LA-5240-MS

INFORMAL REPORT

 CIC-14 REPORT COLLECTION REPRODUCTION COPY

MCP Code Fluorescence-Routine Revision los of the Universify of Californio LOS ALAMOS, NEW MEXICO 87544

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

In the interest of prompt distribution, this LAMS report was not edited by the Technical Information staff.

Printed in the United States of America. Available from
National Technical Information Service
U. S. Department of Commerce

5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche $\$ 0.95$

MCP Code Fluorescence-Routine Revision

by

C. J. Everett
E. D. Cashwell

by

C. J. Everett and E. D. Cashwell

ABSTRACT

Abstract

A new method is described for treating fluorescence, which replaces the original subroutine of the Monte Carlo photon code (MCP), and eliminates its most undesirable features. The major changes include (a) elimination of the very inaccurate $1 / E^{3}$ law for photoelectric cross section, (b) updating of relative intensities of $\mathrm{K}-\mathrm{flu}$ urescence lines, (c) elimination of fluorescence from shells other than K and L, and (d) provision for secondary L-fluorescence. Except for the latter, the previous code is unchanged, as well as the storage format. However, the change in method is reflected in the new constants, which have been completely revised, and are included here in tabulated form.

I. INTRODUCTION

The revision of the original fluorescence treatment in the MCP code, ${ }^{1}$ described below, is designed to eliminate its most unsatisfactory features, by a method involving only a slight addition to the previous routine, but an almost total replacement of the constants in " Z-section F " of the supporting library tape. The appended tables, now complete for all elements $12 \leqslant 2 \leqslant 94$, are identical in format with the existing data of that section, except for some reductions in the length f for $Z \geqslant 70$. These reductions are due to the elimination of fluorescence from shells other than K and L. The probability of ejection from other shells, as well as the corresponding yields and fluorescent energies, are all comparatively small, and are greatest for high 2 , where the p.e. cross section is enormous at the fluorescent energies. We therefore assume local absorption for such fluorescence.

Given a photoelectric event, the purpose of the present fluorescence subroutine is therefore to determine from which of the two shells, K or L, an electron is ejected (if either), and the fluorescent photon energy emitted (if any).

In Fig. 1, we give for easy reference an overview of the data to be discussed, and upon which Table I is based.

II. EDGE ENERGIES e

The single K-edge energy E_{K} is taken from Table II of Ref. 2, being identical with that of Ref. 3, which was used before. The L-edge energy (for $Z \geqslant 31$) is regarded as the simple average

$$
\bar{E}_{L}=\left(E_{L 1}+E_{L 2}+E_{L 3}\right) / 3
$$

the individual $E_{L i}$ being those in Table II of Ref. 2. The energies E_{K}, E_{L}, compared with the incident photon energy E, serve to determine the possibility of K or Lejections. The L-shell is treated as a unit with respect to primary L-fluorescence.

III. FLUORESCENT ENERGIES F

Upon ejection of an electron from a shell of energy E_{S} by an incident photon ($E \geqslant E_{S}$) the vacancy created is filled by an electron transition from an "outer" shell of energy $E_{T}<E_{S}$. The photon, of energy $F=E_{S}-E_{T}$, created in the transition, may or may not escape the atom. In the former case, it is referred to as (primary) S-fluorescence.

Fig. 1. Overview of the data.

L-fluorescence is allowed only for $Z \geqslant 31$, and the single fluorescent energy F_{L} is taken as the L123 in Table V of Ref. 2. This is an average of all energy gaps from edges Mj , Nk , ... to all LI edges, weighted by their relative intensities, as given in Tables IV and VI of Ref. 2.

The single value F_{K} given for $12<2<19$ is the weighted average of the $K \alpha_{1}, K \alpha_{2}$ lines, given as $\bar{K} \alpha$ in Table V of Ref. 2.

For $20<2<94$, the individual fluorescent energies $\mathrm{FK} \alpha_{1}>\mathrm{FK} \alpha_{2}$ are taken from Table III of Ref. 2. These are pure lines resulting from the transitions $\mathrm{L} 3 \rightarrow \mathrm{~K}, \mathrm{~L} 2 \rightarrow \mathrm{~K}$, respectively. For $20 \leqslant z<94$, the fluorescent energy $F K \beta_{1}^{-}(M 2+K$, $M 3 \rightarrow K, M 4 \rightarrow K$, composite) is also allowed and is taken as the weighted average of the three energy differences, computed from Tables III, VI of Ref. 2.

For $37 \leqslant z<94$, the tabulated energy $F K B_{2}^{-}$ $(\mathrm{N} 2 \rightarrow \mathrm{~K}, \mathrm{~N} 3 \rightarrow \mathrm{~K})$ is the corresponding weighted

Fig. 2. Fluorescent "Lines".
average of these two lines, obtained in the same way.

Note the order of tabulation in Fig. 1 and the relations

$$
\begin{aligned}
& 12 \leqslant z \leqslant 19 . \quad \bar{K} \alpha=\operatorname{Av} \cdot\left(K \alpha_{1}, K \alpha_{2}\right) \\
& 20<z<30 . \quad K \alpha_{1}, K \alpha_{2}, K \beta_{1}^{-} \\
& 31 \leqslant Z \leqslant 36 . \quad \bar{L}_{123} A v_{1}, K \alpha_{1}, K \alpha_{2}, K \beta_{1} \\
& 37 \leqslant Z \leqslant 94 . \quad \bar{L}_{123} A v_{1}, K \alpha_{1}, K \alpha_{2}, K \beta_{1}^{\prime}, K \beta_{2}^{\prime} \\
& \mathrm{F}_{\mathrm{L}}<\mathrm{FK} \alpha_{2}<\mathrm{FK} \alpha_{1}<\mathrm{FK} \beta_{1}<\mathrm{FK} \beta_{2}
\end{aligned}
$$

The fluorescent "lines" provided for are indicated very schematically in Fig. 2.

