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CALCULATION OF CELL VOLUMES AND SURFACE AREAS IN MCNP

by

John S. Hendricks

ABSTRACT

MCNP is a general Monte Carlo neutron-photon
particle transport code which treats an arbitrary
three-dimensional configuration of materials in
geometric cells bounded by first- and second-
degree surfaces, and some special fourth degree
surfaces. It is necessary to calculate cell vol-
umes and surface areas so that cell masses, fluxes,
and other important information can be determined.
The volume/area calculation in MCNP computes cell
volumes and surface areas for cells and surfaces
rotationally symmetric about any arbitrary axis.

I. INTRODUCTION

The particle flux in Monte Carlo transport problems is often estimated as
the track length per unit volume or is related to the current per unit area.
Therefore, knowledge of the volumes and surface areas of various geometric re-
gions in a Monte Carlo problem is very important. Knowledge of volumes is also
useful in calculating the masses and densities of problem cells and thus in cal-
culating volumetric or mass heating.

Unfortunately, the calculation of volumes and surface areas in modern Monte
Carlo transport codes is non-trivial. This is because the description of geo-
metric regions, or cells, in sophisticated Monte Carlo codes is becoming more
general and hence, much more complicated. In particular the general-purpose,
continuous-energy Monte Carlo Neutron-Photon code MCNP1 now allows for cells to
be constructed from the union and/or intersections of any regions defined by an
arbitrary combination of second degree surfaces and/or toroidal fourth degree

surfaces. These surfaces may have different orientations, they may be segmented



for tallying purposes, or the cell they compose may even consist of several dis-
joint subcells. Although such generality greatly increases the flexibility of a
three-dimensional Monte Carlo code like MCNP, computing cell volumes and surface
areas understandably requires increasingly elaborate computational methods.

The algorithm for computing cell volumes and surface areas in MCNP is cap-
able of treating the complicated geometry just described provided that the in-
dividual cells and surfaces have a unique axis of rotational symmetry. This is
not a serious restriction because most cells and surfaces used in MCNP are in
practice rotationally symmetric. The procedure for the volume and surface area
calculation may be summarized as:

1. All surfaces bounding a given cell are identified. Second-degree sur-
faces in the MCNP (x,y,z) Cartesian coordinate system are put into the general-

ized form

Ax? + By2 + Cz% 4 Dxy + Eyz + Fxz + Gx + Hy + Jz + K =0 . (1)

For toroidal surfaces this step is a special case.

2. The (x',y',z') coordinate system in which the cell is rotationally sym-
metric is identified if it exists. This procedure is not straight-forward when
the bounding surfaces of the cell are not symmetric about a single axis parallel
to a major axis. In the case of a skew axis, Eq. 1 must be rewritten in matrix
form and then diagonalized.2 A special translation method has been developed
for parabolic cases in which the resulting singular matrices cause the standard
procedure to fail.

3. All surfaces bounding a cell are rotated and translated into the (x',
y',z') coordinate system so that Eq. (1) is of the two-dimensional cylindrical

form, or "Q-form,"

arz + br + c52 +ds +e=0 (r2 = x'2 + 2'2; s=y"') , (2)
or
r = f(s) .

4. The intersections of all bounding surfaces with each other are found,

but only those intersections which are corners of the cell are kept. Identifica-



tion of which intersections are corners is done by Boolean algebra and a com-
plicated procedure which will be described later.
5. The surfaces are integrated (using standard integration formulas)

between corners as

<
I

3 =T / r2 ds for volumes,

2
A, 217/ r\/l + or ds for areas;
i 3s

{Only for toroidal surfaces must Ai be computed by numerical integration.)

6. The integrals are appropriately added and subtracted to determine the
total volume of each cell and the total active area of each surface. The area
integrals are actually computed twice; once for each side of the surface. In
this way rotationally symmetric surfaces bounding some nonsymmetric cells may
still be considered.

The details of the above steps will now be described.

IT. CONVERSION OF SURFACES TO Q-FORM

The MCNP volume and surface area calculator only works for cells and sur-
faces which are rotationally symmetric. A surface is rotationally symmetric if
it can be written in the two-dimensional cylindrical Q-form of Eq. (2). A cell
is rotationally symmetric if all its bounding surfaces are rotationally sym-
metric about a common axis - that is, if a single rotation and translation ap-
plied to each bounding surface will convert these surfaces into Q-form. There-
fore, the conversion of surface parameters to Q-form is essential to the MCNP
volume and surface area calculation.

