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ABSTRACT 

Algorithms for efficient generation of random numbers 
from various probability distributions a r e  presented, in both a 
flowchart form and as a sample Fortran subroutine. Twenty- 
two different distributions, including all commonly encountered 
discrete and continuous functions, the Weibull, Johnson, and 
Pearson families of empirical distributions, and histogram dis- 

tributions, are covered. The general techniques to apply in 
deriving a random number selection scheme for  an arbitrary 
distribution are discussed. A machine-independent subroutine 
f o r  generating uniform random numbers is also described. 
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FOREWORD 

f 

Monte Carlo simulation is one of the most powerful and commonly 

used techniques for analyzing complex physical problems. Applications can 
be found in many diverse areas from radiation transport to river basin 
modeling. Important Navy applications include analysis of antisubmarine 
warfare exercises and operations, prediction of aircraft o r  sensor perform- 
ance, tactical analysis, and matrix game solutions where random processes 
are considered to be of particular importance. The range of applications has 

been broadening and the size, complexity, and computational effort required 
have been increasing. However, such developments are expected and de- 

sirable since increased realism is concomitant with more complex and exten- 
sive problem descriptions. 

In recognition of such trends, the requirements for improved simula- 
tion techniques are becoming more pressing. Unfortunately, methods for 
achieving greater efficiency are frequently overlooked in developing simula- 
tions. This can generally be attributed to one or  more of the following reasons: 

Analysts usually seek advanced computer systems to perform 
more complex simulation studies by exploiting increased 
speed and/or storage capabilities. This is often achieved 
at a considerably increased expense. 

Many efficient simulation methods have evolved for specialized 
applications. For example, some of the most impressive 
Monte Carlo techniques have been developed in radiation trans- 
port, a discipline that does not overlap into areas where even 
a small number of simulation analysts are working. 

Known techniques are not developed to the point where they can 
be easily understood o r  applied by even a small fraction of the 
analysts who are performing simulation studies o r  developing 
simulation models. 
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In addition to the above reasons, comprehensive references describing ef - 
ficient methodologies to improve Monte Carlo simulation are not available. 
It is the intent of these volumes to help alleviate the above shortcomings in 
Monte Carlo simulation. 

This document is the third of three volumes which present techniques 
and methods for developing efficient Monte Carlo simulations. Each volume 

is essentially a self-contained discussion of useful techniques which can be 

applied in reducing computational effort in one of the following three major 
aspects of Monte Carlo simulation: 

0 Selecting Probability Distributions -- Volume I 

0 Random Number Generation For Selected Probability 
Distributions - Volume II 

0 Variance Reduction - Volume III 

The purpose of these volumes is to provide guidance in developing 
Monte Carlo simulations that accurately reflect the behavior of various char - 
acteristics of the system being simulated and are most efficient in terms of 
computational effort. The basic intent is to provide understanding of the con- 
cepts and methods for reducing analysis and computational effort as well as 
to serve as a practical guide for their application. They have been prepared 
primarily for the systems analyst and computer programmer who have a 
basic background and experience in simulation and elementary statistics. 
Thus, the material is presented so as to preclude extensive knowledge of 
statistical techniques or of extensive literature search. However, it is 
assumed the reader has a grasp of the fundamentals of Monte Carlo methods, 
simulation modeling, and elementary statistics. 
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1. INTRODUCTION 

I 

. 

In developing any Monte Carlo simulation, it is necessary to generate 
random numbers from the stochastic models used. In Volume I, the process 
and techniques of selecting probability models for the simulation were pre - 
sented. The objective of this volume is to provide a convenient source of 
efficient and simple random number generators for all the probability dis- 

tributions considered in Volume I. To this end flow charts and FOR,TRAN 
listings of these random number generators are provided here as well as 
descriptions of the techniques employed. 

It is the purpose of this document to provide a convenient mechanism 
to select and implement these random number generators without having to 
resort  to an understanding of the underlying concepts used in their develop- 
ment. Accordingly, the remainder of this report has been organized as 
follows : 

0 

0 

0 

SECTION 2, "Efficiency Comparison of Random Number 
Generators, '' demonstrates improvements in running times 
expected from using the techniques developed here over those 
commonly used. This section has been included to provide an 
appreciation for the magnitude of improvements possible in 
using the techniques described herein. 

SECTION 3, "Generation of Random Numbers from Selected Dis- 
tributions, '' provides algorithms defined by flow diagrams and 
standard Fortran subroutines that can be applied directly. 
section is introduced with a convenient summary table defining 
where in the section a specific algorithm can be found. 

This 

Appendix A, "Fundamental Considerations for Generation of 
Random Numbers, '' describes the fundamentals on which random 
number generation techniques for arbitrary distributions can be 
developed. 
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2. COMPARISON OF RANDOM NUMBER GENERATION PROCEDURES 

The improvements in calculational efficiency realized by using the 
random number generation techniques provided here depend on the particular 
problem. However, by utilizing these techniques, near optimum results can 
be assured. 

It is of interest to compare the random number generation techniques 
presented here with those commonly used to generate random numbers. This 

comparison was performed during the course of the study for several distri- 

butions, and it was found that improvements in computer time of factors vary- 
ing from 2 to 5 were possible. Results for a few of the more common distri- 
butions are shown in Table 2.1 which compares the running times of the 
preferred techniques with those commonly used. For example, consider the 

normal (or Gaussian) distribution. The usual procedure is to generate 12  

random numbers uniformly distributed over the interval [0,11 say R 1' * ' 7 5 2 ,  
and determine 

1 2  
RN = R.-6 . 

1 
i=l 

By virtue of the central limit theorem, (6) % is approximately distributed 
according to the normal distribution. Assembly language time on a Univac 
1108 was 105 microseconds per calculation using this approach. Procedures 
studied here were the rejection technique (see Appendix A) and a technique 
developed by Marsaglia. (5) The corresponding running times were respec - 
tively 74 and 30 microseconds. Not only a re  the running times significantly 
reduced, but also the more efficient ones presented here are exact (within 
machine roundoff errors). 

Similar results were obtained with the exponential distribution where 
the Marsaglia technique gave a reduction in running times of a factor greater 
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Commonly 
Used Reject iona 

Distribution Technique Technique 

than three (Table 2.1). The standard method used is the inverse (see 
Appendix A). The rejection method is discussed in Appendix A and the 
Marsaglia method is reported in Ref. 3. 

M a r  sag liaa 
Technique 

As implied above, there are several methods that may be used to 
generate random numbers for a given distribution. However, where alternate 
approaches could be identified o r  developed, comparisons were made and the 

most efficient procedure selected. These generators are presented in the 
next section. 

It should be noted that the more efficient techniques are slightlymore 
complex to program; however, the slight additional effort involved gener- 
ally pays off substantially in computer time. 

TABLE 2.1 

Exponential 

Normal 
(Gau s s ian) 

64 

105 

29 

74 

19 

30 

aSee*Appendix A for a brief description of these techniques. 

bAll times in microseconds of UNIVAC 1108 Assembly Language time. 
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3. GENERATION OF RANDOM NUMBERS FROM SELECTED 
DISTRIBUTIONS 

In this section, efficient algorithms are presented for a large number 
of probability distributions. These are summarized in Table 3-1 which 
gives the name of the distribution, the theoretical form, parameters in the 
distribution to be specified by the user, other random number generators 
used, and where the particular routines or  algorithms can be found in this 

section of the report. Also shown under the name of the distribution is the 
FORTRAN subroutine name assigned to the random variable. 

Once a distribution of interest has been identified, it is only necessary 
to define the values of the parameters indicated and to implement the 
algorithm from the specified pages of this section. In the subroutines, 

the parameters are represented by mnemonics which should be recog- 
nizable. For example, SIG is used to represent a and SIGSQ to repre- 
sent 

ing point value such as ALAM for  X . 
2 In some places the mnemonic starts with an A to provide a float- 

It will be noted that certain distributions rely on other distributions 
to generate random numbers. For  example, generation of random numbers 
for the Rayleigh distribution requires random numbers from an exponential 
distribution. The exponential distribution in turn depends on a uniform 
random number generator. Based on the frequent requirement for the uni- 
form, exponential and normal distribution, it is usually convenient to pro- 
vide a basic random number generation package consisting of subroutines 
to generate uniform, exponential, and normal random variables as an inte- 
gral part of any complex simulation program. Throughout this section these 
three random number generation subroutines will appear as UNFRN(R), 
EXPRN(R), and ANRMRN(R), respectively, where R is a dummy function 
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TABLE 3 . 1  

Efficient Algorithms for a Large Number of Probability Distributions 

n o f  
Generate 
imbers 

Page 

Loca 
A lgor i thm 

Random 
Subsection 

Nnnic o f  
Distrihution 

(Function Title) 

Other 
Random Number 
Generators Used 

Parameters 
To Be Specified Functional Form 

3.1 10 Uniiorm 
(UKFRN) 

None 

Uniform Exponential 
(EXPRN) 3.2 12 

Normal 
(ANMRN) 

Uniform, 
Exponential 

1 e-(X - p ) 2 / 2 0  2 

0 6  14 3.3 

Binomial 
(KBINOM) 

(;) Pk(l - P Y k  ; 

k = O , l , , . . , n  

Uniform, 
Exponential 17 3.4 

hfultinomial 
(MULNOM) 

m, n, pi, ..., P, Uniform 3.5 22 

L p l +  ... +p, = 1 

kl + %+. . . + km = n 

A > O  - A  k ,  
e k l  ' 

k = O , l ,  ... 
A Uniform 3.6 24 Poisson 

(KPOIS) 

~ 

26 Hyper-geometric 
(KHYPRG) 

Uniform 3.7 

~ 

P 3.8 28 Uniform, 
Exponential 

Geometric 
(KGEOM) 

k = 1 , 2 , 3 , . . .  