IV. THE YIELDS Y

The yfeld X_{S} for a shell S is the total probability of fluorescent emission accompanying electron transition from all outer shells to a vacancy in shell S , however created (Cf. Part VII).

The data for X_{L} in Ref. $4(Z \geqslant 31)$ are very spotty; and the values now used, from Table VIII of Ref. 3, seem not too bad a compromise between those of Ref. 4 and those of Ref. 5, which were used previously.

The total yield Y_{K} is that used before, furnished by Israel and Storm as an updated version of Table VIII of Ref. 3. For this, we have no published
reference. (No yields are included in Ref. 2.) We note that the update is in general accord with Table II of Ref. 4 and for $Z>60$ is identical with Ref. 3, but is higher for $z \leqslant 60$.

As noted in Part III, K-fluorescence was assumed to consist of the three lines $K \alpha_{1}, K \alpha_{2}, K \beta_{1}$ for $20<z<36$ and for $z>36$ of the additional Ine $K \beta_{2}^{-}$. These assumptions were made before, but the relative intensities of the lines were based on Ref. 6. We now use the intensities given in Table VI of Ref. 2, which were based on the calculations of Scoffeld and are considered to be nearer the truth. From these data, the probabilities P_{1}, P_{2}, $p_{3}(20 \leqslant Z \leqslant 36)$ and $p_{1}, \ldots, p_{4}(z>36)$ of the components of the yleld Y_{K} were obtained, and thus the individual yields as indicated in Fig. 1.
V. RELATIVE PROBABILITIES ϕ OF K, L EJECTION A. For $12 \leqslant Z \leqslant 30$

Only K-fluorescence is considered and can occur only for $E \geqslant E_{X^{\prime}}$. For such an incident E, it is assumed (cf. Ref. 2, p. 569) that the probability of a K-ejection has the constant value

$$
\phi_{\mathrm{K}}=\left(\sigma_{\mathrm{K}}-\sigma_{\mathrm{K}}^{-}\right) / \sigma_{\mathrm{K}}=1-\rho_{\mathrm{K}}
$$

where $\rho_{K}=\sigma_{K}^{2} / \sigma_{K}$ is the ratio of the p.e. cross section at bottom and top of the K-edge, as indicated in Fig. 3. Here and elsewhere, σ° and σ are taken from Table I of Ref. 2, Note that ϕ_{K} is the entry σ_{K} (photo)/ (photo) given in Table VIII. Referring to Fig. 1 , it is clear that $\phi_{K} Y_{K}$ is the probability of fluorescence F_{K} for $12 \leqslant Z \leqslant 19$, while, for example, $\phi_{K} Y_{K} p_{1}$ is the probability of FK α_{1} fluorescence if $20 \leqslant Z \leqslant 30$, assuming a p.e. went at $E \geqslant E_{R^{\prime}}$.

Fig. 3. K-edge structure.
B. For $31 \leq 2 \leq 94$

Both L and K ejections are considered; and in order to follow the scheme of Ref. 5 used before, with no change in code, we require three numbers

$$
\phi_{K}, \phi_{L}, \phi_{0}
$$

which will determine the relative probabilities of K, L, and outer shell ejection for p.e. events at $E \geqslant E_{K}$, and such that ϕ_{L}, ϕ_{0} also define the chances of L or outer shell ejection for $\bar{E}_{L} \leqslant E<E_{K}$. Our basic assumption here is that the relative contribution of any edge to the total p.e. σ at that edge is $\left(\sigma-\sigma^{-}\right) / \sigma=1-\sigma^{-} / \sigma$, and that this contribution remains constant up to the next edge of higher energy (if any). If we define $\rho_{i}=\sigma_{1}^{\prime} / \sigma_{1}, 1=1,2,3$ (see Fig. 4), it is then easy to show that

$$
\begin{equation*}
\rho_{L} \equiv \rho_{1} \rho_{2} \rho_{3} \quad \text { and } \quad 1-\rho_{L} \tag{1}
\end{equation*}
$$

are the probabilities of outer and I shell ejections at the L_{I} edge. (The latter appears in Column 2 of Table VIII of Ref. 2, with some minor discrepancies.)

Similarly, with $\rho_{K} \equiv \sigma_{K}^{\prime} / \sigma_{K}$, one sees that $\rho_{L} \sigma_{K}^{-} / \sigma_{K}=\rho_{L} \rho_{R},\left(1-\rho_{L}\right) \sigma_{K}^{\prime} / \sigma_{K}=\left(1-\rho_{L}\right) \rho_{R}$, $\left(\sigma_{K}-\sigma_{K}^{\prime}\right) / \sigma_{K}=1-\rho_{K}$ are the probabilities of outer, L, and K ejections at the K-edge. The proportional numbers

$$
\begin{equation*}
\phi_{0}=\rho_{L}, \phi_{L}=1-\rho_{L}, \phi_{K}=\frac{1}{\rho_{K}}-1 \tag{2}
\end{equation*}
$$

also define these probabilities, when normed by their sum $1 / \rho_{K}$, and moreover the first two are precisely

Fig. 4. L and K edge structure.
the probabilities in (1). The numbers (2) therefore satisfy our requirements and appear in the ϕ column of Fig. 1 for $Z \geqslant 31$.

