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CALCULATION OF CELL VOLUMES AND SURFACE AREAS IN MCNP

by

John S. Hendricks

ABSTRACT

MCNP is a general Monte Carlo neutron-photon
particle transport code which treats an arbitrary
three-dimensional configuration of materials in
geometric cells bounded by first- and second-
degree surfaces, and some special fourth degree
surfaces. It is necessary to calculate cell vol-
umes and surface areas so that cell masses, fluxes,
and other important information can be determined.
The volume/area calculation in MCNP computes cell
volumes and surface areas for cells and surfaces
rotationally symmetric about any arbitrary axis.

I. INTRODUCTION

The particle flux in Monte Carlo transport problems is often estimated as

the track length per unit volume or is related to the current per unit area.

Therefore, knowledge of the volumes and surface areas of various geometric re-

gions in a Monte Carlo problem is very important. Knowledge of volumes is also

useful in calculating the masses and densities of problem cells and thus in cal-

culating volumetric or mass heating.

Unfortunately, the calculation of volumes and surface areas in modern Monte

Carlo transport codes is non-trivial. This is because the description of geo-

metric regions, or cells, in sophisticated Monte Carlo codes is becoming more

general and hence, much more complicated. In particular the general-purpose,

continuous-energyMonte Carlo Neutron-Photon code MCNP1 now allows for cells to

be constructed from the union and/or intersections of any regions defined by an

arbitrary combination of second degree surfaces and/or toroidal fourth degree

surfaces. These surfaces may have different orientations, they may be segmented
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for tallying purposes, or the cell they compose may even consist of several dis-

joint subcells. Although such generality greatly increases the flexibility of a

three-dimensionalMonte Carlo code like MCNP, computing cell volumes and surface

areas understandably requires increasingly elaborate computationalmethods.

The algorithm for computing cell volumes and surface areas in MCNP is cap-

able of treating the complicated geometry just described provided that the in-

dividual cells and surfaces have a unique axis of rotational symmetry. This is

not a serious restriction because most cells and surfaces used in MCNP are in

practice rotationally symmetric. The procedure for the volume and surface area

calculation may be summarized as:

1. All surfaces bounding a given cell are identified. Second-degree sur-

faces in the MCNP (x,y,z) Cartesian coordinate system are put into the general-

ized form

A# + By2 + Cz
2
+ Dxy + Eyz + FXZ + Gx + Hy+Jz + K = O . (1)

For toroidal surfaces this step is a special case.

2. The (x’,y’,z’) coordinate system in which the cell is rotationally sym-

metric is identified if it exists. This procedure is not straight-forwardwhen

the bounding surfaces of the cell are not symmetric about a single axis parallel

to a major axis. In the case of a skew axis, Eq. 1 must be rewritten in matrix

form and then diagonalized.2 A special translation method has been developed

for parabolic cases in which the resulting singular matrices cause the standard

procedure to fail.

3. All surfaces bounding a cell are rotated and translated into the (x!,

y’,z’) coordinate system so that Eq. (1) is of the two-dimensional cylindrical

form, or “Q-form,”

ar2 + br + cs
2
+ ds + e = O (r2 = xl2

2+21; s = y’) ,

or

r = f(s) .

4. The intersections of all bounding surfaces with each other are found,

but only those intersections

(2)

which are corners of the cell are kept. Identifica-
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tion of which intersections are corners is done by Boolean algebra and a com-

plicated procedure which will be described later.

5. The surfaces are integrated (using standard integration formulas)

between corners as

vi=T r2 ds for volumes,

(Only for toroidal surfaces must Ai be computed by numerical integration.)

6. The integrals are appropriately added and subtracted to determine the

total volume of each cell and the total active area of each surface. The area

integrals are actually computed twice; once for each side of the surface. In

this way rotationally symmetric surfaces bounding some nonsymmetric cells may

still be considered.

The details of the above steps will now be described.

