

UNITED STATES ATOMIC ENERGY COMMISSION CONTRACT W-7405-ENG, 36 This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

In the interest of prompt distribution, this LAMS report was not edited by the Technical Information staff.

Printed in the United States of America. Available from National Technical Information Service U. S. Department of Commerce 5285 Port Royal Road Springfield, Virginia 22151 Price: Printed Copy \$3.00; Microfiche \$0.95

LA-5240-MS Informal Report UC-32 & 34

ISSUED: May 1973

C. J. Everett E. D. Cashwell

MCP CODE FLUORESCENCE-ROUTINE REVISION

Ъy

C. J. Everett and E. D. Cashwell

ABSTRACT

A new method is described for treating fluorescence, which replaces the original subroutine of the Monte Carlo photon code (MCP), and eliminates its most undesirable features. The major changes include (a) elimination of the very inaccurate $1/E^3$ law for photoelectric cross section, (b) updating of relative intensities of K-fluorescence lines, (c) elimination of fluorescence from shells other than K and L, and (d) provision for secondary L-fluorescence. Except for the latter, the previous code is unchanged, as well as the storage format. However, the change in method is reflected in the new constants, which have been completely revised, and are included here in tabulated form.

I. INTRODUCTION

The revision of the original fluorescence treatment in the MCP code,¹ described below, is designed to eliminate its most unsatisfactory features, by a method involving only a slight addition to the previous routine, but an almost total replacement of the constants in "Z-section F" of the supporting library tape. The appended tables, now complete for all elements $12 \le Z \le 94$, are identical in format with the existing data of that section, except for some reductions in the length f for $Z \ge 70$. These reductions are due to the elimination of fluorescence from shells other than K and L. The probability of ejection from other shells, as well as the corresponding yields and fluorescent energies, are all comparatively small, and are greatest for high Z, where the p.e. cross section is enormous at the fluorescent energies. We therefore assume local absorption for such fluorescence.

Given a photoelectric event, the purpose of the present fluorescence subroutine is therefore to determine from which of the two shells, K or L, an electron is ejected (if either), and the fluorescent photon energy emitted (if any). In Fig. 1, we give for easy reference an overview of the data to be discussed, and upon which Table I is based.

II. EDGE ENERGIES e

The single K-edge energy E_{K} is taken from Table II of Ref. 2, being identical with that of Ref. 3, which was used before. The L-edge energy (for $Z \ge 31$) is regarded as the simple average

$$\bar{E}_{L} = (E_{L1} + E_{L2} + E_{L3})/3$$

the individual E_{Li} being those in Table II of Ref. 2. The energies E_K , E_L , compared with the incident photon energy E, serve to determine the possibility of K or L ejections. The L-shell is treated as a unit with respect to primary L-fluorescence.

III. FLUORESCENT ENERGIES F

Upon ejection of an electron from a shell of energy E_S by an incident photon ($E \ge E_S$) the vacancy created is filled by an electron transition from an "outer" shell of energy $E_T < E_S$. The photon, of energy $F = E_S - E_T$, created in the transition, may or may not escape the atom. In the former case, it is referred to as (primary) S-fluorescence.

Fig. 1. Overview of the data.

L-fluorescence is allowed only for $Z \ge 31$, and the single fluorescent energy F_L is taken as the $\overline{L}123$ in Table V of Ref. 2. This is an average of all energy gaps from edges Mj, Nk, ... to all Li edges, weighted by their relative intensities, as given in Tables IV and VI of Ref. 2.

The single value F_K given for $12 \le Z \le 19$ is the weighted average of the Ka₁, Ka₂ lines, given as $\bar{K}\alpha$ in Table V of Ref. 2.

For 20 < 2 < 94, the individual fluorescent energies $FK\alpha_1 > FK\alpha_2$ are taken from Table III of Ref. 2. These are pure lines resulting from the transitions L3 + K, L2 + K, respectively. For 20 < Z < 94, the fluorescent energy $FK\beta_1^-$ (M2 + K, M3 + K, M4 + K, composite) is also allowed and is taken as the weighted average of the three energy differences, computed from Tables III, VI of Ref. 2.

For $37 \le Z \le 94$, the tabulated energy $FK\beta_2^2$ (N2 + K, N3 + K) is the corresponding weighted

Fig. 2. Fluorescent "Lines".

average of these two lines, obtained in the same way.

Note the order of tabulation in Fig. 1 and the relations

$$12 \le z \le 19. \quad \bar{K}\alpha = Av.(K\alpha_1, K\alpha_2)$$

$$20 \le z \le 30. \quad K\alpha_1, \quad K\alpha_2, \quad K\beta_1^-$$

$$31 \le z \le 36. \quad \bar{L}_{123} \quad Av., \quad K\alpha_1, \quad K\alpha_2, \quad K\beta_1^-$$

$$37 \le z \le 94. \quad \bar{L}_{123} \quad Av., \quad K\alpha_1, \quad K\alpha_2, \quad K\beta_1^-, \quad K\beta_2^-$$

$$F_L \le FK\alpha_2 \le FK\alpha_1 \le FK\beta_1^- \le FK\beta_2^-$$

The fluorescent "lines" provided for are indicated very schematically in Fig. 2.

IV. THE YIELDS Y

The yield Y_S for a shell S is the total probability of fluorescent <u>emission</u> accompanying electron transition from all outer shells to a vacancy in shell S, however created (Cf. Part VII).

The data for Y_L in Ref. 4 (Z > 31) are very spotty; and the values now used, from Table VIII of Ref. 3, seem not too bad a compromise between those of Ref. 4 and those of Ref. 5, which were used previously.