The basic assumptions adopted above constitute a radical departure from the method of Ref. 5, used before. The latter involved essentially the same procedure, but supposed the minimal σ_{t}^{\prime} value at an edge t given by $\sigma_{t}^{\circ}=\sigma_{t+1} E_{t+1}^{3} / E_{t}^{3}$, where $t+1$ is the next edge of lower energy. The underlying $1 / E^{3}$ law is very inaccurate, and it seems that the present method is superior, insofar as the values of σ^{-}, σ are correct in Table I of Ref. 2.

VI. THE FINAL TABULATED ϕ AND Y

In order to facilitate computation, the values listed as ϕ and Y in the final appended tables were derived from the entries in Fig. 1 as indicated in Fig. S. The tabulation for $37 \leqslant 2<94$ is the exact analogue of that for $31<2<36$, and is omitted.

Two examples, for $31<z \leqslant 36$, should make the method clear: (I) for a p.e. event at $E \geqslant E_{K}$, a random number between $Y_{4} /\left(\phi_{0}+\phi_{L}+\phi_{K}\right)$ and $Y_{3} /$ ($\phi_{0}+\phi_{L}+\phi_{K}$) implies a $F K \alpha_{2}$ fluorescence; (2) for $\mathrm{E}_{\mathrm{L}}<\mathrm{E}<\mathrm{E}_{\mathrm{K}}$, a random number between $\mathrm{Y}_{2} /\left(\phi_{\mathrm{O}}+\phi_{\mathrm{L}}\right)$ and $Y_{1} /\left(\phi_{0}+\phi_{L}\right)(=0)$ implies an F_{L} fluorescence.
VII. SECONDARY L-FLUORESCENCE

The fluorescence thus far discussed is primary, in the sense that it arises from the transition of an electron from an outer shell to a shell in which a vacancy has been created by ejection of an electron from that shell by the initial incident photon. Thus, we have allowed for K-fluorescenct following a Kejection, and for L-fluorescence following an L ejection. Only such primary fluorescence was considered in the original code.

In this final section, we attempt to show roughly why secondary L-fluorescence may be of the same order of importance as primary L-fluorscence, and then describe how the present code provides for it, in a necessarily approximate fashion.

We stipulate a p.e. event on an element $z \geqslant 31$, at an incident energy $E \geqslant E_{K}$. Then the probability of an L-ejection is ϕ_{L} / Σ, where $\Sigma=\phi_{0}+\phi_{L}+\phi_{K}$, and, as already stated, the overall probability of primary L-fluorescence is given by

$$
\begin{equation*}
P^{-}=\frac{\phi_{L}}{\Sigma} \cdot Y_{L} \tag{3}
\end{equation*}
$$

On the other hand, there is a probability $\phi_{\mathrm{K}} / \Sigma$ of a K-ejection. In this event, the K-vacancy may be filled by an L3 $\rightarrow K$ or $L 2 \rightarrow K$ transition, say with probabilities $P_{L 3 K}, P_{L 2 K}$, thus creating a vacancy in

Z	e	ϕ	Y	F
12-19	E_{K}	$\phi_{0}=\rho_{K}$	$\phi_{0} Y_{0}$	0
	E_{K}	$\phi_{0}+\phi_{\mathrm{K}}=1$	$\phi_{0} Y_{0}+\phi_{K} Y_{K}$	F_{K}
20-30	E_{K}	$\phi_{0}=\rho_{K}$	$\phi_{0} Y_{0}$	0
	E_{K}		$\phi_{0} Y_{0}+\phi_{K} Y_{K} P_{1}$	FK_{1}
	E_{K}		$\phi_{0} Y_{o}+\phi_{K} Y_{K} P_{1}+\phi_{K} Y_{K} p_{2}$	FK_{2}
	E_{K}	$\phi_{0}+\phi_{K}=1$	$\phi_{0} Y_{0}+\phi_{K} Y_{K} P_{1}+\phi_{K} Y_{K} p_{2}+\phi_{K} Y_{K} p_{3}$	FKB_{1}
31-36	\bar{E}_{L}	$\phi_{0}=\rho_{L}$	$\phi_{0} Y_{0}=0 \quad=Y_{1}$	0
	\bar{E}_{L}	$\phi_{0}+\phi_{L}=1$	$\phi_{0} Y_{0}+\phi_{L} Y_{L} \quad=Y_{2}$	F_{L}
	E_{K}		$\phi_{0} Y_{0}+\phi_{L} Y_{L}+\phi_{K} Y_{K} P_{1} \quad=Y_{3}$	FKO_{1}
	E_{K}		$\phi_{0} Y_{0}+\phi_{L} Y_{L}+\phi_{K} Y_{K} P_{1}+\phi_{R} Y_{K} \mathrm{P}_{2} \quad=Y_{4}$	FKO_{2}
	E_{K}	$\phi_{\mathrm{O}}+\phi_{L}+\phi_{\mathrm{K}}=\frac{1}{\rho_{K}}$	$\phi_{0} Y_{0}+\phi_{L} Y_{L}+\phi_{K} Y_{K} P_{1}+\phi_{K} Y_{K} P_{2}+\phi_{K} Y_{K} P_{3}=Y_{5}$	FKB ${ }_{\text {I }}$