A. Step 1: Identification of Surfaces

The first step in converting surfaces to Q-form is to identify the bounding
surfaces of a given cell and to put these surfaces into the generalized form of
Eq. (1). 1Identification of bounding surfaces is trivial because this informa-
tion is required user input in MCNP. Converting second degree surfaces into the

form of Eq. (1) is also trivial since the permissible MCNP surfaces are mostly



in this form. This is shown in TABLE I which is a list of permissible MCNP in-
put surfaces. Only one-sheet cones and tori cannot be put into the form of Eq.
(1). Hence one-sheet cones are treated as two sheet cones at this point and
tori are treated as a special case which will be described later. Note that Eq.
(1) may be written in matrix (capitol letters in italics represent matrices)

form as

>t > >t

XAx +bx+c=0 |, (3)
where
X = the column vector (x,y,z),
b = the column vector (G,H,J),
¢ = K, a scalar, and
A D/2 F/2
A =1|D/2 B E/2

F/2 E/2 C

Note also that 4 is symmetric.

B. Step 2: TIdentification of Coordinate System

The second step in converting surfaces to Q-form is to identify the (x',y',
z') coordinate system in which the cell is rotationally symmetric. Any two

Cartesian coordinate systems, (x,y,z) and (x',y',z'), may be related by

> > > .

X = By + X 4)
where

>

x = (x,y,2),

> - 1) L} 1]

Y = (X ,Y s 2 )’

§0 = translation vector = (x,y,z) system coordinates of the (x',y',z')

system origin, and
B = 3 x 3 rotation matrix.

If the result of substituting Eq. (4) into Eq. (3) is an equation in Q-form (Eq.
(2)), then ;o and B define the ; = (x',y',z') coordinate system of rotational
symmetry.

The appropriate choice for B is the orthonormal modal matrix of A.2 That

is, the columns of B are the eigenvectors of 4 and
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MCNP

TABLE I

SURFACE CARDS

Mnexonic Type Descraption Equataon Card Entries
P Plane General Ax « By + Cz -D =0 A,B,C,D
PX Normal to X-zxis xX-D=0 D
PY Normal to Y-axis y-opro D
Pz Normal to Z-axis t-De0 ]
s 2 2 2 2
SO Sphere Centered at Origin X" eyt e 2" - R =0 R
s General G- ety-N2e-nr-rTeo0| TFIR
sX Centered on X-axis {x - hz . yz B L %R
sY Centered on Y-axis 2. (y - ?)2 «22.R2.0 Y.R
Sz Centered on Z-axis x2 . y2 (2 - hz - R2 =0 7R
2 -2 2 R
c/x Cylinder Parailel to X-axis y-N'+z-13°-1°=0 y.I,R
crY Parallel to Y-axis (x - ;)2 . (z - ?)2 -R2.0 Y.I.R
c/z Parallel to Z-axis (x-0. - %2 SR o x,¥,R
cx On X-axis el .o
oy on Y-axis PRI LI R
cz On Z-axis 2oy r¥eo R
K/x Cone Parallel to X-axis Ay - ;)’ e (2-°-t(x-X)=0 x.y.z.!z, s ]
| 934 * Parallel to Y-axis | /(x - D%+ (z - ?)! sty - =0 fxy.ze®, e
X2 Parallel to z-axis | Ax- X2+ (y - P2 -tz -D 20 |ry.z,ed, 21
xx On X-axis /y! <l t(x-X) =0 %, 21
31 On Y-axis Aoy -T .o AR
| #3 On Z-axis /xi sy -tz-T)=0 x.tz. s
k1 used only
for 1 sheet
[} cone
2 H
sQ Ellipsoid | Major axis parallel Alx - ?02 By -N +Cz-D A.!.E,B.E.
Hyperboloid | to X,Y, or Z-axis «2D(x - X) + 2E{y - V) F.G.x,y,2
Paraboloid $2F(2-2) G0
6Q Cylinder |(Major axis is not JYCIN l)'z va? e Dxy ¢ Eyz AB.C,D.E,
Cone parsllel to X,Y, eFix + Gx e Ry ¢ Jz2 + K= 0 ¥,G,HJ,K
Ellipsoid ]or Z-axis
Hyperboloid
Paraboloid
O L R S L T L VL g
X Eliptical |Major axis par- v - cz »Ye2,A,B,
or allel to X-axis s
Circular N Sl r - - ”27 ERY
v . Major axis par- -‘%l P A ) ; 1| X,¥.T.A,BC
Tori . 3 [
allel to Y-axis 5 2
-2 fe R ~ 7)7 - A -
Tz Major axis par- (z '2‘) D ng « 1] %,y,2,A,8,C

