number of pseudoneutronsource, IA.

= O, Ignore.

= 1, Cdl subroutineASOURC after “built-in” routines are used
to select initial pseudoneutronparameters (see e

T’eproblem of Sec. IV for an applicationof this option .

Adjoint Source Parameter Card

1st to 12th Entries as specified on card ASC. Those not specified on card ASC
will not be used in sampling,but must be input as zeros.
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Card
Identifier Data Rntyf

ST1

1st to Nth

.

SW

ST6

1st to IRA

~St tO Nth

1st to Nth

1st to Nth

1st to Nth

1st to Nth

Description of Data

Adjoint Source EnerW Table (Required if the first data entry of
card ASC = 3).

N/2 energy values from low to high and the correspondingN/2 cumu-
lative probabilities (the first probability is zero and the last
is one).
NOTE: If this table is used with the first data entry on card
ASC set to 3, then the initi~ pseudoneutronweight is divided
by this density function. This is not true for tables ST2 to
sm.

Adjoint Source X Table (Required if the second data entry of card
ASC=3).

Not necessarily the same N as for card ST1. N/2 X values from low
to high and the correspondingN/2 cumulativeprobabilities.

Adjoint Source Y Table

Same as card ST2 for Y.

Ajoint Source Z Table

Same as card ST2 for Z.

Adjoint Source irection Table (Required if the third data entry
YofcardASC=3.

v = cos (selectionfrom thj.stable).
N/2 values and correspondingN/2 cumulativeprobabilities.

Adjoint Source Direction Table (Required if the third data entry
of card ASC = 3).

w =~~ cos (selectionfrom this table)

.= ~ sin (selectionfrom this table)

N/2 values and correspondingN/2 cumulativeprobabilities.

Adjolnt Source Time Table (Required if the fourth data entry of
card ASC = 3).

N/2 time values from low to high and correspondingN/2 cumula-
tive probabilities.

NOTE on cards STI.to Sr. Any or eJl of these tables may be used and the tables may have
— different lengths, but the total storage required (sum of the N’s) must be less then

401.

1st

ASI Adjoint Sampling InformationCard

= -1, Select the pseudoneutronenergy after inelastic scatter-
ing from a density function,Eq. (A.36),proportional.to
the transfer cross section each time the ener~, E, is
less than 2 MeV. For energies greater ‘than2 MeV, use
constant-densityfunctions,Eq. (A.21).

= O, Same as -1 except that for energies greater than 2 MeV,
select the ener~ E from w%thin the energy band wsing a
density function proportional to the fission spectrum for
both fission and inelastic scattering. This is a useful
option if the neutron source is a fission spectrum.



Card
Identifier Data Entry Description of Data

ASI

2nd

3rd

bth

!Yth

6th

-lth

AFN—-

0th to
< 8th

ALE

1st

*If subroutineASCURC is SUT

= 1, Assume constant-densityfunctions in intervals.

Consnent: -1 suggested for most applications.

= o, Initial pseudoneutronweight set to the fourth data entry
on this card.*

= 1,2,3,4, The initial pseudoneutronweight is set to the fourth
data field on this card multipliedby E$z,E)~v~(A,E),

Xc(~,E), or Xt(~,E), respectively.*

= O, Hydrogen trsnsfer tables will not be constructed;~j,k,y)
ofEq. (A.1.1).

= Energy group number (see card AE) to start hydrogen transfer
tables. For groups less than this number, the center-of-
mass scatteringan~e is selected isotropical.ly.This num-
ber must always be less than the total number of groups and
must be greater then 10 when a thermal-energytreatment is
used.

Initial pseudoneutronweight as defined by the 2nd data entry on
this card.

Terminate the pseudoneuizwnwith this robability at each coLli-
sion when the energy is greater than ~MeV. Thesurviving nseudo-
neutrons have their ~ieight divided by one minus this probability.
Zero suggested for most applications.

A positive floating-pointnumber will force the pseudoneutron
weight to be sulit each time the weight exceeds this entry. A
negative floating-pointnumber will force splitting or “Russian
roulette” to keep the weight at exactly the negative of this
entry. For most applicationsit i.srecommendedthat this number
be positive, and of such a magnitude that only occasionallywill
a Fseudoneutronweight exceed it.

The total number of fission neutrons produced in the transport
s~li~ Wi~ be divided b

f
this number to construct the functions

for samplmg from the adjo nt equation. UsusJly set to 1.0.
Functional Card for Function N, N S330.

Constants to describe this functional(~ 8). These constants are
set to (AJCON(N,J), J = 1, K) for use in scoring in subroutine
SCORE. Here, K is the number of constants entered on this card.
The present dimensionscallowas many as 350 functional.s,but only
a maximum of 50 sets of constantsmay be input. Cards for all the
functionslsneed not be input, but the card for maximum N must
be input.

Ad.jointLeakage Card.

= 0, Special.leakage computationsare not utilized (in which
case this card is not required).

-~’s q(y)dx tier
> 0, Computes leakage probabilityANL = e

each collisionwhen tliepseudoneutron energy is such that
~URL <E <ESURH and calls subroutineSCORE with KASR = 4.
Here Xs is the distance to a surface(s)of interest. BW
and ESURH are the 2nd and 3rd data entries on this card,
res ectively.