Fig. 5. Final ϕ, Y tabulation.
the L3 or L2 subshell, and at the same time producing a photon $K \alpha_{1}$, or $K \alpha_{2}$. If we denote by $Q_{L 3 K}$, $\mathrm{Q}_{\mathrm{L} 2 \mathrm{~K}}$ the chances of the latter photons escaping the atom (as fluorescence), then clearly, as part of the K-yield,

$$
\begin{equation*}
P_{L 3 K} Q_{L 3 K}+P_{L 2 K} Q_{L 2 K}=Y_{K} P_{I}+Y_{K} P_{2} \tag{4}
\end{equation*}
$$

in our previous notation.
But, regarding the L3, L2 subshells as separate entities, we may expect (secondary) L3 or L2 fluorescence with yield probabilities $Y_{L 3}, Y_{L 2}$, due to the now existing vacancies created by $L \rightarrow K$ transition. Hence, the probability of this secondary L-fluorescence is given by

$$
\begin{equation*}
P^{\prime \prime}=\frac{\phi_{K}}{\Sigma} \cdot\left(P_{L 3 K} Y_{L 3}+P_{L 2 K} Y_{L 2}\right) \tag{5}
\end{equation*}
$$

Apparently none of the probabilities in parentheses are known. Making the assumption

$$
\begin{equation*}
Y_{L 3}=Y_{L 2}=Y_{L 1}=Y_{L} / 3 \tag{6}
\end{equation*}
$$

(5) becomes

$$
\begin{equation*}
P^{\prime \prime}=\frac{\phi_{K}}{\Sigma}\left(P_{L 3 K}+P_{L 2 K}\right) Y_{L} / 3 \tag{7}
\end{equation*}
$$

But from (7) and (4) we see that, for the secondary L-fluorescence,

$$
\begin{equation*}
P^{\prime \prime} \geqslant \frac{\phi_{K}}{\Sigma}\left(Y_{K} p_{1}+Y_{K} p_{2}\right) Y_{L} / 3 \equiv P^{*} \tag{8}
\end{equation*}
$$

and even P^{*} may exceed the primary probability P^{\prime}. For example, one finds from the appended tables (for $Z=79$),

$$
\begin{aligned}
P^{\prime} & =\frac{.282}{4.859}=.058<P^{*}=\frac{3.213-.282}{4.859} \cdot \frac{.282}{.759} \cdot \frac{1}{3} \\
& \cong .075 \leqslant P^{\prime \prime} .
\end{aligned}
$$

Thus, it would appear that secondary L-fluorescence should be included for the sake of consistency and accuracy.

Guided by the relation (8), we therefore make the following presumably inadequate provision in the revised code. In case of a p.e. event, on $z \geqslant 31$ at $E \geqslant E_{K}$, which is followed by $K \alpha_{1}$ or $K \alpha_{2}$ fluores-
cence, we assume secondary L3 or L2 fluorescence emitted, each with probability $Y_{L} / 3$, and take F_{L} as the fluorescent energy in either case.

We include in Fig. 6 a flow diagram for the fluorescence subroutine. The only change from the previous one is the by-pass FS for banking secondary flu orescence, and the Bank exit from (N).

REFERENCES

1. E. D. Cashwell, J. R. Neergaard, C. J. Everett, R. G. Schrandt, W. M. Taylor, G. D. Turner, "Monte Carlo Codes: MCG and MCP," Los Alamos Scientific Laboratory report LA-5157-MS (March 1973).
2. E. Storm, H. I. Israel, "Photon Cross Sections from 1 keV to 100 MeV for Elements $Z=1$ to $Z=100$," Nuclear Data Tables 7, 565-688 (1970).
3. E. Storm, K. I. Israel, "Photon Cross Sections from . 001 to 100 MeV for Elements 1 through $100, "$ Los Alamos Scientific Laboratory report LA-3753 (1967).
4. R. W. Fink, R. C. Jopson, H. Mark, C. D. Swift, "Atomic Fluorescence Yields," Lawrence Radiation Laboratory report UCRL-14327 (1965).
5. C. R. Marotta, "Updated Library Tape for Photran," Alr Farce Weapons Laboratory technical report AFWL-TR-67-11 (1967).
6. A. H. Wapstra et al, Nuclear Spectrometry Tables, Interscience Publishers Inc., N.Y. (1959).

Fig. 6. Flow diagram.

TABLE I
MCP CODE FLUORESCENCE UPDATE
TABLE I (Cont'd)