The <u>total</u> yield Y_K is that used before, furnished by Israel and Storm as an updated version of Table VIII of Ref. 3. For this, we have no published reference. (No yields are included in Ref. 2.) We note that the update is in general accord with Table II of Ref. 4 and for Z > 60 is identical with Ref. 3, but is higher for $Z \leq 60$.

As noted in Part III, K-fluorescence was assumed to consist of the three lines $K\alpha_1$, $K\alpha_2$, $K\beta_1$ for $20 \le Z \le 36$ and for Z > 36 of the additional line $K\beta_2$. These assumptions were made before, but the relative intensities of the lines were based on Ref. 6. We now use the intensities given in Table VI of Ref. 2, which were based on the calculations of Scofield and are considered to be nearer the truth. From these data, the probabilities P_1 , P_2 , P_3 (20 \le Z \le 36) and P_1 , ..., P_4 (Z > 36) of the components of the yield Y_K were obtained, and thus the individual yields as indicated in Fig. 1.

V. RELATIVE PROBABILITIES ϕ OF K, L EJECTION A. For $12 \le z \le 30$

Only K-fluorescence is considered and can occur only for $E \ge E_{K}$. For such an incident E, it is assumed (cf. Ref. 2, p. 569) that the probability of a K-ejection has the constant value

 $\phi_{K} = (\sigma_{K} - \sigma_{K})/\sigma_{K} = 1 - \rho_{K}$

where $\rho_{\rm K} = \sigma_{\rm K}'/\sigma_{\rm K}$ is the ratio of the p.e. cross section at bottom and top of the K-edge, as indicated in Fig. 3. Here and elsewhere, σ' and σ are taken from Table I of Ref. 2. Note that $\phi_{\rm K}$ is the entry $\sigma_{\rm K}$ (photo)/ σ (photo) given in Table VIII. Referring to Fig. 1, it is clear that $\phi_{\rm K} Y_{\rm K}$ is the probability of fluorescence $F_{\rm K}$ for 12 < 2 < 19, while, for example, $\phi_{\rm K} Y_{\rm K} P_1$ is the probability of FKa₁ fluorescence if 20 < Z < 30, assuming a p.e. went at E > E_K.

Fig. 3. K-edge structure.

$B. \quad For \ 31 \le Z \le 94$

Both L and K ejections are considered; and in order to follow the scheme of Ref. 5 used before, with no change in code, we require three numbers

which will determine the relative probabilities of K, L, and outer shell ejection for p.e. events at $E \ge E_{\rm K}$, and such that $\phi_{\rm L}$, $\phi_{\rm O}$ also define the chances of L or outer shell ejection for $\overline{\rm E}_{\rm r} \le {\rm E} < {\rm E}_{\rm r}$.

Our basic assumption here is that the relative contribution of any edge to the total p.e. σ at that edge is $(\sigma - \sigma')/\sigma = 1 - \sigma'/\sigma$, and that this contribution remains constant up to the next edge of higher energy (if any). If we define $\rho_i = \sigma'_i/\sigma_i$, i = 1,2,3(see Fig. 4), it is then easy to show that

$$\rho_{\rm L} \equiv \rho_1 \rho_2 \rho_3 \quad \text{and} \quad 1 - \rho_{\rm L} \tag{1}$$

are the probabilities of outer and L shell ejections at the L_1 edge. (The latter appears in Column 2 of Table VIII of Ref. 2, with some minor discrepancies.)

Similarly, with $\rho_K \equiv \sigma_K^{\prime}/\sigma_K$, one sees that $\rho_L \sigma_K^{\prime}/\sigma_K = \rho_L \rho_K$, $(1 - \rho_L) \sigma_K^{\prime}/\sigma_K = (1 - \rho_L) \rho_K$, $(\sigma_K - \sigma_K^{\prime})/\sigma_K = 1 - \rho_K$ are the probabilities of outer, L. and K ejections at the K-edge. The proportional numbers

$$\phi_0 = \rho_L, \ \phi_L = 1 - \rho_L, \ \phi_K = \frac{1}{\rho_K} - 1$$
 (2)

also define these probabilities, when normed by their sum $1/\rho_{\rm g}$, and moreover the first two are precisely

Fig. 4. L and K edge structure.

the probabilities in (1). The numbers (2) therefore satisfy our requirements and appear in the ϕ column of Fig. 1 for $Z \ge 31$.

The basic assumptions adopted above constitute a radical departure from the method of Ref. 5, used before. The latter involved essentially the same procedure, but supposed the minimal σ'_t value at an edge t given by $\sigma'_t = \sigma_{t+1} E^3_{t+1}/E^3_t$, where t + 1 is the next edge of lower energy. The underlying $1/E^3$ law is very inaccurate, and it seems that the present method is superior, insofar as the values of σ' , σ are correct in Table I of Ref. 2.

VI. THE FINAL TABULATED \$ AND Y

In order to facilitate computation, the values listed as ϕ and Y in the final appended tables were derived from the entries in Fig. 1 as indicated in Fig. 5. The tabulation for 37 < Z < 94 is the exact analogue of that for 31 < Z < 36, and is omitted.

Two examples, for $31 \le Z \le 36$, should make the method clear: (1) for a p.e. event at $E \ge E_K$, a random number between $Y_4/(\phi_0 + \phi_L + \phi_K)$ and $Y_3/(\phi_0 + \phi_L + \phi_K)$ implies a FK α_2 fluorescence; (2) for $E_L \le E \le E_K$, a random number between $Y_2/(\phi_0 + \phi_L)$ and $Y_1/(\phi_0 + \phi_L)$ (= 0) implies an F_L fluorescence.