!
IfE @ nOt within these bounds, the usual

dis snce-to-col.l.isiongeanetry routine is used.

died, the weight must be set in ASOURC. If Table ‘Il.is used, the weight given
by the second data entry o~-ca.rd-ASIis aiSO divided by the ener~-density function as c&puted for e~ch
source pseudoneutron. If the first data entry on card ASC iS zero, the weight given by the second data
entry on card ASI is also divided by the energy-densityfunction as computed for each source pseudoneutron;
i.e., weight multiplier is E tn(E~E~n).

.
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Card
Identifier Data llnt~ Description of Data

ALE = 1,

. 2,

= 3>

= 4,

For ~URL < E < ESURH, sample the distance to collision from
the exponentialdensity function normalized so that leakage
does not occur.

Sample the distance to collision from the usual exponential
density function,Eq. (16), using the apeciel leakage rou-
tine when 2SURL C E cESURH. This is faster than returning
to the geometry routine, when ANL must be computed anyway.

Special optimel distance-to-collisionsampling,Eq. (C.>)*.

Return to geometry routine for distance-to collision sam-

2nd

3rd

kth to
~ 23rd

MNN—-

1st

2nd to 10th

1st

pling after computingANL

As defined on the first data entry of this card.

As defined on the first data entry of this card.

Scoring surface numbers, JA. ANL is computed, and subrou-
tine SCORE is called each time the projected pseudoneutron
flight path, with ESURL < E < ESURH, crosses one of these
surfaces. The pseudoneutronis expected to cross one, and
oti one,scoring surface if the first entry on t}!iscard is
1, 2, or 3.

Thermal Flux !Jeight Card (required only if the thermal free-gas
model

= o,

. 1,

NOTE:

is used).

Maxwel.lienweight factor for thermal group 1 “
ment N; i.e., *(E) of Eq. ( A.lk) equels Ee-E?’? ‘~Ni~c;;-
this weight factor is used for times less than the first
data entry on the RO card of the initiation input data. If
N = 2, this ~ieightfactor is used for times between the
first and second data fields of the RO card, snd so forth.

Weight factor of l/E for thermal group 1 end time increment
N.

Same as the first data entry descriptionfor subsequent ther-
msJ.energy groups, loJi to high energies.

A weight factor of l/E is not presently aJlowed for the
first group if hydrogen is present, or for the first three
groups if deuterium is present.

Energy Group Boundaries Card

> (), Equal to the total number, S 50, of energy groups (for con-
structing the functions for ssmpling from the adjoint equa-
tion) that are read on card ~_~. If a thermal treatment
is used, the first ten grouus must be thermal.

A routine in the code will construct the ener~ group
boundaries.

For energies greater than 20 keV, construct one-quarter
letha.rgy-enerwgroup widths and”one-quarter
increments for the inelastic scatteringwith
model.

Same as -2 control except that the inelastic
one-half lethargy.

let<argy energy
a continuous

increments are

*The volume of each cell VOL(IA) must be supplied in Proerm ANUI in order to use this option.



Card
Identifier Data Entry Description of Data ..

Aq = O, For energies greater than 20 keV, construct one-half leth-
argy energy,groupwidths end one-half lethargy energy in-
crements for the inelastic scatteringwith a continuous
model. This option has been found adequate for most prob-
lems.

NOTE: If this data entry S O, the energy group widths from ther-
mal to 1 keV are constructedat one lethargy unit, and from
1 to 20 keV at one-half lethargy unit. Only four inelastic
incrementssze used in this range.

2nd Maximum energy for constructingthe energy-groupstructure (gen-
erally the maximum energy of interest in the problem).

AEN.-

Scc

DFS

jrd to 1.2th These data entries are required only when a thermal treatment IS
utilized and the first data field on this card is < 0. These
entries are the top boundaries of the 10 thermal groups, from
low to high (group number 10must be EBR). These energy groups
are used in cells where hydrogen or deuterium are not present.
In regions where hydrogen or deuterium are present, the upper
boundaries are set b the code as: 0.17!,0.5T, T} 1.57!, 2.5’l!,

YkT, 6T, 6T+ (RBR-6T /7, 6T+ 3(E.BR-6T)/7,andEBR, where T is
the temperatureof the medium at the time of interest snd EBR
is the upper boundary of the thermal treatment.

Energy Group Boundaries Card (requiredonly if the first data
entry on card AR: b O). These AE N cards must be input in
sequentialorder with N assuming%%eger values from 1 to the
number of energy groups specifiedby the first data field on
card AE~. The energies (first data entries) are ~ut mono-
tonically increasingfrom low to high values.

1st Upper energy boundary of group N. For a thermal treatment with
N < 10, these are thermal boundaries, end for N . 10 this data
entry must be set to EBR.

2nd to 51st Widths of the energy increments (low to high) for inelastic scat-
tering of the pseudoneutronwith a continuousmodel for energy
group N, i. e., the OEP, of Eq. (A.~). The sum of these incre-

ments plus the upper boundary of group N-1 should be greater
then or equal to the second data entry on card AE~. This is
checked by the code.

Ssmpling Cell Control Card

1st Control parameter for cell No. 1; IA = 1. It controls the con-
struction end use of the density function for sampling from the
adjoint equation.

= -1, Cell is a vacuum.

. 0, Construct sampling functions for this cell.

= I, Lump this cell with cell.I for the constructionand use of
senIplhE functions,I < IA. This option is available only
if the same isotopes are in both cells and is useful.if
one cell is very smalJ.because the statisticalfluctuations
in the density functions are reduced with this option.