Z	e	ϕ	Y	F	$\underline{1}$	2	e	ϕ	Y	F	$\underline{1}$
12	. 001305	0.0784	0.0	0.0	2	28	. 008332	0.127	0.0	0.0	4
Mg	. 001305	1.0	0.0258	0.001255		Ni	. 008332	0.642	0.1942	0.007478	
							. 008332	0.906	0.2937	0.007461	
13	. 001560	0.0839	0.0	0.0	2		. 008332	1.0	0.3291	0.008265	
A1	. 001560	1.0	0.0347	0.001487							
						29	. 008981.	0.129	0.0	0.0	4
14	. 001839	0.0888	0.0	0.0	2	Cu	. 008981	0.642	0.2083	0.008048	
SI	. 001839	1.0	0.0465	0.001739			. 008981	0.905	0.3151	0.008028	
							. 008981	1.0	0.3537	0.008907	
15	. 002144	0.0927	0.0	0.0	2						
P	. 002144	1.0	0.0599	0.002014		30	. 009659	0.130	0.0	0.0	4
						2n	. 009659	0.642	0.2217	0.008639	
16	. 002472	0.0966	0.0	0.0	2		. 009659	0.905	0.3356	0.008616	
S	.002472	1.0	0.0732	0.002307			. 009659	1.0	0.3772	0.009572	
17	. 002824	0.1000	0.0	0.0	2	31	. 001186	0.118	0.0	0.0	5
C1	. 002824	1.0	0.0873	0.002622		Ga	. 001186	1.0	0.0088	0.001129	
							. 010367	4.861	1.808	0.009252	
18	. 003203	0.104	0.0	0.0	2		. 010367	6.844	2.732	0.009225	
Ar	. 003203	1.0	0.1066	0.002957			. 010367	7.588	3.079	0.010263	
19	. 003607	0.108	0.0	0.0	2	32	. 001293	0.125	0.0	0.0	5
K	. 003607	1.0	0.1267	0.003312		Ge	. 001293	1.0	0.0140	0.001221	
							. 011104	4.814	1.921	0.009887	
20	. 004037	0.110	0.0	0.0	4		. 011104	6.780	2.904	0.009856	
Ca	. 004037	0.644	0.0892	0.003691			. 011104	7.531	3.280	0.010981	
	. 004037	0.915	0.1345	0.003687							
	. 004037	1.0	0.1487	0.004012		33	. 001404	0.129	0.0	0.0	5
						As	. 001404	1.0	0.0183	0.001317	
21	. 004491	0.113	0.0	0.0	4		. 011867	4.754	2.015	0.010544	
Sc	. 004491	0.643	0.1007	0.004090			. 011867	6.689	3.044	0.010508	
	. 004491	0.913	0.1520	0.004085			. 011867	7.450	3.451	0.011725	
	. 004491	1.0	0.1687	0.004459							
						34	. 001520	0.137	0.0	0.0	5
22	. 004966	0.116	0.0	0.0	4	Se	. 001520	1.0	0.0233	0.001416	
Ti	. 004966	0.642	0.1162	0.004510			. 012658	4.693	2.128	0.011224	
	. 004966	0.910	0.1754	0.004504			. 012658	6.603	3.217	0.011183	
	. 004966	1.0	0.1953	0.004931			. 012658	7.367	3.653	0.012495	
23	. 005465	0.117	0.0	0.0	4	35	. 001643	0.141	0.0	0.0	5
V	. 005465	0.642	0.1297	0.004952		Br	. 001643	1.0	0.0275	0.001519	
	. 005465	0.910	0.1959	0.004944			. 013474	4.624	2.192	0.011923	
	. 005465	1.0	0.2184	0.005427			. 013474	6.495	3.309	0.011877	
							. 013474	7.259	3.765	0.013288	
24	. 005989	0:120	0.0	0.0	4						
Cr	. 005989	0.642	0.1441	0.005414		36	. 001774	0.147	0.0	0.0	5
	. 005989	0.908	0.2175	0.005405		Kr	. 001774	1.0	0.0333	0.001631	
	. 005989	1.0	0.2429	0.005947			. 014323	4.570	2.282	0.012648	
							. 014323	6.420	3.448	0.012596	
25	. 006539	0.122	0.0	0.0	4		. 014323	7.187	3.931	0.014110	
Mn	. 006539	0.642	0.1544	0.005899							
	. 006539	0.907	0.2331	0.005888		37	. 001911	0.152	0.0	0.0	6
	. 006539	1.0	0.2607	0.006492		Rb	.001911	1.0	0.0373	0.001745	
							. 015200	4.452	2.312	0.013395	
26	. 007112	0.124	0.0	0.0	4		. 015200	6.245	3.494	0.013337	
Fe	. 007112	0.642	0.1673	0.006404			. 015200	6.999	3.991	0.014958	
	. 007112	0.907	0.2529	0.006391			. 015200	7.078	4.043	0.015185	
	. 007112	1.0	0.2833	0.007059							
						38	. 002054	0.155	0.0	0.0	6
27	. 007709	0.126	0.0	0.0	4	Sr	. 002054	1.0	0.0414	0.001864	
Co	. 007709	0.643	0.1810	0.006930			. 016105	4.380	2.356	0.014165	
	. 007709	0.907	0.2734	0.006915			. 016105	6.139	3.561	0.014098	
	. 007709	1.0	0.3063	0.007649			. 016105	6.893	4.077	0.015832	
							. 016105	6.983	4.138	0.016085	

TABLE I (Cont'd)
TABLE I (Cont'd)