II. CONVERSION OF SURFACES TO Q-FORM

The MCNP volume and surface area calculator only works for cells and sur-

faces which are rotationally symmetric. A surface is rotationally symmetric if

it can be written in the two-dimensional cylindrical Q-form of Eq. (2). A cell

is rotationally symmetric if all its bounding surfaces are rotationally sym-

metric about a common axis - that is, if a single rotation and translation ap-

plied to each bounding surface will convert these surfaces into Q-form. There-

fore, the conversion of surface parameters

volume and surface area calculation.

A. Step 1: Identification of Surfaces

The first step in converting surfaces

to Q-form is essential to the MCNP

to Q-form is to identify the bounding

surfaces of a given cell and to put these surfaces into the generalized form of

Eq. (l). Identification of bounding surfaces is trivial because this informa-

tion is required user input in MCNP. Converting second degree surfaces into the

form of Eq. (1) is also trivial since the permissible MCNP surfaces are mostly
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in this form. This is sfiownin TABLE I which is a list of permissible MCNP in-

put surfaces. Only one-sheet cones and tori cannot be put into the form of Eq.

(1). Hence one-sheet cones are treated as two sheet cones at this point and

tori are treated as a special case which will be described later. Note that Eq.

(1) maybe written in matrix (capitol letters in italics represent matrices)

form as

+t +
XAX + W: + c = o ,

where

~ = the column vector (x,y,z),

~ = the qolumn vector (G,H,J),

c = K, a scalar, and

[ 1
AD/2 F/2

A = D/2 B E/2

F/2 E/2 C .

Note also that A is symmetric.

B. Step 2: Identification of Coordinate System

The second step in converting surfaces to Q-form is to identify the (x’,y’,

z’) coordinate system in which the cell is rotationally symmetric. Any two

Cartesian coordinate systems, (x,y,z) and (xt,yt,z~), may be related by

+
x=B;+:

o “

where
+
x =

; =
+
x =
o

B =

(X,y,z),

(X’,y’,z’),

translation vector = (x,y,z) system coordinates of the (x’,y’,z’)

system origin, and

3 x 3 rotation matrix.

If the result of substituting Eq. (4) into Eq. (3) is an

(2)), then ~. and B define the ~ = (x’,y’,z’) coordinate

symmetry.

The appropriate

is, the columns of B

4

choice for B is the orthonormal

are the eigenvectors of A and

(3)

(4)

equation in Q-form (Eq.

system of rotational

9
modal matrix of A.’ That

.