2nd to the Same as the first data entry for subsequent cells.
number of
cells

Delta Function Scoring Card

1st = O, Special neutron point source option for scoring in the ad-
joint calculationis not utilized (fi which case this card
is not required).
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Identifier Data Entry Description of Data

.

2nd

3rd

ICJ

DFS . 1, Special neutron point source
T
tion for scoring in the ad-

joint calculationis utilized see Appendix E for a discus-
sion of the scoring). The F5 card in the initiation (with
progrsm AIl!.fC)is utilized to speci~ the X, Y, Z, and
neighborhoodof the point sources. Only one energy entry
and one time entry, respectively,are required on the E5
and ~ cards. These entries are ignored in the adjoint
sempl~g but are required for memory e.1.l.ocation.

Minimum energy of the point sources, i.e., energy below
which no neutrons are emitted. This energy must be greater
than the thermel cutoff energy, EBR.

Maximum energy of the point sources.

NOTS: The ALE card, with the first entry equal to 1, may be used
with this point source scoring option.

Cell. Importance Card (mey be used to change cell importances
from those specified in the initiation).

1st to the Importance of the respective cells.
number of
cells

The following two cards are used only if the first data entry on card TYP is 1.

FWE Flux Weight Card

1 Control parameter for cell No. 1, IA = 1. This parsmeter con-
trols the numerical computationof the density functions for
sampling from the sdjoint equation. The analog density function
is multiplied by an estimate of the average energy dependence of
the neutron flux in this cell.

= O, Constent flux as a function of enerm.

= -1, The

(p.

Q=

= -2,

= -3,

= -4,

= -5,

=- 6,

= -7,

=- 8,

= N,

neutron flux q is given by

#2 -o. 776Ee for E > 1,

(0.7315+ 0.lJ.74 .tn ~)lE forO.Ok<E<l,

o.08328/E for E <0.04.

Z e-0.776E

E e-o.776E
for E BO.1

o.029262/E for E c 0.1

fie
-0.776E

for E B 0.1,

0.29262 for E <0.1

l/E

@e -0.776E
for E B 0.6443

0.3136/E for E <0.6443

~ e-O.776E
for E Y 0.6443

0.4868 forE <0.6443

ljv

A table of.lengthl?,N B O, is input on cardl?TB 1 for a
tabulation of the neutron flux.

.-
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Identifier Data Entry Description of Data

mm 2nd to the Same as the first data entxy for 8ubsequent ce~s.
number of
cells

FTB_~ Flux Value Card

ltoN N/2 energy points followed by N/2 flux values for ceIL 1.
energy points are from low to high, end the code linearly
polates-betweenenergy points.

Blank Card END OF INPUT DATA

A feli additional commentsmsy prove worthwhile.

1. The meximum dimensions of input quantities

are given for the present code. These are usually

simple to change, end the code checks the dimension

quantitiesto see that storage is not exceeded. The

memory required by the sampling functions is checked

after loading, and the problem is terminatedwith

en error message if any dimensions are exceeded.

This is checkedprior to sampling from the trans-

port equation.

2. Blank columns are ignored when reading the

card identifier in columns 1 to 5. Thus, the card

AF N with N = 3 could appear as-.

:AF3 :
:AF3:
:AF3 :.. AF3 :
: AF3:,

etc.

The units used in the MCNA code end in the in-

put data are consistentwith those of the MCXicode;

i.e., energies are in MeV, time is in shakes, mac-

roscopic cross sections are in CnI-l,medium temper-

atures are in MeV, end spatial dimensions are in cm.

The units of the functionels may be controlledby

the functions-lconstants of card AF and the initial

pseudoneutronweight of card ASI.

The usc of the pseudoneutron source subroutine,

ASCURC, with the first data entry of cerd ASC2 4,

autcxnaticallybypasses sJJ.the built-in @joint

source options on cards ASC and ASP. The following

informationmust be supplied (an exception occurs

when the sixth data entry of card ASC = 1 end the

first data entry of cardASC <4) when ASUIRC is

used.

X,y,z - the space coordinates

U,v,ll- the direction coordinates,these are

isotropic if not supplied .
m - the time

ERG -

W’J!-

IA-

JA -

DEL -

!l%e
inter-

the energy

the initiel weight. The initiel weight

as input on thefo~h data entry of card

ASI is the parameter ASRWT, and WT =

ASRWT at entrance to AS~C. Options 1,

2, 3, 4 of the second data entry of card

ASI are not available when using ASOURC

unless the sixth data entry of card ASC

= 1.

the cell number

surface control (usually 1)

surface control (uauaJJy0.0).

SpecieJ.care should be used in writing subrou-

tine SCORE, to tabulate the functional. The func-

tional K is tabulated in the dimensionvariable

TSCOR(K). The general procedure each time SCORR is

called is as follows.

1. Check to see if the collision or surface

grossing is of interest; determinedby KASR as des-

Cribed in Sec. ~. If not of interest, return to

the main program.

2. Check to see if the collision or surface

crossing is of interest for functionalK. If so,

score as

TSCOR(K) = TSCOR(K)

+
[
contributionof this collision or surface
crossing to the functionalK. 1

(B.1)

3. Repeat step 2 for all functional and re-

turn to the main program. See Sec. III for two ex-

amples.

The scoring in Eq. (B.1) may requ-iresome con-

stants for the particular functionalK. These con-

stants may be input on the AF card in the dink?n.

sioned variable AJCON(K,J), where J assumes values

frcinl to the number of required constants for the
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,

.

functionalK.