VII. SECONDARY L-FLUORESCENCE

The fluorescence thus far discussed is <u>primary</u>, in the sense that it arises from the transition of an electron from an outer shell to a shell in which a vacancy has been created by ejection of an electron from that shell by the initial incident photon. Thus, we have allowed for K-fluorescenct following a Kejection, and for L-fluorescence following an Lejection. Only such primary fluorescence was considered in the original code.

In this final section, we attempt to show roughly why secondary L-fluorescence may be of the same order of importance as primary L-fluorscence, and then describe how the present code provides for it, in a necessarily approximate fashion.

We stipulate a p.e. event on an element $Z \ge 31$, at an incident energy $E \ge E_K$. Then the probability of an L-ejection is ϕ_L/Σ , where $\Sigma = \phi_0 + \phi_L + \phi_K$, and, as already stated, the overall probability of primary L-fluorescence is given by

$$\mathbf{P}^{\prime} = \frac{\phi_{\mathrm{L}}}{\Sigma} \cdot \mathbf{Y}_{\mathrm{L}}$$
(3)

On the other hand, there is a probability $\phi_{\rm K}/\Sigma$ of a K-ejection. In this event, the K-vacancy may be filled by an L3 \rightarrow K or L2 \rightarrow K transition, say with probabilities $P_{\rm L,3K}$, $P_{\rm L,2K}$, thus creating a vacancy in

<u>Z</u>	e	φ	<u> </u>		F
12-19	^Е к	φ _o = ρ _K	¢ _و ۲ [°]		0
	^Е К	$\phi_0 + \phi_K = 1$	$\phi_{o}Y_{o} + \phi_{K}Y_{K}$		F _K
20-30	Е _К	φ _o = ρ _K	¢ [°] X°		0
	Eĸ		$\phi_{o}Y_{o} + \phi_{K}Y_{K}P_{1}$		FKa1
	^E K		$\phi_{o}^{Y}_{o} + \phi_{K}^{Y}_{K}^{p}_{1} + \phi_{K}^{Y}_{K}^{p}_{2}$		FKa2
	^Е К	$\phi_{o} + \phi_{K} = 1$	$\phi_{o}v_{o} + \phi_{K}v_{K}p_{1} + \phi_{K}v_{K}p_{2} + \phi_{K}v_{K}p_{3}$		fkβ1
31-36	Ē	$\phi_o = \rho_L$	¢ ₀ Y ₀ = 0	= Y ₁	0
	ĒL	$\phi_0 + \phi_L = 1$	$\phi_{o}Y_{o} + \phi_{L}Y_{L}$	= Y ₂	F _L
	^Е К		$\phi_{o}Y_{o} + \phi_{L}Y_{L} + \phi_{K}Y_{K}p_{1}$	= Y ₃	FKa1
	Eĸ		$\phi_{o}Y_{o} + \phi_{L}Y_{L} + \phi_{K}Y_{K}P_{1} + \phi_{K}Y_{K}P_{2}$	= Y ₄	FKa2
	^Е К	$\phi_{0} + \phi_{L} + \phi_{K} = \frac{1}{\rho_{K}}$	$\phi_{o}^{Y}{}_{o} + \phi_{L}^{Y}{}_{L} + \phi_{K}^{Y}{}_{K}^{p}{}_{1} + \phi_{K}^{Y}{}_{K}^{p}{}_{2} + \phi_{K}^{Y}{}_{K}^{p}{}_{3}$	= Y ₅	FKB 1

Fig. 5. Final ϕ , Y tabulation.

the L3 or L2 subshell, and at the same time producing a photon $K\alpha_1$, or $K\alpha_2$. If we denote by Q_{L3K} , Q_{L2K} the chances of the latter photons escaping the atom (as fluorescence), then clearly, as part of the K-yield,

$${}^{P}_{L3K}{}^{Q}_{L3K} + {}^{P}_{L2K}{}^{Q}_{L2K} = {}^{Y}_{K}{}^{p}_{1} + {}^{Y}_{K}{}^{p}_{2}$$
(4)

in our previous notation.

But, regarding the L3, L2 subshells as separate entities, we may expect (secondary) L3 or L2 fluorescence with yield probabilities Y_{L3} , Y_{L2} , due to the now existing vacancies created by $L \rightarrow K$ <u>transition</u>. Hence, the probability of this secondary L-fluorescence is given by

$$P'' = \frac{\phi_{K}}{\Sigma} \cdot (P_{L3K}Y_{L3} + P_{L2K}Y_{L2}), \qquad (5)$$

Apparently none of the probabilities in parentheses are known. Making the assumption

$$Y_{L3} = Y_{L2} = Y_{L1} = Y_{L}/3$$
 (6)

(5) becomes

$$P'' = \frac{\phi_K}{\Sigma} (P_{L3K} + P_{L2K}) Y_L/3.$$
 (7)

But from (7) and (4) we see that, for the secondary L-fluorescence,

$$P'' \geq \frac{\Phi_K}{\Sigma} (Y_K P_1 + Y_K P_2) Y_L / 3 \equiv P^*$$
(8)

and even P^{*} may exceed the primary probability P['].

For example, one finds from the appended tables (for Z = 79),

$$P' = \frac{.282}{4.859} = .058 < P' = \frac{3.213 - .282}{4.859} \cdot \frac{.282}{.759} \cdot \frac{1}{3}$$

Thus, it would appear that secondary L-fluorescence should be included for the sake of consistency and accuracy.

Guided by the relation (8), we therefore make the following presumably inadequate provision in the revised code. In case of a p.e. event, on $Z \ge 31$ at $E \ge E_{\rm K}$, which is followed by $K\alpha_1$ or $K\alpha_2$ fluorescence, we assume secondary L3 or L2 fluorescence emitted, each with probability $Y_L/3$, and take F_L as the fluorescent energy in either case.