allel to Z-axis




gt = 57! (5)
AB = BD (6)
where
ll 0 0
D=1]0 Az 0
0 0 AS , and
A, = eigenvalues of 4.

If Al # Az # AS the surface is symmetric, but not rotationally symmetric. There-
fore, two eigenvalues must be identical for rotational symmetry. We arbitrarily
choose the y'-axis as the axis of rotational symmetry, and therefore require Al
= AS for the sake of analysis. Actually, in MCNP the x'-axis is chosen.

The appropriate choice for ;6 is
X o=-247% (7)

except for the following three cases where 4 is singular and hence has no
inverse. If A represents a parabola, then Az = 0, A is singular, and we have
found that

> 1 =

Xo=-§ri-b (8)

is a suitable translation vector. If Al = AS = 0, then 4 represents a two-sheet
plane which is disallowed. And if Al = Az = A

3 = 0, then A represents a plane,
+ 3 3
X, may have any arbitrary or convenient value, and a suitable choice for the

rotation matrix is

v/t u  -uw/t
-u/t v -vw/t
0 w t

(v}
1]

where



2 2 2

us=G6//G" + H" + J ,
v = H//éz + H2 + J2 , and
w=2J/ G2 + H2 + J2

If t = 0 an appropriate substitute B-matrix is chosen.

There are many ways to determine the orthonormal modal matrix, B, of A. In
the MCNP volume and surface area calculation B is found using a standard system
routine which finds the eigenvalue and eigenvectors of 4.

This routine is only infrequently used because most MCNP problems consist of
many cells rotationally symmetric about a single common axis. Therefore, for
each cell the values of B and ;o from the previous cell are tried, and only if
they fail to rotate and translate the present cell surfaces into Q-form are a new
B and Ko calculated. For the first cell in a problem an initial guess of B = T
{identity matrix) and ;o = 0 is tried before a calculation of B and ;0 is
attempted. Thus for problems fully symmetric about the y-axis, B and ;o are
never calculated because the initial guess always works. For rotational symmetry
about the other major axes the calculation of B and ;o is also avoided.

C. Step 3: Rotation and Translation

The third step in converting surfaces to Q-form is to rotate and translate
the coordinate system by substituting Eq. (4) into Eq. (3):

XX + B+ e = (BY + X )

> .

= y'BuBy + 2§tBtA§o + XAx_ + BBy + B +c =0

Letting
>t > >t
e = xOAxO + Db X, *c¢ (a scalar quantity)

yBtaBy + 2yBYX + BBy + e = 0

<¢

From Eqs. 5 and 6 this becomes

3>
yeoy + 2}“3‘34?0 + BBy +e=0 . 9)



1

If X, # 0, let 10 = - %—A— b and then Eq. (9) becomes

>t > >t t>r >t

yDy -y Bb+b B; +e |,

>t >
yDy +e ,

2 2 2
1 ) 1 g
Alx + Azy + Asz + ¢ , and

ar2 + cs2 +e=0

which is in Q-form. If A, =0, let X_ = - »— b and then Eq. (9) becomes

o 2A1

Yoy - 3=V BB + BBy v e,
1
= yoy - )\i BteDy + BBy + e
1.
= YDy + B*tB[I - 7\1— D]Sr’ re
1
= AIX' + llz'z + Et32y' +e , and

ar2 +ds + e =20

which is in Q-form. Note that 32 is the eigenvector corresponding to Az.

As mentioned earlier, one-sheet cones and tori are exceptions to the above
procedure. However, as shown in TABLE I, these surfaces are limited to axes
parallel to major axes in the MCNP (x,y,z) coordinate system. Hence there is no
need to compute B and ;o since these quantities are known at the time of input.