At the end of each source (end progeny) pseudo-

neutron history, TSCOR(K) and the 2nd, jrd, and bth

moments of TSCOR(K) are added to a running sum of

the respective first four maents for each function-

al K. ‘ISCOR(K)is then set to zero before selec-

ting the next source pseudoneutron. periodicti~

during the sampling from the adjoint equation,these

moments are divided by the toteJ.number of source

pseudoneutronsto obtain the estimate of the func-

tionsl~snd the estimate of themoments~, ~

and%. Theesth!ated relative error iseomputed

as

where n is the total.number of source pseudoneu-

trons. Unfortunately,there is also a statistical

error involved in the estimate of the relative

error. An attempt is made in MONA to estimate this
~~17

/!

32 /2

‘q~K+ 6$%2-54- ‘K
fi{$-~ .

(B.3)

Experience wK1.1tel.lwhether Eq. (B.3) is of any
help in determiningthe reliability of the relative

error estimate ofEq. (B.2).

Two magnetic tapes are usually required to run

a problem with MCNA. A description of the use of

these tapes is given in the exemple problem in Sec.

IV.

The program AIMC that samples from the transport

or adjoint equations requires one input cssd, as in

the MCN code. The input on this card is as follows.

columns Transport Sampling (Step 3) Adjoint Sampling (Step 5)

1-1o Neutrons are terminated at this Pseudoneutronsare terminated at
entry of maximum time. this entry of minimum tine.

U.-’xl Neutrons are terminatedwhen their “Russian rm.iLette”is played each
weights fall below this entry. time a Dseudoneutr’onwei.c?htfalls

21-30

31-40

41-50

51-60

61-70

Running time in minutes.

Number of neutron historiesper
print cycle.

Number of neutron histories per”
tape dump cycle.

Tape dunq number (ususJly 2 for the
first time in Step 3 of Fig. 1).

Total number of neutron histories.

below t“fisentry. The w;ights of
survivors are increased.

Running time in minutes.

Number of Fseudoneutronhistories
per print cycle.

Number of pseudoneutronhistories
per tape dump cycle.

Tape dump number.

Total number of pseudoneutronhis-
tories.

APPENDIX c

DISTANCE-’lV-COLT.ZSIONDIS(XE3SION

the exponentialdensity function T(x) in numerous applications.

has the practicsl advantage that the The use of T(x) for sampling the distance to

collisionx may be sempled from a sim- collision of pseudoneutronshas also been found

Use of

of Eq. (16)

distance to

ple ansI@ic expression. The fact that it also adequate in many adjoint problems.

simulates the physical process, when sampling from use of T(y) is not so satisfactory

the transport equation, adds to its versatility “ ‘llhisis apparentlybecause T(x) is

However, the

in some cases.

a poor approxi-
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mation to the correspondingzero-variancedensity

function fn these problems.

The zero-variancedensity fictiOn TO(X) iS

given by

T(x)B(x)/~(x)
TO(X) = >

J
‘n!r(#)f3(y’)/X#)d#

o

where f3(y)is an appropriatelimit of the

which neutrons (in the transportproblem)

collisions and emerge ficinthe collisions

(Cl)

rate at

suffer

with the

energy of the pseudoneutronand with their direc-

tion of flight opposite to that of the pseudoneu-

trons. The function f3(x)generally depends upon

the direction of motion of the pseudoneutron,its

energy, end the spatial positiony. Here the en-

ergy and direction of motion are suppressed in the

arguments of ~(y) owing to notation difficulties.

It is understood that p is evaluated along the pro-

jectedflight pathof the pseudoneutronend at the

pseudoneutron energy.

The directionaldependence of 13(x)is often

nearly isotropicwithin most of the phase space,

and, for the applicationsin MCNA, it is assumed to

be isotropic. It 5s S3.SOassumed that, within a

cell and an energy group, p.(y)is approximatelycon-

ste.wt. With these assumptions,13(x)may be approx-

imated by its average value within a cell k and en-

ergy group j as
(E..)

m-1z- QjmtA~’
In =1

e (1-

Here, the notation has been

the subsequent cells of the

(C.4)

s~lified by numbering

flight path of the

pseudoneutronby k = 1, 2, 3 . “ . N. The corres-

ponding total cross sections are denoted by ~lk

(this is poor notation because it reaUy denotes

the total cross section at the energy of the pseudo-

neutron), and the distances across the cells by ~.

The distance to collisionynmy be sampled with the

density function~(y) of Eq. (C.3) as

-4+4@y m ’-1-
(C.5)

where 5 is a rendom number on the unit interval.,

Ym’ is computed as

(C.2)k
~
‘

‘jk = ~’ )
.

IJ “ &d3r

cell. (~)
k 3

~ option is available in MCNA to compute the quan-

tities @dkby sampling from the transport equation.
m’

These average values for f3(x)are’subsequentlyused -z %jm” ‘%!’

in Eq. (Cl) to obtain an approximationto the zero-
m“=1

ymt = e >0 > (c.6)
variance density function as

F(x)
x in cell k

Yo=l >

( )/‘~&jk)A~t X-~AXk)

end the cell k

that satisfies

k’=1 e-%jk
se

k’=1 @j H, (C.3) lk-l

&
~ &-,-Ym)

m=
where

is determinedby

the requirement

finding the cell

(C.7)



,

The pseudoneutronweight is then obtained as

ii=7T(x)/T (%) ,

‘r%jkH/Bjk “ (c.8)

The indications (from the problems that have

been solved using this procedure to sample for the

distance to collision)are that the variance per

source pseudoneutronis reduced from the variance

obtained by sampling from the adjoint equation with

the analog density function T(x). However, the ssm-

pling time per source pseudoneutronmay increase by

as much as a factor Of two or even more. It is for-

tunate that the analog density function T(x) iS sat-

isfactory for most applications. For problems for

which it is not satisfactory,the density flmction

~(y) ofEq. (c.3) may help, but the added samplinE

time required to scunplefrom~ reduces its effec-

tiveness. However, the option is available in the
MCNAcode.

