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ABSTRACT

Algorithms for efficient generation of random numbers
from various probability distributions are presented, in both a
flowchart form and as a sample Fortran subroutine. Twenty-
two different distributions, including all commonly encountered
discrete and continuous functions, the Weibull, Johnson, and
Pearson families of empirical distributions, and histogram dis-
tributions, are covered. The general techniques to apply in
deriving a random number selection scheme for an arbitrary
distribution are discussed. A machine-independent subroutine

for generating uniform random numbers is also described.
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FOREWORD

Monte Carlo simulation is one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications can
be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of applications has
been broadening and the size, complexity, and computational effort required
have been increasing. However, such developments are expected and de-
sirable since increased realism is concomitant with more complex and exten-

sive problem descriptions.

In recognition of such trends, the requirements for improved simula-
tion techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-

tions. This can generally be attributed to one or more of the following reasons:

e Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expense.

e Many efficient simulation methods have evolved for specialized
applications. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a small number of simulation analysts are working.

e Known techniques are not developed to the point where they can
be easily understood or applied by even a small fraction of the
analysts who are performing simulation studies or developing
simulation models.



Xiv

In addition to the above reasons, comprehensive references describing ef-
ficient methodologies to improve Monte Carlo simulation are not available.
It is the intent of these volumes to help alleviate the above shortcomings in

Monte Carlo simulation.

This document is the third of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations. Each volume
is essentially a self-contained discussion of useful techniques which can be
applied in reducing computational effort in one of the following three major

aspects of Monte Carlo simulation:
e Selecting Probability Distributions - Volume I

¢ Random Number Generation For Selected Probability
Distributions - Volume II

° Variance Reduction - Volume III

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various char-
acteristics of the system being simulated and are most efficient in terms of
computational effort. The basic intent is to provide understanding of the con-
cepts and methods for reducing analysis and computationai effort as well as
to serve as a practical guide for their application. They have been prepared
primarily for the systems analyst and computer programmer who have a
basic background and experience in simulation and elementary statistics.,
Thus, the material is presented so as to preclude extensive knowledge of
statistical techniques or of extensive literature search. However, it is
assumed the reader has a grasp of the fundamentals of Monte Carlo methods,

simulation modeling, and elementary statistics.



1. INTRODUCTION

In developing any Monte Carlo simulation, it is necessary to generate
random numbers from the stochastic models used. In Volume I, the process
and techniques of selecting probability models for the simulation were pre-
sented. The objective of this volume is to provide a convenient source of
efficient and simple random number generators for all the probability dis-
tributions considered in Volume I. To this end flow charts and FORTRAN
listings of these random number generators are provided here as well as

descriptions of the techniques employed.

It is the purpose of this document to provide a convenient mechanism
to select and implement these random number generators without having to
resort to an understanding of the underlying concepts used in their develop-
ment. Accordingly, the remainder of this report has been organized és

follows:

e SECTION 2, "Efficiency Comparison of Random Number
Generators, "' demonstrates improvements in running times
expected from using the techniques developed here over those
commonly used. This section has been included to provide an
appreciation for the magnitude of improvements possible in
using the techniques described herein.

e SECTION 3, ""Generation of Random Numbers from Selected Dis-
tributions, " provides algorithms defined by flow diagrams and
standard Fortran subroutines that can be applied directly. This
section is introduced with a convenient summary table defining
where in the section a specific algorithm can be found.

e Appendix A, "Fundamental Considerations for Generation of
Random Numbers, ' describes the fundamentals on which random
number generation techniques for arbitrary distributions can be
developed.
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2. COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES

The improvements in calculational efficiency realized by using the
random number generation techniques provided here depend on the particular '
problem. However, by utilizing these techniques, near optimum results can

be assured.

It is of interest to compare the random number generation techniques
presented here with those commonly used to generate random numbers; This
comparison was performed during the course of the study for several distri-
butions, and it was found that improvements in compﬁter time of factors vary-
ing from 2 to 5 were possible. Results for a few of the more common distri-
butions are shown in Table 2.1 which compares the running times of the
preferred techniques with those commonly used. For example, consider the -
normal (or Gaussian) distribution. The usual procedure is to generate 12
random numbers uniformly distributed over the interval [0, 1] say R

EREEE R12’
and determine

(6

according to the normal distribution. Assembly language time on a Univac

By virtue of the central limit theorem, ) R’N is approximately distributed

1108 was 105 microseconds per calculation using this approach. Procedures

studied here were the rejection technique (see Ap'pendix‘A) and a technique

(

tively 74 and 30 microseconds. Not only are the running times significantly

developed by Marsaglia. 5) The corresponding running times were respec-

reduced, but also the more efficient ones presented here are exact (within
machine roundoff errors).

Similar results were obtained with the exponential distribution where

the Marsaglia technique gave a reduction in running times of a factor greater
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than three (Table 2.1). The standard method used is the inverse (see
Appendix A). The rejection method is discussed in Appendix A and the
Marsaglia method is reported in Ref. 3.

As implied above, there are several methods that may be used to
generate random numbers for a given distribution. However, ﬁrhere alternate
approaches could be identified or developed, cpmparisoﬁs were made and the
most efficient procedur,e} selected. These generators are preéented in the
next section.

It should be noted that the more efficient techniques are slightly more
complex to program; however, the slight additional effort involved gener-

ally pays off substantially in computer time.

TABLE 2.1

Running Time Comparisons Random Number Generators For
The Normal and Exponential Distributions®

Commonly a a
_ Used Rejection Marsaglia
Distribution Technique Technique Technique
‘Exponential 64 29 19
Normal
(Gaussian) 105 74 , 30

ASee Appendix A for a brief description of these techniques.

bA11 times in microseconds of UNIVAC 1108 Assembly Language time.



5

3. GENERATION OF RANDOM NUMBERS FROM SELECTED
DISTRIBUTIONS

In this section, efficient algorithms are presénted for a large number |
of probability distributions. These are summarized in Table 3-1 which
gives the name of the distribution, the théoretical form, parameters in the
~ distribution to be specified by the user, other randbm mimber generatbrs
used, and where the particular routines or algorithms can be found in this
section of the report. Also shown under the name of the distribution is the
FORTRAN subroutine name assigned to the random variable.

Once a distribution of interest has been identiﬁed, it is only necessary

to define the values of the parameters indicated and to implement the
algorithm from the specified pages of this section. In the subroutines,

the parameters are represented by mnemonics which should be recog-
nizable. For example, SIG is used to represent o and SIGSQ to repre-
sent o 2° In some places the mnemonic starts with an A to provide a float-
ing point value such as ALAM for A .

_ It will be noted that certain distributions rely on other distributions .
to generate random numbers. For example, generation of random numbers
for the Rayleigh distribution requires random numbers from an exponential
distribution. The exponential distribution in turn depends on a uniform
random number generator. Based on the frequent requirement for the uni-
form, exponential and normal distribution, it is usually convenient to pro-
vide a basic random number generation package consisting of subroutines

to generate uniform, exponential, and normal random variables as an inte-
gral part of any complex simulation program. Throughout this section these
three random number generation subroutines will appear as UNFRN(R),
EXPRN(R), and ANRMRN(R), respectively, where R is a dummy function



TABLE 3.1

Efficient Algorithms for a Large Number of Probability Distributions

Location of
Algorithm to Generate

Name of Other
Distribution Parameters Random Number Random Numbers
(Function Title) Functional Form To Be Specified Generators Used Subsection Page
- 1
Uniform B 2$x<b a, b None 3.1 10
(UNFRN)
Exponential 1A e ((x - ) 5 x2e A€ Uniform
(EXPRN) A>0 3.2 12
2, 2
Normal 1 e (x - 1)°/20 U, o Uniform,
(ANMRN) oV 2n Exponential 3.3 14
Binomial (E) pk(l -p)n-k ; n, p Uniform,
(KBINOM) ’ Exponential 3.4 17
k=01,,..,n
Multinomial ek ) ky Ky K Km m, 0, By eees Py Uniform 3.5 22
(MULNOM) 1%2° " %m [PL Pg P3 + - - Py
Pyteeetpy = 1
kl +k2+. . .+km=n
- Ak
Poisson XT3 A2 0 A Uniform 3.6 24
(KPOIS)
k =0,1,...
(i) ()
Hyper-geometric k Nn-k ;s N>M M, N, n Uniform 3.1 26
(KHYPRG) )
k=01,...,M
Geometric p(1- p)k-1 p Uniform, 3.8 28
(KGEOM) Exponential
k =1,2,3,...
Pascal (also (n +ll: - 1) 1- p)npk n,p Uniform, 3.9 31
called negative Exponential
binomial) _
(KPASCL) k=01...,n
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TABLE 3.1 (Continued)

Location of
Algorithm to Generate
Other
Name of Parameters Random Number Random Numbers
Distribution Functional Form To Be Specified Generators Used Subsection Page
Cauchy —-—-1—2 ; "®< XA u Uniform 3.10 34
(COCHRN) rr’l +(x = p) I
- 2
Rayleigh -% e xz/za x20 4 Exponential 3.11 36
(RAYLRN) 4
AT g1 -ax .
Gamma T X e x20 A,m Uniform, 3.12 38
(GAMRN) ) nA>0 Exponential
‘ -1 n-1
1 T (y+ (x-a) Y x-a
— s 1-=—= b Ga a 3.13 41
?;éerARN) b-a TO)T(n \b-a b-a ys s 2, mm
a<x<b
n,y >0
A -1 .
Pareto Ae X ; X 2 ¢ L Uniform 3.14 43
(PRTORN)
1 1 2
Log-normal = exp |- —5 (4n{x-¢)- 1) €& p, O Normal 3.15 45
(ALNMRN) olx - <) vJ2n L 20
X2 ¢
S2,02 2, 2
Folded Normal L [e (x=w)"/20% | o=(x+1)"/20 ] u, o Normal 3.16 41
(FNRMRN) o \/ 27
x > 0;
~(nx +1/2 yx?) .
Kodlin's (n+yx)e Yan Exponential 3.17 49
Distributions x>0,
{AKODRN) vn>0
Extreme Maximum value: u, 0 Exponential 3.18 51
Value 1
Distributions 1 1 -5 (x-p)
(AMAXRN) o €Xp |-G (x-p)-e oo
Minimum value: 3.18 51
1
1 1 o (x-n)
" (AMINRN) - exp |5 (x-p)-e ; 0>0 ,