TABLE I

MCNP SURFACE CARDS

nr.monic Tyw Description Eq.atz.on Card Entries

P Plasm General Ax. By. cz-D. o 1

I

A, B,C,D

Px Normal to X-mxis 1 -0.0 0

PY Nomal to Y-axis y-o~o D
I

Pz Noru2 to Z-axis 1-D. O D

so Sphere Centered st Origin Xz. y=. z=. R2.0 R

s General (x. i)2. (y-#. (z-#- R2. O
--—
x.Y,z, R

Sx Centered on X-Uis (x-~2. yz*z2-R2.0 i,R

SY Centered m Y-axis , XZ+(Y-;)2*ZZ-R2.0 Y.R

Sz t Centered on Z-axis x2. y2+(z-32-R2- O ?,R

Clx Cylinder Parallel to X-axis (Y-n2*(z-?)=-R2.0 ~,~, R

c/Y Parallel to Y-axis (X-32 *[ Z-;)2-RZ-0 T,i, R

cl z Parallel t. Z-axis [X-~) 2.(Y-~2-R2=0 i,~,R

Cx cmx-axis yz. z2-R2.0 R

CY On Y-uis xz. z=- RZ. O R

Cz t h Z-uis XZ*YZ-R2.0 R

27X Cone Parallel to X-axis 4y-;12* (z-3 Z-t(x-i).0 .v.zotzo * 1

KIY ! Parallel to Y-uis 4x- I)z+(z- i)Z-t(y -7)=0 X,y,z,tz, t 1

X/z Parallel to Z-axis /(x- a2+[y-7)~. t(:. a.o

xx

x,Y.z,t2, * 1

Cm X-axis m-t(x-a. o ;,tz, * z

w cm r-axis m.t,y. y,. o -zy,r, ?l

X7. on z-axis m.t(, -i). o ,,,2. , 2

1 u.ef! only
for 1 sheet

6 cone

SQ Ellipsoid Najor UIS psra21el A(x-32* B(y-n2*c(z-~2 A,B,C,O,E,

)?yperboloid to X,Y, or Z-axis
--—

. ZD(X - ;) ● ZE(Y - fi F,G,x,y,z

Paraboloid +2 F(z-m4G. O

CQ Cylinder Major uis is not h= . By= . CZ2 . oxy ● Eyz A, B. C,O,E,

Cone parallel to XOY, ●Fzx*Ox. Ny*Jz* X-O F, C. H,J, X

Ellipsoid or Z-axis

Hyperboloid

Puaboloid

lx Eliptic.al ‘jOr ‘i’ p“- Q++~’2” c:z-a’-A)z”1 “T”T”A””c
or allel to X-uis

Cirmlar
‘s7

Tori N“: ::~; +*~~x-;)2”ci1 -3’-’)z”’ ‘“y’i’A’B’c

Tz NajOr =Is p“’- z+*~~=”~2”c:y-~’-A)z”’ ‘“;’ioAo’”c
allel to z-axis

s



B’ = B-l

AB = BD

where

[1‘1 0 0

D= O~20

00
‘3 , and

Ai = eigenvalues of A.

If Al # A2 # A3 the surface is symmetric, but not rotationally symmetric. There-

fore, two eigenvalues must be identical for rotational symmetry. We arbitrarily

choose the yl-axis as the axis of rotational symmetry, and therefore require Al

= A3 for the sake of analysis. Actually, in MCNP the xl-axis is chosen.

The appropriate choice for ~. is

+
x = - ;A-l$ ,

0

except for the following three cases where A is singular and hence has no

inverse. If A represents a parabola, then A2 = O, A is singular, and we have

found that

(5)

(6)

(7)

(8)

is a suitable translation vector. IfA1=A3= O, then A represents a two-sheet

plane which is disallowed. And if Al = A2 = A3 = O, then A represents a plane,
+
X. may have any arbitrary or convenient value, and a suitable choice for the

rotation matrix is

[

v/t u -uw/t-

B= -u/t v -vW/t

o w t :

where

]~ ,t=u+v
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. = G,AZ-T-F ,
v= H/\G2 + Hz + J* , and

w= J/ G2+H2+J2 .

If t = O an appropriate substitute B-matrix is chosen.

There are many ways to determine the orthonormal modal matrix, B, of A. In

the MCNP volume and surfacearea calculation B is found using a standard system

routine which finds the eigenvalue and eigenvectors of A.

This routine is only infrequently used because most MCNP problems consist of

many cells rotationally symmetric about a single common axis. Therefore, for

each cell the values of B and lo from the previous cell are tried, and only if

they fail to rotate and translate the present cell surfaces into Q-form are a new

B and ~. calculated. For the first cell in a problem an initial guess of 23= I

(identitymatrix) and~n = O is tried before a calculation of B and ~. is

attempted. Thus for problems fully symmetric about the y-axis, B and-~o

never calculated because the initial guess always works. For rotational

about the other major axes the calculation of B and ~o
is also avoided.

c. Step 3: Rotation and Translation

are

symmetry

The third step in converting surfaces to Q-form is to rotate and translate

the coordinate system by substituting Eq. (4) into Eq. (3):

+t +
XAX + ~t; + C = [B; +

. j%tAB~ + 2j%tAZo +

Letting

+ t
Xo) A(B; + :.) +%t(B; + :.) + C

+-t+
XOAXO + gtB;”~ it: +c..o

o

e . ~tA~
o 0

+ ~tlo + c (a scalar quantity)

~tBtAB~ + 2~tBtAZo + %tB~ + e . 0 .