We include in Fig. 6 a flow diagram for the fluorescence subroutine. The only change from the previous one is the by-pass FS for banking secondary fluorescence, and the Bank exit from (N).

REFERENCES

- E. D. Cashwell, J. R. Neergaard, C. J. Everett, R. G. Schrandt, W. M. Taylor, G. D. Turner, "Monte Carlo Codes: MCG and MCP," Los Alamos Scientific Laboratory report LA-5157-MS (March 1973).
- E. Storm, H. I. Israel, "Photon Cross Sections from 1 keV to 100 MeV for Elements Z = 1 to Z = 100," Nuclear Data Tables <u>7</u>, 565-688 (1970).
- E. Storm, H. I. Israel, "Photon Cross Sections from .001 to 100 MeV for Elements 1 through 100," Los Alamos Scientific Laboratory report LA-3753 (1967).
- R. W. Fink, R. C. Jopson, H. Mark, C. D. Swift, "Atomic Fluorescence Yields," Lawrence Radiation Laboratory report UCRL-14327 (1965).
- C. R. Marotta, "Updated Library Tape for Photran," Air Force Weapons Laboratory technical report AFWL-TR-67-11 (1967).
- A. H. Wapstra et al, <u>Nuclear Spectrometry Tables</u>, Interscience Publishers Inc., N.Y. (1959).

Fig. 6. Flow diagram.

TABLE I MCP CODE FLUORESCENCE UPDATE

.

.

۴

,

•

TABLE I (Cont'd)

4	e	¢	<u> </u>	F	<u>_f</u> _
12	.001305	0.0784	0.0	0.0	2
Mg	.001305	1.0	0.0258	0.001255	
13	.001560	0.0839	0.0	0.0	2
<u>A1</u>	.001560	1.0	0.0347	0.001487	
14	.001839	0.0888	0.0	0.0	2
<u>S1</u>	.001839	1.0	0.0465	0.001739	
15	.002144	0.0927	0.0	0.0	2
<u>P</u>	.002144	1.0	0.0599	0.002014	_
16	.002472	0.0966	0.0	0.0	2
<u>s</u>	.002472	1.0	0.0732	0.002307	_ <u>.</u>
17	.002824	0.1000	0.0	0.0	2
<u>C1</u>	.002824	1.0	0.0873	0.002622	
18	.003203	0.104	0.0	οó	2
Ar	.003203	1.0	0.1066	0.002957	2
19	.003607	0.108	0.0	0.0	
ĸ	.003607	1.0	0.1267	0.003312	2
20	.004037	0 110	0.0	0.0	
Ca	.004037	0.644	0.0892	0.003691	4
	.004037	0.915	0.1345	0.003687	
	.004037	1.0	0.1487	0.004012	
21	.004491	0.113	0.0	0.0	4
Sc	.004491	0.643	0.1007	0.004090	·
	.004491	0.913	0.1520	0.004085	
	.004491	1.0	0.1687	0.004459	
22	.004966	0.116	0.0	0.0	4
Ti	.004966	0.642	0.1162	0.004510	
	.004966	0.910	0.1754	0.004504	
•	.004500	1.0	0.1933	0.004931	
23	.005465	0.117	0.0	0.0	4
v	.005465	0.642	0.1297	0.004952	
	.005465	1.0	0.2184	0.005427	
24	005989	0,130	0.0	0.0	
Cr	.005989	0.642	0.1441	0.005414	4
	.005989	0.908	0.2175	0.005405	
	.005989	1.0	0.2429	0.005947	
	.006539	0.122	0.0	0.0	4
25			0 15//	0 005000	
25 Mn	.006539	0.642	0.1544	0.002899	
25 Mn	.006539 .006539	0.642	0.1344	0.005899	
25 Mn	.006539 .006539 .006539	0.642 0.907 1.0	0.1344 0.2331 0.2607	0.005889 0.005888 0.006492	
25 Mn 	.006539 .006539 .006539 .007112	0.642 0.907 <u>1.0</u> 0.124	0.1544 0.2331 0.2607	0.0058899 0.005888 0.006492	
25 Mn 26 Fe	.006539 .006539 .006539 .007112 .007112	0.642 0.907 <u>1.0</u> 0.124 0.642	0.1544 0.2331 0.2607 0.0 0.1673	0.005899 0.005888 0.006492 0.0 0.006404	
25 Mn 26 Fe	.006539 .006539 .006539 .007112 .007112 .007112	0.642 0.907 1.0 0.124 0.642 0.907	0.1544 0.2331 0.2607 0.0 0.1673 0.2529	0.005899 0.005888 0.006492 0.0 0.006404 0.006391	
25 Mn 26 Fe	.006539 .006539 .006539 .007112 .007112 .007112 .007112	0.642 0.907 1.0 0.124 0.642 0.907 1.0	0.1544 0.2331 0.2607 0.0 0.1673 0.2529 0.2833	0.005899 0.005888 0.006492 0.0 0.006404 0.006391 0.007059	4
25 Mn 26 Fe 27	.006539 .006539 .006539 .007112 .007112 .007112 .007112 .007112	0.642 0.907 1.0 0.124 0.642 0.907 1.0 0.126	0.1544 0.2331 0.2607 0.0 0.1673 0.2529 0.2833 0.0	0.005899 0.005888 0.006492 0.0 0.006404 0.006391 0.007059 0.0	4
25 Mn 26 Fe 27 Co	.006539 .006539 .006539 .007112 .007112 .007112 .007112 .007709 .007709	0.642 0.907 1.0 0.124 0.642 0.907 1.0 0.126 0.643 0.907	0.1544 0.2331 0.2607 0.0 0.1673 0.2529 0.2833 0.0 0.1810 0.2724	0.005899 0.005888 0.006492 0.0 0.006404 0.006391 0.007059 0.0 0.006930	4