TABLE 3,1 (Continued)

Location of

a

Name o Ot goritm to Generae
Distribution Parameters Random Number
(Function Title) Functional Form To Be Specified Generators Used Subsection Page
n
_{x-¢
n n-1 A R
Weibull T (x-¢) e €y Ny A Exponential 3.19 53
(WIBLRN)
X2 ¢
n,A>0
Johnso 8§ : —— Normal 3.20.1 55
n L E( ) . €, N,y .20,
System m(x-¢
(a2 [y 1
(SLRN) exp '-T [; + In(x- ()] ’
) x>0
Xz¢
SB: \/n_ T )(AA - Ny, ¥y, A€ Normal 3.20.2 57
2n (X"€ -X+e
2
1 X -
(SBRN) exp {- 3 [y+ nln ( A_xi()] }
n,A>0
e<X < €+A
: n 1 59
SU: \/_ . n, Y,A, ¢ Normal 3.20.3
2z V(x+()2 + )‘2
(SURN’)__ exp -%(wnm%(x—;‘) +
s 1722
[(x- ) ] })
3 +1
A
nA»0
Pearson’ Type I: a, a,, m;, m Gamma 3.21.1 61
System m1 m, 1,72 1 2
(TYPIRN) c(ni) (1-l)m,m >1
3 3y a11<x2<a2
" Type It: a, m Gamma 3.21.2 63
. ’ 9 m
(TYP2RN) c( ’x_z) ‘m> -1
: a -a<x<a
Type IH: 3.21.3 65
x Ya ~yx -a<x<a
(TYP3RN) c (1 + —) € Y, a Gamma

e
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TABLE 3.1’ (Continued)

Location of
Other Algorithm to Generate
Name of Parameters Random Number Random Numbers
Distribution Functional Form To Be Specified Generators Used Subsection Page
Type IV: m, ¥y, a Uniform, 3.21. 4 87
- Bxponential
: 2 _ -1
(TYP4RN) c (1 +x—2) e7ytan = (x/2)
a
Type V: P,y Gamma 3.21.5 69
- v x>0
{TYP5RN) cxP e ’>/’; ¥, k<0
Type VI: a, 4, 9 Gamma 3.21.6 71
x-a>0
TYP6R qQ -9
( N) Clx-2) 2x 1 q>q,+1>0
Type VII: a, m Normal, 3.21.7 73
- Gamma
2\ ™ ‘
(TYP7RN) c(u%) ; m> 2.5
a
Type VIIL: a, m Uniform 3.21.8 75
- 0<m=<1
(TYPSRN) c (1 + g) " lix/a>0
Type IX a, m Uniform 3.21.9 7
x\™
(TYPYRN) o] (1 +;) 1+x/a>0
Type X a Exponential 3.21,10 79
(TP10RN) L. x/o o3>0
i x>0
Type XI: P m,b Uniform 3.21.11 ’ 81
(TP11RN) m:
Ch/x) m>1
Type XII: 8,/(3+8) B0 Beta 3.21.12 83
8,>0
1
. a(‘/3+B +‘/ﬁ )+x
(TP12RN) C 1 1 V38 +y/B)
a(‘13+131 - Bl)-x <x<
V3481 - yB)
Histogram Not applicable Upper and lower Uniform 3.29 86
(AHSTRN) limits and intermed-
iate break points in
distribution
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argument. In the flow diagrams, these are indicated as U(0, 1), E(0, 1)
and N(0,1), respectively.

3.1 UNIFORM RANDOM NUMBER GENERATORS

The uniform random number generator is, of course, fundamental
to all random number generation. For the purposes here, it is assumed -
that the computer system available will have such a generator as part of
the basic software package. If one is not available or the generator is
expected to be faulty, the machine independent package presented in Ap-
pendix B (MIRAN) can be used. The following paragraphs describe the
technique used in most computers for generating random numbers and pro-

vide insight into the assessment of such generators.

The method used for almost all uniform generators is the multiplica-
tive congruential method. (7) A sequence of integers, Xy Xpreees is generated

by the congruence

X

_ P
el = o X(mod 27)

Here P is the number of bits (excluding sign) in a word on the particular

computer employed and ) is called the generator which is a carefully selected .
integer as described below. From this sequence random fractions are pro-

duced using

The sequence of random fractions, R1,R2, ..., is output by the subroutine in

floating point form.

On most computers the multiplicative congruential method is accom-
plished by an integer multiplication of X and A. Only the low-order half
(P bits) of the product is retained as X1 This is then treated as a binary | -

fraction, converted to floating point, and normalized. .
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This method is fast and will produce numbers whose properties ap-
proximate randomness sufficiently .close for valid use in Monte Carlo

simulations provided the following caveats are observed:

1. Choose a generator, X, with particular care. In particular,
generators with a small number of 'l' bits in their binary repre-
sentation should be avoided. A number of generators of the form
210 +3 24% £ 3 210 +3 ete., are particularly abundant. At
one time, they were used because they were thought to be good
and especially fast. However, further research has shown them
to be faulty and a number of simulations have produced erroneous
results as a consequence. Small generators such as X =101 13
are also faulty and must be avoided. The genera)tors A =515 ora=5
have been well tested and are quite safe to use. (1

2. Check the computer word length. It is best for P to be at
least 35 in the congruence. For machines with P < 32 a multi-
ple precision multiplication should be used to generate an ade-
quate congruence.

3. Do not trust, on blind faith, random number routines distributed
by the computer manufacturers with standard subroutine libraries.
These have been found to contain, with high probability, the faulty
generator values.

The uniform random number generator will be referred to as UNFRN(R)

in subsequent routines and U(0, 1) in the flow diagrams.
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3.2 EXPONENTIAL DISTRIBUTION

The simplest method to generate random numbers from the exponential

distribution, f(x) = e-x, is to use the inverse solution,

X = 'ln(Ru) ’

where R, isa uniform random number. This is not, ‘however, the fastest
method. An extremely rapid technique has been developed by G. Marsaglia(3)
which, although it is several times faster than the logarithm, requires a

~ sizable block of computer storage (~600 words). When computer storage
is critical or when the exponential distribution is not of crucial importance,
the Von Neumann rejection technique is a good general method. This method, ’

usually faster than the logarithm, is shown in Fig. 3-1.

To select from a generalized exponential, (l/k)e-[(x-e)/k], it is
merely necessary to select from e ™ then multiply by A and add ¢. For
best efficiency in general, the basic exponential subroutine should select from
e-)f and it should be left up to the calling program to supply the multiplication

and addition where needed.

The exponential distribution is referred to as EXPRN(R) in subsequent

routines and as E(0,1) in the flow diagrams.

Sample ‘Routines

Simplest method (use inline in calling program):
R = -ALOG (UNFRN(R))
Von Neumann rejection technique:

' FUNCTION EXPRN(DUMMY)

I1 =0
100 R = UNFRN(X)
X =R
105 Y = UNFRN(X)
IF X.LT.Y) GO TO 120
110 X = UNFRN(X)
IF (X.LT.Y) GO TO 105
115 I = I+1 |
GO TO 100
120 EXPRN = R+I
RETURN

END
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fx)=eX ; x=20

START

i=0
i=i+ 1
i
)
Generate r<U(0, 1)
Z=r No

Yes

N Coss
— NG

Generate y «U(0, 1)

r
‘\Yes = Generate z <U(0, 1)

Y?j// -
No

1

X=r+i

END

Figure 3-1. Random number generation algorithm
for exponential distribution
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3.3 NORMAL DISTRIBUTION

The normal distribution, f(x) = 1/(c J2n)e_(x_w2/ 202, has received
considerable attention by the designers of random number generators. One
of the earliest methods, which is still found frequently in simulations today,
uses the central limit theorem to approximate the normal by summing up

(6)

First, it is only an approximation. Second, it is much slower than other

several uniform random variables. This approach has two serious defects.

methods. The fastest method by far is a technique designed by G. Marsaglia. (5)
However, considerable storage is needed for this technique. Another
technique by Marsaglia, 4) illustrated in Fig. 3-2, is fairly fast without
requiring much computer storage. This is the best technique known for

general usage.

As with the exponential routine, the basic normal random number
generator should be written to select from the normal distribution with unit
mean and zero standard deviation (referred to as ANRMRN in the routines
and as N(0, 1) in the flow diagrams). It is then left up to the calling program
to multiply by the standard deviation and add the mean if a generalized normal
deviate is required. That is,for a distribution with mean p and variance 02,
the correct random number would be oN(0,1) + u, where N(0,1) is a ran-

dom number from a distribution with y =0 and 02 = 1.

Sample Routine

FUNCTION ANRMRN (DUMMY)
R = UNFRN(R)
IF (R. GT. 0.8638) GO TO 10
ANRMRN = 2, *(UNFRN(X) + UNFRN(Y) + UNFRN(Z) - 1.5)
RETURN _
10 IF (R. GT. 0.9745) GO TO 20
ANRMRN = 1, 5*(UNFRN(X) + UNFRN(Y) - 1.0)
RETURN
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20 IF (R. GT.0.997302039) GO TO 100
25 X = 6. *UNFRN(X) - 3.0
Y = 0. 358*UNFRN(X)
XSQ = X*X
GX = 17. 49731196*EXP(-XSQ*. 5)
AX = ABS(X)
IF (AX.GT. 1.0) GO TO 30
IF (Y.GT.(GX-17. 44392294 + 4.73570326*XSQ + 2. 15787544*AX))
GO TO 25
ANRMRN = X
RETURN
30 AX3 = 2. 36785163%(3-AX)**2
IF (AX. GT. 1.5) GO TO 40
IF (Y.GT. (GX-AX3-2.15787544*(1. 5-AX))) GO TO 25
ANRMRN =X
RETURN .
40 IF (Y.GT. (GX-AX3)) GO TO 25
ANRMRN = X
RETURN
100 X = SQRT (9+2*EXPRN(X))
IF (UNFRN(X). GT. 3/X) GO TO 100
IF (UNFRN(X). GT.0.5 X = -X
ANRMRN = X
RETURN
END
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R <0.8638

Generate uy, uz*U(O, 1) X = 1.5(u1 *uy - 1) @ e
No
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Figure 3-2. Normal distribution
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3.4 THE BINOMIAL DISTRIBUTION

The binomial distribution, Py = (f{‘)pk ( 1-p)n-k, is a discrete distri-
bution describing the number of successes encountered in a series of Bernoulli
trials, It has two parameters, p, the probability of success in a single trial,

and n, the number of trials in the series.