From Eqs. 5 and 6 this becomes

;%; + 2;tBtA;o +~tB~ + e = O . (9)
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If A2#0,1et~o=- ~A-l~ and then Eq. (9) becomes

+t t+
;tD; - yBb+$tB~+e ,

.~t$+e ,

=~lxlz 22 /+e+Ay ’ +Az’ , and

2 2
= ar +cs+e. o

1+
which is in Q-form. If A2=0,1et~o =-K b and then Eq. (9) becomes

1

+t + l+tt+
yDy-— Al Y BAb+~tB~+e ,

[ 1

= ;%; + i% I - &D~+e ,
1

= AIX’2 ~ 2+Az’ + W y’ + e
2

, and

2
= ar +ds+e=O

which is in Q-form. Note that :2 is the eigenvector corresponding to A2.

As mentioned earlier, one-sheet cones and tori are exceptions to the above

procedure. However, as shown in TABLE I, these surfaces are limited to axes

parallel to major axes in the MCNP (x,y,z) coordinate system. Hence there is no

need to compute B and ~. since these quantities are known at the time of input.

The rotation matrix is either the identity matrix or a permutation thereof; the

translation vector is simply

+ ———
x = (X,y,z) ,

0

where ~, ~, and ~ are input parameters. Thus both one-sheet cones-and tori can

be checked for common symmetry with other surfaces in the cell and then put

directly into Q-form.
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For a one-sheet cone, Q-form is

r - ts + e= O ,

where t is an input parameter. The value of the constant, e, is different for

different kinds of cones. For a K/X cone

e=t(~-yl) ,

where ~ is an input parameter

the ~and ~ coordinate system

r’ - 2Ar + c ‘s2

()E
+ds+

(see TABLE I) and y’ is offset distance.between

origins. For a torus, Q-form is

where C, B and A are input parameters. For a TX torus

and

e.A2 -c’+ (i-y’)’~ ;’
where ~ is again an input parameter and y’ is an offset.

Once the bounding surfaces of a cell are converted to Q-form they may be

recast in the form

r = f(s) .

Then the cell volumes and surface areas are computed from integrals of the form

and

‘i+’ds=d‘f(s’]’ds

9
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111. DETERMINATION OF INTERSECTIONSAND CORNERS

In order to deterministically compute the volumes of cells and the areas of

surfaces the limits of integration must be found. For the integrals in the MCNP

cell volume and surface area calculator, these limits are the coordinates of cell

corners in the (r,s) coordinate system.

A. Calculation of Intersections

In order to find the corners of cells it is first necessary to find the

intersection of each cell-bounding surface with all other surfaces bounding the

cell. Note that the axis of rotational symmetry is automatically added to the

list of cell-bounding surfaces. Thus a simple cell with only a single surface,

such as a sphere, will still have intersections and be properly treated.

When the surfaces are written in Q-form, the intersections of any two sur-

faces are simply the coordinates found by solving the following two simultaneous

quadratic equations:

2 2
a r
1

+b r+ c s
1 1

+ds +e = o ,
1 1

2
+b r+ c s

2
a r2 2 2 +ds+e=O,

2 2

(lOa)

(lOb)

where al, bl, c
1’ ‘1’ and el are the Q-form coefficients of the first surface

and a2’ b2’ C2’ ‘2’ “and‘2 are the Q-form coefficients of the second surface.

Three possible cases arise in the solution of Eq. (10):

1. Quartic Case [(alb, - a,bl) # O; and (alc, - a,cl) # O]. This case

arises when neither surface is a plane and at least one surface is either a

torus or a one-sheet cone. Equation (lOa) is multiplied by a, and Eq. (lOb) is

multiplied by al and then the resulting equations are subtracted to give

tlr + t2s2 +t s +t =0 ,
3 4

(11)

.

.

where

‘1 = alb2 - a2bl ‘

10



‘2 = alc2 - a2cl ‘

‘3 = a1d2 - a2dl , and

‘4 = ale2 - a2el “

Equation (11) is then inserted into Eq. (lOa) which results in the quartic equa-

tion

/%4
3 2

+ Bs + Cs +Ds + E= O ,

where

(12)

2
A = alt2 ‘

B
= 2alt2t3 ‘

C= a1@t2t4 + t$ + tl(cltfi b1t2) ,

D = 2alt3t4 + Vdltl - blt3) ‘ and

E
2

= alt4
+t(et

111
- b1t4) .