Pascal (also 
called negative 
binomial) 
(KPASCL) 

(" + E  - 1) (1 - p)"pk 

k = O , l , . . . , n  

Uniform, 
iExponential 

31 3.9 

9 
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TABLE 3.1 (Continued) 
~~ 

Functional Fo rm 

Location of 
Algorithm to Generate 

Random Numbers Other 
Random Number 
Generators Used 

Uniform 

Name of 
Distribution 

Pa rame te r s  
To  Be Specified 

P 

Page Subsection 

3.10 

. 
34 

Exponential 3.11 36 Rayleigh 

(GAMRN) 

(I 

Uniform, 
Exponential 

3.12 38 

(BETARN) L Gamma 3.13 41 

Uniform 3.14 Pare to  
(PRTORN) I 43 

-- 
[ I  P, (I Normal 3.15 45 Log-normal 

Folded Normal Normal 3.16 47 

x > 0; 

Exponential Y t ?  Kcdlin's 
Distributions 

Extreme 
Value 

49 3.17 

3.18 Exponential 51 

51 

Maximum value: 

; (I: 0 1 1 - k - P )  

Minimum value: 3.18 
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TABLE 3.1 (Continued) 

Location of 
Algorithm t o  Generate 

Wndom Numbers Other 
Random Number 
Generators Used 

Name of 
Distribution 

(Function Title) 
Pa rame te r s  

To Be Specified Functional Fo rm Page Subsection 

Exponential 53 3.19 

Normal 

~ 

3.20.1 55 

X S F  

V t  Y ,  Normal 3.20.2 51 7 A sB: - 
fin (x - r )  ( A - x + r )  * 

Normal 3.20.3 59 

exp. [ - ( y  + 7 + 

[k# + l]l”i f ] 
Gamma 3.21.1 61 Pea r son‘  

System 

(TYPlRN) 

Gamma 3.21.2 63 a ,  m 

m z  -1 
-a < x  < a 

Gamma 

3.21.3 Type m: 65 

, 
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Not applicable 

TABLE 3.1 9 (Continued) 

Upper and lower 
limits and intermed- 
iate break points in 
distribution 

~~ 

Location of 

Random Numbers 
Other Algorithm to Generate 

Random Number Name cd 
Distribution 

Pa rame te r s  
To Be Specified 

m, Y ,  a 

Functional Fo rm Generators Used Subsection Page 

07 Type IV: Uniform, 
Exponential 

3.21.4 

Type V: P, Y Gamma 69 3.21.5 

’(TYP5RN) 

(TYPGRN) 

Gamma 71 Type VI: 3.21.6 
x - a z o  

q2 -91 q1 > q  + 1 > 0 C(x-a) x 2 

Type VII: Normal, 
Gamma 

3.21. 7 73 

c(l+$ jm ; m z  2.5 

~ 

Type VIII: Uniform 3.21.8 75 

(TYPBRN) 

Type M: Uniform 3.21.9 77 

(TYPSRN) 

(TPIORN) 

(TP11RN) 

Exponential 3.21.10 Type X: 

- 1 e-x/u ; 0 2 0  
x >  0 

Type XI: , 

79 

Uniform 3.21.11 81 

Type XII: 3.21.12 83 Beta 

(TPIZRN) 

Uniform I Histogram 
(AHSTRFT) 
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argument. In the flow diagrams, these are indicated as U(0, l), E(0,l) 
and N(0, l), respectively. 

3 .1  UNIFORM RANDOM NUMBER GENERATORS 

The uniform random number generator is, of course, fundamental 
to all random number generation. For the purposes here, it is assumed 
that the computer system available will have such a generator as part of 
the basic software package. If one is not available or  the generator is 
expected to be faulty, the machine independent package presented in Ap- 
pendix B (MTRAN) can be used. The following paragraphs describe the 
technique used in most computers for generating random numbers and pro- 
vide insight into the assessment of such generators. 

The method used for almost all uniform generators is the multiplica- 
tive congruential method. ('I A sequence of integers, xo, xl, . . . , is generated 
by the congruence 

P 
= xn.X(mod 2 ) . n+l X 

. 

I 

Here P is the number of bits (excluding sign) in a word on the particular 
computer employed and X is called the generator which is a carefully selected 
integer as described below. From this sequence random fractions are pro- 
duced using 

. 

-P R = ~ * 2  . n n 

The sequence of random fractions, Rl,RZ,. . . , is output by the subroutine in 
floating point form. 

On most computers the multiplicative congruential method is accom- 
plished by an integer multiplication of x and A. Only the low-order half 

(P bits) of the product is retained as x ~ + ~ .  This is then treated as a binary 
fraction, converted to floating point, and normalized. 

n . 
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This method is fast and will  produce numbers whose properties a p  
proximate randomness sufficiently $close f o r  valid use in  Monte Carlo 
simulations provided the following caveats are observed: 

1. Choose a generator,. X , with particular care. In particular, 
generators with a -- small number of '1' bits in their binary repre- 
sentation sh-ould be avoided. A number of generators of the form 
21u k 3, 2x4 f 3, 210 * 3, etc. ,  are particularly abundant. A t  
one time, they were used because they were thought to be good 
and especially fast. However, further research has shown them 
to be faulty and a number of simulations have produced erroneous 
results as a consequence. Small generators such as X = 101 
are also faulty and must be avoided. The gener tors X = 515 or X 
have been well tested and are quite safe to use.( 4 

2. Check the computer word length. It is best for P to be at 
least 35 in the congruence. For machines with P 5 32 a multi- 
ple precision multiplication should be used to generate an ade- 
quate congruence. 

3. Do not trust, on blind faith, random number routines distributed 
by the computer manufacturers with standard subroutine libraries. 
These have been found to contain, with high probability, the faulty 
generator values. 

13 = 5  

The uniform random number generator will be referred to as UNFRN(R) 
in subsequent routines and U ( 0 , l )  in the flow diagrams. 
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3.2 EXPONENTIAL DISTRIBUTION 

The simplest method to generate random numbers from the exponential 
distribution, f(x) = e-X, is to use the inverse solution, 

x = , 
where Ru is a uniform random number. This is not, however, the fastest 
method. An extremely rapid technique has been developed by G. Marsaglia 
which, although it is several times faster than the logarithm, requires a 
sizable block of computer storage (-600 words). When computer storage 

is critical o r  when the exponential distribution is not of crucial importance, 
the Von Neumann rejection technique is a good general method. This method, 
usually faster than the logarithm, is shown in Fig. 3 -1. 

(3 ) 

To select from a generalized exponential, (l/X)e -[(x-r)/XI, it is 

merely necessary to select from e-x then multiply by X and add E. For 
best efficiency in general, the basic exponential subroutine should select from 

e , and it should be left up to the calling program to supply the multiplication 
and addition where needed. 

-X 

The exponential distribution is referred to as EXPRN(R) in subsequent 
routines and as E ( 0 , l )  in the flow diagrams. 

Sample 'Routines 

Simplest method (use inline in calling program) : 

R = -ALOG (UNFRN(R)) 

Von Neumann rejection technique: 

100 

105 

110 

115 

120 

FUNCTION EXPRN(DUMMY) 
I = O  
R = UNFRN(X) 
X = R  
Y = UNFRN(X) 
IF (X.LT.Y) GO TO 120 
X = UNFRN(X) 
IF (X. LT. Y) GO TO 105 
I = I+1 
GO TO 100 
EXPRN = R+I 
RETURN 
END 

. 
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i = O  

f(x) = e-x ; x 2 0 

- 
I 7 

START 0 
i = i + l  

Yes 
m 

t 

Generate z +U(O, 1) 
J 

. 

Figure 3 -1. Random number generation algorithm 
for exponential distribution 
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3.3  NORMAL DISTRIBUTION 
2 2  

The normal distribution, f(x) = l/(a.J27r)e -(x-cs /2u , has received 

considerable attention by the designers of random number generators. One 
of the earliest methods, which is still found frequently in simulations today, 
uses the central limit theorem to approximate the normal by summing up 
several uniform random variables. (6) This approach has two serious defects. 
First, it is only an approximation. Second, it is much slower than other 
methods. The fastest method by far is a technique designed by G. Marsaglia. 
However, considerable storage is needed for this technique. Another 

technique by Marsaglia, (4) illustrated in Fig. 3 -2, is fair ly  fast without 
requiring much computer storage. This is the best technique known for 
general usage. 

. 

(5) 

A s  with the exponential routine, the basic normal random number 
generator should be written to select from the normal distribution with unit 
mean and zero standard deviation (referred to as ANRMRN in the routines 
and as N(0,l) in the flow diagrams). 
to multiply by the standard deviation and add the mean if a generalized normal 
deviate is required. That is,for a distribution with mean p and variance a , 9 

the correct random number would be oN(0,l) + p ,  where N(0,l) is a ran- 
dom number from a distribution with p = 0 and a = 1. 

It is then left up to the calling program 

2 

b 

2 

Sample Routine 

FUNCTION ANRMRN (DUMMY) 
R = UNFRN(R) 
IF (R. GT. 0.8638) GO TO 10 

RETURN 
IF (R. GT. 0.9745) GO TO 20 

RETURN 

ANRMRN = 2. *(UNFRN(X) + UNFRN(Y) + UNFRN(Z) - 1.5) 

10 
ANRMRN = 1.5*(UNFRN(X) + UNFRN(Y) - 1.0) 
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I 

8 

20 IF (R. GT. 0.997302039) GO TO 100 
X =  6. *UNFRN(X) - 3.0 
Y = 0.358*UNFFW(X) 
XSQ = X*X 
GX = 17.49731196*EXP(-XSQ*. 5) 
AX = ABS(X) 
IF (AX. GT. 1.0) GO T O  30 

25  

IF (Y. GT. (GX-17.44392294 + 4.73570326*XSQ + 2.15787544*AX)) 
GO TO 25 

ANRMRN = X 
RETURN 

IF (AX. GT. 1.5) GO TO 40 
IF (Y. GT. (GX-AX3-2.15787544*(1.5-AX))) GO TO 25 
ANRMRN = X  
RETURN 
IF (Y. GT. (GX-AX3)) GO T O  25 
ANRMRN = X 
RETURN 

IF (UNFRN(X). GT. 3/X) GO TO 100 

ANRMRN = X 
RETURN 
END 

30 AX3 = 2.36785163*(3-AX)**2 

40 

100 X = SQRT (9+2*EXPRN(X)) 

IF (UNFRN(X). GT. 0. Q X = -X 
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3.4 THE BINOMIAL DISTRIBUTION 
k The binomial distribution, pk = (E)p ( l -~)" -~ ,  is a discrete distri- 

bution describing the number of successes encountered in a series of Bernoulli 
trials, It has two parameters, p, the probability of success in a single trial, 
and n, the number of trials in the series. 