The algorithm for selection from the binomial distribution is divided
into three subranges for the parameter p. For moderate values of p, the ran-
~dom number generation is based on a straightforward simulation of the under-
lying basis for the distribution; n Bernoulli trials are generated and the num-
ber of successes are counted. For small values of p, it becomes more efficient
to use a technique based on the geometric distribution. Conversely, for large
-values of p it is efficient to reverse the geometric technique and perform the

counting on the number of failures rather than successes.

For large values of n, all three algorithms become inefficient;
the computing time involved is directly proportional to n. The binomial
distribution approximates a normal distribution with mean np and
standard deviation \/ﬁp(Tf)T for large n. One should consider replacing
the binomial with the approximate normal for large values of n (n>10 p/(1-p)
or n>10 (1-p)/p). '

Sample Subroutines

For p< .25

FUNCTION KBINOM (N, ALNQ)
C ALNQIS -ALOG (1. -P)
KBINOM =0
M=0
5 R = EXPRN(R)
J=1+R/ALNQ
M=M~+J
IF M - N)10, 15, 20
10 KBINOM = KBINOM + 1
GO TO 5
15 KBINOM = KBINOM + 1
20 -RETURN
END
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For .25¢ pg .75

FUNCTION KBINOM (N, P)

KBINOM = 0

DO15M=1, N

R = UNFRN (R)

IF (R. LT. P) KBINOM = KBINOM + 1
15  CONTINUE

RETURN

END

Forp > .75

FUNCTION KBINOM (N, ALNP)
C ALNP IS -ALOG (P)

KBINOM = N

M=0
5 R =EXPRN R)

J =1 +R/ALNP

M=M~+J
IF (M-N)10, 15, 20
10 KBINOM = KBINOM - 1
GO TO 5
15 KBINOM = KBINOM -1
20 RETURN
END




) pk - . or p<0.25
p_r = (») pI (1" p)n k ’ For p

-

k=0

.t

S

Generate
R« E(0,1)

j=1+R/[-In(1-p)]

k=k+1
14 m=m+j
L
Yes \\mfn
No
‘?
E=k+1
Figure 3-3.

Random number generation algorithm
for binomial distribution
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'

po= ()" ; For0.25<ps0.75

Generate
R« U(0, 1)

“‘~=-...,‘
Yes
v

m=m+1 =k+ 1

6 <p No

oy
cia

Yes /—)
\Qf n
No
«-""’y
(E ND

Figure 3-4. Random number generation algorithm
for binomial distribution (continued)
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NS ~k

3 TR L
b = (?) pri-p) ; Forp=>0.75

SJ.A;( ‘.>

k=n
m=0
>~
Generale

R« E(0, 1)

5

j=1+R/[-Inp]
k=k-~1

T m =+ j

Figure 3-5. Random number generation algorithm

for binomial distribution (continued)
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3.5 THE MULTINOMIAL DISTRIBUTION

The multinomial distribution,

n
p(kl, k2,...,km) = (klk2 ...km) Py Py -een. Py

is a generalization of the binomial distribution to trials having m different
outcomes with discrete probabilities. Random number generation is accom-
plished by a straightforward simulation of the underlying process of identical
trials. Note that a 'random number' for this distribution is an array con-

taining the number of realizations of each possible outcome.

Sample Routine

SUBROUTINE MULNOM (N, M, K, P)
DIMENSION K (M), P (M)
P IS INPUT ARRAY OF PROBABILITIES
K IS OUTPUT ARRAY OF OUTCOMES
DO10J =1 M
10 KJ@)=0

DO30I=1, N

R = UNFRN (R)

DO20J=1, M

‘R=R -P()

IF (R. LT. 0) GO TO 30
20 CONTINUE
30 KJd)=K@J) +1

RETURN

END

QQ
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. k, k k_
p (1 e e Y= B 1‘3.‘1 . 2 T m
Z’ 15 }{1 ko ... k Pi Py e Py
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STATYE
¢ Qm,,_w‘/

‘e

J=i+1 R=R-p, i=1+1

R<0 }red.] k= ke 1
No

END

v o™

Figure 3-6. Random number generation algorithm for multinomial
distribution
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3.6 POISSON DISTRIBUTION

K
The Poisson distribution, p_= e” A, is a discrete distribution

describing the number of occurrences in an interval when the rate of occur-
rence is a constant. The technique for selecting from the Poisson distribu-

tion is a combination-transformation method described in Ref. 2.

The computer time spent in this selection is directly proportional to
A, the mean value of the Poisson variable. For large A, this selection
can be very time consuming. It is possible to approximate the Poisson dis-
tribution by a normal distribution with a mean of A and a standard deviation
of VA for A sufficiently large (A >10).

Sample Routine
FUNCTION KPOIS (EXPLAM)

C EXPLAM IS EXP (-LAMBDA)
Y=1.0
KPOIS =0

5 Y =Y * UNFRN (Y)

IF (Y. GT. EXPLAM) GO TO 10
KPOIS = KPOIS +1
GO TO 5
10 RETURN
END
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.

k=k+1 y=y-R
b
END)
Figure 3-7. Random number generation algorithm for

Poisson distribution
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3.7 HYPERGEOMETRIC DISTRIBUTION

The hypergeometric distribution,
{
M}{M-N
k (n -k )
N
n

describes sampling without replacement. It has the parameters N, the
size of the total population, n, the size of the population sampled, and M,
the number of events in the total population. The random variable k is
the number of events occurring in the sample. The hypergeometric dis-

tribution is generated by simulating sampling without replacement.

Sample Routine

FUNCTION KHYPRG (NTOT, MTOT, N)
C NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL
C EVENTS IN POPULATION, N IS SAMPLE SIZE
KHYPRG =0
'EM = MTOT
EN = NTOT
DO10I=1, N
P = EM/EN
R = UNFRN (R)
IF (R. GT. P) GO TO 10
KHYPRG = KHYPRG + 1
EM =EM - 1.
10 EN=EN-1.
RETURN
END
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START

k= G

i=1
EM = M
EN = N

i=i+1

Generale R «U(0, 1)

r=k+ 1
EM = EM -1

)

EN = EN - 1

Figure 3-8.

Random number generation algorithm for hypergeometric

distribution

1<n

-
N

1\ Q
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3.8 GEOMETRIC DISTRIBUTION

The geometric distribution, p, = p(l- p)k' 1 , describes the
number of trials to the first success in a series of Bernoulli trials. For
p> .25, the geometric distribution is most efficiently sampled by a
direct solution of the discrete inverse equation. When p«< .25,
more efficient to generate a geometric variate by truncating an exponential

random number.

Sample Routines

For p<.25:

C

FUNCTION KGEOM (ALNQ)

ALNQ IS -ALOG (1-P)
R = EXPRN R)
KGEOM =1 + R/ALNQ
RETURN

END

For p> .25:

10

FUNCTION KGEOM (P)
A=P

Q=1-P

KGEOM = 1

R = UNFRN (R)
R=R-A

IF (R. LT. 0) RETURN
KGEOM = KGEOM + 1
A=A*Q

GO TO 10

END

it becomes
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k-1
P, = p(L-p) . p<0.25

START

Generate R« E(0,1)

k=1+R/[-In(1 - p)]

END

Figure 3-9. Random number generation algorithm
for geometric distribution



_ k-1
P, = p(1-p)

Generate R «U(0, 1)

30

p=0.25

)

Y
R=R-A
k=k+1
\ A=A-(1-p)
R >0 Yes [}

No

Figure 3-10. Random number generation algorithm
for geometric distribution (continued)

e
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3.9 PASCAL OR NEGATIVE BINOMIAL DISTRIBUTION

The Pascal distribution,

n+k-1
_ n k
pk—< K >(1-p)p ;

describes the number of successes occurring before the nth failure in a
series of Bernoulli trials. For low or moderate values of p , the Pascal
distribution is efficiently generated by a direct simulation of a sequence
of Bernoulli trials. As p becomes large (p>.75), it becomes more
efficient to sample by generating a geometric variate for the number

of trials to each of the n failures.

Sample Routines

For p =.'75:

FUNCTION KPASCL (P, N)
KPASCL =0
DO20J=1, N

10 R =UNFRN (R)
IF (R. GT. P) GO TO 20
KPASCL = KPASCL +1
GO TO 10

20 CONTINUE
RETURN
END

Forp>."75:

FUNCTION KPASCL (ALNP, N)
C  ALNP IS -ALOG(P)
. KPASCL =0
DO10J =1, N
I = EXPRN(R)/ALNP
10 KPASCL = KPASCL + 1
RETURN
END



START

A

k=k+1 Generate R «<U(0, 1)
Yes R<p
No
j=j+1
v
END
Figure 3-11. Random number generation algorithm

for Pascal distribution
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START

Generate R « E(0,1)

j=j+1 | i = R/[-1np]

Figure 3-12. Random number generation algorithm
for Pascal distribution (continued)
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3.10 CAUCHY DISTRIBUTION

The Cauchy distribution,

1
a1+ (x-p)2]

f(x) = , ~eo<X<»

represents the distribution of the ratio of two normally distributed numbers.
It also represents the tangent of a random angle. It is easily generated by a
rejection technique which selects x and y uniformly in a unit circle, then cal-

culates the tangent x/y.

Caution: The moments of the Cauchy distribution are infinite; the behavior

of Cauchy variates in a simulation will be erratic.

Sample program:

FUNCTION COCHRN (AMU)

10 X = UNFRN(Y)
Y = 2. *UNFRN (X) - 1.
IFX*X+Y*Y. GT. 1) GO TO 10
COCHRN = AMU + Y/X
RETURN
END
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f(x) =

m[l+ (x- p)z]

START

|

Generate
Rl’ R2 «U(0, 1)

END

Figure 3-13. Random number generation algorithm
for Cauchy distribution
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3.11 RAYLEIGH DISTRIBUTION
The Rayleigh distribution,

_x5 e-x2/202 ,

g

i(x) =

is derived as the radial error when the x and y errors are independent normal -
variates. It has a simple inverse which provides the most efficient method for

generating Rayleigh variates.