Z	e	ϕ	Y	F	£	\underline{Z}	e	ϕ	X	F	f
39	. 002202	0.161	0.0	0.0	6	48	. 003761	0.192	0.0		6
\mathbf{Y}	. 002202	1.0	0.0461	0.001987		Cd	. 003761	1.0	0.0856	0.003301	
	. 017038	4.327	2.402	0.014959			. 026711	3.911	2.534	0.023174	
	. 017038	6.058	3.628	0.014883			. 026711	5.463	3.839	0.022984	
	. 017038	6.814	4.164	0.016735			. 026711	6.223	4.478	0.026084	
	. 017038	6.908	4.231	0.017013			. 026711	6.351	4.586	0.026646	
40	. 002354	0.166	0.0	0.0	6	49	. 003969	0.195	0.0	0.0	6
zr	. 002354	1.0	0.0500	0.002113		In	. 003969	1.0	0.0902	0.003472	
	. 017998	4.280	2.444	0.015775			. 027940	3.880	2.538	0.024210	
	. 017998	5.996	3.697	0.015691			. 027940	5.413	3.841	0.024002	
	. 017998	6.757	4.253	0.017663			. 027940	6.171	4.485	0.027264	
	. 017998	6.857	4.326	0.017969			. 027940	6.304	4.598	0.027866	
41	. 002511	0.171	0.0	0.0	6	50	. 004183	0.198	0.0	0.0	6
Nb	. 002511	1.0	0.0547	0.002244		Sn	. 004183	1.0	0.0946	0.003647	
	. 018986	4.217	2.458	0.016616			. 029200	3.820	2.529	0.025271	
	. 018986	5.901	3.716	0.016522			. 029200	5.326	3.829	0.025044	
	. 018986	6.662	4.285	0.018620			. 029200	6.077	4.477	0.028472	
	. 018986	6.766	4.363	0.018954			. 029200	6.213	4.594	0.029114	
42	. 002671	0.175	0.0	0.0	6	51	. 004404	0.200	0.0	0.0	6
Mo	. 002671	1.0	0.0594	0.002378		Sb	. 004404	1.0	0.0984	0.003828	
	. 020000	4.193	2.495	0.017479			. 030491	3.777	2.508	0.026359	
	. 020000	5.873	3.777	0.017375			. 030491	5.266	3.800	0.026110	
	. 020000	6.644	4.365	0.019602			. 030491	6.013	4.448	0.029710	
	. 020000	6.753	4.448	0.019965			. 030491	6.152	4.569	0.030392	
43	. 002838	0.178	0.0	0.0	6	52	. 004631	0.202	0.0	0.0	6
Tc	. 002838	1.0	0.0641	0.002517		Te	. 004631	1.0	0.1029	0.004014	
*	. 021044	4.134	2.502	0.018367			. 031814	3.744	2.501	0.027473	
	. 021044	5.783	3.785	0.018251			. 031814	5.221	3.792	0.027202	
	. 021044	6.554	4.385	0.020612			. 031814	5.967	4.444	0.030978	
	. 021044	6.667	4.473	0.021006			. 031814	6.110	4.569	0.031701	
44	. 003010	0.183	0.0	0.0	6	53	. 004866	0.204	0.0	0.0	6
Ru	. 003010	1.0	0.0678	0.002669		I	. 004866	1.0	0.1067	0.004206	
	. 022117	4.075	2.510	0.019279			. 033170	3.720	2.498	0.028613	
	. 022117	5.696	3.797	0.019150			. 033170	5.186	3.787	0.028318	
	. 022117	6.459	4.403	0.021649			. 033170	5.932	4.443	0.032276	
	. 022117	6.570	4.491	0.022075			. 033170	6.074	4.568	0.033041	
45	. 003187	0.184	0.0	0.0	6	54	. 005110	0.205	0.0	0.0	6
Rh	. 003187	1.0	0.0726	0.002820		Xe	. 005110	1.0	0.1113	0.004402	
	. 023220	4.018	2.506	0.020216			. 034561	3.679	2.479	0.029779	
	. 023220	5.615	3.793	0.020074			. 034561	5.129	3.761	0.029459	
	. 023220	6.372	4.403	0.022716			. 034561	5.872	4.418	0.033605	
	. 023220	6.487	4.496	0.023173			. 034561	6.017	4.546	0.034415	
46	. 003370	0.188	0.0	0.0	6	55	. 005362	0.206	0.0	0.0	6
Pd	. 003370	1.0	0.0771	0.002976		Cs	. 005362	1.0	0.1159	0.004603	
	. 024350	3.958	2.500	0.021176			. 035985	3.637	2.463	0.030973	
	. 024350	5.523	3.782	0.021020			. 035985	5.062	3.731	0.030625	
	. 024350	6.273	4.396	0.023809			. 035985	5.799	4.387	0.034965	
	. 024350	6.397	4.498	0.024298			. 035985	5.947	4.519	0.035820	
47	. 003560	0.190	0.0	0.0	6	56	. 005619	0.208	0.0	0.0	6
A8	. 003560	1.0	0.0810	0.003136		Ba	. 005619	1.0	0.1196	0.004811	
	. 025514	3.927	2.510	0.022163			. 037441	3.602	2.446	0.032194	
	. 025514	5.482	3.801	0.021990			. 037441	5.013	3.707	0.031818	
	. 025514	6.233	4.424	0.024933			. 037441	5.748	4.364	0.036356	
	. 025514	6.362	4.531	0.025456			. 037441	5.900	4.500	0.037257	

TABLE I (Cont. ${ }^{\prime}$)
TABLE I (Cont'd)