The rotation matrix is either the identity matrix or a permutation thereof; the

translation vector is simply
-»> —_— e —
xo = (x,Y!z) 2

where X, y, and z are input parameters. Thus both one-sheet cones-and tori can

be checked for common symmetry with other surfaces in the cell and then put
directly into Q-form.

8



For a one-sheet cone, Q-form is
r-ts+e=0 |,

where t is an input parameter. The value of the constant, e, is different for

different kinds of cones. For a K/X cone
e=t(§'}") >

where x is an input parameter (see TABLE I) and y' is offset distance.between

> >
the x and y coordinate system origins. For a torus, Q-form is

2
r2 - 2Ar + (%) 52 +ds +e =0 |,

where C, B and A are input parameters. For a TX torus

2
d=-2(x - yNS,
B
and
2
e=a-c+ x-yn?E
2

where x is again an input parameter and y' is an offset.
Once the bounding surfaces of a cell are converted to Q-form they may be
recast in the form

r = f(s)

Then the cell volumes and surface areas are computed from integrals of the form

Vi='nfr2 ds=1rf[f(s)]2 ds

and




2 2
A, = 2m f r\/1 + (g—§> ds = 2 / £(s)\/1 + (g—ﬁ) ds

IIT. DETERMINATION OF INTERSECTIONS AND CORNERS

In order to deterministically compute the volumes of cells and the areas of
surfaces the limits of integration must be found. For the integrals in the MCNP
cell volume and surface area calculator, these limits are the coordinates of cell
corners in the (r,s) coordinate system.

A. Calculation of Intersections

In order to find the corners of cells it is first necessary to find the
intersection of each cell-bounding surface with all other surfaces bounding the
cell. Note that the axis of rotational symmetry is automatically added to the
list of cell-bounding surfaces. Thus a simple cell with only a single surface,
such as a sphere, will still have intersections and be properly treated.

When the surfaces are written in Q-form, the intersections of any two sur-
faces are simply the coordinates found by solving the following two simultaneous
quadratic equations:

52 + dls + e

2
alr + blr + C

L}
o
-

(10a)

1 1

2 2
a,r + bzr + °25 + dzs + e

1}
o
-

2 (10b)

where 2y, bl’ cys dl’ and e, are the Q-form coefficients of the first surface
and ass b2’ Cos d2,'and e, are the Q-form coefficients of the second surface.
Three possible cases arise in the solution of Eq. (10):

1. Quartic Case [(alb2 - azbl) # 0; and (alc2 - azcl) # 0]. This case

arises when neither surface is a plane and at least one surface is either a
torus or a one-sheet cone. Equation (10a) is multiplied by a, and Eq. (10b) is

multiplied by a; and then the resulting equations are subtracted to give

2
tlr + tzs + tss + t4 =0 |, (11)

where

tl = alb2 - a2b1 ,

10



and

ct
1}

[+V]

[aW
]

Equation (11) is then inserted into Eq. (10a) which results in the quartic equa-

tion
As4 + 853 + Cs2 +Ds + E=0 |, (12)
where
_ 2
A= alt2 s
B = 2alt2t3 ,

2
C = a1<2t2t4 + tS) + tl<clt1 - bltZ) s

D = 2a1t3t4 + tl(dlt1 - bltS) , and

2
E=at,+ tl(eltl - byt,)
If a; = 0 then a, # 0 and Eq. (11) is inserted into Eq. (10b) instead with sim-
ilar results. In either case, the quartic equation is solved for s by an itera-
tive nth order polynomial solver system routine and then the corresponding
values of r are found by substituting these values of s back into Eq. (11).

2. Quadratic Case [t1 # 0,t, = 0; or t1 = 0, a; or a, # 0]. This case

2
arises when at least one surface is a torus or quadratic. If ty = alb2 - a,b

1
= 0, then Eq. (11) becomes a quadratic equation in s. If t1 # 0 but t2 = 0 from

the quartic case, then the quartic equation reduces to a quadratic equation
[A =B =20 in Eq. (12)] in s. In either case, the quadratic equation is solved
for s and then these values are substituted back into Eq. (10a) [Eq. (10b) if

a, = 0] to form a second quadratic equation to find the corresponding values of

1
T.

3. Linear or Quadratic Case (a1 = a, = 0). This case arises when both

surfaces are either planes or one-sheet cones. Whichever, Eq. (10a) is mul-
tiplied by b2 and Eq. (10b) is multiplied by b1 and then the resulting equations
are subtracted to give a linear or quadratic equation in s. This equation is

then solved (by the quadratic formula if it is quatratic and by substitution if

11



it is linear) and the resulting value of s, if any, is substituted back into Eq.
(10a) [Eq. (10b) if b

quadratic formula.