Sample routine:

FUNCTION RAYLRN (SIGMA)

RAYLRN =SIGMA * SQRT (2. *EXPRN(R))
RETURN

END
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2,4 2
f(x) gX /20

1l
QNlpq

START

Y

Generate
R « E(0,1)

c-v2:'R

4
It

i

END

Figure 3-14. Random number generation algorithm
for Rayleigh distribution ’
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3.12 GAMMA DISTRIBUTION

The gamma distribution

! n-1 -\x

f(x) = =) X e ,

describes the time for exactly n events to occur when events occur at a
constant rate A . When 7 is an integer, there is a simple combination tech-
nique for generating gamma variates. However, as the gamma distribution
is one of the Pearson family of distributions, there is a need for selecting
gamma variates when 7n is non-integral even though there is no physical
model for this. This is a much harder task but can be accomplished by a
combination of the usual technique for the integral part of n with a composite
rejection technique designed to select from xfe_x where f is the fractional

part of 7.

Sample routines:

For 7 integer:

FUNCTION GAMRN (ALAM, NETA)
Y=1
DO 101 =1, NETA

10 Y =Y * UNFRN (Y)
GAMRN = - ALOG(Y)/ALAM
RETURN
END

For m general:

FUNCTION GAMRN(ALAM, ETA)
N =ETA
F =ETA - N
IF(F.EQ. 0) GO TO 100
10 R = UNFRN(R)
IF (R.LT. F/(F + 2.71828)) GO TO 20
Y = UNFRN(Y) ** (1/F)
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10
GO TO 50
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n
fix) = F‘m MU IR
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n = integer partof

{ = fractional part of

° Yes

No

-

Generate R«U(0, 1)
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R «U(0, 1) y=0
U, 1

v < E(0,1) Ru+U0,1)

yey+l g= ul/l

[ Generate yy,¥p,-+.,¥, « u(0,1} j
Y

y-y-ln(ill yl)

—

x=y/A

I

END

Note that if n is limited to integral values, this simplifies to:

Generate Yp¥grees ¥ © U, 1)

- io({])

i=l

END

Figure 3-15. Random number generation algorithm
for gamma distribution
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3.13 BETA DISTRIBUTION

The beta distribution,

i) = 1 T(y+n) (x - a)y-l( X - a)n'l
-aT(y)Tin\b-a b-a
-with x limited to the interval (a,b), is a basic statistical distribution fre-
quently encountered for bounded variables. The parameters, y and 7,
are limited to positive values. Beta variates for most values of the parame-
ters are best obtained as a ratio of two gamma variates. If y and 7 are
both small integers, a beta variate may also be generated by éhoOsing |
vy +n - 1 uniform random numbers, arranging them in order of increasing

magnitude, and selecting the 'yth random number as the beta variate.

Sample routine

FUNCTION BETARN (GAM, ETA, A, B)
Y = GAMRN (1., GAM)

7 = GAMRN (1., ETA)

BETARN = (Y/(Y + Z)) * (B - A) + A
RETURN

END
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-1 -1
1 \I'( ) - a\” X-a . < x <
f‘x)=(b—:—5>ry7§?,(§—-5) (l'b-a> ; a=x=Dh

START

Generate y from gamma distribution
with parameter y

Generate z from gamma distribution
with parameter 7

x=( y)(b-a)+a.

V+2Z

END

Figure 3-16. Random number generation algorithm
for beta distribution
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3.14 PARETO DISTRIBUTION

A-1

A- . .
X , has a simple inverse

The Pareto distribution, £(x) = X¢
which provides the quickest procedure for random number selection.

Sample routine

FUNCTION PRTORN (EPS, ALAM)
PRTORN = EPS * UNFRN(R)**(-1. /ALAM)
RETURN

END
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fx) = 2 ex x-x-1

START

y

Generate
R «U(0,1)

X = € (R)_l/A

y

END

Figure 3-17. Random number generation algorithm
for Pareto distribution
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3.15 LOG-NORMAL DISTRIBUTION

The log-normal distribution

-1 .1 1
f(x) T o) exp —2[111 (x - € - p] (

20

describes a random variable whose logarithm is normal. It is a simple

matter then to invert this transformation to generate log-normal variates.

Sample routine:

FUNCTION ALNMRN (EPS, AMU, SIGMA)
R = ANRMRN(R)

ALNMRN = EPS + EXP (SIGMA*R + AMU)
RETURN

END
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END

Figure 3-18. Random number generation algorithm
for log-normal distribution
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3.16 FOLDED-NORMAL DISTRIBUTION

The folded-normal distribution,

’

f(x) = —— [e'(x'“)z/ 207 , () 2/207 ]
o./2T

describes the distribution of the absolute value of a normal variate, which

provides the simplest procedure for generating from the distribution.

Sample routine

FUNCTION FNRMRN (AMU, SIGMA)

FNRMRN = ABS (AMU + SIGMA * ANRMRN(R))
RETURN

END
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1 & (x~- y,)2/202 ‘€ (x+;.l.)2/20‘2

START

Generate R « N(0, 1)

x = ABS (u+0-R)

Y

END

Figure 3-19. Random number generation algorithm
for folded-normal distribution
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3.17 KODLIN'S DISTRIBUTION

Kodlin suggested as a distribution for survival time data the functional

form,

2
() = (n+ y x)e”M%+ 1/27%)

This Kodlin form has a moderately simple inverse, and thus it is not difficult

to generate random varities.

Sample routine

FUNCTION AKODRN (ETA, GAM)

R = EXPRN (R) * 2. * GAM/(ETA **2)
AKODRN = ETA/GAM * (SQRT(1. +R) - 1.)
RETURN

END
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1 2
-(nx+§‘yx )
fx) = M+ vyx)e

START

Generate R « E(0, 1)

x=n—-v1+-2—7R—1
Y 12 }

i

END

Figure 3-20. Random number generation algorithm
for Kodlin's distribution
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3.18 EXTREME VALUE DISTRIBUTIONS

There are two extreme value distributions. The first is for the maxi-

mum value,

\ 1 1 -(x-
£(x) = = exp [ Ly - el W/o ] ,
and the second is for the minimum value,
\ _
| 1 1 -
f(x) = > exp[a_(x-u) - e(x ;.D/c]

The inverse function for both is straightforward and provides an efficient

selection procedure.

Sample routines

For the maximum value:

FUNCTION AMAXRN(AMU, SIG)
R = EXPRN (R) |
AMAXRN = AMU - SIG * ALOG (R)
RETURN

END

For the minimum value:

FUNCTION AMINRN (AMU, SIG)
R = EXPRN (R)

AMINRN = AMU + SIG * ALOG(R)
RETURN

END
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) - 6 (x- U)/C ]

Maximum value: f(x) = % exp [— - (x-pu

START

Generate R « E(0, 1)

END

(x - u),/c}

Minimum value: f(x) = = exp % (x-u) - e

START

Generate R « E(0,1)

clnR+pu

X

J

END

Random number generation algorithm

Figure 3-21.
for extreme value distributions
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3.19 WEIBULL DISTRIBUTION

The Weibull distribution, £(x) = n/x (x-¢)7 "Lexp[-(x-9T)/y ], 15 2 three-
parameter (e,),n) family of empirical distributions having wide usefulness.
The random variable x is bounded below by ¢ . The inverse cumulative

function is straightforward and provides the best general method for

generating Weibull random numbers.

Sample routine:

FUNCTION WIBLRN (EPS, ALAM, ETA)

WIBLRN = EPS + (ALAM * EXPRN (ALAM)) ** (1. /ETA)
RETURN

END
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(x=¢)"

f(x)=¥(x-€

START

Generate R « E(O, 1)

X = (A-R)l/n+e

END

Figure 3-22. Random number generation algorithm
for Weibull distribution
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3.20 JOHNSON DISTRIBUTIONS

3.20.1 Johnson Sy, Distribution

2

f(x) = SR {,n(x-e)]z} ,

—n_
Bed {

is easily generated by transforming a normal variate. (The reverse of the
transformation used in deriving this Johnson distribution.) The S L dis-

tribution is also known as the log-normal (Section 3. 15).

Sample routine:

FUNCTION SLRN (EPS, GAM, ETA)
R = ANRMRN (R)

SLRN = EPS + EXP ((R-GAM)/ETA)
RETURN

END
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712 2
-—[Z +&n(x-e)]
f(x) = == e 2
T 2 (x-€)
START
|
Generate
R «N(0, 1)
]
_R-y
x=ec+e N
|
END

Figure 3-23. Random number generation algorithm
for Johnson SL distribution
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3.20.2 Johnson SB Distribution

The Johnson S_ distribution,

B

A 1 -
f(x) = J;L" &=0) (\=x%e) exp {- §[7+n&n(;f—xié)] } ’

is easily generated by a transformation on a normal variate.

Sample routine:

FUNCTION SBRN (EPS, ALAM, GAM, ETA)
R = ANRMRN (R)

EX = EXP ((R-GAM)/ETA)

SBRN = EPS + ALAM * EX/(1. + EX)
RETURN

END
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1 -
n A "2 l7+77 Ln(k}-{x; )]
9 xX-€)(A - X +¢€) €

f(x) =

START

Generate
ReN(0,1)

i

e
EX = e n

X = +A(——-——EX )
=€ 1+ EX

END

Figure 3-24. Random number generation algorithm

for Johnson SB distribution
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3.20.3 Johnson SU Distribution

Like the other Johnson family distributions, the SU distribution,

1 1 X-¢ X-¢€ 2 1/2)\ 2
f(x) = 1 exp|l-5 lvy+inin (—)+ (—) + 1] ’
\I(x+e) +A
is easily selected by reversing the transform which generated the distribu-

tion from a normal distribution.

Sample program:

FUNCTION SURN (EPS, ALAM, GAM, ETA)
R = ANRMRN(R)

SURN = EPS + ALAM * SINH ((R - GAM)/ETA)
RETURN

END
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e 4

L . SRS
Jom Vix+e)2 + a2

f(x) =

START

|

Generate
R «N(0, 1)

END

Figure 3-25. Random number generation algorithm
for Johnson Sy distribution
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3.21 PEARSON DISTRIBUTIONS

3.21.1 Pearson Type I Distribution

The Type I distribution of the Pearson system of frequency functions

is given by

fx) = C(1 + x/al)ml (1 -x/a2 )m2

b

where C is a normalization constant. The limits on the distribution are

-2, <xX< a, and there are further constraints that m1 > -1 and m, >-1.
X+a

By the linear transformation Z =g +a1 , the Type I distribution can be
271

transformed into a beta distribution which may be derived from gamma vari-

ates as given in Section 3. 13.