The algorithm for selection from the binomial distribution is divided 
into three subranges for the parameter p. For moderate values of p, the ran- 
dom number generation is based on a straightforward simulation of the under - 
lying basis for the distribution; n Bernoulli trials are generated and the num- 
ber of successes are counted. For small values of p, it becomes more efficient 
to use a technique based on the geometric distribution. Conversely, for large 
values of p it is efficient to reverse the geometric technique and perform the 
counting on the number of failures rather than successes. 

For large values of n ,  all three algorithms become inefficient; 
the computing time involved is directly proportional to n . The binomial 
distribution approximates a normal distribution with mean np and 
standard deviation 4- for large n . One should consider replacing 
the binomial with the approximate normal for large values of 0 (n > 10 p/(l-p) 
or  n > 10 (l-p)/p). 

Sample Subroutines 

For p < .25 
WNCTION KBINOM (N, ALNQ) 

KBINOM = 0 
M = O  

5 R=EXPRN(R) 
J = 1 +R/ALNQ 
M = M + J  

10 KBINOM = KBINOM + 1 
GO TO 5 

15 KBINOM = KBINOM + 1 
20 RETURN 

END 

C ALNQIS -ALOG (1. -P) 

IF @I - N)10, 15, 20 
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F o r  . 2 5 <  p < . 7 5  
FUNCTION KBINOM (N, P )  
KBINOM = 0 
DO 15 M = 1, N 
R =UNFRN (R) 
IF (R. LT. P )  KBINOM = KBINOM + 1 

1 5  CONTINUE 
RETURN 
END 

For p > .?5 
FUNCTION KBINOM (N, ALNP) 

KBINOM = N 
M = O  

C ALNP IS -ALOG (P) 

5 R = E X P R N  (R) 

M = M + J  
J = 1 +R/ALNP 

IF (M-N)IO, 15, 20 
KBINOM = KBINOM - 1 10 
GO TO 5 

20 RETURN 
15 KBINOM =KBINQM -1 

END b 
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4 

Generate 
R i- E(0, I) 

(Yes 

Figure 3 -3. Random number generation algorithm 
for binomial distribution 
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Figure 3-4. Random number generation algorithm 
for binomial distribution (continued) 

? 
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Figure 3-5. Random number generation algorithm 
for binomial distribution (continued) 
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3.5 THE MULTINOMIAL DISTRIBUTION 

The multinomial distribution, 

m n k 

p(kl, k2, ..., k m ) = ( 1 2  k k ... k m )p;l ,;.....,, 

is a generalization of the binomial distribution to trials having m different 
outcomes with discrete probabilities. Random number generation is accom- 
plished by a straightforward simulation of the underlying process of identical 
trials. Note that a 'random number' for this distribution is an array con- 
taining the number of realizations of each possible outcome. 

Sample Routine 
SUBROUTINE MULNOM (N, M, K, P) 
DIMENSION K (M), P (M) 
P IS INPUT ARRAY OF PROBABILITIES 
K IS OUTPUT ARRAY OF OUTCOMES 
D O l O J = l ,  M 

D 0 3 0 1 = 1 ,  N 
R = UNFRN (R) 
DO 20 J = 1, M 

IF (R. LT. 0) GO TO30 

C 
C 

10 K(J) = 0 

R = R  - P(J) 

20 CONTINUE 
30 K(J) = K(J) + 1 

RETURN 
END 

C 

, 
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L 

Generate R +U(O, 
-1 --II 

. 

Figure 3 -6. Random number generation algorithm for multinomial 
distribution 
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3.6 POISSON DISTRIBUTION 
k 

la-’ - A X  is a discrete distribution The Poisson distribution, pk = e 
describing the number of occurrences in  an interval when the rate of occur- 
rence is a constant. The technique for selecting from the Poisson distribu- 
tion is a combination-transformation method described in Ref. 2. 

The computer time spent in this selection is directly proportional to 
A, the mean value of the Poisson variable. For large h ,  this selection 
can be very time consuming. It is possible to approximate the Poisson dis- 

tribution by a normal distribution with a mean of X and a standard deviation 
of (A for X sufficiently large ( X > 10). 

Sample Routine 
FUNCTION KPOIS (EXPLAM) 

Y = 1.0 
KPOIS = 0 
Y = Y * UNFRN (Y) 
IF (Y. GT. EXPLAM) GO TO 10 
KPOIS = KPOIS + 1 
GO TO 5 

10 RETURN 
END 

C EXPLAM IS EXP (-LAMBDA) 

5 
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Figure 3 -7. Random number generation algorithm for 
Poisson distribution 
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3 . 7  HYPERGEOMETRIC DISTRIBUTION 

The hypergeometric distribution, 

describes sampling without replacement. It has the parameters N , t ie 
size of the total population, n ,  the size of the population sampled, and M ,  

the number of events in the total population. The random variable k is 
the number of events occurring in the sample. The hypergeometric dis- 
tribution is generated by simulating sampling without replacement. 

Sample Routine 
FUNCTION KHYPRG (NTOT, MTOT, N) 
NTOT IS TOTAL POPULATION SIZE, MTOT IS TOTAL 
EVENTS IN POPULATION, N IS SAMPLE SIZE 
KHYPRG = 0 
EM = MTOT 
EN = NTOT 
DO 10 I = 1, N 

R = UNFRN (R) 
IF (R. GT. P) GO TO 10 
KHYPRG = KHYPRG + 1 

C 
C 

P = EM/EN 

E M = E M - I .  
10 E N = E N -  1. 

RETURN 
END 
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4 

. 

Figure 3 -8. Random number generation algorithm for hypergeometric 
distribution 
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3.8 GEOMETRIC DISTRIBUTION 

The geometric distribution, pk = p(1- - , describes the 

number of trials to the first success in a series of Bernoulli trials. For 
p 2 .25 , the geometric distribution is most efficiently sampled by a 
direct solution of the discrete inverse equation. When p < .25, it becomes 
more efficient to generate a geometric variate by truncating an exponential 
random number. 

Sample Routines 

For p < .25: 
FUNCTION KGEOM (ALNQ) 

R = EXPRN (R) 
KGEOM = 1 + R/ALNQ 
RETURN 
END 

C ALNQ IS -ALOG (1 - P) 

For p a  .25: 
FUNCTION KGEOM (P) 
A = P  

KGEOM = 1 
R = UNFRN (R) 

IF  (R. LT. 0) RETURN 
KGEOM = KGEOM + 1 
A = A * Q  
GO TO 10 
END 

Q = l - P  

10 R = R - A  

4 
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Generate R E ( 0 , l )  
I 

START 0 

Figure 3 -9. Random number generation algorithm 
for geometric distribution 

. 
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START 0 
Generate R +U(O, 1) I 

I No 

Figure 3-10. Random number generation algorithm 
for geometric distribution (continued) 

. 

. 
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L 

3 . 9  PASCAL OR NEGATIVE BINOMIAL DISTRIBUTION 

The Pascal distribution, 

describes the number of successes occurring before the n L  failure in a 
ser ies  of Bernoulli trials. For low or moderate values of p , the Pascal 
distribution is efficiently generated by a direct simulation of a sequence 
of Bernoulli trials. A s  p becomes large (p > .75 ) , it becomes more 
efficient to sample by generating a geometric variate for the number 
of trials to each of the n failures. 

Sample Routines 

For p I. 75: 
FUNCTION KPASCL (P, N) 
KPASCL = 0 
DO 20 J = 1, N 

10 R =UNFRN (R) 
IF (R. GT. P) GO TO 20 
KPASCL = KPASCL + 1 
GO TO 10 

20 CONTINUE 
RETURN 
END 

FUNCTION KPASCL (ALNP, N) 
C ALNP IS -ALOG(P) 

KPASCL = 0 
DO 10 J = 1, N 

KPASCL = KPASCL + I 
RETURN 
END 

For p >. 75: 

I = EXPRN(R)/ALNP 
10 
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pk = ?;-I) (1 - p)" pk * p I O .  75 

START 0 
j = O  

I 1 

k = k + l  Generate R t U ( 0 ,  1) 
A . 

Yes 

j = j + l  

No 

c 

, 

Figure 3 -11. Random number generation algorithm 
for Pascal distribution 
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I 

Generate R + E(0,l) 

1 

j = j + l  . 
4 

i = R/[- In p] 

L 

, 

START 0 

1 

k = k + i  

No 

Figure 3-12. Random number generation algorithm 
for Pascal distribution (continued) 
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3.10 CAUCHY DISTRIBUTION 

The Cauchy distribution, 

- a J < x < m  1 
2 ’  f(x) = 

+ ( X - d  1 
represents the distribution of the ratio of two normally distributed numbers. 
It also represents the tangent of a random angle. It is easily generated by a 
rejection technique which selects x and y uniformly in a unit circle, then cal- 
culates the tangent x / ~ .  

Caution: The moments of the Cauchy distribution are infinite; the behavior 
of Cauchy variates in a simulation will  be erratic. 

Sample program: 
FUNCTION COCHRN (AMU) 

10 X = UNFRN(Y) 
Y = 2. *UNFRN (X) - 1. 
IF  (X * X + Y * Y. GT. 1) GO TO 10 
COCHRN = AMU + Y/X 
RETURN 
END 

c 

b 
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L 

1 f(x) = 
I7 [I + (x - d2] 

START I 
I Generate I 

R1 + R2 5 1 ; 
1 Yes 

x = R2/Rl+ v 
Figure 3 -13. Random number generation algorithm 

for Cauchy distribution 
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3.11 RAYLEIGH DISTRIBUTION 

The Rayleigh distribution, 

2 2  x -x /20 , f(x) = T e  
U 

c 

is derived as the radial e r ror  when the x and y e r ro r s  are independent normal 
variates. It has a simple inverse which provides the most efficient method for 
generating Rayleigh variates. 