If al = O then a2 # O and Eq. (11) is inserted into Eq. (lOb) instead with sim-

ilar results. In either case, the quartic equation is solved for s by an itera-

tive nth order polynomial solver system routine and then the corresponding

values of r are found by substituting these values of s back into Eq. (11).

2. Quadratic Case [tl # 0,t2 = O; or tl = O, al ora2 # O]. This case

arises when at least one surfacers a torus or quadratic. If tl = alb2 - a2b1

= O, then Eq. (11) becomes a quadratic equation in s. If ‘tI# O but t2 = O from

the quartic case, then the quartic equation reduces to a quadratic equation

[A= B= O inEq. (12)] ins. In either case, the quadratic equation is solved

for s and then these values are substituted back into Eq. (lOa) [Eq. (lOb) if

al
= O] to form a second quadratic equation to find the corresponding values of

L-.

3. Linear or Quadratic Case (al = a2 = O). This case arises when both

surfaces are either planes or one-sheet cones. Whichever, Eq. (lOa) is mul-

tiplied by b2 and Eq. (lOb) is multiplied by bl and then the resulting equations

are subtracted to give a linear or quadratic equation in s. This equation is

then solved (by the quadratic formula if it is quatratic and by substitution if

11



it is linear) and the resulting value of s, if any, is substituted back into Eq.

(lOa) [Eq. (lOb) ifbl = O] to find the corresponding value(s) of r by the

quadratic formula.

B. Determination of Corners

Once the intersection of two cell-bounding surfaces is calculated it is

necessary to determine if this intersection is an actual corner of the cell. If

the intersection occurs somewhere outside of the cell then, of course, it is not

a corner of the cell. Also, if the r-coordinate of the intersection point in

the (r,s)

Note that

torus and

coordinate system is negative then the intersection is also rejected.

this exclusion gets rid of points on the unwanted arc of a degenerate

on the wrong leg of a one-sheet cone.

Intersections with r> O are identified as corners by a complicated proce-

dure involving Boolean Algebra. Consider the intersection of the two surfaces

in Fig. 1. The two surfaces divide space into four zones, i = 1, 4; and the

cell could conceivably be within any combination of zones. The intersection

defines a corner only if

(13)

4

f=
x

6 “
i

~(i-l)

i=l

is not divisible by 3. Here,

&i = O if the cell is not present in zone i;

= 1 if the cell is present in zone i.

For example, if the cell is present in zones 1 and 3 but not zones 2 and 4 (61

=
‘3

= 1; 62 = 64 = O) the intersection is a corner because f = 5. But if the

cell is present in zones 1 and 2 but not zones 3 and 4 (61 = 62 = 1; 63 = 64

= O) then f = 3 and the intersection is not a corner. Note that if the inter-

section is outside the cell then f = O and

Whether or not a cell is present in a

functions 6i.
3

These are functions of the

n is the number of cell bounding surfaces,

the intersection is rejected.

zone is determined by the Boolean

Boolean parameter v., j = 1, n where
J

and

12



.

symmetry axis
Fig. 1. Intersection of Two Surfaces

1‘j =

o‘j =

if the sense of the intersection

the user-input sense of the cell

otherwise.

point to surface j is the same as

to surface j;

The sense of the intersection to surface j is positive if

2 2
a.r + b.r + C.S + d.s + e. > 0 ,
J 1 J J J

where r, s are the intersection coordinates and a., b., c., d., e. are the sur-
JJJJJ

● face coefficients of surface j. If

2 2
a.r + b.r + C.S
J

+d.s + e. < 0 ,
J J J J

then the sense of the intersection point to the surface is negative. For the

13



two surfaces which form the intersection

2 2
a.r + b.r + C.S
J

+ d.S + e. =0 ,
J J J J

and the initial value of Vj is arbitrarily

face sense is positive and O otherwise.

The Boolean functions, di, are formed

example of Fig. 2. The user input surface

-3(2:-1) ,

set to 1 if the user-input cell-sur-

from the vj~s as illustrated in the

relations for cell 1 in Fig. 2 are

where : is the union operator. The Boolean function of Vj’s for point 1 in Fig.