\underline{Z}	e	ϕ	Y	F	\underline{f}	Z	e	ϕ	Y	F	f
57	. 005880	0.209	0.0	0.0	6	66	. 008472	0.223	0.0	0.0	6
La	. 005880	1.0	0.1250	0.005022		Dy	. 008472	1.0	0.1624	0.007155	
	. 038925	3.551	2.416	0.033441			. 053788	3.305	2.303	0.045998	
	. 038925	4.937	3.661	0.033034			. 053788	4.595	3.501	0.045208	
	. 038925	5.659	4.309	0.037775			. 053788	5.294	4.150	0.052058	
	. 038925	5.813	4.447	0.038728			. 053788	5.450	4.295	0.053482	
58	. 006145	0.211	0.0	0.0	6	67	. 008795	0.222	0.0	0.0	6
Ce	. 006145	1.0	0.1278	0.005237		Ho	. 008795	1.0	0.1665	0.007420	
*	. 040443	3.532	2.412	0.034720		*	. 055618	3.274	2.283	0.047546	
	. 040443	4.918	3.662	0.034279			. 055618	4.554	3.475	0.046700	
	. 040443	5.642	4.315	0.039229			. 055618	5.245	4.118	0.053817	
	. 040443	5.795	4.453	0.040233			. 055618	5.399	4.261	0.055297	
59	. 006413	0.211	0.0	0.0	6	68	. 009125	0.223	0.0	0.0	6
Pr	. 006413	1.0	0.1333	0.005450		Er	. 009125	1.0	0.1709	0.007691	
*	. 041991	3.491	2.387	0.036027		*	. 057486	3.249	2.272	0.049128	
	. 041991	4.857	3.623	0.035551			. 057486	4.517	3.456	0.048222	
	. 041991	5.575	4.273	0.040718			. 057486	5.206	4.100	0.055611	
	. 041991	5.726	4.410	0.041769			. 057486	5.359	4.243	0.057151	
60	. 006686	0.213	0.0	0.0	6	69	. 009460	0.225	0.0	0.0	6
Nd	. 006686	1.0	0.1362	0.005684		Tm	. 009460	1.0	0.1744	0.007966	
	. 043569	3.461	2.376	0.037361			. 059390	3.225	2.259	0.050742	
	. 043569	4.813	3.606	0.036847			. 059390	4.482	3.437	0.049773	
	. 043569	5.529	4.258	0.042237			. 059390	5.169	4.081	0.057441	
	. 043569	5.679	4.394	0.043335			. 059390	5.320	4.222	0.059039	
61	. 006967	0.215	0.0	0.0	6	70	. 009803	0.225	0.0	0.0	6
Pm	. 006967	1.0	0.1413	0.005917		Yb	. 009803	1.0	0.1782	0.08250	
*	. 045184	3.452	2.377	0.038725		*	. 061332	3.196	2.240	0.052389	
	. 045184	4.802	3.608	0.038171			. 061332	4.446	3.414	0.051354	
	. 045184	5.517	4.260	0.043790			. 061332	5.131	4.057	0.059308	
	. 045184	5.671	4.400	0.044939			. 061332	5.281	4.198	0.060965	
62	. 007255	0.216	0.0	0.0	6	71	. 010156	0.227	0.0	0.0	6
Sm	. 007255	1.0	0.1450	0.006154		Lu	. 010156	1.0	0.1832	0.008540	
*	. 046834	3.410	2.353	0.040118		*	. 063316	3.159	2.215	0.054071	
	. 046834	4.742	3.573	0.039522			. 063316	4.390	3.373	0.052967	
	. 046834	5.452	4.223	0.045376			. 063316	5.065	4.008	0.061213	
	. 046834	5.609	4.367	0.046579			. 063316	5.217	4.151	0.062931	
63	. 007549	0.216	0.0	0.0	6	72	. 010524	0.229	0.0	0.0	6
Eu	. 007549	1.0	0.1497	0.006396		Hf	. 010524	1.0	0.1866	0.008839	
	. 048519	3.382	2.341	0.041542			. 065345	3.131	2.194	0.055785	
	. 048519	4.701	3.554	0.040901			. 065345	4.349	3.341	0.054606	
	. 048519	5.408	4.204	0.046995			. 065345	5.020	3.973	0.063153	
	. 048519	5.563	4.347	0.048253			. 065345	5.170	4.114	0.064942	
64	. 007849	0.219	0.0	0.0	6	73	. 010899	0.229	0.0	0.0	6
Gd	. 007849	1.0	0.1539	0.006642		Ta	. 010899	1.0	0.1912	0.009142	
*	. 050239	3.360	2.330	0.042996			. 067416	3.110	2.183	0.057536	
	. 050239	4.673	3.541	0.042309			. 067416	4.322	3.327	0.056280	
	. 050239	5.375	4.188	0.048649			. 067416	4.988	3.956	0.065132	
	. 050239	5.529	4.330	0.049959			. 067416	5.137	4.097	0.066991	
65	. 008158	0.220	0.0	0.0	6	74	. 011281	0.231	0.0	0.0	6
Tb	. 008158	1.0	0.1576	0.006896		W	. 011281	1.0	0.2253	0.009454	
*	. 051996	3.329	2.315	0.044482			. 069525	3.084	2.196	0.059321	
	. 051996	4.628	3.518	0.043744			. 069525	4.284	3.331	0.057984	
	. 051996	5.327	4.165	0.050336			. 069525	4.947	3.958	0.067147	
	. 051996	5.479	4.306	0.051703			. 069525	5.094	4.097	0.069078	

TABLE I (Cont'd)