Sample routine: 

FUNCTION RAYLRN (SIGMA) 
RAYLRN =SIGMA * SQRT (2. *EXPRN(R)) 
RETURN 
END 

t 
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Generate 
R +- E(0, 1) 

Figure 3-14. Random number generation algorithm 
for Ray leigh distribution 

. 
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3.12 GAMMA DISTRIBUTION 

The gamma distribution 

describes the time for exactly r) events to occur when events occur at a 
constant rate A. When 7 is an integer, there is a simple combination tech- 
nique for generating gamma variates. However, as the gamma distribution 

is one of the Pearson family of distributions, there is a need for selecting 
gamma variates when 7 is non-integral even though there is no physical 
model for this. This is a much harder task but can be accomplished by a 
combination of the usual technique for the integral part of r) with a composite 

rejection technique designed to select from x e where f is the fractional 
part of q. 

f -x 

Sample routines: 

For r) integer: 

FUNCTION GAMRN (ALAM, NETA) 
Y = l  
DO 101 = 1, NETA 
Y = Y * UNFRN (Y) 
GAMRN = - ALOG(Y)/ALAM 
RETURN 
END 

10 

For r) general: 

FUNCTION GAMRN(ALAM, ETA) 
N = ETA 

IF(F.EQ. 0) GO TO 100 

IF (R.LT. F/(F + 2.71828)) GO TO 20 
Y = UNFRN(Y) ** (l/F) 
IF (UNFRN(R). GT. EXP(-Y)) GO TO 10 
GO TO 50 

F = ETA - N 

10 R = UNFRN(R) 

8 

i 
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100 Y = 0 
GO TO 70 
Y = 1. + EXPRN(Y) 
IF(UNFRN(R). GT. Y** (F-1.)) TO TO 10 
IF(N.EQ. 0) GO TO 150 

D O 8 0 1 = 1 ,  N 

‘LO 

50 
70 Z = 1.0 

80 z = z* UNFRN(Z) 
Y = Y - ALOG(Z) 

150 GAMRN = Y/ALAM 
RETURN 
END 
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1 N o  

I 

I 
Ccnerate R -U(O, 1) 

Yes  No 

* 1 

Generate Generate 

R - U(0, 1) 
Y -E@, 1) 

S u  -U(O, 1) 

I I 

Note Itrat il r) Is  llnilted to integral values. this simplifies to: 

I e n e r a t e  y1,y2, ..., yn+U(O, 1) I 
I 

Figure 3-15. Random number generation algorithm 
for gamma distribution 

4 
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3.13 BETA DISTRIBUTION 

The beta distribution, 

with x limited to the interval (a, b), is a basic statistical distribution fre- 
quently encountered for bounded variables. The parameters, y and rj , 
are limited to positive values. Beta variates for most values of the parame- 
ters a re  best obtained as a ratio of two gamma variates. If y and 77 are 
both small integers, a beta variate may also be generated by choosing 
y + q - 1 uniform random numbers, arranging them in order of increasing 
magnitude, and selecting the y 

th random number as the beta variate. 

Sample routine 

FUNCTION BETARN (GAM, ETA, A, B) 
Y = GAMRN (l., GAM) 
Z = GAMRN ( l . ,  ETA) 
BETARN = (Y/(Y + Z)) * (B - A) + A 
RETURN 
END 

c 



42 

Generate y from gamma distribution 
with parameter y 

1 

START 0 
V 

* 

Figure 3-16. Random number generation algorithm 
for beta distribution 
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3.14 PARETO DISTRIBUTION 
x -1-1 The Pareto distribution, f(x) = A €  x , has a simple inverse 

which provides the quickest procedure for random number selection. 

Sample routine 
FUNCTION PRTORN (EPS, ALAM) 
PRTORN = EPS * UNFRN(R)**( -1.’/ALAM) 
RETURN 
END 
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x -x-1 f(x) = x € x 

Figure 3-17. Random number generation algorithm 
for Pareto distribution 
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3.15 LOG-NORMAL DISTRIBUTION 

The log -normal distribution 

describes a random variable whose logarithm is normal. It is a simple 

matter then to invert this transformation to generate log -normal variates. 

Sample routine: 
FUNCTION ALNMRN (EPS, AMU, SIGMA) 
R = ANRMRN(R) 
ALNMRN = EPS + EXP (SIGMA*R + AMU) 
RETURN 
END 



46 

t 

Generate R t. N(0, 1) . I 

Figure 3-18. Random number generation algorithm 
for log -normal distribution 
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3.16 FOLDED-NORMAL DISTRIBUTION 

The folded-normal distribution, 

f(x) = - 1 7 [,-(X-r3 + e -(x+p)2/202] 9 

describes the distribution of the absolute value of a normal variate, which 
provides the simplest procedure for generating from the distribution. 

Sample routine 
FUNCTION FNRMRN (AMU, SIGMA) 
FNRMRN = ABS (AMU + SIGMA * ANRMRN(R)) 
RETURN 
END 
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START 
, 

+ e  
- (x+p)2’2u21 f(x) = - 

Generate R N(0, 1) - 

b 

1 

Figure 3-19. Random number generation algorithm 
for folded -nor mal distribution 
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3.17 KODLIN'S DIST-RIBUTION 

Kodlin suggested as a distribution for survival time data the functional 
form, 

This Kodlin form has a moderately simple inverse, and thus it is not difficult 
to generate random varities. 

Sample routine 

FUNCTION AKODRN (ETA, GAM) 
R = EXPRN (R) * 2. * GAM/(ETA **2) 
AKODRN = ETA/GAM * (SQRT(1. + R) - 1.) 
RETURN 
END 

c 
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-(qx+fyx2) 
f(x) = (rl + Y X )  e 

START 7 w 

Generate R +- E(0, 1) I Generate R +- E(0, 1) I 

Figure 3 -20. Random number generation algorithm 
for Kodlin's distribution 
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3.18 EXTREME VALUE DISTRIBUTIONS 

t 

4 

There are two extreme value distributions. The first is for the maxi- 
mum value, 

and the, second is for the minimum value, 
\ 

The inverse function for both is straightforward and provides an efficient 
selection procedure. 

Sample routines 

For the maximum value: 
FUNCTION AMAXRN(AMU, SIC) 
R = EXPRN (R) 
AMAXRN = AMU - SIG * ALOG (R) 
RETURN 
END 

For the minimum value: 
FUNCTION AMINRN (AMU, SIG) 
R = EXPRN (R) 
AMINRN = AMU + SIG * ALOG(R) 
RETURN 
END 
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4 

START 
r 

1 Maximum value: f(x) = - 1 exp[- - 1 (x- p )  - e - (x-  cs/o 
U U 

Generate R +- E(0, 1) 

1 Minimum value: f(x) = - exp[- (x- p) - e 
U 

START I 
c 

* 

* 

Figure 3-21. Random number generation algorithm 
for extreme value distributions 



53 

3.19 WEIBULL DISTRIBUTION 

The Weibull distribution, f(x) = q/X (x-c)' -' exp[-(x-Sq/A ], is a three- 

parameter ( c , A,  q )  family of empirical distributions having wide usefulness. 
The random variable x is bounded below by 6 . The inverse cumulative 
function is straightforward and provides the best general method for 

generating Weibull random numbers. 

Sample - routine: 
FUNCTION WIBLRN (EPS, ALAM, ETA) 
WIBLRN = EPS + (ALAM * EXPRN (ALAM)) ** (1. /ETA) 
RETURN 
END 

. 
, 
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Generate R +- E(0, 1) 
I 

START TI 

x = (X*R)  + € - 
r 

Figure 3-22. Random number generation algorithm 
for Weibull distribution 

. 
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t 

3.20 JOHNSON DISTRIBUTIONS 

3.20.1 Johnson SL Distribution 

is easily generated by transforming a normal variate. (The reverse of the 
transformation used in deriving this Johnson distribution.) The SL dis- 

tribution is also known as the log-normal (Section 3.15). 

Sample routine,: 

FUNCTION SLRN (EPS, GAM, ETA) 
R = ANRMRN (R) 
SLRN = EPS + EXP ((R-GAM)/ETA) 
RETURN 
END 

4 
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START 

Figure 3-23. Random number generation algorithm 
for Johnson SL distribution 
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3.20.2 Johnson SB Distribution 

The Johnson SB distribution, 

is easily generated by a transformation on a normal variate. 

Sample routine: 

FUNCTION SBRN (EPS, ALAM, GAM, ETA) 
R = ANRMRN (R) 
EX = EXP ((R-GAM)/ETA) 
SBRN = E P S  + ALAM * EX/(l .  + EX) 
RETURN 
END 

4 . 
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START 

n 

I 

L 
X- e 1 

f(x) = - r) x e - 2 I Y + ~ ~ n ~ k i Z ) ]  
f i (  x - €)(A - x + e )  

Figure 3-24. Random number generation algorithm 
for Johnson SB distribution 

, 
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3.20.3 Johnson Su Distribution 

Like the other Johnson family distributions, the Su distribution, 

1/2 2 
f(x) = -2- 1 e..[-: ( l . n . n ( ( y ) + [ ( y f +  1] 1) 3 9 fidjzjm 

is easily selected by reversing the transform which generated the distribu- 
tion from a normal distribution. 