<u>Z</u>	<u> </u>	φ	<u> </u>	F	f
20	008333	0 1 2 7		0.0	,
20	.000332	0.127	0.0	0.0	4
NI	.008332	0.642	0.1942	0.00/4/8	
	.008332	0.906	0.2937	0.007461	
<u> </u>	.008332	1.0	0.3291	0.008265	
29	.008981	0.129	0.0	0.0	4
Cu	.008981	0.642	0.2083	0.008048	
	.008981	0.905	0.3151	0.008028	
	.008981	1.0	0.3537	0.008907	
30	.009659	0.130	0.0	0.0	4
Zn	.009659	0.642	0.2217	0.008639	
	.009659	0.905	0.3356	0.008616	
	.009659	1.0	0.3772	0.009572	
21	001186	0 119	0.0	0.0	5
21	.001186	1.0	0.0	0.0	2
Ga	010267	1.0	1 000	0.001129	
	.010307	4.001	1.000	0.009232	
	.010307	0.044	2.732	0.009225	
	.010367	/.588	3.079	0.010263	
32	.001293	0.125	0.0	0.0	5
Ge	.001293	1.0	0.0140	0.001221	-
	.011104	4.814	1.921	0 009887	
	.011104	6.780	2 904	0.009856	
	.011104	7.531	3,280	0.010981	
				0.010/01	
33	.001404	0.129	0.0	0.0	5
As	.001404	1.0	0.0183	0.001317	
	.011867	4.754	2.015	0.010544	
	.011867	6.689	3.044	0.010508	
	.011867	7.450	3.451	0.011725	
34	.001520	0.137	0.0	0.0	5
Se	.001520	1.0	0.0233	0.001416	
	.012658	4.693	2.128	0.011224	
	.012658	6.603	3.217	0.011183	
	.012658	7.367	3.653	0.012495	
35	.001643	0.141	0.0	0.0	5
Br	.001643	1.0	0.0275	0.001519	
	.013474	4.624	2.192	0.011923	
	.013474	6.495	3,309	0.011877	
	.013474	7.259	3.765	0.013288	
36	.001774	0.147	0.0	0.0	5
Kr	.001774	1.0	0.0333	0.001631	
	.014323	4.570	2.282	0.012648	
	.014323	6.420	3.448	0.012596	
	.014323	7.187	3.931	0.014110	
27	001011	0 150		0.0	
57 Dh	.001911	1 0	0.0	0.0	6
RD	.001911	1.0	0.03/3	0.001/45	
	.015200	4.452	2.312	0.013395	
	.015200	6.245	3.494	0.013337	
	.015200	0.999 7 070	3.991	0.014958	
	.013200	/.0/8	4.043	0.012182	
38	.002054	0.155	0.0	0.0	6
Sr	.002054	1.0	0.0414	0.001864	5
	.016105	4.380	2.356	0.014165	
	.016105	6.139	3.561	0.014098	
	.016105	6.893	4.077	0.015832	
	.016105	6.983	4,138	0.016085	

TABLE I (Cont'd)