APPENDIX D

MISCELLANEOUS

1. Linear Interpolationof Density Functions

A density function g(~’;y) is sometimes tabu-

lated inMCN and MCNA at the points X1 and ~ with

xl<x<~. The sampling of the neutron history

requires that the random varisble X1 be selected

from g(X’;X). This is accomplishedwith a random

(D.2)

variable 5 on the unit intervsl.and linear interpo-

lation as

x’ = X{+ (X -Yl)(Xj - x~)/(~ -Xl) , (D-l)

where X’ and
1 $ satisfy the inverse relations

1

x;
<= dx’’;xl)dx” ,

.-

J

%
~= dx’’;@x” o (D.3)

-m

The sampling of the pseudoneutronhistory re-

quires computationof the actual density function

g(x’;x) to compute the weight of the pseudoneutron.

If@X’;X) is defined to be the cumulativedistri-

bution function, then, from Eqs. (D.2) and(D. j),

it must satis~

G(x’;x) = G(x[;x1) = G(Xj;@ > (D.4)

where x’,x{ and ~ are related by Eq. (D.1). The

PROBABILITY CONCEPTS

distribution function g(X’;X) may be expressed as

lhe derivativesmay be obtained from Eq. (D.1),

(D.6)

(D.7)

where dx~/dx~ was obtained by combfning .Eqs.(D.2)

and (D.~). With Eqs. (D.6) and (D.7), the densitY

function of Eq. (D.5) w be expressed as

(D.8)
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2. ssmpling the IieightedFree-Gas Density Function

The density functionb~ ofEq. (A.lk) maybe

expressed as the product of a marginel density fMnc-

tion g; for selectingthe energy E and a conditional,

density function $ for selecting the laboratory

scattering’anglewL. These density

determined in the usual manner as

functions are

J(EJjJ

2nC~(E’,-f2’;r,E,-Qa)
.

C;(E’;~,E)

where C~(E’;~,E) is defined as

.
C:(E’;~,E) =

1
C~(E’,-fl’;r,E,-~a)dfla. (D.~

The density function g: of Eq. (D.9) may be ob-

tainedby replacing ~(~E) C~(E’;~,E)with the free

gag kernel as given, for example, by Eq. (2.19a) of

williams:’4

/[g~(E;~,E’) ‘~~(E)jS e
-(c’-c)

Erf(e~-~~)

*Erf(i3fi + s~) + Erf(9@ - ~~c)

1/
TErf(Qfl+~fi) U , (D.12)

where U is the integral of the numerator of the

right-hsnd side ofEq. (D.~) fr~ (~)j, to (Eu)j,J

the + signs are used for E <Et or E>E’, respec-

tively, and

e’ = E’/l’ (Da)”

c = E/T (D.14)

f3=(A+l)/2& (D.15)

~=(A-1)/2~ . (D.16)

An analytic expression Tor the corresponding

cumulativedistributionfunction 13~w be obtained

‘E/T, but G: must be tabulated forwhen l(E).~ = Ee

~(E)3, = i/E. In either ca~e, it is impossibleto

obtain an expressionfor the inverse E in terms of

$ The technique used in theMCNA code is to di-

vide therange from (EL)j, to (Eu) of E into
3’

.eqnl. segments, eval-te G; at the segment bound-

aries,,and linearly interpolatefor “E.

The analytic ~ression for G: with l(Ejj, =

Ee‘E/T is given by

G;(E;~,E’)

T -(.-e.
u

[Erf(@? - ~A)*Erf(9.@+~

J

>

L)

where the expression in Eq. (D.17) must be evalua-

ted at the limits (Eu)j and (~) . For in-group
.1‘
“

scattering (i.e., E and E’ both in group j’), the
expressionmust also be evaluated at the inner limit

E’, owing to the sign changes.

The density function~ ofEq. (D.1O) is the

ratio of the free-gas scatteringkernel for the en-

ergy and scatteringangle, as given by Eq. (2.19)

of Wil.liams:b to the free-g- scatteringkernel for

the energy alone as given by Wil.lisms’Eq. (2.19a).

The algebra involved in substitutingthese defini-

tions into ~ and evaluatingthe cumulative distri-

butionfunction~ is tedious and will not be given

I
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where

2(E+E’-
‘=@

aLm )=’2 ,

. 1 (E+’g-@)l/2=L

“1 m *

y= (E- E’)/kT ,

-Y .

Erf(y) = ‘- [ e‘U=du .

(D.20)

I&-ml ,

(D.21)

(D.22)
~z Jo

It is impossibleto

Eq. (D018) for UL.

obtain an inverse solution of

The technique utilized in the

MCNA code is to divide the range from -1 to +1 of

VL into equ~ segments) evaluate H: at the segment

boundaries,and linearly interpolateforpL.