Sample routine:

FUNCTION TYPIRN(EM1, EM2, A1, A2)
U = GAMRN (1., EM1+1.)

V = GAMRN (1., EM2+1.)

TYP1RN = (A1 + A2)*U/(U+V) - A1
RETURN

END
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f(x) = C(L+ x/al)m 14 - x/az)mz

START

Y

Generate U from a gamma distribution
with parameter (m1 + 1)

!

Generate V from a gamma distribution

with parameter (m2 + 1)

Y

Z =U/(U + V)

!

X = (a1+a2) Z -ay

!

END

K

Figure 3-26. Random number generation algorithm

for the Pearson Type 1 distribution
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3.21.2 Pearson Type II Distribution

The second distribution in the Pearson family is given by
x2 m
f(X) =C (1 - —7) ’
a

where C is a normalization factor. The limits on the distribution are
-a< x<a and m> -1, This is a special case of Type I where m, = m,,

1= a2. As such it may also be derived from gamma variates.

Sample routine:

and a

FUNCTION TYPE2RN(EM, A)
U = GAMRN (1., EM+1)

V = GAMRN (1., EM+1)
TYP2RN = A*(U-V)/(U+V)
RETURN

END
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fx) =C (1- =5 )

START

!

Generate U and V from gamma
distributions with parameter
m+1 :

'

X =a*(U-V)/{U+V)

Y

END

" Figure 3-27. Random number generation algorithm
for the Pearson Type II distribution
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3.21.3 Pearson Type III Distribution

- va
The Pearson Type III distribution is given by £(x) = C(1 + x/a) e~ 7%

-where C is a normalization constant. The distribution is limited to

’

-a<x<a (orto a<x< -a if a is negative) and is further constrained
by ya> -1. A few simple transformations, x =a(y-1) and rx=ay , will
turn this distribution into a special form of the gamma distribution

f(y) =C'y*e™ .

Sample routine:

FUNCTION TYP3RN (GAM, A)
P = GAM*A -

Y - GAMRN(P, P+1.)
TYP3RN = A*(Y-1.)

RETURN

END



66

)Ya -Yx

fx)=C (1 +x/a)" “e

START

Y

A=Ya

'

Generate Y from gamma distribution
with parameters A, A+1

!

x=a(y-1)

!

END

Figure 3-28. Random number generation algorithm
for the Pearson Type III distribution
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3.21.4 Pearson Type IV Distribution

The Type IV distribution of the Pearson system is given by

-1
f(x) =C (1 + xz/az) -m_-ytan (x/2)

’

where C is a normalization constant. By a trigonometric transformation,
x=atan 1 ( o - m/2), the function can be transformed into f(o) = C'(sino)’e 9,
where y =2m - 2. In this form there is one limit on the parameters, namely
r > 3, while ¢ ranges from 0 to 7 . Picking from this function can be
accomplished by a selection from e-'y‘p, truncated at ¢ =m, followed by a

rejection conditioned on (sin <p)r .

Sample routine:

FUNCTION TYP4RN(EM, GAMMA, A)
DATA PI/3.1415962/HAFPI/1.5707981/
R = 2*EM-2 '
10 PHI = EXPRN(R) :
PHI = AMOD(PHI/GAMMA, PI)
IF (UNFRN(R). GT. (SIN(PHI)**R)) GO TO 10
TYP4RN = A*TAN(PHI-HAFPI)
RETURN
END
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| -1
f(x) =C (1 + xz/az)'me'V tan “(x/a)

START

Y

y = 2m-2

Generate R « E(0, 1)

!

o =R/y (mod )
(i.e., ¢ is the remainder when as many multiplies
of m as possible are subtracted from R/y )

Y

Generate y « U(0, 1)

!

no

y <(sin )T

+ yes

x = a tan (o - 7/2)

r

END

Figure 3-29. Random number generation algorithm
for the Pearson Type IV distribution
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3.21.5 Pearson Type V Distribution

The fifth type of distribution in the Pearson system of frequency func-
tions is given by £(x) =C x_pe-y/ X , where C is a normalization constant.
The range of the argument is 0 < x <= ., The parameter ¥ must be positive
(for y <0, -»<x <0) , and p must be greater than 1. The Type V random
variable x is the inverse of a gamma variate; this provides the simplest

means of picking from the Type V distribution.

Sample routine:

- FUNCTION TYP5RN (P, GAMMA)
TYP5RN = 1. /GAMRN(GAMMA, P-1.)
RETURN
END
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f(x) =C x P e_y/x

START

Y

Generate R from the gamma distribution with parameters
n=p-land A=Y

Y

X=1/R

Y

END

Figure 3-30. Random number generation algorithm
for the Pearson Type V distribution
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3.21.6 Pearson Type VI Distribution

Type VI of the Pearson family of distributions is given by
f(x) = C(x-a)(12 X ! , where C is a normalization factor and 9y and d,
are parameters limited by dy > qz' +1> 0. For a> 0 the range of the
distribution is a < X <« » while for negative a itis -»<x < a. By the
simple transformation x = a/y the distribution is converted into a form of
the beta distribution

(a,-9,-2) q
fy)=C'y ' 2 (1-y) 2

which can be obtained from two gamma variates as described in 3. 13.

O<y<1

Sample routine:

FUNCTION TYP6RN(A,Q1,Q2)
U = GAMRN(1.,Q1-Q2-1.)

V = GAMRN(1.,Q2+1.)
TYP6RN = A*(U+V)/U
RETURN

END
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Generate U from gamma distribution

with parameter 7 = q - qq - 1

!

Generate V from gamma distribution
with parameter n =qq + 1

y

X=a(U+V)/U

Y

END

Figure 3-31. Random number generation algorithm
for the Pearson Type VI distribution
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3.21.7 Pearson Type VII Distribution

Type VII of the Pearson family of distributions is given by

fx)=CQ + xz/az)-m ,
~where C is a normalization factor. The range of o X is -» to « where
m must be greater than 2.5. By setting z = —;——2 the distribution

. . a” +
is transformed into X

g@) = C' (1 - Z)-1/2 zm-3/2
which is a special case of a Beta distribution with y =m-1 /2 and
n = 1/2. The beta variate z can be obtained as a ratio of two gamma

1/2 , wehave x=a (V/u)l/2 .

variates, z =u/@u+v). As x=a(l/z - 1)
Now v is a gamma variate with parameter 7= 1/2. This special case

of a gamma variate can be obtained from v = yz/z , where y is a
normalized normal variate. This gives x =ay (1 /2u)1/ 2 . Selection
from the Pearson Type VII is achieved by combining the above transform-

ations with the selection routines for the gamma and normal variates.

Sample Routine

FUNCTION TYPTRN(A, EM)
Y = ANRMRN(Y)

U = GAMRN (.5, EM -. 5)
TYPTRN = A*Y/SQRT (U)
RETURN

END
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fx) = C (1 +x2/a2) ™™

START

!

Generate U from a gamma distribution
with A =.5 andn =m-1/2

!

Generate Y from a normal distribution

with mean =0and o =1

'

X = a¥Y /U

Y

END

Figure 3-32. Random number generation algorithm
for the Pearson Type VII distribution



75

3.21.8 Type VIII Pearson Distribution

The eighth distribution in the Pearson family is given by

fx)=C (1 +x/a)™

where C is a normalization constant. The range of xis -a<x< 0
(or 0 < x < -a for a negative) while the range of m is 0= m = 1,

If we set y = (1 +x/a), the distribution becomes
fg)= C'y™ where O0<y<l.

This form of the distribution has a simple inverse.

Sample Routine

FUNCTION TYP8RN(A, EM)

R = UNFRN(R)

TYPSRN = A*(R**(1. /(1.EM)) -1.)
RETURN »

END
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fx) =C (1 +x/2) "

START

'

Generate R« U (0, 1)

'

y =R1/(1-m)

Y

x =a(y-1)

Y

END

Figure 3-33. Random number generation algorithm
for the Pearson Type VIII distribution
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3.21.9 Pearson Type IX Distribution

The Pearson Type IX distribution is given by

fx) =C (1 + x/a)™

’

where C is the normalization factor. The range of x is -a to 0 while

m must be greater than zero. This function has a simple inverse.

Sample Routine

FUNCTION TYPE9RN(A, EM)

R = UNFRNR)

TYPIRN = A*(R** (1. /(EM + 1.))-1.)
RETURN :

END
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fx) =C (1 +x/a) ™

START

!

Generate R« U (0, 1)

'

1/(m+1)

Y

x=a(y-1)

'

END

y=R

Figure 3-34. Random number generation algorithm
for the Pearson Type IX distribution
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3.21.10 Pearson Type X Distribution

The Pearson Type X distribution is a form of the exponential

distribution given by
fx) =1/0 e'x/Or ; x=20

This is easily obtained from the standard exponential distribution

routines.

Sample Routine

FUNCTION TP10RN (SIGMA)
TP10RN = SIGMA*EXPRN (SIGMA)
RETURN

END
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fx) =1/0 e -x/o

START

Y

Generate R « E(, 1)

'

X=0*R

Y

END

Figure 3-35. Random number generation algorithm
for the Pearson Type X distribution
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3.21.11 Pearson Type XI Distribution

The eleventh in the series of Pearson distribution is given by
£(x) = C(b/x)™

where C is a normalization factor. The range of x is limited to

b <x <». The parameter m is greater than 1. This distribution has

a simple inverse.