2	e	ϕ	X	F	f	2	e	ϕ	Y	F	$\underline{1}$
75	. 011673	0.232	0.0	0.0	6	84	. 015665	0.246	0.0	0.0	6
Re	. 011673	1.0	0.2427	0.009775		Po	. 015665	1.0	0.3122	0.012987	
	. 071676	3.060	2.196	0.061142		*	. 093105	2.801	2.036	0.079291	
	. 071676	4.248	3.322	0.059719			. 093105	3.883	3.071	0.076861	
	. 071676	4.909	3.949	0.069205			. 093105	4.486	3.648	0.089627	
	. 071676	5.055	4.087	0.071206			. 093105	4.631	3.787	0.092350	
76	. 012075	0.232	0.0	0.0	6	85	. 016163	0.248	0.0	0.0	6
08	. 012075	1.0	0.2565	0.010103		At	. 016163	1.0	0.3166	0.013383	
	. 073871	3.020	2.173	0.063000			. 095730	2.778	2.020	0.081516	
	. 073871	4.194	3.287	0.061486			. 095730	3.852	3.049	0.078945	
	. 073871	4.845	3.905	0.071304			. 095730	4.448	3.620	0.092120	
	. 073871	4.993	4.045	0.073377			. 095730	4.592	3.758	0.094937	
77	. 012486	0.235	0.0	0.0	6	86	. 016670	0.249	0.0	0.0	6
Ir	. 012486	1.0	0.2670	0.010436		Rn	. 016670	1.0	0.3207	0.013784	
	. 076111	2.999	2.166	0.064896		*	. 098404	2.744	1.992	0.083785	
	. 076111	4.163	3.272	0.063287			. 098404	3.799	3.003	0.081067	
	. 076111	4.812	3.889	0.073442			. 098404	4.385	3.564	0.094661	
	. 076111	4.958	4.028	0.075590			. 098404	4.530	3.703	0.097573	
78	. 012906	0.236	0.0	0.0	6	87	. 017191	0.250	0.0	0.0	6
$P \mathrm{t}$. 012906	1.0	0.2758	0.010776		Fr	. 017191	1.0	0.3232	0.014196	
	. 078395	2.964	2.144	0.066831		*	. 101137	2.719	1.972	0.086107	
	. 078395	4.114	3.238	0.065122			. 101137	3.765	2.975	0.083233	
	. 078395	4.753	3.846	0.075624			. 101137	4.344	3.530	0.097256	
	. 078395	4.897	3.983	0.077846			. 101137	4.487	3.667	0.100264	
79	. 013335	0.241	0.0	0.0	6	88	. 017722	0.250	0.0	0.0	6
Au	. 013335	1.0	0.2823	0.011125		Ra	. 017722	1.0	0.3278	0.014618	
	. 080725	2.941	2.130	0.068806			. 103922	2.699	1.959	0.088476	
	. 080725	4.079	3.213	0.066991			. 103922	3.735	2.954	0.085438	
	. 080725	4.712	3.816	0.077848			. 103922	4.312	3.508	0.099902	
	. 080725	4.859	3.956	0.080146			. 103922	4.454	3.644	0.102999	
80	. 013778	0.240	0.0	0.0	6	89	. 018266	0.251	0.0	0.0	6
Hg	. 013778	1.0	0.2903	0.011480		Ac	. 018266	1.0	0.3288	0.015049	
	. 083102	2.908	2.108	0.070819		*	. 106759	2.676	1.938	0.090889	
	. 083102	4.035	3.182	0.068893			. 106759	3.705	2.926	0.087676	
	. 083102	4.660	3.778	0.080112			. 106759	4.276	3.474	0.102599	
	. 083102	4.809	3.920	0.082491			. 106759	4.420	3.612	0.105783	
81	. 014233	0.241	0.0	0.0	6	90	. 018820	0.252	0.0	0.0	6
T1	. 014233	1.0	0.2968	0.011815		Th	. 018820	1.0	0.3321	0.015489	
	. 085530	2.879	2.090	0.072874			. 109651	2.651	1.917	0.093351	
	. 085530	3.991	3.151	0.070833			. 109651	3.676	2.901	0.089958	
	. 085530	4.611	3.742	0.082422			. 109651	4.241	3.443	0.105348	
	. 085530	4.758	3.882	0.084883			. 109651	4.383	3.579	0.108616	
82	. 014699	0.242	0.0	0.0	6	91	. 019384	0.254	0.0	0.0	6
Pb	. 014699	1.0	0.3032	0.012217		Pa	. 019384	1.0	0.3335	0.015939	
	. 088004	2.854	2.074	0.074969		*	. 112601	2.625	1.894	0.095868	
	. 088004	3.957	3.127	0.072804			. 112601	3.639	2.867	0.092287	
	. 088004	4.570	3.712	0.084777			. 112601	4.196	3.402	0.108155	
	. 088004	4.715	3.850	0.087320			. 112601	4.336	3.536	0.111522	
83	. 015175	0.244	0.0	0.0	6	92	. 019959	0.254	0.0	0.0	6
Bi	. 015175	1.0	0.3084	0.012598		U	. 019959	1.0	0.3350	0.016398	
	. 090526	2.832	2.059	0.077106			. 115606	2.602	1.875	0.098436	
	. 090526	3.924	3.103	0.074812			. 115606	3.604	2.838	0.094658	
	. 090526	4.535	3.687	0.087179			. 115606	4.158	3.370	0.111015	
	. 090526	4.678	3.824	0.089805			. 115606	4.296	3.503	0.114485	

table I (Cont'd)

\underline{Z}	e	ϕ	Y	F	\underline{f}
93	. 020547	0.257	0.0	0.0	6
Np	. 020547	1.0	0.3358	0.016867	
*	. 118670	2.575	1.851	0.101057	
	. 118670	3.562	2.800	0.097070	
	. 118670	4.111	3.328	0.113931	
	. 118670	4.247	3.459	0.117503	
94	. 021147	0.256	0.0	0.0	6
Pu	. 021147	1.0	0.3378	0.017348	
	. 121797	2.539	1.819	0.103734	
	. 121797	3.509	2.752	0.099527	
	. 121797	4.046	3.269	0.116905	
	. 121797	4.180	3.398	0.120583	

*Element omitted in previous version.