APPENDIX E

sCORING IN THE ADJOINl!CALCULATION

FOR A POINT NEUTRON SOUCR

1. Derivation of Scoring Equations at a Pseudoneu-

tron Collision

The neutron souce is assumed to be of the form

S(~,E,Q,t) = S$E,~,t)~(x -x@(Y - Y8)~(z - z~) ,

(El)

where S (E,$t) does not contain a delta function.
0

A possible scoring technique in the adjoint calcu-

lation is to compute the density of neutrons emer-

ging from their first collisionend use this as the

neutron source. At each pseudoneutron collision,

the score is

@+(first-colJ-isionneutron source at r’,E’,-sl’,t’)
>

~(s’,E’)

(Eo2)

.. L.. _-...---..L---- ----- ----- ---..—- -4. -/ “J
Jwnere me pseuauncubrusicualsxm uccun ab L ,G

g’,t’.

A more practical procedure is to select the

event a prior to the scoring with probability

~a(j,k,o”-). Then

fi*(first-~o~isi~
due to

the score is given by

neutron source at ~~,E/,~~,t/
event of type a)

q(z’E’) ~a(j,k,‘o’)

(E.3)

This gives the correct expectation;the expectation

value of the score at the collision is given by

~ V* f;rst-co.l.,lision neutron source at ~ (j,k,...)
CY ( )E ,E’,fJ’,t’due to event of typea a

X$ X’,E’) ~a(j,k, oo”)

F(first-col-lisionneutron source
at ~jE’,Q’,t’)

. . (E.k)
~(z’,E’)

The scoring in the adjoint calculationfor the

four types of a events will.now be considered (the

notation is the seineas in Appendix A):
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a. Epithermsl Elastic Scatteringwith an Isotope. where

E= 2E‘

The first-collisionelastic scattering source may

be derived by beginning with en expression for the

first-flightneutron flux at ~“,E’’,fiN,t”,due to a
18

unit neutron source at X,E,fl,t,as given by

(E.8)

.

, (E-9)

6(Q -Q”)
( E.1O)

(E.11)

1
r’-r

-0

12” -_ ) !“ 5(E-E”) ,
v

Therefore,the contributionthat an elastic collis-

ion of the pseudoneutronmakes to the estimate J

is given by(E05)

where s denotes an integrationalong a straight-line

path. If % is defined to be the first-flightneu-

tron flux due to the source S, ge may be expressed

as

g8(z’’JE’’>t>;s);s)=I(JJg(~”,E’’,fJ’’,t”;~,E,~,t)S(~,E,Q,t)d3rdE~dt

-J<%(s,ti)cis

‘e ( H r)12” _ - ,r,,e -d ~ ~“ Q-”- – e

If 1-3312 ‘e“’’g’’’t”- v - =J “
(E.6).

The first-collisionelastic scattering source at

~’,Et,-g~,t8is then given by

I

[
Efl(l-~)w +1+3

6E’- 2 )d.s”m“

E’
1( D;(-~” .Q’;~,E”)L

c9(~’,E’’,@’,t’;S) X~1(2’#’) a
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-fz’ ~(s,ms

% ( Iz’ -2.1~*e
‘e

E,fl,t’ -
)

~l(~’,E)D~(VL;Z,E ‘)L E
J=Jt+

v
>

~(~’,E’)2JC{~’- Ze12 ‘~(3>k>i) E’

where

.

(E.12)

b. Inelastic Scatteringwith a ContinuumDensity Function. The first-collisionsource for an event of
type 2 is given by

where

1
( lx’ -~el

‘e E“,s2,t’-
v1 )X4

J

(~’,E’’)C~(E’,-f2’;r’,E’’,Q)LIE” ,—- (E.14)
i

0-1

(E.15)

(E.16)

(E.17)

The numerical evaluationof the integral i~ Eql (E.14) may be avoidedby selecting an ener~ E from the

@ensity function

1
f(E;E’) == , forELSESEu .

u L
(E.18)

The score is then given by
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r’.-

This yields the correct expectationvelue for a collisionat ~’,E’,~’,t’.

c. Inelastic Scatteringwith a Discrete Model.

(1) Laboratory system. The first-collisionneutron source for thfs event is given by

Jfl [ge(~’,E’’,~’’,;s)s)~(Z’,E’’)2*D~(-Q’ o ~#;:’,E”)j 5 E’ -
1

Q+ v;(@”)t cm” C@’

E’

where

r’-r
-0

Q=lz’.%l ‘

The contributionof the collision to the estimate is given by

(E.19)

(E.20)

(E.21)

(E.22)

(E.23)

J=J’+

(2) Center-of-MassSystem.
The first-collisionneutron source for this event is given by

Jl ~
go(z’>E’’>$j’>t’;s)+k%”)i $(E’@?’;z’jE’’~ff’)A dE”%2”

-Jz’q(s,d)cw

J

%
.

e 1~’-# ( 12’- Zel

‘e
E“,fi,t’- v“ )

~(Z’,E”)A C~(E’,-Q’;Z’,E”,@t~ . (E.25)

The integristfonover E“ may be performed by ewaYu.lingC; as C; was previously eqanded in Eq. (A.23) for

I

I

. I
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the continuouscase. Thus, C; may be expended as

Cj(E’,-~’;~’,E’’,@fl= Cj(E#WW;Z’/Eo@){Jl

= & C$Vm;~’, Ea,@a 5(# - q12~- C)E, vi(r’,E~~lJl ,
cm 3-

(E.26)

where

6131= “ .
E~

The integrationover g may now bp perfonne~ t? Qbt@n the ~oqtributionof the collision to the estimate as

[

-f’ q(s,E)ds

J=J’+fie%
(

[:’ - ql

)5
Se E,fi,t’-—

v
,~

“(Z’,E)flD$Va;Z’,E)cm II ~

1

‘ v~(~’,E)2

r
cm

1 (E.28)

I—, (E.29)

for energies such that E >C and lVal <1. There is no contributionif E is less then c or Ipml > 1,
The solution for E in Eq. (E.29) was obtainedby insertingEL, as given by Eq. (E.~), into Eq.