Sample program: 
FUNCTION SURN (EPS, ALAM, GAM, ETA) 
R = ANRMRN(R) 
SURN = EPS + ALAM * SINH ((R - GAM)/ETA) 
RETURN 
END 
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Gene rate 
R +-N(0, 1) 

i",.i/ x = c + X sinh - 

Figure 3 -25. Random number generation algorithm 
for Johnson Su distribution 
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3.21 PEARSON DISTRIBUTIONS 

3.21.1 Pearson T w e  I Distribution 

The Type I distribution of the Pearson system of frequency functions 
is given by 

where C is a normalization constant. The limits on the distribution are 
-a ex < a -1 and m2 > -1. 

x + a  
By the linear transformation Z = - , the Type I distribution can be a + a  2 1  
transformed into a beta distribution which may be derived from gamma vari- 
ates as given in Section 3.13. 

and there are further constraints that ml 1 2 

Sample routine: 
FUNCTION TYPlRN(EM1, EM2, A l ,  A2) 
U = GAMRN (1. ,EMl+l.)  
V = GAMRN (1. ,EM2+1.) 
TYPlRN = (A1 + A2)*U/(U+V) - A1 
RETURN 
END 
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START v 
Generate U from a gamma distribution 

with parameter (mr + 1) 

Generate V from a gamma dishbution 
with parameter (m + 1) 2 

z = u/(u + v) 

X = (a l+a2)  Z - al 

END 

Figure 3-26. Random number generation algorithm 
for the Pearson Type 1 distribution 
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3.21.2 Pearson Type II Distribution 

The second distribution in the Pearson family is given by 

x2 m 

a 
f(x) = c  (1 - 7 )  9 

where C is a normalization factor. The limits on the distribution are 
-a < x < a and m > -1. This is a special case of Type I where m 1 = m2 
and a = a As such it may also be derived from gamma variates. 1 2' 
Samde routine : 

FUNCTION TYPEBRN(EM, A) 
U = GAMRN (1. EM+ 1) 
V = GAMRN (10, EM+ 1) 
TYP2RN = A*(U-V)/(U+V) 
RETURN 
END 
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2 
f(x) = c  ( l +  ) m  

a 

Generate U and V from gamma 
distributions with parameter 

Figure 3-27. Random number generation algorithm 
for the Pearson Type II distribution 
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3.21.3 Pearson Type III Distribution 
F 

The Pearson Type III distribution is given by f(x) = C(l  + x/a) e -w,  
where C is a normalization constant. The distribution is limited to 
-a x < a (or to a < x < -a if a is negative) and is further constrained 
by y a  > -1. A few simple transformations, x = a(y-1) and = a 7 , will 

turn this distribution into a special form of the gamma distribution 
f(y) = C '  y e x -xy 

Samde routine: 
FUNCTION TYP3RN (GAM, A) 
P = GAM*A 
Y - GAMRN(P,P+~.) 
TYP3RN = A*(Y-l.) 
RETURN 
END 
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f(x) = c ( 1 + x/a)Ya e -Yx 

I Generate Y from gamma distribution 
with parameters A ,  X + 1 

Figure 3 -28. Random number generation algorithm 
for the Pearson Type IT1 distribution 
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3.21.4 Pearson Type IV Distribution 

The Type IV distribution of the Pearson system is given by 

f(x) = c (I + x 2 /a 2 ) -me-ytan-l(x/a) 9 

where C is a normalization constant. By a trigonometric transformation, 
x = a tan -1 ( c p  - n/2), the function can be transformed into f(0) = C '(sin a) r e -Y(6 , 
where y = 2m - 2. In this form there is one limit on the parameters, namely 
r > 3, while cp ranges from 0 to T . Picking from this function can be 
accomplished by a selection from 
rejection conditioned on (sin cp) . 

truncated at cp = n , followed by a 
r 

Samnle routine: 
FUNCTION TYP4RN(EM, G A W , A )  
DATA PI/3.1415962/HAFPT/l. 5707981/ 
R = 2*EM-2 

PHI = AMOD(PHI/.GAMMA, PI) 
IF (UNFRN(R). GT. (STN(PHI)**R)) GO TO 10 
TYP4RN = A*TAN(PHI-HAFPI) 
RETURN 
END 

10 PHI = EXPRN(R) 
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m 

-1 2 2 -me-Ytan (%/a) f(x) = c (I + x /a ) 

Generate y c U(0 , l )  

START I 

- 

n y = 2m-2 

no 
y <(sin cp)r 

c 

END 

c 



69 

3.21.5 Pearson Type V Distribution 

The fifth type of distribution in the Pearson system of frequency func- 
, where C is a normalization constant. 

x < . The parameter Y must be positive 
0) , and p must be greater than 1 The Type V random 

tions is given by f(x) = C x -P e -Y/x 

The range of the argument is 0 

(for y < 0, -= <x 
variable x is the inverse of a gamma variate; this provides the simplest 

means of picking from the Type V distribution. 

Sample routine: 

FUNCTION TYP5RN (P, GAMMA) 
TYP5RN = 1. /GAMRN(GAMMA, P-1.) 
RETURN 
END 
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f(x) = c x -P e-Y/x 

START 

Generate R from the gamma distribution with parameters 
'7 = p  - 1 and A =  Y 

X = l / R  

END 

Figure 3-30. Random number generation algorithm 
for the Pearson Type V distribution 

c 

.1 

.- 

. 
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3.21.6 Pearson Type VI Distribution 

Type VI of the Pearson family of distributions is given by 
f(x) = c(x-a)q2 x -ql , where C is a normalization factor and q1 and q2 
are parameters limited by q1 > q2 + 1 > 0. For a > 0 the range of the 
distribution is a < x < = while for negative a it is -a< x < a. By the 

simple transformation x = a/y the distribution is converted into a form of 
the beta distribution 

which can be obtained from two gamma variates as described in 3.13. 

Sample routine : 

FUNCTION TYPGRN(A, Q1, Q2) 

V = GAMRN(1. ,Q2+1.) 
TYPGRN = A*(U+V)/U 
RETURN 
END 

U = GAMRN(1. ,Ql-Q2-1.) 

. 
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92 -41 f(x) = C(x-a) x 

Generate U from gamma distribution 
with parameter '1 = q1 - 92 - 

t 

Generate V from gamma distribution 
with parameter 77 = q2 + 1 

Figure 3-31. Random number generation algorithm 
for the Pearson Type VI distribution 
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3.21.7 Pearson Type VII Distribution 

Type VII of the Pearson family of distributions is given by 

where C is a normalization factor. The range of x is - to where 
the distribution m must be greater than 2.5. By setting z = z2 

is transformed into 

2 a 
a + x  

-1/2 m-3/2 g(2) = C' (1 - z) 2 

which is a special case of a Beta distribution with y = m-1/2 and 
7 = 1/2. The beta variate z can be obtained as a ratio of two gamma 
variates, z = u/(u+v) . A s  x = a(l/z - 1)ll2 , we have x = a (v/u) 
Now v is a gamma variate with parameter Q = 1/2. This special case 

2 of a gamma variate can be obtained from v = y /2 , where y is a 
normalized normal variate. This gives x = ay (1/2u)lI2 . Selection 
from the Pearson Type VI1 is achieved by combining the above transform- 
ations with the selection routines for the gamma and normal variates. 

1 /2 . 

Samtde Routine 
FUNCTION TYP7RN(A, EM) 
Y = ANRMRN(Y) 

TYP7RN = A*Y/SQRT(U) 
RETURN 
END 

U = GAMRN (.5,EM -*5) 
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2 2 -m f(x) =c ( l  + x  /a ) 

Generate U from a gamma distribution 
with A = . 5  and q = m - 1 / 2  

Generate Y from a normal distribution 
with mean = 0 and ~7 = 1 

x = a*Y/U 

Figure 3-32. Random number generation algorithm 
for the Pearson Type VII distribution 
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a 

3.21.8 Type VIII Pearson Distribution 

The eighth distribution in the Pearson family is given by 

where C is a normalization constant. The range of x is -a < x < 0 
(or 0 < x < -a for a negative) while the range of m is 0 5 m 5 1. 

If we set  y = (1 + x/a) , the distribution becomes 

ffy) = C' y-m where O <  y <  1. 

This form of the distribution has a simple inverse. 

Sample Routine 
FUNCTION TYP8RN(A, EM) 
R = UNFRNR)  
TYP8RN = A*(R**(l./(l.EM)) - 1 . )  
RETURN 
END 

. 
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Figure 3 -33. Random number generation algorithm 
for the Pearson Type VIII distribution 

c 

. 
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3.21.9 Pearson Type IX Distribution 

The Pearson Type IX distribution is given by 

f(x) = c (1 + x/a>m, 

where C is the normalization factor. The range of x is -a to 0 while 
m must be greater than zero. This function has a simple inverse. 

Sample Routine 

FUNCTION TYPESRN(A, EM) 
R = UNFRN(R) 
TYPSRN = A* (R**'(l. /(EM + 1. ))-Is) 
RETURN 
END 
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START 

Generate R c U (0, 1 ) 
I 

Figure 3 -34. Random number generation algorithm 
for the Pearson Type M distribution 

f 
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3.21.10 Pearson Type X Distribution 

The Pearson Type X distribution is a form of the exponential 
distribution given by 

This is easily obtained from the standard exponential distribution 
routines. 

Sample Routine 
FUNCTION TPlORN (SIGMA) 
TPlORN = SIGMA*EXPRN(SIGMA) 
RETURN 
END 

. 

. 
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-x/a f(x) = 1/0 e 

START 

Generate R c E(0, 1) 

~ = c i * R  

END 

Figure 3 -35. Random number generation algorithm 
for the Pearson Type X distribution 

. 
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3.21.11 Pearson Type XI Distribution 

The eleventh in the series of Pearson distribution is given by 

f(x) = C(b/x)m 

where C is a normalization factor. The range of x is limited to 
b <x a. The parameter m is greater than 1 . This distribution has 
a simple inverse. 

Sample Routine 
FUNCTION TP11RN@, EM) 
R = UNFRNR) 

TPllRN = B/Y 
RETURN 
END 

Y = R** (I. /(EM- 1. )) 



/ 
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f(x) = C(b/x)m 

Generate R c U ( 0 , l )  + 
fi x = b/y 

Figure 3-36. Random number generation algorithm 
for the Pearson Type XI distribution 
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3.21.12 Pearson Type XII  Distribution 

Type XII of the Pearson system of distributions is given by 

where C is a normalization factor, u is the standard deviation, and 
fl  = p /p (skewness). The range of x is 2 3  

1 3 2  

the distribution becomes 

By setting 

x+a 
Y = b =  f 

the distribution transforms to f(y) = C’ym ( 1 - ~ ) - ~  which is a special case 
of the Beta distribution. 