2 is then, for example

6 =

=

That is,

6 =

=

That is,

For

6 =

ln(ouo)=lno=o .

point 1 is outside cell 1. For point 2,

‘3 n (V2 u VI) ,

ln(luo) s In I.= I .

point 2 is inside cell 1.

the intersection of surfaces 1 and 2 (point 3),

ln(luo)=l ,

where the values of Vj were arbitrarily set for the intersecting surfaces, j

= 1, 2. To determine if this point is a corner, VI and V2 are arbitrarily al-

ternated to determine if the cell is present in the various zones of Fig. 1:

%
=ln(lu~) = 1 (zone 1),

62
=l~(OUO) =() (zone2),

.

.

.

14



r

symmetry axis

Fig. 2. The Cell -3(2:-1)

63 = lfl (OU1) = 1 (zone 3), and

64=ln(l Ul)=l (zone 4).

When these values are inserted in Eq. (13),

f=l” 1+1) ● 2+ 1 ● 4+1 ● 8= 13 .

Since f = 13 is not divisible by 3, the intersection of surfaces

corner.

As another example, consider the intersection of surfaces 1

al=on(luo)=o ,

62=ln(luo)=l ,

63=ln(lul)=l ,

64=on(lul)=o,

and

f=o” 1+ 1 ● 2+ 1 ● 4+0 ● 8=6 .

s

land2isa

and 3 (point 4)

15



Since f = 6 is divisible by 3 the intersection of surfaces 1 and 3 does not form

a corner of cell 1.

c. Determination of Star Corners

The above procedure for determination of corners sometimes fails when more

than two surfaces intersect at a point to form a “star.” As an example,

consider the intersection of surfaces 2 and 3 in Fig. 3. Surface 1 also passes

through this intersection thus forming a star as illustrated in Fig. 4. Since

2
a r +b r+ c s

2
1 1 1

+ ds +e = () ,
1 1

the value of vl is ambiguous and the corner determination procedure fails.

To remedy this situation, each corner is checked for the presence of addi-

tional surfaces passing through it. If

a.r2 + b.r + C.S
2

J
+ d.s + e

J J J
j < cMaX[12ajr +bjl,12cjs + dj]l

& = fractional permissible error in r or s ,

r

In
.I-l
x
cd

\ ,---
<tar

N

/“
----\\ corner

\

I \

.

.

.

Symmetry axis s
o

Fig. 3. Star Corner for the Cell -1 -2 3

16



r

Fig. 4. Star Corner

then surface j passes through the intersection to form a star. If this condi-

tion is not satisfied for any surface other than the two forming the intersec-

tion then the star checking routine is bypassed.

To determine if surfaces i and k form a corner when another surface, j,

also passes through the i-k intersection, each point on surfaces i and k is

checked for the proper sense with respect to the other two surfaces in the

neighborhood of the i-k intersection. In the neighborhood of the intersection

point all surfaces, Z = i, j, k approach linearity and can thus be written as

(r - ro) =

where r and s

Znear ?ro,so)!’

az(s - so) , (14)

are the intersection coordinates and al is the slope of surface

If (rj,si) is a point on surface i then

(ri - ro) = ~i(si - so) .

If these points satisfy the user input sense, Sj to surface j then

17



Sj[(ri - ro) -~j(Si - So)] > 0 .

Inserting Eq. (14),

Sj[ai - aj] (s. - so) > 0 .
1

If (ri,si) also satisfy the user input sense, Sk to surface k,

Sk[ai - ak](s. - so) > 0 .
1

These equations may be combined so that if each point on surfaces i satisfies the

user input senses to surfaces j and k:

sksj[ai- aj][ai- Elk]>0 .

Similarly, each point on surface k must satisfy the user input senses to surfaces

i and j:

Sisj[ak - ai][ak -aj]>o .

If these two relationships are satisfied then the intersection of surfaces i and

k is accepted as a corner; otherwise it is rejected.