.

—
(A.27), and solving forE. Note that two sglutions for E may be obtained, where

end lUal <1. If this is the case, the right-hand side ofEq. (E.28) sho~d be

contributionfrom each E.

d. Fission. The first-collisionneutrorisource for this event is given by

each solution has E

written as a sum of

>C

the
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The evaluation
tion,

Jr’- .. . rJ 4X..” - .

of the integral in Eq. (E.32) may be aVoided by selecting the energy E from the density fWnc-
.“.
,. r

F(E;E’) = 1>

(E”)~, - (#)j; *
for ()$’)3,SE< (E”)j, .

., ~,
The score is then given by

. .

I

I -1‘Z&;k%s
( ( 1~’ - ZJ
Tie ‘e ‘e E,fl,t’--

v )2 [ II
v~(~’,E) X$~’,E) Y(E’) (E”)jJ-(EL)j/

J=J’+ .

[Z@E’)~\3,k>3’) % Iz’ - Ze/2]

(E.*)

@xis gives the correct expectationv.s.luefor a colkisitm at~’,E’,~’,t’.

2. Derivation of the Scoring Equation for the First @light of the Pseudoneutron

The results in pert 1 do not include the first flight’s contributionto the functional..The first-

flight contributionto the functionalJmay be obtained fromEq. (8) as

(E.35)
J.)

where G+ in Eq. (E.35) is obtained as the solution & Eq. (6) with the collision source term omitted; this

yields the first-flight contribution. The transformed adjoint Green’s function satisfies the same equation

as the correspondingGreen’s function for the transport equation. Therefore, by using

tween the transformed adjoint Green’s function and the adjoint Green’s function ofEq.

Eq. (E.5) to express the ad#oint Green’s function as

This expression for G+ maybe inserted into

be performed over the ~’ andfi variables to

‘/2’ ~(s,E)ds

Eq. (E.35),with S given byEq.

obtain. *

(El), and

JIIle% ( 1~ - rJ
Jf = ‘e E,&t - v

k’. 2 )
x(~’,E,f2,t)d3r’dEdt

ql

the relationshipbe-

(n), one may use

(Eo%)
the integrationmy

>
(E.37)
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where scme variable changes (~ -~’) and

,

r’-r
-8Q-12’-%!‘

have been made.

This first-flightcontributionmay be estimated in the sampling from the adjoint equation by selecting

the initiel pseudoneutronparameters from a density mction~(r’,E,~,t), assigning an initial weight of

and computing the contributionto J as

[
(

lx’ - X8 I

)

z(~’,E,f&t) X(~’,E,Q,t)
Jf= fiSe E,Q,t - ~

1
~(~’,E,Q;,t)dfz~~(~’,E,-Q;,t)

The expectationvalue ofJf inEq. (E.k3) is si@yJfofEq. (E.37).

>. The Point-SourceEstimator Utilized in MCNA

(l?.%)

(E.39)

. (E.40)

Equations (E.12), (E.19), (E.2h), (E.28), (E.%), and (E.kO) express the point-sou-ce score for the

event, or first flight, as a given factor, denoted by ANL in the program, multiplied by the source density

S&E>&,t’ - l~’-~l/V). The MCNAprogrem computes the factor ANL*, describes thevector ~by the cosines

-u, -V, and -W(S = - ti_- V~ - wg), sets the variable ~ to t’ - lx’ - _9r IV, sets KASR to 3, and csJJ.ssub-

routine SCORE. This procedure is performed for the source pseudoneutron and at each subsequentpseudoneu-

tron collision for each neutron point source.

The point neutron source number for a given call into subroutineSCORE is denoted by the variable

IDETX. The general procedure in SCORE is to set

TSCOR(IDETX)= TSCOR(IDETX)+ ANL* (neutron-sourcedensity of source IDETX) (E.41)

each time subroutine SCORE is called.

As an example, the following fictitiousproblem is consideredwith the two point neutron sources:

*
For source pseudoneutrons,the factor ANL is computed as

-J
r’
– ~t(s,E)ds

Am=ve %
4YTl~’

-%12

The assumption here is that Z end~ in Eq. (E.40) are independentof n. If this is not true, the quantity

~(~’,E,;Sl,t) ~(~’,E,Q,t)

J
&

~(~’,E,Qf&t)d2~ Z (~’,E,-QS&t)

of Eq. (E.kO) must be computed in subroutineSCORE and multiplied by AIL.
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e=l

‘l(E’g’t)‘k 3;eVlk’hties’ ‘or~~e~E
——

O<t<
100 shakes

=0 otherwise;

9=2

11S2(E,S22t.)= * > ~fev1000— — shakes, for 1 MeV C E
c 6 ~~ev

O<t<
1ooo
shakes

Then

Fig.