. 
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Sample Routine 
FUNCTION TY 12RN( SIGMA, BETA 1) 
R = SQRT(BETA1) 
S = SQRT(BETAl+3) 
EM =R/S 
A = SIGMA*(R+S) 
B = SIGMA*(S -R) 
Y = BETARN(EM+l, 1-EM) 
TP12RN = (B+A)*Y-A 
RETURN 
END 
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Generate y from a beta distribution 
with 

y = m  + 1 and q = 1-in 

I x = ( b + a ) y - a  I 

Figure 3-37. Random number generation algorithm for 
the Pearson Type XI1 distribution 

r 
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3.22 HISTOGRAM DISTRIBUTIONS 

Frequently, empirical data regarding a probability distribution 
is obtained in  a histogram form. That is, intervals (xo, xi) , (xl, x2), . . . . 

x ) and probabilities pl, pz, . . . . , p a re  given such that pi is (xn-l’ n n 
the probability that the variable x is found in the interval from xi-l to 
x.. (It is presumed that the histogram is normalized, i. e. C pi = 1.) 

Within each interval it is assumed that the probability is constant. 

n 

i=l 1 

Selecting a random number from such a histogram distribution is 

simple. It is necessary first to select the interval in which the random 
number falls, and then to choose where in that interval the random number 
lies. This is basically an inverse distribution technique. Selection of 
the interval i is accomplished by generating a uniform random number and 
subtracting off successive values of pi . The value of i when this result 
first goes negative is the desired interval index. Generation of a second 

uniform random number and scaling it to f i t  in the interval from xi - to x. 1 
completes the task. 

A more efficient (much more efficient if the size of the data table 
is large) generator can be produced if it is possible to cast the histogram 
data in a form such that pl = p = . . . = p = l /n  by choosing values of 2 n 
x. appropriately. Such a representation is known as equal probability 
bins. This greatly simplifies selection of the interval i as all n intervals 
have the same probability. Successive subtraction of values of p. is 
no longer needed and can be replaced by a direct calculation of i from 

1 

1 

a uniform random number. 

In the sample Fortran routines below, the array X(1) is presumed 
to contain: X(1) = xo , X(2) = x1 , . . . . , X(N + 1) = xn. In the first routine 
use is made of the fact that, at the conclusion of selection of i, R will be 
uniformly distributed between 0 and - pi . 
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Sample Routines 

For general histogram selection 
FUNCTION HISTRN (N, X, P) 
DIMENSION X (N), P (N) 
R =UNFRN ('R) 
DO 10 I = 1, N 

I F @ .  L T .  O)GOto20 

HSTRN = X(I) - R * (X (I + 1) - X (I))/P(I) 
RETURN 
END 

R = R  -P(I) 

10 CONTINUE 
20 

For selection with an equal probability bin histogram 
FUNCTION HSTRN (N, X) 
DIMENSION X(N) 
R = N * UNFRN (R) + 1 
I = R  
R = R - I  
HSTRN = X(I) + R * (X(I + I) - X(1)) 
RETURN 
END 

, 



START 

Generate R-U (0, 1) 
i = l  

1 

v 
R = R  - p i  

i = i + l  No 

0 (Xi - x ) R x = x  - - 
i-1 

Pi 
i-1 

END 

START 0 
Generate R+U (0 , l )  

I 

i = integer portion of y 
f = fractional portion of y I 

Figure 3-38. Random number generation algorithm Figure 3 -3 9. Random number generation 
for a histogram distribution algorithm for an equal 

probability bin histogram 
distribution 

= . 0 ,  
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APPENDIX A 

GENERAL TECHNIQUES FOR 
GENERATING RANDOM NUMBERS 
FROM DESIRED DISTRIBUTIONS 
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APPENDIX A 

GENERAL TECHNIQUES FOR GENERATING RANDOM 
NUMBERS FROM DESIRED DISTRIBUTIONS 

When given a particular distribution, f (x), and the task of 
selecting random numbers distributed according to that function, the 

investigator has a large number of possible alternatives at his disposal. 
The primary task is to derive a method which will accomplish the 
desired selection. A secondary task is to choose the method which is 
least time -consuming computationally. 

Unfortunately, it is not possible to give a straightforward 
methodology for deriving random number generation techniques which 
can be applied in all or even in most cases. The situation closely 

parallels that of finding an integral of an arbitrary function. When one 
encounters the need to integrate an unfamiliar function, the first step, of 
course, is to t r y  to look it up in a table of integrals. That failing,one must 
try to simplify, transform variables, integrate by parts, use trigonometric 
substitutions, or employ other similar tricks to reduce the integral to a familiar 
form. There is no guarantee of success, and much depends on the ingenuity 
and experience of the researcher. When all else fails you can "grind out" 

a numerical solution. 

Faced with the task of generating random numbers from an unfamiliar 
distribution, a similar procedure is needed. The first step is to t r y  to look 
it up somewhere -such as in Section 3 of this report. If not found there, 
there are a number of techniques - inverse, rejection, transformations, 
combinations, etc. available. These are described in this Appendix. There 
is no guarantee of success in using them, and the experience and ingenuity 

. 
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of the analyst is very important. A s  a final resort, there are numerical 

methods which can be applied. 

The following description of general techniques, while not universally 
applicable should give the reader some notion of how to proceed in deriving 
random number generation algorithms. 

A. 1 THE INVERSE METHOD@) 

The first technique which one should consider is the inverse. To 
apply the inverse method, the distribution function is integrated to give 
the cumulative distribution, F(x) = sx f(x')dx'. This is the probability of 

selecting a number less than or equal to x. This is equated to the proba- 
bility of selecting a random number, R, from the uniform distribution. 
Thus, F(x) = .rX f(x') dx' = R. The question then is whether or not this 

-cD 

- -cJ 
equation has a simple closed-form solution, x = F-l(R). If the inverse 
function exists, then it is a solution to our task, for, if R is distributed 
uniformly, then x = F'l(R) is distributed according to f(x). If F'l(R) 
not only exists,but is also moderately simple to compute, it is most likely 
the most efficient way to generate the desired random numbers. 

A. 2 REJECTION TECHWQUE(~) 

If the inverse function cannot be easily calculated, then the rejection 
technique should be considered. Suppose that the function, f(x), h a s  a 
maximum value M where x varies over the range of interest from a to b. 

Random numbers are then chosen by the following two-step procedure. 

0 

0 Select a second uniform random number, y, and accept 

Select x from a uniform distribution on the interval (a, b) 

the value x only if y < [f(x)]/M. 

If x is rejected, then go back to-the first step to select a new x and con- 
tinue this procedure until some value of x is accepted. The probability of 
selecting x in the first step is [l/(b-a)] dx, while the probability of 1 
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acceptance at the second step is f (x)/M. Thus the x values will be genera- 

ted with the desired probability f(x) dx. 

The constant term l/[M(b-a)] represents the efficiency of the rejec- 
tion. Its reciprocal, M(b-a), is the average number of trials the rejection 
technique will rewire to generate a single random number and is, therefore, 
linearly proportional to the computation time required. If M(b-a) is very 
large, the rejection technique is too inefficient and a better technique should 

r 

a 

be sought. 

The rejection technique need not be based on variables from a uniform 
distribution but can be developed from other distributions. For example 
the fact that 

can be used to develop a rejection technique for picking from a normal distribution. 
First select x from the exponential distribution emX. Then accept x if 

a second (uniform) random number 'f 

2 

&. e 

-x /2 e 
-X Y <  

2 -(x-1) /2 = e  

The essential ingredient of the rejection technique is to find a second dis- 

tribution function, g(x), for which a selection procedure is known and such 
that f(x) 5 C g(x). Selection of x from g(x) is followed by acceptance if 

The average number of trials needed for an acceptance is C. Note that if 

g(x) is close to f(x), then C will be close 1 and the technique will be very 
i efficient. 

A. 3 TRANSFORMATION 

To simplify the derivation of inverse o r  rejection methods, it is best 
to transform the random variable into its simplest form. Thus, if one had 

f(x) = g(Xx + F), one would first make the substitution, y = Ax + F, then 



94 

search for a technique fo r  generating numbers from g(y). After generating 
a random number y, set x = (y-c)/X to get the desired random variable. 
In doing transformations correctly we must be careful to transform not just 

the function f(x) but the probability f(x) dx. Thus, properly, we have 
f(x) dx = g(xX + c) dx = g(y) dx = g(y) d y h  as the substitution y = xX + c 
implies dy = X dx. The correct normalized distribution for y is then 
1/X g(y). A s  a second example, assume f(x) dx = 2x e-x dx. Try 

the transformation y = x . A s  dy - 2x dx, f(x) dx = 2x eBX dx = emY dy. 

Therefore, selecting y from the exponential e-y and taking x = f i  will  

give a random x from f(x). 

A. 4 

2 

2 2 

COMBINATION OF RANDOM VARIABLES (2) 

A s  a step beyond transformations, consider various combinations 

of random variables such as adding subtracting, or  multiplying two 
random numbers, taking the maximum or  minimum of several random 
numbers, etc. 

but must be worked out through the laws of probability. For  example, the 
sum of two uniform random numbers has a triangular distribution, 

f (x) = 1 - 1x - 1 1 while the product has the distribution, f (x) = - In x. 
More complex examples seem even farther removed from simple ration- 
ality. If x and y are random numbers from the gamma distributions, 
l / r (n)  x e and l/€'(m) y e , then z = x/(x+ y) has a beta 

m- 1 distribution r ( m  + n)/r(m)r(n) zn-' (1 - z) 
distribution may also be obtained by taking n + m - 1 uniform random 
numbers, arranging them in increasing order, and selecting the nth num- 

ber in the sequence. Thus, although combinations can be a very powerful 
method fo r  transforming simple random variables into selections from 

other distributions, it is impossible to give guidelines or  to arrive at a 
methodology for determining the proper combination needed to arr ive at a 
desired distribution. The investigator must simply learn the frequently 
used combinations and must use his inventiveness when confronted with an 
unfamiliar dis t r ibu ti on. 