,

•

à

39 .002202 0.161 0.0 0.0 6 48 .003761 0.192 0.0 0.0 107038 4.327 2.402 0.0148959 .026711 3.911 2.534 0.022 .017038 6.058 3.628 0.014883 .026711 5.463 3.839 0.022 .017038 6.908 4.231 0.017013 .026711 6.223 4.478 0.022 .017038 6.908 4.231 0.017013 .026711 6.223 4.478 0.022 40 .002354 0.166 0.0 0.0 6 49 .003969 1.0 0.0 0.0 217998 5.996 3.697 0.015691 .027940 5.413 3.841 0.027 .017998 5.996 3.697 0.02244 Sn .004183 1.0 0.0992 0.027940 6.171 4.485 0.027 .018986 5.901 3.716 0.01652 .027940 5.120 0.229200	6 301 174 984 084
Y .002202 1.0 0.0461 0.001987 Cd .003761 1.0 0.0855 0.003 .017038 6.058 3.628 0.014859 .026711 5.911 2.534 0.022 .017038 6.914 4.164 0.016735 .026711 5.911 2.534 0.022 .017038 6.908 4.231 0.017013 .026711 6.351 4.586 0.022 40 .002354 0.166 0.0 0.0 6 49 .003969 0.0 0.002 0.002 .017998 5.956 3.697 0.015691 .027940 5.480 2.538 0.022 .017998 6.577 4.226 0.017663 .027940 5.413 3.841 0.022 .017998 6.577 4.226 0.017663 .027940 5.304 4.598 0.022 .018966 5.901 3.716 0.02244 Sn O.004183 0.0 0.00 0.0 0.0 0.0 0.027940	174 984 084
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	984 084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	004
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	646
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	040
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	472
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,210
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.002
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	204
	800
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1647
.018986 5.901 3.716 0.016522 .029200 5.326 3.829 0.022 .018986 6.662 4.285 0.018620 .029200 6.077 4.477 0.022 42 .002671 0.175 0.0 0.0 6 51 .004404 0.200 0.0 0.0 Mo .002671 1.0 0.0594 0.002378 Sb .004404 1.0 0.0984 0.002 .020000 4.193 2.495 0.017479 .030491 3.777 2.508 0.022 .020000 6.644 4.365 0.019602 .030491 5.266 3.800 0.024 .020000 6.753 4.448 0.01965 .030491 6.152 4.569 0.034 43 .002838 0.178 0.0 0.0 6 52 .004631 1.0 0.1029 0.00 * .021044 4.134 2.502 0.018251 .031814 5.967 4.444 0.032 .021044 6.554 4.385 0.02269 .031814 6.110 4	5271
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	044
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3472
42 .002671 0.175 0.0 0.0 6 51 .004404 0.200 0.0 0.0 Mo .002671 1.0 0.0594 0.002378 Sb .004404 1.0 0.0984 0.002 .020000 4.193 2.495 0.017479 .030491 3.777 2.508 0.02 .020000 5.873 3.777 0.017375 .030491 5.266 3.800 0.02 .020000 6.753 4.448 0.019965 .030491 6.113 4.448 0.02 .020000 6.753 4.448 0.019965 .030491 6.152 4.569 0.034 43 .002838 0.178 0.0 0.0 6 52 .004631 0.202 0.0 0.0 * .021044 4.134 2.502 0.018251 .031814 3.744 2.501 0.022 .021044 6.667 4.473 0.021006 .031814 5.221 3.792 0.022 .021044 6.667 4.473 0.021006 .031814 5.10 0.106	114
Mo .002671 1.0 0.0594 0.002378 Sb .004404 1.0 0.0984 0.002 .020000 4.193 2.495 0.017479 .030491 3.777 2.508 0.02 .020000 5.873 3.777 0.017375 .030491 5.266 3.800 0.02 .020000 6.644 4.365 0.01965 .030491 5.266 3.800 0.02 .020000 6.753 4.448 0.019965 .030491 6.113 4.448 0.022 .020000 6.753 4.448 0.019965 .030491 6.113 4.448 0.022 .021044 4.134 2.502 0.018367 .031814 3.744 2.501 0.022 .021044 6.554 4.385 0.022612 .031814 5.967 4.444 0.032 .021044 6.667 4.473 0.021006 .031814 5.100 0.0129 0.024 .021044 6.667 4.473 0.02269 I<	6
.020000 4.193 2.495 0.017479 .030491 3.777 2.508 0.024 .020000 5.873 3.777 0.017375 .030491 5.266 3.800 0.024 .020000 6.644 4.365 0.019602 .030491 6.152 4.448 0.029 .020000 6.753 4.448 0.019965 .030491 6.152 4.569 0.03 43 .002838 0.178 0.0 0.0 6 52 .004631 0.202 0.0 0.0 0.0 * .021044 4.134 2.502 0.018367 .031814 3.744 2.501 0.022 .021044 5.783 3.785 0.018251 .031814 5.221 3.792 0.02 .021044 6.554 4.385 0.020612 .031814 5.967 4.444 0.03 .021044 6.667 4.473 0.02106 .031814 5.967 4.444 0.03 .021044 6.667 4.473 0.0220612 .031814 6.110 4.569 0.02 .0	3828
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	j359
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	710
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1392
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	014
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/473
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/202
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1701
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	¥206
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3613
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3318
.022117 6.570 4.491 0.022075 .033170 6.074 4.568 0.03 45 .003187 0.184 0.0 0.0 6 54 .005110 0.205 0.0 0.0 Rh .003187 1.0 0.0726 0.002820 Xe .005110 1.0 0.1113 0.00 .023220 4.018 2.506 0.020216 .034561 3.679 2.479 0.022 .023220 5.615 3.793 0.02074 .034561 5.129 3.761 0.02 .023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.03	2276
45 .003187 0.184 0.0 0.0 6 54 .005110 0.205 0.0 0.0 Rh .003187 1.0 0.0726 0.002820 Xe .005110 1.0 0.1113 0.002 .023220 4.018 2.506 0.020216 .034561 3.679 2.479 0.022 .023220 5.615 3.793 0.02074 .034561 5.129 3.761 0.029 .023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.033	3041
Rh .003187 1.0 0.0726 0.002820 Xe .005110 1.0 0.1113 0.004 .023220 4.018 2.506 0.020216 .034561 3.679 2.479 0.024 .023220 5.615 3.793 0.020074 .034561 5.129 3.761 0.024 .023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.033	6
.023220 4.018 2.506 0.020216 .034561 3.679 2.479 0.02 .023220 5.615 3.793 0.020074 .034561 5.129 3.761 0.02 .023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.03	4402
.023220 5.615 3.793 0.020074 .034561 5.129 3.761 0.02 .023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.03	3 779
.023220 6.372 4.403 0.022716 .034561 5.872 4.418 0.03	3 459
	3605
.023220 6.487 4.496 0.023173 .034561 6.017 4.546 0.034	+415
46 .003370 0.188 0.0 0.0 6 55 .005362 0.206 0.0 0.0	6
Pd .003370 1.0 0.0771 0.002976 Cs .005362 1.0 0.1159 0.00	4603
.024350 3.958 2.500 0.021176 .035985 3.637 2.463 0.039	0973
.024350 5.523 3.782 0.021020 .035985 5.062 3.731 0.03	0625
.024350 6.273 4.396 0.023809 .035985 5.799 4.387 0.03	4965
.024350 6.397 4.498 0.024298 .035985 5.947 4.519 0.03	5820
47 .003560 0.190 0.0 0.0 6 56 .005619 0.208 0.0 0.0	ŧ
Ag .003560 1.0 0.0810 0.003136 Ba .005619 1.0 0.1196 0.00	4811
.025514 3.927 2.510 0.022163 .037441 3.602 2.446 0.03	2194
.025514 5.482 3.801 0.021990 .037441 5.013 3.707 0.03	1818
.025514 6.233 4.424 0.024933 .037441 5.748 4.364 0.03	6356
.025514 6.362 4.531 0.025456 .037441 5.900 4.500 0.03	7257

,

4

٠

÷

TABLE I (Cont'd)