1= 0] to find the corresponding value(s) of r by the

B. Determination of Corners

Once the intersection of two cell-bounding surfaces is calculated it is
necessary to determine if this intersection is an actual corner of the cell. If
the intersection occurs somewhere outside of the cell then, of course, it is not
a corner of the cell. Also, if the r-coordinate of the intersection point in
the (r,s) coordinate system is negative then the intersection is also rejected.
Note that this exclusion gets rid of points on the unwanted arc of a degenerate
torus and on the wrong leg of a one-sheet cone,

Intersections with r = 0 are identified as corners by a complicated proce-
dure involving Boolean Algebra. Consider the intersection of the two surfaces
in Fig. 1. The two surfaces divide space into four zones, i = 1, 4; and the
cell could conceivably be within any combination of zones. The intersection

defines a corner only if

4

f = E Si . 2(1'1) (13)

i=1
is not divisible by 3. Here,

8. = 0 if the cell is not present in zone i;

= 1 1if the cell is present in zone i.

For example, if the cell is present in zones 1 and 3 but not zones 2 and 4 (61

= 63 = 1; 62 = 64 = 0) the intersection is a corner because f = 5. But if the

cell is present in zones 1 and 2 but not zones 3 and 4 (61 = 62 =1; 63 = 64

= 0) then £ = 3 and the intersection is not a corner. Note that if the inter-

section is outside the cell then f = 0 and the intersection is rejected.
Whether or not a cell is present in a zone is determined by the Boolean

functions Gi.s These are functions of the Boolean parameter vj, j = 1, n where

n is the number of cell bounding surfaces, and

12
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02
»
O
b=
©
O
el
P>
symmetry axis
Fig. 1. Intersection of Two Surfaces
Vj = 1 if the sense of the intersection point to surface j is the same as
the user-input sense of the cell to surface j;
vj = 0 otherwise.

The sense of the intersection to surface j is positive if
a.r2 + b.r + c.s2 +d.s +e. >0 ,
J J J J J

where r, s are the intersection coordinates and aj, bj’ cj, dj’ ej are the sur-

face coefficients of surface j. If

2 2
. + b.T + C. + d.s +e. <0
aJr Jr CJS j eJ >

then the sense of the intersection point to the surface is negative. For the

13




two surfaces which form the intersection

a.r2 + b.r + c.s2 +d.s +e. =0
] ] J J J

3

and the initial value of Vj is arbitrarily set to 1 if the user-input cell-sur-
face sense is positive and 0 otherwise,
The Boolean functions, Gi, are formed from the vj's as illustrated in the

example of Fig. 2. The user input surface relations for cell 1 in Fig. 2 are
-3(2:-1) ,

where : is the union operator. The Boolean function of vj's for point 1 in Fig.

2 is then, for example

Os
i

vy N vy Vv,

1N (OUD)=1N0=0

That is, point 1 is outside cell 1. For point 2,

(=]
1}

N
ve N (v, V) o,

1N (1Uug)y=1n1-=1

That is, point 2 is inside cell 1.

For the intersection of surfaces 1 and 2 (point 3),
§=1Nn(1Vvo0)=1 ,

where the values of Vj were arbitrarily set for the intersecting surfaces, j

= 1, 2. To determine if this point is a corner, v, and v, are arbitrarily al-

1
ternated to determine if the cell is present in the various zones of Fig. 1:

O
[

1 1N (1Y) =1 (zone 1),

O
(]

2 51N (0Y 0) =0 (zone 2),

14
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7]
o~
!
= @ point 1
o
)
@
o
—P= S
symmetry axis
Fig. 2. The Cell -3(2:-1)
63 =1Nn(0UVU1) =1 (zone 3), and
64 =1Nn (1V1)=1 (zone 4).