The results of such combinations follow no intuitive pattern 

n-1 -x m-1 -x 

. However, the beta 
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A. 5 COMPOSITION TECHNIQUE (6) 

'C 

Another method of general applicability is the composition technique. If 
the desired distribution can be written as a (generalized) integral over a 
family of density functions, then the sampling can be accomplished in a two- 
stage process. On the first step, a particular density function is selected 
from the family, and on the second step, the desired random number is 

drawn from the particular density function. In the usual application of 
this technique, the desired distribution is broken down into discrete parts, 
generally on separate intervals. 

, 

A. 6 NUMERICAL METHODS 

If no exact method can be derived, there is a numerical technique 
which can be used. This consists of generating the cumulative function, 
solving for its inverse numerically, tabulating the inverse, and then gener- 
ating the random numbers from the tabulated data. If equal probability intervals 
are used in tabulating the inverse, then generation from the tabulated data 
can be quite fast. It does, however, require a certain amount of computer 
storage to hold the tabulation. 

Improvements in the accuracy of numerical inverses can be made by 

For some functions with long using C hebyshev interpolating polynomials j6) 
tails, the tabulated inverse must be replaced with some sort of approximating 
function in the tail of the distribution to achieve reasonable accuracy. 

A. 7 MARSAGLIA 

If a particular distribution is very central to a frequently used simu- 
lation program and the generation subroutine will  be called a great many 
times to produce random numbers, it may be worthwhile to design a very 
fast selection procedure to reduce the computer time needed. A number of 
super-efficient techniques have been developed by G. Marsaglia. (3) These 

are based on composition methods where the function is expressed as 
the sum of three or  more parts. The parts having highest probability are 

fast to select from and the parts difficult o r  slow to select from have very 
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small probability. In one of Marsaglia's methods, the function is broken 
into : 

0 A histogram 

0 A collection of saw-toothed functions where an efficient 
rejection technique selects from the 'almost-linear' dis- 
tribution of each sawtooth. 

0 The tail of the distribution. 

This method is very fast but requires moderate amounts of computer storage. 
In another method distributions are fitted to an approximation of the form 
C(M + ul + u2 + us), where M is a discrete variable and the u's are uniform 
variables. A small fraction of the time a more lengthy rejection procedure 
is needed to correct the e r ro r  in the approximation. This method is fair ly  
fast without great storage requirements. 

These methods have been applied very successfully to the exponential 
and normal distributions. They do, however, require considerable effort 
in manhours to develop and thus should be applied to other distributions only 
when the payoff can justify it. 

1 
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APPENDIX B 

MIRAN 

A MACHINE INDEPENDENT 

PACKAGE FOR GENERATING 
FROM DESIRED DISTFUBUTORS 

c 

. . 

c 



. 
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APPENDIX B 

MIRAN - A MACHINE INDEPENDENT PACKAGE FOR GENERATING 
UNIFORM RANDOM NUMBERS 

B. 1 GENERAL DISCUSSION 

The standard technique for producing uniform random numbers on 
modern high-speed computers is an algorithm known as the multiplicative 
congruential method. This .method is expressed mathematically as 

= X . Rn (modulo P) . Rn+ 1 

Since the R's are integers ranging from 1 to P-1, successive real random 
numbers uniformly distributed from 0 to 1 are generated by dividing Rn by P. 

The properties of this technique as a random number generator (RNG) are 
highly dependent on the choice of the generator, A,  and the modulus, P. 

Unfortunately, there are many RNGs in current use which do not approximate 
randomness closely enough to be sufficient for all Monte Carlo calculations 
and, what is far worse, do manage to pass some of the simple tests for 
randomness. There are, however, several choices of X and P which have 

been thoroughly tested, both theoretically") and through many years of actual 
use in Monte Carlo calculations, and which appear to be sufficiently random 
for general usage. 

f- 

3, 

1 

For reasons of convenience and efficiency, P is generally taken to 
be 2" where m is the number of bits, excluding the sign bit, in a single 
word on the particular computer being used. The generation process starts 
with a fixed generator, A,  and a starting value, 
from the multiplication of X and Ro would usually f i l l  two computer words; 
however, the modulo P in the algorithm means that we only need the single 

word, R1, comprising the low order half of the A-R product. The random 
number generation is completed by converting R 

The full product 
RO' 

0 
to a real variable and 1 
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dividing by P. R 

and the process is ready to begin anew. 
replaces Ro in storage in the random number subroutine 1 

In this sort of a process there have been two barriers to developing 
a Fortran RNG subroutine which would be independent of the particular com- 
puter for which it was designed. The first is the modulus P, which varies 
from computer to computer as the word length varies. [Choosing a universal 
value of P to f i t  the smallest computer is not a good solution as the proper- 
ties of a RNG become less random as P is made smaller, to the extent that 
Coveyou and MacPherson") consider them questionable for P = 2 31 

(IBM 360 series) and borderline for P = 235 (IBM 7090, Univac 1108, etc.).] 
The second problem is that the sign bit of Rl may need to be cleared follow- 
ing the multiplication. Clearing the sign bit generally requires some trickery 
in Fortran which varies from computer to computer as the mode of represen- 
tation (one's complement, two's complement, uncomplemented, etc. ) of 
negative numbers varies. 

The way around these obstacles is to use an explicit multiple pre- .. 
cision representation. The integers and operations involved in the RNG 
algorithm a re  separated into component parts in such a way that all operations 
a re  kept within a single computer word and no overflows into the sign bit are 
made, thus avoiding the sign-clearing problem. Through multiple precision 
a sufficiently large modulus for good RNG properties may be used even 
though the actual computer word size is small. An initialization call must 
be made to convey to the RNG the maximum integer allowed on the particular 
computer being used so that it can set up an appropriate multiple precision 
representat ion. 

The advantage of a RNG that is machine independent is simple: it 
greatly facilitates the exchange and checkout of Monte Carlo programs between 
different computers. The price paid for this advantage is also simple: it 
is a much slower method of producing random numbers. However, it is 

* 

I 
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, 

. 

still fast enough - (several thousand random numbers generated in one second) 
that the time difference will not be noticed in most Monte Carlo applications. 

B. 2 CHOICE OF A SPECIFIC ALGORITHM FOR MIRAN 

The work of Coveyou and MacPherson") has provided a thorough 
theoretical analysis of many commonly used RNGs. They show that the cor- 
relation properties of a RNG are strongly dependent on the modulus P. 

For values of P = 231 or  2 
graininess to the joint distribution of two, three, and four consecutive ran- 
dom numbers that could lead to incorrect results for some Monte Carlo cal- 

culations. For P = 2 , the departures from true randomness are small 
enough as to be negligible for practical calculations. Among the specific 

15 generators, X ,  tested by Coveyou and MacPherson, there is one, X = 5 , 
which has good statistical properties and which may be easily produced by 
a machine independent subroutine. (In a subroutine designed for use on com- 
puters of varying word length, specifying a fixed 47-bit integer through 
data statements would be difficult. However, 5 may easily be produced 
by multiplying 5's after the exact multiple precision representation needed 
has been established.) In addition the choice of P = 247 and X = 515 has 
an added advantage: this particular choice of a RNG has seen long usage 
(several thousand hours on a CDC 1604 at Oak Ridge National Laboratory) 
in Monte Carlo computations without any apparent problems. 

35 , there must necessarily be a waviness or  

47 

15 

B. 3 MULTIPLE PRECISION REPRESENTATION 

In the basic algorithm used by MIRAN, X and the Rn values will 

be 47-bit integers. This may exceed machine capacity. To keep all arith- 
metic operations from overflowing a single machine word, these integers 
are stored in an array wherein each word of the array constitutes a 'digit' 
in a representation of the integer to a particular base. This basis, called 
BASE, is chosen at execution time so that (BASE) does not exceed the maxi- 

mum integer allowed on the particular computer being used. Thus, for 

2 
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17 example, on a machine with 35-bit words (unsigned), BASE would be 2 

and each 47-bit integer would be broken down into 3 words as follows: 

blb2.. . . . b13b14.. . . b30b31* Ob47 

hat the 'digits' are stored the array Note 

47 -bit Integer Multiple Precision Repre sentation 

word 3 + O  ..... Obl .... 
+o... . .  0 b14.. . . b30 word 2 

+o..... 0 bgl.. . . b47 word 1 

b13 

n 'reverse' order, i. e., 
word 1 is the least significant 17 bits of the number. Also, since 17 does 
not go evenly into 47, the last word contains only 13 bits. 

Arithmetic in a multiple precision representation is carried out in 
the same manner as arithmetic is normally done by hand. The addition of 
two numbers, for example, is done digit by digit. When two 'digits', or words, 

th are added there may be an overflow into the 18 

be detected, the overflow cleared out, and a carry of 1 added into the next 
higher 'digit'. Multiplication is slightly more complex. It is again carried 
out digit by digit and the resulting products are added, keeping them in appro- 
priate columns, to get the final product. The multiplication of two 'digits' 

produces, of course, a two-digit product which is initially contained in a 
single computer word. This must be broken down into a high-order digit and 
a low-order digit with the high-order digit being added into the next higher 

bit of the result. This must 

column of the result. A s  each column is added, a carry over into the next 
higher column may be needed. Thus, in our example where three words were 
used for each integer, nine multiplies and several additions would be needed 
to form the six-word full product as schematized below. 

3 

. 

. 
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11 4, hll 

h21 ‘2 1 

h12 ‘12 

h31 ‘3 1 

h22 ‘22 

h32 ‘32 

h13 ‘1 3 

h23 ‘ 23 

h33 $33 

‘6 s5 s4 s3 s1 

where h.. and 4.. are the high and low order parts of the product of 
di and d ’ .  