=0

subroutineSCORE

El.

otherwise.

may be written as shown in

SUBROUTINE SCORE (KASR)

INTEGER, DIMENSION) CCWMON, AND m~~ state-

ments correspondingto those of the main program

A’IMC.

c SCORING FOR FIC1’ITICUSPROBLEM

c WITH POINT NEU’IRONSWRCE

c ANL = FACTOR TO WLTIPLY BY

c SCXJRCEDENSITY

c -u) -v, -w ARE THE DIRECTION

c COSINES FROM THE P@/T DETECTOR

c ‘KITHE COLLISIONPOINT

I17(KASR.NE.3)GOTOZ3

IF(ERG.LT.1.)GOT025

D?(’iME.LT.O.)GO~25

IF(IDETX.GT.1)TO ‘M 19

II?(ERG.GT.4.)Gom25

IF(7ME.GT.lCO.)GOTO 25

TSCOR(l) = TSCOR(l) + ANL/(12.566*300.)

Goma

19 IF(ERG.GT.6.) Go TO 25

IF(TME.GT.lOOO.) GO TO 25

TSCOR(2) = TSCOR(2) + ANL/(12.56@5000. )

25 REm

END

Fig. E.1 Subroutine SCORS for a fictitious
problem with two point neutron
sources.

AYPENDIX F

NEUTRON SOURCES CONTAININGA DELTA IUNCTION IN TIMS

An extraneousneutron source, consistingof a

pulse in time, presents a problem for scoring &

the adjoint cel.culationbecause all.scoring must he

made at a fixed time in the life history of the

pseudoneutron. Provided that the functionalof in-

terest is not also discrete in the time domain and

assuming that the medium is stationary,it is pos-

sible to find an equivalentproblem that does not

involve a discrete neutron source in time.

The nuetron source is assumed to be of the form

3(~,E,$t)

where So(r,E,Q) is

tionsl of interest

48

= So(>,E,@ ti(t) , (F.1)

independentof ttie. The func-

is assumed to be given by

‘2

J JJ.1J. 9(S,E,Q,t)X(~,E,Q)d3rdE~dt ,
t.1.

where t2> tl.

An equivalentproblem is now proposed.

geometricaland material characteristicsof

(F.2)

The

the

originslproblem remain un&hsnged in the equivalent

problem. The

Se(r,E,~,t)=

.
where At . t

2
is

e@V~ent Source is given by

So(~,E,Q)

At
o

- tl. Then

forO<tC& (Fo3)
otherwise,

the equivalent functional

*



(F.4)
G(~,E,Q,t2;r’,E’,Q’,‘t2- ‘t)

where we is the neutron flux in the equivalentprob- = G(~jE,fl,t;~’,E’,Q’,0) . (F.1.1)

lem.
‘1’ heright-handsidesofEqs. (F.7) and (F.1O)

The proof that Je = J is obtained by expressing
are identfcsil.,which prwes that J = Je as postu-

. pe in terms of Green’s fictions and noting that the
lated. Therefore,the reciprocityrelationshipmay

Green’s functionsG and Ge are equal for identical
be substitutedinto Eq. (F.8) to evaluate t}lefunc-

erguments;this follows because the geanetricaland
tional, by sampling from the adjoint equation, as

material ch~acteristics are identical in the two

problems. The neutron flux in the two problems may

be expressed as

q(~,E,Q,d =Ill..G(~,E,$l,t;~’,E’,Q’,t’)S(~’,E’,&’,t’)d3r’dE’~’dt’

,

M. G(~,E,fl,t;~’,E’,s2’,0)So(~’,E’,fJ’)d3r’dE’dfJ’ , (F.5)

(F.6)

\iherethe expressionsfor S and Se ti Eqs. (F.1) amd

(F.3) were used. The equivalenceof G end Ge was J=~f~~~~~~(~,E,QJ,t;~ >E,Q,t2)

utilized to obtain the latter eqression in Eq. (F.6).

in Eqs. So(r’,E’,Q’)

end (F.4), ~ 1E(~,E,@Atd3r’dE’cMJ’d3rdEd&dt’ .

(F.12)

The expressionsfor the neutron flux

(F.5) ~d(F.6) may beusedin Eqs. (F.2)

respectively,to obtain

InEq. (F.8) the change of

t=(t2-

isnow made to obtain

variables, Therefore, in the sampling from the adjoint equation,

t’) , (F.9) the initial time is set to t2, the remaining initial

coordinatesof the pseudoneutronw be selected

J=J:20-JJ-J[ 1G(~,E,il,t;~’,E’,Q’,O)So(~’,E’,Q’)~(rJ3,Q)d3r’dE’d&’d3rdE~dt , (F.1O)

where a stationary system has been assumed so that with the density function
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dZ,Wa) ‘+8(E) $ > (F.13)

for ~ in the volume V containingnonzero & and the

initial weight msy be set to

X(~,E,-~)
fi=

~(r,E,Qa)

Here an isotropic selection

. (F.14)

of the direction of

flight and a uniform selection of the position have

been specified for illustration.

If a volumetric source is assumed (i.e., not

a surface source), the score at each collision is

obtained from Eq. (36) as

fi*So(r,E,-Qa)

~(~,E) ‘

whenever O < t < At.

This derivation is valid under the assumptions

that: (1) the systemis not changingwith ttie,

snd (2) the scoring cross section X is independent

of time.

(F.15)
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