When these values are inserted in Eq. (13),
f=11+0+*2+1+*4+1-°8=13
Since f = 13 is not divisible by 3, the intersection of surfaces 1 and 2 is a

corner.

As another example, consider the intersection of surfaces 1 and 3 (point 4)

§,=0N (V0 =0,
52 =1N(1uo)=1 ,
§;=1Nn(1Uu1) =1,
§,=0Nn (V1 =0 ,

and
f=0-1+1°*2+1°*4+0-¢°8=26

15



Since f = 6 is divisible by 3 the intersection of surfaces 1 and 3 does not form
a corner of cell 1.

C. Determination of Star Corners

The above procedure for determination of corners sometimes fails when more
than two surfaces intersect at a point to form a "star." As an example,
consider the intersection of surfaces 2 and 3 in Fig. 3. Surface 1 also passes

through this intersection thus forming a star as illustrated in Fig. 4. Since

1

2
15t dls +e, =0 ,

2
<+
a,r blr + cC 1
the value of vy is ambiguous and the corner determination procedure fails.
To remedy this situation, each corner is checked for the presence of addi-

tional surfaces passing through it. If

J
€ = fractional permissible error in r or s ,

2 2
a. *+ b, . +d.s +e. <eM 2a.r + b.|,|2c.s + d.
T 5T ch 38 e; <€ ax[ | a;r ‘Jl | <5 JI]

H

wn Ny T RN corner
.; r 000’ P4 ~
L ~N
© 0O &7 N
— a,°
:g surface 2 \
2 of
cell 1 & \
& \
&
4 \
——— s
symmetry axis Sy

Fig. 3. Star Corner for the Cell -1 -2 3
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Py

radial axis

symmetry axis
Fig. 4. Star Corner

then surface j passes through the intersection to form a star. If this condi-
tion is not satisfied for any surface other than the two forming the intersec-
tion then the star checking routine is bypassed.

To determine if surfaces i and k form a corner when another surface, j,
also passes through the i-k intersection, each point on surfaces i and k is
checked for the proper sense with respect to the other two surfaces in the
neighborhood of the i-k intersection. In the neighborhood of the intersection

point all surfaces, £ = i, j, k approach linearity and can thus be written as

(r - r) = 3!_(5 - so) s

(14)

where r and s, are the intersection coordinates and 82 is the slope of surface

£ near (ro,so). If (rj,si) is a point on surface i then

(ri - ro) = 3i(si - so)

If these points satisfy the user input sense, Sj to surface j then

17




Sj[(ri - ro) -Bj(si - so)] >0

Inserting Eq. (14),
sj[ai - Bj](si - so) >0

If (ri,si) also satisfy the user input sense, Sk to surface k,
sk[ai - ak](si - so) >0

These equations may be combined so that if each point on surfaces i satisfies the

user input senses to surfaces j and k:

Sij[Si-aj][Si - Bk] >0

Similarly, each point on surface k must satisfy the user input senses to surfaces

i and j:
SiSj[ak - ai][ak - Bj] >0

If these two relationships are satisfied then the intersection of surfaces i and
k is accepted as a corner; otherwise it is rejected. |

For example, consider the situation of Fig. 3. The standard procedure of
Section IIB would inaicate that the intersections of surfaces 1 and 2, 2 and 3
and 3 and 1 all form corners of cell 1 at (ro,so). But only surfaces 2 and 3

form a true corner at this star corner. The user input senses for the cell -1

-2 3 are S1 = -1, 5, = -1, 87 = +1; from Fig. 4 it is seen that the slopes of the
surfaces in the neighborhood of the intersection are 31 = -1, 82 = 0, 83 = 1.
Therefore,

Intersecting Surfaces:
1§2 -1MI[f-1 -0}{-1 -1 < 0
-u@mifo - (-1Jio - 11 >0

intersection rejected,

18




Intersecting Surfaces:
263 (-1)(1)[0 - (-1)1{o - 11 >0
DD - ¢-nif1-01 >0

intersection accepted as corner,

1&3 - @I[-1 -01[-1 -1] <0
CGnEDM - -GNl -0 >0

intersection rejected.

Hence the only legitimate corner at the star (three or more surfaces) intersec-

tion at (ro,so) is the intersection of surfaces 2 and 3.