Sample Routine

FUNCTION TP11RN(B, EM)
R = UNFRNR)

Y =R¥*(1. /(EM-1.))
TP11RN = B/Y

RETURN

END
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£(x) = C(b/x)™

START

f

Generate R« U(0, 1)

v

y = gl/m-1)

'

x=b/y

Y

END

Figure 3-36. Random number generation algorithm
for the Pearson Type XI distribution
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3.21.12 Pearson Type XII Distribution

Type XII of the Pearson system of distributions is given by

0(/5_3?/31_;/_/3—1) +X (v 31/(3f31)
o (v 3+_,31 —JEI) -x|

where C is a normalization factor, o is the standard deviation, and

f(x) = C

By =[J,§/p,2 (skewness). The range of x is

(/348 + )< K< 0 (/348 - )

By setting
m = JB,/(3+8,)
a = ol/3+8, +./B,) , and
b = o(/3+8; - VB

" the distribution becomes

By setting

_ X+a
b+a ’

the distribution transforms to f(y) = C'ym (l-y)-m which is a special case
of the Beta distribution.
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Sample Routine

- FUNCTION TY12RN(SIGMA, BETA1)
R = SQRT(BETA1) |
S = SQRT(BETA1+3)
EM =R/S
A = SIGMA*(R+S)
B = SIGMA*(S-R)
Y = BETARN(EM+1, 1-EM)
TP12RN = (B+A)*Y-A
RETURN
END
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B,/(3+8,)
.0«/§+31+@+x e

f(x) =C
¥ | (BeBy - By - x

START

Setm =,/ 31/(3+31)

a= U(A/é+—31+/B?
b = 0(/3+_Bl -«//31_) |

'

Generate y from a beta distribution
with
y=m+1 and nn=1-m

'

x=(Mb+ay -a

Y

END

Figure 3-37. Random number generation algorithm for '
the Pearson Type XII distribution
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3.22 HISTOGRAM DISTRIBUTIONS

Frequently, empirical data regarding a probability distribution

is obtained in a histogram form. That is, intervals (xo, Xq) , (xl, x2), coee

(xn-l’ xn) and probabilities P> Pgs «--+, P, aTE given such that p; is
the probability that the variable x is found in the interval frgm X, 1 to
X, (It is presumed that the histogram is normalized, i.e. X p; = 1.)

Within each interval it is assumed that the probability is corts%ant.
Selecting a random number from such a histogram distribution is
simple. It is necessary first to select the interval in which the random
number falls, and then to choose where in that interval the random number
lies. This is basically an inverse distribution technique. Selection of
the interval i is accomplished by generating a uniform random number and
subtracting off successive values of p; - The value of i when this result
first goes negative is the desired interval index. Generation of a second
uniform random number and scaling it to fit in the interval from X 1 to X,
completes the task.

A more efficient (much more efficient if the size of the data table
is large) generator can be produced if it is possible to cast the histogram
data in a form such that Py=Pg=.:s =P, = 1/n by choosing values of
X, appropriately. Such a representation is known as equal probability
bins. This greatly simplifies selection of the interval i as all n intervals
have the same probability. Successive subtraction of values of P, is
no longer needed and can be replaced by a direct calculation of i from

a uniform random number.

In the sample Fortran routines below, the array X(I) is presumed
to contain: X(1) = X, X(2) = Xgs eenes XN +1)= X - In the first routine
use is made of the fact that, at the conclusion of selection of i, R will be

uniformly distributed between 0 and - p;
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Sample Routines

For general histogram selection

FUNCTION HISTRN (N, X, P)
DIMENSION X(N), P(N)
R = UNFRN R)
DO10I=1, N
R =R -P()
' IF®R.LT. 0) GO to 20
10 CONTINUE
20 HSTRN =X(I) -R* X (I +1)-X @)/P()
RETURN
END

For selection with an equal probability bin histogram

FUNCTION HSTRN (N, X)
DIMENSION X (N)

R = N * UNFRN [R) + 1

I=R

R=R-1I

HSTRN = X(I) + R * (X + 1) - X(0)
RETURN

END



START

*,

Generate R<U (0, 1)

i=1

N° i=i+1

Yes
X=X 1 ;{i . X -xi_l)
Y
END
Figure 3-38. Random number generation algorithm

for a histogram distribution

START

'

Generate R<U (0,1)

'

y=nsR +1

!

i
f

= integer portion of y
= fractional portion of y

Y

X=X 4 +f. (xi - xi-l)

'

END

Figure 3-39. Random number generation

algorithm for an equal
probability bin histogram
distribution

88
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APPENDIX A
GENERAL TECHNIQUES FOR
GENERATING RANDOM NUMBERS
FROM DESIRED DISTRIBUTIONS
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APPENDIX A

GENERAL TECHNIQUES FOR GENERATING RANDOM
NUMBERS FROM DESIRED DISTRIBUTIONS

When given a particular distribution, f(x), and the task of
selecting random numbers distributed according to that function, the
investigator has a large number of possible alternatives at his disposal.
The primary task is to derive a method which will accomplish the
desired selection. A secondary task is to choose the method which is

least time-consuming computationally.

Unfortunately, it is not possible to give a straightforward
methodology for deriving random number generation techniques which
can be applied in all or even in most cases. The situation closely
parallels that of finding an integral of an arbitrary fimction. When one
encounters the need to integrate an unfamiliar function, the first step, of
course, is to try to look it up in a table of integrals. That failing,one must
try to simplify, transform variables, integrate by parts, use trigonometric
substitutions, or employ other similar tricks to reduce the integral to a familiar
form. There is no guarantee of success, and much depends on the ingenuity
and experience of the researcher. When all else fails you can "grind out"

a numerical solution.

Faced with the task of generating random numbers from an unfamiliar
distribution, a similar procedure is needed. The first step is to try to look
it up somewhere — such as in Section 3 of this report. If not found there,
there are a number of techniques — inverse, rejectidn, transformations,
combinations, etc. available. These are described in this Appendix. There

is no guarantee of success in using them, and the experience and ingenuity
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of the analyst is very important. As a final resort, there are numerical

methods which can be _applied.

The following description of general techniques, while not universally
applicable should give the reader some notion of how to proceed in deriving

random number generation algorithms.

A.1 THE INVERSE METHOD (6)

The first technique which one should consider is the inverse. To
apply the inverse method, the distribution function is integrated to give
the cumulative distribution, F(x) = j'x f(x")dx'. This is the probability of
selecting a number less than or equal Zooo X. This is equated to the proba-
bility of selecting a random number, R, from the uniform distribution.
Thus, F(x) = I f(x') dx' = R. The question then is whether or not this
equation has a 81mp1e closed-form solution, x =F (R) If the inverse
function exists, then it is a solution to our task, for, if R is distribluted
(R)

not only exists,but is also moderately simple to compute, it is most likely

uniformly, then x = F_l(R) is distributed according to f(x). If F

the most efficient way to generate the desired random numbers.
A.2 REJECTION TECHNIQUE(Z)

If the inverse function cannot be easily calculated, then the rejection
technique should be considered. Suppose that the function, f(x), has a
maximum value M where x varies over the range of interest from a to b.

Random numbers are then chosen by the following two-step procedure.

e Select x from a uniform distribution on the interval (a,b)
] Seléct a second uniform random number, y, and accept
the value x only if y < [f(x)]/M.
If x is rejected, then go back to the first step to select a new x and con-
tinue this procedure until some value of x is accepted. The probability of
selecting x in the first step is [1/(b-a)] dx, while the probability of
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acceptance at the second step is f(x)/M. Thus the x values will be genera-

ted with the desired probability f(x) dx.

The constant term 1/[M(b-a)] represents the efficiency of the rejec-
tion. Its reciprocal, M(b-a), is the average number of trials the rejection
technique will require to generate a single random number and is,therefore,
linearly proportional to the computation time required. If M(b-a) is very
large, the rejection technique is too inefficient and a better technique should

be sought.

The rejection technique need not be based on variables from a uniform
distribution but can be developed from other distributions. For example
the fact that

2
o X /2Se1/2-e_x

can be used to develop a rejection technique for picking from a normal distribution.
First select x from the exponential distribution e *. Then accept x if

a second (uniform) random number

2
e™® /2 _ e-(x-1)2/2
Je. e X

The essential ingredient of the rejection technique is to find a second dis-

y <

tribution function, g(x), for which a selection procedure is known and such
that f(x) <C g(x). Selection of x from g(x) is followed by acceptance if
< £(x)
y Cegl® -

The average number of trials needed for an acceptance is C. Note that if
g(x) is close to f(x), then C will be close 1 and the technique will be very

efficient.

A.3 TRANSFORMATION

To simplify the derivation of inverse or rejection methods, it is best
to transform the random variable into its simplest form. Thus, if one had

f(x) = g(Ax + €), one would first make the substitution, y = Xx + ¢, then
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search for a technique for generating numbers from g(y). After generating
a random number y, set x = (y-¢)/\ to get the desired random variable.

In doing transformations correctly we must be careful to transform not just
the function f(x) but the probability f(x) dx. Thus, properly, we have

f(x) dx = g(Ax + €) dx = g(y) dx = g(y) dy/A as the substitution y = Ax + €
implies dy = A dx. The correct normalized distribution for y is then

1/x g(y). As a second example, assume f(x) dx = 2x e""2 d&x. Try

-x2 dx =e™Y dy.
Therefore, selecting y from the exponential e™ and taking x = /y will

the transformation y = xz. As dy - 2x dx, f(x) dx = 2x e

give a random x from f£(x).
A.4 COMBINATION OF RANDOM VARIABLES (2)

As a step beyond transformations, consider various combinations
of random variables such as adding, subtracting, or multiplying two
random numbers, taking the maximum or minimum of several random
numbers, etc. The results of such combinations follow no intuitive pattern
but must be worked out through the laws of probability. For example, the
sum of two uniform random numbers has a triangular distribution,
f(x) =1 - |x-1| while the product has the distribution, f(x) = - In x.
More complex examples seem even farther removed from simple ration-
ality. If x and y are random numbers from the gamma distributions,
1/T(n) X1 X and 1/T(m) ym-1 e X then z=x/(x+ y) has abeta
distribution T'(m + n)/T'(m)I(n) -1 1- z)m_1

distribution may also be obtained by taking n + m - 1 uniform random

However, the beta

numbers, arranging them in increasing order, and selecting the nth num-
ber in the sequence. Thus, although combinations can be a very powerful
method for transforming simple random variables into selections from
other distributions, it is impossible to give guidelines or to arrive at a
methodology for determining the proper combination needed to arrive at a
desired distribution. The investigator must simply learn the frequently
used combinations and must use his inventiveness when confronted with an

unfamiliar distribution.
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A.5 COMPOSITION TECHNIQUE (©)

Another method of general applicability is the composition technique. If
the desired distribution can be written as a (generalized) integral over a
family of density functions, then the sampling can be accomplished in a two-
s£age process. On the first step, a particular density function is selected
from the family, and on the second step, the desired random number is
drawn from the particular density function. In the usual application of
this technique, the desired distribution is broken down into discrete parts,

generally on separate intervals.
A.6 NUMERICAL METHODS

If no exact method can be derived, there is a numerical technique
which can be used. This consists of generating the cumuiative function,
solving for its inverse numerically, tabulating the inverse, and then gener-
ating the random numbers from the tabulated data. If equal probability intervals
are used in tabulating the inverse, then generation from the tabulated data
can be quite fast. It does, however, require a certain amount of computer

storage to hold the tabulation.