<u>z</u>	e	<u> </u>	<u> </u>	F	f	<u></u>	e	•	<u> </u>	F	<u>_f</u>
57 La	.005880 .005880	0.209 1.0	0.0 0.1250	0.0 0.005022	6	66 Dy	.008472 .008472	0.223 1.0	0.0 0.1624	0.0 0.007155	6
	.038925	3.551	2.416	0.033441			.053788	3.305	2.303	0.045998	
	.038925	4.937	3.661	0.033034			.053788	4.595	3.501	0.045208	
	.038925	5.659	4.309	0.037775			.053/88	5.294	4.150	0.052058	
	.030925		4.44/	0.038728			.053788		4.295	0.033482	
58	.006145	0.211	0.0	0.0	6	67	.008795	0.222	0.0	0.0	6
Ce	.006145	1.0	0.1278	0.005237		Ho	.008795	1.0	0.1665	0.007420	
*	.040443	3.532	2.412	0.034720		*	.055618	3.274	2.283	0.047546	
	.040443	4.918	3.662	0.034279			.055618	4.554	3.475	0.046700	
	.040443	5.642	4.315	0.039229			.055618	5.245	4.118	0.053817	
	.040445	5.795	4.453	0.040233			.055618	5.399	4.201	0.055297	
59	.006413	0.211	0.0	0.0	6	68	.009125	0.223	0.0	0.0	6
Pr	.006413	1.0	0.1333	0.005450		Er	.009125	1.0	0.1709	0.007691	
*	.041991	3.491	2.387	0.036027		*	.057486	3.249	2.272	0.049128	
	.041991	4.857	3.623	0.035551			.057486	4.517	3.456	0.048222	
	.041991	5.575	4.273	0.040718			.057486	5.206	4.100	0.055611	
	.041991	5.726	4.410	0.041769			.057486	5.359	4.243	0.05/151	
60	.006686	0.213	0.0	0.0	6	69	.009460	0.225	0.0	0.0	6
Nd	.006686	1.0	0,1362	0.005684		Tm	.009460	1.0	0.1744	0.007966	
	.043569	3.461	2.376	0.037361			.059390	3.225	2.259	0.050742	
	.043569	4.813	3.606	0.036847			.059390	4.482	3.437	0.049773	
	.043569	5.529	4.258	0.042237			.059390	5.169	4.081	0.057441	
	.043569	5.679	4.394	0.043335			.059390	5.320	4.222	0.059039	
61	.006967	0.215	0.0	0.0	6	70	.009803	0.225	0.0	0.0	6
Pm	.006967	1.0	0.1413	0.005917		Yb	.009803	1.0	0.1782	0.08250	
*	.045184	3.452	2.377	0.038725		*	.061332	3.196	2.240	0.052389	
	.045184	4.802	3.608	0.038171			.061332	4.446	3.414	0.051354	
	.045184	5.517	4.260	0.043790			.061332	5.131	4.057	0.059308	
	.045184	5.6/1	4.400	0.044939	<u></u>		.061332	5.281	4.198	0.060965	*
62	.007255	0.216	0.0	0.0	6	71	.010156	0.227	0.0	0.0	6
Sm	.007255	1.0	0.1450	0.006154		Lu	.010156	1.0	0.1832	0.008540	
*	.046834	3.410	2.353	0.040118		*	.063316	3.159	2.215	0.054071	
	.046834	4.742	3.573	0.039522			.063316	4.390	3.373	0.052967	
	.046834	5.452	4.223	0.045376			.063316	5.065	4.008	0.061213	
	.046834	5.609	4.307	0.046579			.063316	5.21/	4.151	0.062931	
63	.007549	0.216	0.0	0.0	6	72	.010524	0.229	0.0	0.0	6
Eu	.007549	1.0	0.1497	0.006396		Hf	.010524	1.0	0.1866	0.008839	
	.048519	3.382	2.341	0.041542			.065345	3.131	2.194	0.055785	
	.048519	4.701	3.554	0.040901			.065345	4.349	3.341	0.054606	
	.048519	5.408	4.204	0.046995			.065345	5.020	3.973	0.063153	
	.048519	5.503	4.34/	0.048253			.065345	5.170	4.114	0.064942	
64	.007849	0.219	0.0	0.0	6	73	.010899	0.229	0.0	0.0	6
Gd	.007849	1.0	0.1539	0.006642		Та	.010899	1.0	0.1912	0.009142	
*	.050239	3.360	2.330	0.042996			.067416	3.110	2.183	0.057536	
	.050239	4.673	3.541	0.042309			.067416	4.322	3.327	0.056280	
	.050239	5.375	4.188	0.048649			.06/416	4.988	3.956	0.065132	
	.050239	5.529	4.330	0.049959			.00/410	5.13/	4.097	0.000331	
65	.008158	0.220	0.0	0.0	6	74	.011281	0.231	0.0	0.0	6
ТЪ	.008158	1.0	0.1576	0.006896		W	.011281	1.0	0.2253	0.009454	
*	.051996	3.329	2.315	0.044482			.069525	3.084	2.196	0.059321	
	.051996	4.628	3.518	0.043744			.069525	4.284	3.331	0.057984	
	.051996	5.327	4.165	0.050336			.069525	4.947	3.958	0.067147	
	.051996	5.479	4.306	0.051703			.069525	5.094	4.097	0.069078	

9

TABLE I (Cont'd)

.