IV. INTEGRATION OF VOLUMES AND AREAS

Once the corners of a cell are identified in the (r,s) coordinate system of
rotational symmetry the surfaces are integrated between corners if the midpoint

of the surface between the corners is on the cell boundary.
The midpoint (rm,sm) of surface i,

a.r2 + b.r + c.52 +d.s +e. =0 , (15)
i i i i i
between the corners (rj,sj) and (rk,sk) is

(rj 1)

= N

(55 + 50)

for linear surfaces (ai = 0). For nonlinear surfaces T is found by plugging Sm
into Eq. (15). A Boolean function, &8, (Section IIIB) is then formed for surface
i where v, =0 and then alternately v = 1. If 6(vi =.0) + G(Vi = 1) = 1 then
the midpoint, (rm,sm), is on the cell boundary. The integration limits are then
sj and s, .

k
A. Determination of Volumes

The volume of the region formed by rotating surface i about the symmetry

axis, A, is simply
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k
V. ='n.]- r2 ds
i
S .
]
For linear surfaces, a, = ¢c. = 0; b. =1
i i i
= ,
V. =7 !{ (d.s + e.)" ds
1 1 1
j

where

and

20

H|

1 ,2(.3 3 2 2 2
i [? di(sk - sj) + diei.(Sk - sj) + ei(sk - sJ.)]

For non-linear surfaces, a; #0

b. \2
T + NE B c z, d.s +
TF AV \Za; a; |©i° i v 8| >

-1 for lower portion of a torus,

1 otherwise,

o’

i
a.
1

= for a torus,

N

0 for other surfaces,

k [ 2
m T + q\/%z - aLZcis2 +d;s + e.l)] ds
| i
j
Sk I '
n J{ 272 + 2—4\/;2 - QL-(%.SZ +d.s + e.) -
a; \'i i i

j



The integral,

#
_ 2 1 )
I—f\/r --a—l—.-(cis +dis+ei)ds
5, i
]

is of the form

I=f/A+Bx+C)(7dx

If

B2 - 4AC =0 (C>0) ,
then

JA + Bx + Cx% = /€ (x + %%) s
and

which is solved trivially. If

B2 - 4AC #0 ,

(16)
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then

-
]

f¢A+Bx+Cx2dx

1 2 2 dx
3C [Z(ZCX + B)/A + Bx + Cx" + (4AC - BY) /m]

and
dx R I ) B
5= C £nj/A + Bx + Cx“ + x/C + —| ifC >0
VYA + Bx + Cx 2/C
or
& L in | ZEE=B 50 <o, 82 - 4ac > 0
= — ——— 1 -
/A« Bx + Cx2 /¢ O | /B2 C aac ’
B. Determination of Areas

The area of any planar surface i [Eq. (15)] rotated about the symmetry

axis, s, is
2 2
Ai = Ln(;k - ri)l plane.

For a cylinder or one legged cone, a; =c¢; = 0

i
k / 2
A. = |27 Jr r\/1l + 25- ds
i ds
j
k d.
= |27 - L (d.s + e, )\/1 + = ds
b. i i .

1 1

7|
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Ll di 2 2
= E 1+ E di(sk—sj)+2ei<sk-sj>

s i
k -(2c.s + d.) 2
1 2 i i
= - — . + . + “ +
2“[ a. Cls dls e1 1 1/2 ds
i 2
S. 2]-a.{c.s” + d.s + e.
j i\’i i i

= |27 -1 c.s2 + d.s + e.| + 1 4c?52 + 4c.d.s + d?
a. i i i 2 i i'i i] ds
i 4a’
S. i
J
7k di 2 e, c; di s c; o
= 21r[ 5] -~ —+\|l—=-1=—s+[—=-1] —=5s° ds| ,
2a. a. a. a. a. a.
4 i i i i i i
]

which is of the same form and can be solved in the same way as Eq. (17).

For a toroidal surface, a, # 0, bi #0,

b, \/b12 1 2
e V) - (e ey)

1 1 1

and the area integral

Ak )2
A, = 2'rr[ r\/l + [— ds
i 9s

S.