Improvements in the accuracy of numerical inverses can be made by
using Chebyshev interpolating polynomials.(s) For some functions with long
tails, the tabulated inverse must be replaced with some sort of approximating

function in the tail of the distribution to achieve reasonable accuracy.
A.7  MARSAGLIA TECHNIQUE(3-9)

If a particular distribution is very central to a frequently used simu-
lation program and the generation subroutine will be called a great many
times to produce random numbers, it may be worthwhile to design a very
fast selection procedure to reduce the computer time needed. A number of
super-efficient techniques have been developed by G. Marsaglia.-(3) These
are based on composition methods where the function is expressed as
the sum of three or more parts. The parts having highest probability are

fast to select from and the parts difficult or slow to select from have very
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small probability. In one of Marsaglia's methods, the function is broken

into:
e A histogram

® A collection of saw-toothed functions where an efficient
rejection technique selects from the 'almost-linear’ dis-
tribution of each sawtooth.

° The tail of the distribution.

This method is very fast but requires moderate amounts of computer storage.
In another method distributions are fitted to an approximation of the form
CM + Uy + U+ u3), where M is a discrete variable and the u's are uniform
variables. A small fraction of the time a more lengthy rejection procedure
is needed to correct the error in the approximation. This method is fairly

fast without great storage requirements.

These methods have been applied very successfully to the exponential
and normal distributions. They do, however, require considerable effort
in manhours to develop and thus should be applied to other distributions only

when the payoff can justify it.
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APPENDIX B
MIRAN
A MACHINE INDEPENDENT
PACKAGE FOR GENERATING
FROM DESIRED DISTRIBUTORS
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APPENDIX B

MIRAN - A MACHINE INDEPENDENT PACKAGE FOR GENERATING
UNIFORM RANDOM NUMBERS

B.1 GENERAL DISCUSSION

The standard technique for producing uniform random numbers on
modern high-speed computers is an algorithm known as the multiplicative

congruential method. This ‘method is expressed mathematically as

le = X-R (modulo P) .

Since the R's are integers ranging from 1 to P-1, successive real random
numbers uniformly distributed from 0 to 1 are generated by dividing Rn by P.
The properties of this technique as a random number generator (RNG) are
highly dependent on the choice of the' generator, A, and the modulus, P.'
Unfortunately, there are many RNGs in current use which do not approximate
randomness closely enough to be sufficient for all Monte Carlo calculations
and, what is far worse, do manage to pass some of the simple tests for
randomness. There are, however, several choices of A and P which have

(1)

use in Monte Carlo calculations, and which appear to be sufficiently random

been thoroughly tested, both theoretically '™’ and through many years of actual

for general usage.

For reasons of convenience and efficiency, P is generally taken to
be 2™ where m is the number of bits, excluding the sign bit, in a single
word on the particular computer being used. The generation process starts
with a fixed generator, X\, and a starting value, Ro' The full product
from the multiplication of X and R0 would usually fill two computer words;
however, the modulo P in the algorithm means that we only need the single

word, R., comprising the low order half of the X- R0 product. The random

1’

number generation is completed by converting R1 to a real variable and
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dividing by P. R1 replaces R0 in storage in the random number subroutine

and the process is ready to begin anew.

In this sort of a process there have been two barriers to developing

a Fortran RNG subroutine which would be independent of the particular com-
puter for which it was designed. The first is the modulus P, which varies
from computer to computer as the word length varies. [Choosing a universal
value of P to fit the smallest computer is not a good solution as the proper-
ties of a RNG become less random as P is made smaller, to the extent that
(1) consider them questionable for P = 231

(IBM 360 series) and borderline for P = 235 (IBM 7090, Univac 1108, etc.). ]
The second problem is that the sign bit of R

Coveyou and MacPherson

| may need to be cleared follow- |
ing the multiplication. Clearing the sign bit generally requires some trickery
in Fortran which varies from computer to computer as the mode of represen-
tation (one's complement, two's complement, uncomplemented, etc.) of

negative numbers varies.

The way around these obstacles is to use an explicit multiple pre-
cision representation. The integers and operations involved in the RNG
algorithm are separated into component parts in such a way that all operations
are kept within a single computer word and no overflows into the sign bit are
made, thus avoiding the sign-clearing problem. Through multiple precision
a sufficiently large modulus for good RNG properties may be used even
though the actual computer word size is small. An initialization call must
be made to convey to the RNG the maximum integer allowed on the particular
computer being used so that it can set up an appropriate multiple precision

representation,

The advantage of a RNG that is machine independent is simple: it
greatly facilitates the exchange and checkout of Monte Carlo programs between
different computers. The price paid for this advantage is also simple: it

is a much slower method of producing random numbers. However, it is
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still fast enough (several thousand random numbers generated in one second)
that the time difference will not be noticed in most Monte Carlo applications.

B.2 CHOICE OF A SPECIFIC ALGORITHM FOR MIRAN
(1)

theoretical analysis of many commonly used RNGs. They show that the cor-

The work of Coveyou and MacPherson' "’ has provided a thorough

relation properties of a RNG are strongly dependent on the modulus P.

For values of P = 231 or 235, there must necessarily be a waviness or
graininess to the joint distribution of two, three, and four consecutive ran-
dom numbers that could lead to incorrect results for sorhe Monte Carlo cal-
culations. For P = 247, the departures from true randomness are small
enough as to be negligible for practical calculations. Among the specific
generators, A, tested by Coveyou and MacPherson, there is one, X = 515,
which has good statistical properties and which may be easily produced by

a machine independent subroutine. (In a subroutine designed for use on com-
puters of varying word length, specifying a fixed 47-bit integer through

15

data statements would be difficult. However, 5"~ may easily‘ be produced

by multiplying 5's after the exact multiple precision representation needed
47 and A = 515 has
an added advantage: this particular choice of a RNG has seen long usage

(several thousand hours on a CDC 1604 at Oak Ridge National Laboratory)

has been established.) In addition the choice of P = 2

in Monte Carlo computations without any apparent problems.
B.3 MULTIPLE PRECISION REPRESENTATION

In the basic algorithm used by MIRAN, X and the Rrl values will
be 47-bit integers. This may exceed machine capacity. To keep all arith-
metic operations from overflowing a single machine word, these integers
are stored in an array wherein each word of the array constitutes a 'digit'
in a representation of the integer to a particular base. This basis, called
BASE, is chosen at execution time so that (BASE)2 does not exceed the maxi-

mum integer allowed on the particular computer being used. Thus, for
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example, on a machine with 35-bit words (unsignéd), BASE would be 217

and each 47-bit integer would be broken down into 3 words as follows:

47 -bit Integer Multiple Precision Representation
b
b1b2 ..... b13_,14. ces b30b31. - .b47 +0..... 0 b1. .. .b13 word 3
A+0 ..... 0b14....b30 word 2
+0..... 0b31....b47 word 1

Note that the 'digits' are stored in the array in 'reverse' order, i.e.,
word 1 is the least significant 17 bits of the number. Also, since 17 does

not go evenly into 47, the last word contains only 13 bits.

Arithmetic in a multiple precision representation is carried out in
the same manner as arithmetic is normally done by hand. The addition of
two numbers, for example, is done digit by digit. When two 'digits', or words,
are added there méy be an overflow into the 18th bit of the result. This must
be detected, the overflow cleared out, and a carry of 1 added into the next
higher 'digit'. Multiplication is slightly more complex. It is again carried
out digit by digit and the resulting products are added, keeping them in appro- -
priate columns, to get the final product. The multiplication of two 'digits’
produces, of course, a two-digit product which is initially contained in a
single computer word. This must be broken down into a high-order digit and
a low-order digit with the high-order digit being added into the next higher
column of the result. As each column is added, a carry over into the next
higher column may be needed. Thus, in our example where three words were
used for each integer, nine multiplies and several additions would be needed

to form the six-word full product as schematized below.



3 2 1
ay aj a
hyr
hoy o
h3y 3
his o
hog a9
Pgg  f32
his 43
hog  ta3
hgg 133
S Sg S4 S3 S 51

where hij and Lij are the high and low order parts of the product of
d, and d!.
1 J

B.4 USE OF MIRAN PACKAGE

Initialization:
- Before generating any random numbers, it is necessary to make an

initialization call. This is done by the statement
CALL RANSET (MAXINT,NSTART)

where MAXINT isl the maximum integer allowed on the computer (or compiler)
being used. NSTART is the starting value, Ro’ to be used in the random
number sequence. If NSTART is less than or equal to 0, a default value

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd

number will be used.
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For example MAXINT = 235 -1 on a 1108, 248 -1 on a CDC-6600, etc.

Good values for NSTART are any odd integer although frequent use of
small odd integers is not recommended for calculations employing a re-

latively small number of random numbers.

The random numbers are generated in subroutine URAND which may
be used as either a function subroutine or as an ordinary subroutine return-

ing a value. Thus, either

CALL URAND(R)
or
R = URAND(X)

will store a uniform random number in R. (Note that in the second form

the same random number will also be stored in X. Thus, X must be a

Fortran variable and not a constant.)

Limitations of MIRAN:

MIRAN will work on all computers where MAXINT is greater than
1023 and less than 294. (These limits are practical and not theoretical and

could be extended if it were ever necessary.)
B.5 MIRAN PROGRAM DETAILS

The Fortran listings of the two MIRAN routines URAND and RANSET
are presented in Figures B-1 and B-2. The accompanying logic flow is de-
tailed in Figures B-3 and B-4. Additional explanation of the last step in the
URAND logic is provided below.