For example, consider the situation of Fig. 3. The standard procedure of

Section IIB would indicate that

and 3 and 1 all form corners of

form a true corner at this star

-2 3 are S1 = -1, 52 = -1, 53 =

surfaces in the neighborhood of

Therefore,

Intersecting Surfaces:

162

the intersections of surfaces 1 and 2, 2 and 3

cell 1 at (ro,so). But only surfaces 2 and 3

corner. The user input senses for the cell -1

+1; from Fig. 4 it is seen that the slopes of the

the intersection are al = -1, a2 = O, a3 = 1.

(-1)(1)[-1 -0][-1 -1] < 0

(-1)(1)[0 - (-1)][0 - 1] >0

intersection rejected,

.

.

18



Intersecting Surfaces:

263

163

(-1)(1)[0 - (-1)][0 - 1] > 0

(-1)(-1)[1 - (-1)][1 - o] >0

intersection accepted as corner,

(-1)(1)[-1 -0][-1 -1] < 0

(-1)(-1)[1 - (-1)][1 - 01 >0

intersection rejected.

Hence the only legitimate corner at the star (three or more surfaces) intersec-

tion at (ro,so) is the intersection of surfaces 2 and 3.

IV. INTEGRATION OF VOLUMES AND AREAS

Once the corners of a cell are identified in the (r,s) coordinate system of

rotational symmetry the surfaces are integrated between corners if the midpoint

of the surface between the corners is on the cell boundary.

The midpoint (rm,sm) of surface i,

2 2
air + bir + Cis + dis + e. = o ,1

(15)

between the corners (r.,s.) and (rk,sk) is
J J

r = ~ (rj + rk)
m

s +s)
m

=+(sj ~

for linear surfaces (a. = O). For nonlinear surfaces rm is found by plugging Sm
1

into Eq. (15). A Boolean function, 6, (Section IIIB) is then formed for surface

i where v. = O and then alternately vi = 1.
1

If 6(Vi =0) + ~(vi = 1) = 1 then

the midpoint, (rm,sm), is on the cell boundary. The integration limits are then

and s
‘j k.
A. Determination of Volumes

The volume of the region formed by rotating surface i about the symmetry

axis, A, is simply

19



‘k
Vi=r

[
r2 ds .

‘j

For linear surfaces, ai = Ci = O; bi = 1

For non-linear

(dis + ei)’ ds

surfaces, ai # O

where

q= -1 for lower portion of a torus,

= 1 otherwise,

and

b.
T=-—= 2;. for a torus,

1

= O for other surfaces,

‘k
=T

/[

*F2 +

j
(-+ cis* )(+dis + e. - ~ cis

2
1

)]

+ dis + e. ds,
i i

1

.

.
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.

.

+ 2m—q
)

+ dis + e. ds .1

The integral,

‘k
I =

1
‘j

is of the form

I= ! iA + Bx + Cx’ dx.

If

B2 - 4AC=O(C>0) ,

then

and

which is solved trivially. If

B2 - 4AC+0 ,

21



then

and

or

B.

I =
1’

A+ Bx+cx2dx

[

#
& 2 (2CX + B)4A + EJx + CX2

L

dx=— + (4AC - B2) —
A+ Bx+CX 4

L
dx—

=~ln
[i

B 1A+Bx+cx2+xfi+—
A+ BX+CX2

ifC>O
2C

b dx—

A‘in-l[=l‘fc<0‘2 -4AC’0oA+ BX+CX2=G

Determination of Areas

The area of any planar

axis, s, is

surface i [Eq. (15)] rotated about the symmetry

( )‘i = Im r; - r: I plane.

For a cylinder or one legged cone, a, = c, = O

Ai =

J

/ [

k

~]

d.
= 21T -~(dis+ei)l+ & ds

i i
j
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For a quadratic surface, ai # O, b, = O

‘k
A, = 2T

I

‘j

‘k
= 2’IT

1

‘j

s

2T
r

‘j

‘k
2’rr

J
s.
J

1 ( 2

)

-(2c,s + d,)
+ dis + e. 1 +

2-
. — c,.
a.
1 1

1[( )1~
1/2 ds

2 -a, C,.2 + d,. + e.
1

d

1 2 s2+4cds+d2- —
a.
1 i i 1i ds

which is of the same form and can be solved in the same way as Eq. (17).