J

has no convenient integration formula. Therefore, let
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— i
= - e 1
r 2a. ' a7
1
d.
S =
2c.
i
r=1+0 sin 8
s =g + B cos 6
where
a
B = o\,
i
Then
2 2 -2 —_ 2 -2 -2
a;r + bir +cysT F dis te = ai(r -} + ci(s - s)" + e; - a;T - C;S
= a.az sin® 8 + c.Bz cos’ 8 + e, - a. 7> - ¢, 32
i i i i i
= a.az(sin2 6 + cos 8) + e, - a.7% - .3
i i i i
2 -2 -2
=a.o +e. -a.r -c.s =90
i i i i
Therefore
2 2 % %2
0 =r - ~—+—35s
a. a.
i i
a.
B =L -1+

From Eq. (17),

dr
ds

* o cos 9 d6

B sin 6 d6

Thus,
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ar 2 az cos2 0
1+<-8—s) ds=_ 1+—2—2—(+Bs1n9)d6

B” sin” ©

-7 /8% sin? 8 + o® cos® 6 do

i
+|

Z 2
Bv/1 +[% - 1) cos® 0 d6
V- @2

€1 2
R 1+<E—--]>cos 6 de
i

The area integral is then

k| 2
27 T\/l + or ds
i os
S.
J

2
2mR (r + o sin 8) V1 + v cos® © do

i
+|

>
]

1

Zﬂs?j-?;/l+Yc0526d6+2ﬂa8j7/1+Ycoszesin6d6 s
1 e1

|0}

where
€1
Yy=5 -1

1

and from Eq. (17)

S. - §
JB = COS 61

Letting x = cos 8, the last term of the area integral is readily solved by the
method of Eq. (16):
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S, -S

k
2 B
2maB V1 + vy cos2 6 sin 6 d6 = -2maR f V1 + sz dx .
0 S.-s
1 o
B

The first part of the area integral,

2ngr | /1 + y cos® 6d8

is a simple expression readily solvable by numerical integration.

V. SUMMATION OF VOLUMES AND AREAS

Once the volume and area integrals have been evaluated between the appro-
priate limits they- must be added to determine the cell volumes and surface
areas. Also, tally segments must be treated.
A. Adding Cell Volumes

The volume of a cell is simply the sum of its parts. If a bounding surface

of the cell is above the cell its volume integral, |V.|, between corners is
added; if a surface is below the cell, its volume integral is subtracted. A
surface is above the cell if the user-supplied sense of the cell to the surface

is negative. Conversely, a surface is below a cell if the sense is positive.
-b,
This rule is reversed for the lower branch <; < §§£> of a torus.
i

B. Adding Surface Areas

The area of a surface is the sum of the absolute value of its parts. How-
ever, in MCNP the areas are computed twice for each surface: once when each of
the cells with a positive sense with respect to the surface is calculated and
once again when each of the cells with a negative sense with respect to the sur-
face is calculated. 1In most cases the two areas are the same which provides a
good check for the area calculation. But if any of the cells bounding the sur-
face is not rotationally symmetric then the surface area bounding that cell is
not computed invalidating the area calculation for one side of the surface. In

this case only the area of the other side of the surface is used if the cells
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bounding that side are all rotationally symmetric. In this way rotationally
symmetric surfaces bounding some non-symmetric cells may still be considered.

C. Calculation of Tally Segments

In MCNP cells and surfaces may be segmented into different geometric sub-
regions for tallying purposes. Because the surfaces which define the tally seg-
ments are stored in the same way as cell bounding surface, calculation of the
tally segments is trivial. For example, consider the geometry of Fig. 5. Cell
1 is the region of space with a negative sense to surface 1. Suppose we wish to
segment the flux tally in cell 1 and across surface 2. In either case, the

surface segmenting input card is
FSn -2 -3

This causes three volume segments to be computed:
Segment 1: volume bounded by surfaces -1 -2;
Segment 2: volume bounded by surfaces -1 2 -3;
Segment 3: volume bounded by surfaces -1 2 3.
Each of these segment volumes is computed as if it were for an actual cell; the
only difference is the 1list of bounding surfaces.
Similarly, three surface segments are computed:
Segment 1: area of surface 1 satisfying -2 surface sense constraint;
Segment 2: area of surface 1 satisfying +2 and -3 surface sense
constraint;
Segment 3: area of surface 1 satisfying +2 and +3 surface sense

constraint.
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Fig. 5. Segmented Cell and Surface
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