The two subroutines URAND and RANSET communicate through a

labelled common, MIRNG which contains

RAN(10) - An array containing the 'digits' of the current (or last)

multiple precision random integer
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REAL FUNCTIUN UWAND(FRAN)

fOMMNN /MIRNG/ KANC10),GENCLO) NWKD,BASE,MUG,FBASE,FMUD

DIMENSTON SUM(1G)

TNTEGEN RAN,GEN,RASE,CARRY,SUM,PRUDSHPRON

PO 30 I8=1,nNWKD
SuM(18)=0

NU 1 i6=1,NaRy
NZanwaDeY(+}

Ny 1 IR=1,Ng

IS [R+IG~1
PROVEMAN(LIRI*GENCIG)
HPRUNDSPROU/BASE
LPRUD=PROD=nPROD*BASFE
SUM(TIS)=SUM(IS)e«l PRON

1F (I5.LT NWRU) BUM(IS+1)=SuM(IS+1)+HPROD

CUNTINIE

N2ENWRD =4

PO 5 [S=1,N¢2
CARRY=SUM(IS)/3ASE

SUM(TIS5)=2SUM(IS)=CARKY*RASE
SUM(TS+1)I=SUM(IS+1)+CARKY

CONTINUE

SUMINWRD)YSSUMINWNRD) =MONA(SUM(NWKRD) /MOD)

NG en I8=1,NWRD
RAN(T5)=SUM(IS)
FRANSSUM(]L)

DG 10 T3z2,NWRD

FRANSFRAN/FBASF+SUM(TS)

FRANZFRAN/FMND
URANDSFRAN
RETURRN

END

Figure B-1.

Fortran listing of URAND
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SURKOUTINE KANSET(MAXINTLNSTRT)
COMMON /MEIRNG/ RANCL10),GENCLO) NWKD,RASE,NMOD,FBASE,FHMUD
INTEGER RAN,GEN,RASE,CARRY,KEM
MaXIeMAXINTZ4
Te=0
BASE=1

99 TF (RASE,.6T,MaAX]) Gu TO 190
RASE=BASE=d
I18=1IB+!
Gu 10 99

100 RASEm2**1K
FEASE=BASE
NWRD=47/1IB+1
REMzUT=]RX(NWNKD=1)
MONz2x*REM
FMoODsMOD
PU 101 N=1,10
RAM(N)=Q

101 GEN(N)=(
GEN{1)=5
PO 200 I=1,14
CARRY=0
DU 190 N=1,NWRD
GEN(N)=GEN(N) %S+ ARRY
CARPRY=O0
IF (GEN(N)LT,BASE) GU T0O 190
CARRY=GEN(N)/BASFE
GEN(N)IGEN(N)=BASEXCARRY

1990 CUNTINUE

200 CUONTINUE
NSTARISNSTRT
IF (NSTART,LE.0) NSTART=2u0l
MSTART=2*(NSTART/2)+1
DU 300 N=1,NWRD
NTEMPaNSTART/BASE
RAN(N)SNSTART=NTEMPxRASE

300 NSTART=NTEMP
RETURN
END

Figure B-2. Fortran listing of RANSET
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START

_ICIear out SUM array
30

!

For i = 1, NWRD and j=1, NWRD+1 - i:
Multiply ith- 'digit' of RAN by jth 'digit' of GEN
Separate the 'two-digit' product into a high-order part HPROD
and low-order part, LPROD
Add LPROD into the (i + j-1) column of SUM
Add HPROD into the (i + j)* column of SUM

For i =1, NWRD-1
Separate ith word of SUM into a single 'digit' plus the carry
into the next higher column -
" Add the carry into the (i + 1) word of SUM

5 |

A

Reduce the last word of SUM modulo MOD

Store SUM in RAN for next entry to URAND

!

Convert SUM to single precision floating point and divide it by

P. Return this as the random number

END
Figure B-3. Logic flowchart for URAND
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'START

!

4IB IB+1

Determine IB such that < MAXINT < 4

BASE = 21B

Calculate the number of words needed to represent 47-bit
integers to the base, BASE.

Calculate REM, number of bits in the last word of the
representation. MOD=2R.EM

Get floating point values of BASE and MOD

Y

Clear out random number and generator arrays

\

Calculate \=51° by multiplying by 5 15 times

\

If user gave NSTART = 0, set NSTART to default value of
2001
Make sure NSTART is odd.

.Convert NSTART to multiple precision representation.

1

END

Figure B-4. Logic flow chart for RANSET
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GEN(10) - An array containing the generator \(= 515) in multiple
precision representation
NWRD - The number of words used in the multiple precision

representation of an integer

BASE - The base used in the multiple precision representation
MOD - The maximum value of the highest order 'digit' in the
- multiple precision representation
FBASE - Floating point value of BASE
FMOD - Floating point value of MOD

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are

Fortran real quantities.

An alternative method (unfortunately, not machine independent) of giving
‘the routine a starting value is to save the array RAN at the end of a run and to
restore RAN at the start of the new run (just after the RANSET call).

In the last step of the URAND flow the objective is conversion
of the multiple precision integer random number R to a floating point
random number X between 0 and 1. The multiple precision integer
produced by the random number algorithm is represented by the 'digits"'

TR YERRRTFE (remember that r_ is the lowest order digit. Thus,

1

R = r, +(BASE)-r, + (BASE)Z-r3 P (BASE)N‘l.rN :

Notice that we have, from the manner in which N and MOD were established,

P = (BASE)N'I- MOD .
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The uniform random number desired is given by R/P. Thus we have,

r r r
R _ 1 2 < 3
X—-r)— + +

(BASE)N-I- MOD (BASE)N'Z- MOD

(BASE)N'3. MOD

'N-1 N

*ee--* BASE-MOD = MOD

——I—(r +—-——L—(r + ——-—l-—(r +;-r) ))
MOD"N BASE'"'N-1 """ BASE "2 BASE "1'""°°
Starting from the right it is easy to compute this iteratively.

B.6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN

For checkout purposes, Table B-1 lists the first 100 random num-
bers produced by MIRAN when the default value of NSTART, 2001, is used

as the starting random number.




LH332977
3726977
27623080
10524652

sé

o

Jt
o

)

-

LT345023

6711822
8524630
P 3249444

2713845

JTEBBATO
ELLE IR
BUTHP7H
,2195750
L2540241
LhB71775
L1615501
,7503770
LIUS6000

«H928810

.9904279
.5699999
,5594711
0736062
L62356103
LI635987
LUTTTe4T
L6175984
, 0429544

3603209

L8066061
L6EEGGGR
2497678
.0596241
.1514489
.1946915
L5U82782

,8909496

WB2253u4

«2550091¢

TABLE B-1

First 100 Random Numbers Produced by Machine-Independent Random
Number Generator

L 9646561
8994935
2726822
L 4543268
L6RBAS00
2761093
7349975
3714798
5104638

«2913790

«H1083590

JO315737

. 1385819
.6998527
9272675
« 70606840
« 0765710
« 1235697
26921146

»0058372

«507034U0
«6045930
«1319806
eS66h65H1
24724877
«2893777
0634225
« 0322795
2768275

« 9934161

2304957
2886992
8203205
LAUEEL2R
6947799
6862300
0418916
4017063
«3440949

«418u589

+B253787
« 7004357
.2988024
.88788%¢
4599674
9024574
6368102
LT72R325
«9040403

9584109

6423580
«0770901
29646986
,48u5283
WUB13375
+3585868
L6L480426
.0014033
25348431

280901456

Lt
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APPENDIX C
REFERENCES AND ABSTRACTED
BIBLIOGRAPHY

Coveyou, R. R., and R. D. MacPherson, "Fourier Analysis
of Uniform Random Number Generators, ' Journal of the ACM,
14 pp. 100-119, 1967.

A method of analysis of uniform random number generators is de-
veloped, applicable to almost all practical methods of generation.
The method is that of Fourier analysis of the output sequences of
such generators. With this tool it is possible to understand that
predict relevant statistical properties of such generators and com-
pare and evaluate such methods. The results of many such analyses
and comparisons are given. The performance of these methods

as implemented on differing computers is also studied. The main
practical conclusions of the study are: (a) Such a priori analysis
and prediction of statistical behavior of uniform random number
generators is feasible. (b) The commonly used multiplicative
congruence method of generation is satisfactory with careful choice
of the multiplier for computers with an adequate (=~ 35 bit) word
length. (c) Further work may be necessary on generators to be
used on machines of shorter word length.

Kahn, H., Applications of Monte Carlo, Rand Corp., AEC-3259,
USAEC, April 1964.

A classic publication in the field of Monte Carlo methods that describes
general Monte Carlo methods, random number generation schemes

and variance reduction techniques. The volume is divided in two

parts. Part I describes basic techniques with random numbers (such
as fundamental random number generation techniques) and Part JI
details several variance reduction schemes. The general areas of
application addressed are problems in radiation transport.

MacLaren, M.D., G. Marsaglia, and T. A. Bray, ""A Fast Procedure
for Generating Exponential Random Variables, ' Communications of
the ACM, 7, May 1964.

A very fast method for generating exponential random variables in a
digital computer is outlines. A detailed flow diagram and required
tables are provided.
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Marsaglia, G, and T. A. Bray, "A Convenient Method for Generating
Normal Variables, " SIAM Review, 6, 1964.

A very fast yet small Fortran routine for generating normal random
variables in terms of a sequence of random variables uniform over
[0, 1] is presented. A random variable X is generated in terms
of uniform variables U,, U2, ... in the following way: 86 percent
of the time, X=2(U,+U_+U_ - 1.5), 11 percent of the time, X=1.5
(U,+U, - 1), and thé remaining 3 percent uses a complicated pro-
cedure.

Marsaglia, G., M.D. MacLaren, and T, A, Bray, "A Fast Procedure
For Generating Normal Random Variables, " Communications of the
ACM, 7, 1964.

A technique for generating normally distributed random numbers is
described. It is faster than those currently in general use and is
readily applicable to both binary and decimal computers.

National Bureau of Standards Applied Mathematics Series 55, June
1964, Handbook of Mathematical Functions, Numerical Methods,
pp. 949-953. ' '

This section of the handbook reviews various methods of generating
random numbers including the rejection and composition methods.
Also presented are specific techniques for various discrete and con-
tinuous distributions such as the normal and exponential distributions.

Spanier, J., and E. M. Gelbard, Monte Carlo Principles and Neu-
tron Transport Problems, Addision Wesley Publishers, 1969.

This is one of the more recent comprehensive references on Monte
Carlo methods as applied to radiation transport problems. Basic
fundamentals of Monte Carlo are first reviewed. Next the concepts
of discrete and continuous random walks are introduced followed by
a discussion of variance reduction techniques. Finally, advanced
concepts and applications to radiation transport are presented.
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