ş

,

4

<u>Z</u>	e	<u> </u>	<u> </u>	F	<u>_f</u>
75	.011673	0.232	0.0	0.0	6
Re	.011673	1.0	0.2427	0.009775	•
	.071676	3.060	2.196	0.061142	
	.071676	4.248	3.322	0.059719	
	.071676	4.909	3,949	0.069205	
	.071676	5.055	4.087	0.071206	
76	.012075	0.232	0.0	0.0	6
0s	.012075	1.0	0,2565	0.010103	-
	.073871	3.020	2.173	0.063000	
	.073871	4.194	3.287	0.061486	
	.073871	4.845	3.905	0.071304	
	.073871	4.993	4.045	0.073377	
77	.012486	0.235	0.0	0.0	6
Ir	.012486	1.0	0.2670	0.010436	
	.076111	2.999	2.166	0.064896	
	.076111	4.163	3.272	0.063287	
	.076111	4.812	3.889	0.073442	
	.076111	4.958	4.028	0.075590	
78	.012906	0.236	0.0	0.0	6
Pt	.012906	1.0	0.2758	0.010776	
	.078395	2.964	2.144	0.066831	
	.078395	4.114	3.238	0.065122	
	.078395	4.753	3.846	0.075624	
	.078395	4.897	3.983	0.077846	
79	.013335	0.241	0.0	0.0	6
Au	.013335	1.0	0.2823	0.011125	
	.080725	2.941	2.130	0.068806	
	.080725	4.079	3.213	0.066991	
	.080725	4.712	3,816	0.077848	
	1000725			0.000140	
80	.013778	0.240	0.0	0.0	6
Hg	.013778	1.0	0.2903	0.011480	
	.083102	2.908	2.108	0.070819	
	.083102	4.035	3.182	0.068893	
	.083102	4.660	3.778	0.080112	
	.083102	4.809	3.920	0.082491	<u> </u>
81	.014233	0.241	0.0	0.0	6
T1	.014233	1.0	0.2968	0.011815	
	.085530	2.879	2.090	0.072874	
	.085530	3.991	3.151	0.070833	
	.085530	4.011	3.882	0.084883	
<u> </u>			51002		
82	.014699	0.242	0.0	0.0	6
РЬ	.014699	1.0	0.3032	0.012217	
	.088004	2.854	2.074	0.074969	
	.088004	3.957	3.127	0.072804	
	.088004	4.570	3.712	0.084777	
	.088004	4.715	3.850	0.087320	
83	.015175	0.244	0.0	0.0	6
Bi	.015175	1.0	0.3084	0.012598	
	.090526	2.832	2.059	0.077106	
	.090526	3.924	3.103	0.0/4812	
	.090526	4.535	3.08/	0.08/1/9	
·	.090226	4.0/8	5.824	0.089805	

•

<u>Z</u>	e	φ	<u> </u>	F	f
84	.015665	0.246	0.0	0.0	6
Po	.015665	1.0	0.3122	0.012987	
*	.093105	2.801	2.036	0.079291	
	.093105	3.883	3.071	0.076861	
	.093105	4.486	3.648	0.089627	
	.093105	4.631	3.787	0.092350	
85	.016163	0.248	0.0	0.0	6
At	.016163	1.0	0.3166	0.013383	
	.095730	2.778	2.020	0.081516	•
	.095730	3.852	3.049	0.078945	
	.095730	4.448	3.620	0.092120	
<u> </u>	.095730	4.592	3.758	0.094937	
86	.016670	0.249	0.0	0.0	6
Rn	.016670	1.0	0.3207	0.013784	
*	.098404	2.744	1.992	0.083785	
	.098404	3.799	3.003	0.081067	
	.098404	4.385	3.564	0.094661	
	.098404	4.530	3.703	0.097573	
87	.017191	0.250	0.0	0.0	6
Fr	.017191	1.0	0.3232	0.014196	
*	.101137	2.719	1.972	0.086107	
	.101137	3.765	2.975	0.083233	
	.101137	4.344	3.530	0.097256	
	.101137	4.487	3.667	0.100264	
88	.017722	0.250	0.0	0.0	6
Ra	.017722	1.0	0.3278	0.014618	
	.103922	2.699	1.959	0.088476	
	.103922	3.735	2.954	0.085438	
	.103922	4.312	3.508	0.099902	
<u></u>	.103922	4.454	3.644	0.102999	
89	.018266	0.251	0.0	0.0	6
Ac	.018266	1.0	0.3288	0.015049	
*	.106759	2.676	1.938	0.090889	
	.106759	3.705	2.926	0.087676	
	.106759	4.276	3.474	0.102599	
	.106759	4.420	3.612	0.105783	. <u> </u>
90	.018820	0.252	0.0	0.0	6
Th	.018820	1.0	0.3321	0.015489	
	.109651	2.651	1.917	0.093351	
	.109651	3.676	2.901	0.089958	
	.109651	4.241	3.443	0.105348	
	.109051	4.383	3.3/9	0.108010	
91	.019384	0.254	0.0	0.0	6
Pa	.019384	1.0	0.3335	0.015939	
*	.112601	2.625	1.894	0.095868	
	.112601	3.639	2.867	0.092287	
	.112601	4.196 1. 226	3.402	0.108155	
	.112001			0,111322	
92	.019959	0.254	0.0	0.0	6
ប	.019959	1.0	0.3350	0.016398	
	.115606	2.602	1.875	0.098436	
	.115606	3.004	2.030	0.094658	
	115606	4.130	3.3/0	0.114405	
	112000	4.470	5.505	<u></u>	

.

<u>Z</u>	e	¢	<u> </u>	F	f
93	.020547	0.257	0.0	0.0	6
Np	.020547	1.0	0.3358	0.016867	
*	.118670	2.575	1.851	0.101057	
	.118670	3.562	2.800	0.097070	
	.118670	4.111	3.328	0.113931	
. <u> </u>	.118670	4.247	3.459	0.117503	
94	.021147	0.256	0.0	0.0	6
Pu	.021147	1.0	0.3378	0.017348	•
	.121797	2.539	1.819	0.103734	
	.121797	3.509	2.752	0.099527	
	.121797	4.046	3.269	0.116905	
	.121797	4.180	3.398	0.120583	

٠

*Element omitted in previous version.

4

4