B. 4 

1.l 1.l 

j 

USE OF MIRAN PACKAGE 

Initialization: 
Before generating any random numbers, it is necessary to make an 

initialization call. This is done by the statement 

CALL RANSET (MAXINT, NSTART) 

where MAXINT is the maximum integer allowed on the computer (or compiler) 

being used. NSTART is the starting value, 
number sequence. If NSTART is less than or  equal to 0 ,  a default value 

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd 
number will be used. 

to be used in the random RO’ 

i 
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For example MAXINT = 235 - 1 on a 1108, 248 - 1 on a CDC-6600, etc. 
Good values for  NSTART are any odd integer although frequent use of 
small odd integers is not recommended for calculations employing a re- 
latively small number of random numbers. 

The random numbers are generated in subroutine URAND which may 
be used as either a function subroutine or as an ordinary subroutine return- 
ing a value. Thus, either 

. CALL URAND(R) 
or  

R = URAND(X) 

will store a uniform random number in R. (Note that in the second form 
the same random number will also be stored in X. Thus. X must be a 

-- 
~~ ~~~ _____ 

Fortran variable and not a constant. ) 

Limitations of MIRAN: 

MIRAN will  work on all computers where MAXINT is greater than 
1023 and less than zg4. (These limits are practical and not theoretical and 
could be extended if it were ever necessary.) 

B. 5 MIRAN PROGRAM DETAILS 

The Fortran listings of the two MIRAN routines URAND and RANSET 
are presented in Figures B-1 and B-2. The accompanying logic flow is de- 
tailed in Figures B-3 and B-4. Additional explanation of the last step in the 

URAND logic is provided below. 

The two subroutines URAND and RANSET communicate through a 
labelled common, MTRNG which contains 

RAN(10) - An array containing the 'digits' of the current (or last) 
multiple precision random integer 

4 

t 
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4 

c 

Figure B-1. Fortran listing of URAND 

1 

b 
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Figure B-2. Fortran listing of RANSET 
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For i = 1, NWRD-1 
Separate ith word of SUM into a single 'digit' plus the carry 

into the next higher column 
th Add the carry into the (i + 1) word of SUM 4 

START 

1 

c 

I 

c 

Clear out SUM array 

?-A 
I 

I For i = 1, NWRD and j = 1, NWRD+1 - i: 
1 Multiply ith 'digit' of RAN by th 'digit' of GEN 

Separate the 'two-digit' product into a high-order part HPROD 

Add LPROD into the (i + j - l ) th  column of SUM 
Add HPROD into the (i + j)th column of SUM 

and low-order part, LPROD 

Reduce the last word of SUM modulo MOD 

I P. Return this as the random number I 
END 

Figure B-3. Logic flowchart for URAND 
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START 7 
IB+l 1 [ Determine IB such that 41B < MAXINT < 4 . < 

IB 1 BASE = 2  

Calculate the number of words needed to represent 47-bit 
integers to the base, BASE. 

Calculate REM, number of bits in the last word of the 
REM I representation. MOD=2 I Get floating point values of BASE and MOD 

I I Clear out random number and generator arrays 

Calculate A =  515 by multiplying by 5 15 times 1 
4 1 

I 
If user gave NSTART = 0, setNSTART to default value of 

2001 
Make sure NSTART is odd. 
C onve r t NSTART to multiple precis ion rep r e sent at ion. 

1 

t 

Figure B-4. Logic flow chart for RANSET 
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15 GEN(l0) - An array containing the generator A(= 5 ) in multiple 
precision rep r e s ent at ion 

- The number of words used in the multiple precision 

representation of an integer 
NWRD 

BASE - The base used in the multiple precision representation 

MOD - The maximum value of the highest order 'digit' in the 

multiple precision representation 
FBASE - Floating point value of BASE 
FMOD - Floating point value of MOD 

RAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are  
Fortran real quantities. 

An alternative method (unfortunately, not machine independent) of giving 
the routine a starting value is to save the array RAN at the end of a run and to 
restore RAN at the start of the new run (just after the RANSET call). 

In the last step of the URAND flow the objective is conversion 
d of the multiple precision integer random number R to a floating point 

random number X between 0 and 1. The multiple precision integer 
s - produced by the random number algorithm is represented by the 'digits' 

rl, r2,. . . . . , r (remember that r is the lowest order digit. Thus, n 1 

N -1 +.. . .+ (BASE) R = rl + (BASE). r2 + (BASE) r3 .rN . 2 

Notice that we have, from the manner in which N and MOD were established, 

P =  BASE)^-^. MOD . 
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The uniform random number desired is given by R/P. Thus we have, 

3 r 
+ 2 r 

+ 1 r R 

MOD (BASE)N-2* MOD MOD x =  F =  

N r 
+ -  N-1 r 

BASE-MOD MOD +....+ 

rl). . . .)) 1 (r + 1 1 - -(r + -(r - 
B A S E 2 B A S E  MOD N BASE N-1 + * * * *  

Starting from the right it is easy to compute this iteratively. 

B. 6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN 

For checkout purposes, Table B-1 lists the first 100 random num- 

bers produced by MIRAN when the default value of NSTART, 2001, is used 
as the starting random number. 

a 



a 
4 6 

TABLE B-1 

100 Random Numbers Produced by Machine-Independent Random 
Number Generator 

.9bl;hS62 

.896/4935 

.27Lh822 

.4543266 

. 6 P S B S O O  

. 2 7 8 1 0 9 5  

.7  3 4 9 9 7 s  

,3714798 

,TI 04638 

.241379G 

.4108350 

, 0 3  15737  

. i 3 a s e i 9  

, 6 9 9 8 5 2 7  

, 9 2 7 2 6 7 5  

.?0608UO 

, 0 7 6 5 7 1 0  

, 1235697 

, 6 9 2 1  146 

.005M372 

e 5 0 7 9 3 U O  

.b@U5930 

1319806 

.56b1.661 

.472ua77 

. ~ ? 8 9 3 7  7 7  

.063UZ!25 

, 0 3 2 2 7 9 5  

.E2769275 

e 9 Q 3 U 1 6 1  

,2304957 

, 2 8 8 6 9 9 2  

.A203205  

. h u E. 6 0 2 d 

, h9u779Q 

. be6230 D 

. 0 4 1 @ 9 1 h  

e 4 0  170 6 3  

.34 lJ09U9 

e 4 1 4 U 5 0 9  

.9  6 4 698 b 
-1 
--I 

-1 
.uea5?e3 

aa! 3375 

,5348431 

. e 0 9 0 1 4 6  
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APPENDIX C 
REFERENCES AND ABSTRACTED 

BIBLIOGRAPHY 

c 

* . 

1. Coveyou, R. R., and R. D. MacPherson, "Fourier Analysis 
of Uniform Random Number Generators, '' Journal of the ACM, 
14 pp. 100-119, 1967. 

A method of analysis of uniform random number generators is de- 
veloped, applicable to almost all practical methods of generation. 
The method is that of Fourier analysis of the output sequences of 
such generators. With this tool it is possible to understand that 
predict relevant statistical properties of such generators and com- 
pare and evaluate such methods. The results of many such analyses 
and comparisons are given. The performance of these methods 
as implemented on differing computers is also studied. The main 
practical conclusions of the study are: (a) Such a priori analysis 
and prediction of statistical behavior of uniform random number 
generators is feasible. (b) The commonly used multiplicative 
congruence method of generation is satisfactory with careful choice 
of the multiplier for computers with an adequate (>-J 35 bit) word 
length. (c)  Further work may be necessary on generators to be 
used on machines of shorter word length. 

2. Kahn, H . ,  Applications of Monte Carlo, Rand Corp., AEC-3259, 
USAEC, April 1964. 

A classic publication in the field of Monte Carlo methods that describes 
general Monte Carlo methods, random number generation schemes 
and variance reduction techniques. The volume is divided in two 
parts. Part I describes basic techniques with random numbers (such 
as fundamental random number generation techniques) and Part fl 
details several variance reduction schemes. The general areas of 
application addressed are problems in radiation transport. 

MacLaren, M. D., G. Marsaglia, and T. A. Bray, "A Fast Procedure 
for Generating Exponential R.andom Variables, '' Communications of 
the ACM, - 7, May 1964. 

3. 
- 

A very fast method for generating exponential random variables in a 
digital computer is outlines. A detailed flow diagram and required 
tables are provided. 
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4. Marsaglia, G, and T. A. Bray, "A Convenient Method for Generating 
Normal Variables, 'I SIAM Review, 5 1964. 
A very fast yet small Fortran routine for generating normal random 
variables in terms of a sequence of random variables uniform over 
[ 0, 13 is presented. A random variable X is generated in terms 
of uniform variables U U in the following way: 86 percent 
of the time, x = z ( u ~ + u ~ ~ u . , ~ ~  i: i), 11 percent of the time, x = I. 5 
(Uh+U2 - l), and the remaming 3 percent uses a complicated pro- 
ce ure. 

Marsaglia, G. , M. D. MacLaren, and T. A. -Bray, ''A Fast Procedure 
For  Generating Normal Random Variables, '' Communications of the 
ACM, 7, 1964. 

L 

* 

. 
5. 

- -  

A technique for generating normally distributed random numbers is 
described. It is faster than those currently in general use and is 
readily applicable to both binary and decimal computers. 

6. National Bureau of Standards Applied Mathematics Series 55, June 
1964, Handbook of Mathematical Functions, Numerical Methods, 
pp. 949-953. 

This section of the handbook reviews various methods of generating 
random numbers including the rejection and composition methods. 
Also presented are specific techniques for various discrete and con- 
tinuous distributions such as the normal and exponential distributions. 

7. Spanier, J., and E. M. Gelbard, Monte Carlo Principles and Neu- 
tron Transport Problems, Addision Wesley Publishers, 1969. 

This is one of the more recent comprehensive references on Monte 
Carlo methods as applied to radiation transport problems. Basic 
fundamentals of Monte Carlo are first reviewed. Next the concepts 
of discrete and continuous random walks are introduced followed by 
a discussion of variance reduction techniques. Finally, advanced 
concepts and applications to radiation transport are presented. 

i 
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