For a toroidal surface, a+ # 0, b: # O,

b,
r.-—

2ai *

J.

fg -;(2Cis + dis + e.
)1 ‘

and the area integral

‘k
A, = 2T

J
‘j

has no convenient

Jw ‘
integration

ds

formula. Therefore, let



b.
T=-— 2ali

(17)

d.1
z=-—

2ci

r =~+asine

s .;+~cOse

where
—

d6=+
i

Then

2 2 –2 –2
air + bir + Cis + dis + e. = ai(r - r) + Ci(s - s) + ei - ai72 - ci~2

1

2
= aia sin2 f3+ Ci@2 cos2 6 + e. - ai~2 - CiY2

1

22
= aia (sin e + cos2e)+e. –2 –2

- air - Cis
1

2 –2 –2
= aia + e. - air

1
-Cis=o.

Therefore

f32=>T2-1+:2 .
i

From Eq. (17),

Thus,

24
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= T f32sin2 0 + a2 cos2 6

The area integral is then

J.

where

and from Eq. (17)

()-7‘j
B

= Cos 01

()‘k -F

B
= Cos 02 .

Letting x = cos e, the last term

method of Eq. (16):

(

e) de

de

de

de .

ie

de + 21TC@r
~~sinede ,

of the area integral is readily solved by the

25



1’2
27raf3 l+ycos2e

‘1

‘k
-F

sin f3dO = -2maf3
1
‘m&.

F
~

The first part of the area integral,

dO ,

A

is a simple expression readily solvable by numerical integration.

v. SUMMATION OF VOLUMES AND AREAS

Once the volume and area integrals have been evaluated between the appro-

priate limits they must be added to determine the cell volumes and surface

areas. Also, tally segments must be treated.

A. Adding Cell Volumes

The volume of a cell is simply the sum of its parts. If a bounding surface

IV I, between co-rnersisof the cell is above the cell its volume integral, i

added; if a surface is below the cell, its volume integral is subtracted. A

surface is above the cell

is negative. Conversely,

This rule is reversed for

B. Adding Surface Areas

if the user-supplied sense of the cell to the surface

a surface is below a cell if the sense is positive.

( -)

-bi

‘he 10wer branch r < 2a.
of a torus.

1

The area of a surface is the sum of the absolute value of its parts. How-

ever, in MCNP the areas are computed twice for each surface: once when each of

the cells with a positive sense with respect to the surface is calculated and

once again when each of the cells with a negative sense with respect to the sur-

face is calculated. In most cases the two areas are the same which provides a

good check for the area calculation. But if any of the cells bounding the sur-

face is not rotationally symmetric then the surface area bounding that cell is

not computed invalidating the area calculation for one side of the surface. In

this case only the area of the other side of the surface is used if the cells

26
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bounding that side are all rotationally symmetric. In this way rotationally

symmetric surfaces bounding some non-symmetric cells may still be considered.

c. Calculation of Tally Segments

In MCNP cells and surfaces may be segmented into different geometric sub-

regions for tallying purposes. Because the surfaces which define the tally seg-

ments are stored in the same way as cell bounding surface, calculation of the

tally segments is trivial. For example, consider the geometry of Fig. 5. Cell

1 is the region of space with a negative sense to surface 1. Suppose we wish to

segment the flux tally in cell 1 and across surface 2. In either case, the

surface segmenting input card is

FSn -2 -3 .

This causes three volume segments to be computed:

Segment 1: volume bounded by surfaces -1 -2;

Segment 2: volume bounded by surfaces -1 2 -3;

Segment 3: volume bounded by surfaces -1 2 3.

Each of these segment volumes is computed as if it were for an actual cell; the

only difference

Similarly,

Segment 1:

Segment 2:

Segment 3:

is the list of bounding surfaces.

three surface segments are computed:

area of surface 1 satisfying -2 surface sense constraint;

area of surface 1 satisfying +2 and -3 surface sense

constraint;

area of surface 1 satisfying +2 and +3 surface sense

constraint.
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