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1 A THIRD MONTE CARLO SAMPLER
(A Revision and Extension of Samplers I and II)

by
C. J. Everett and E. D. Cashwell

ABSTRACT

Methods are given for sampling some standard proba-
bility densities by means of machine generated "random num-
bers.” The probability theory underlying each device is
briefly indicated. The present collection embodies the
densities of the first two Samplers, and an attempt has
been made to render the explanations less terse and more
understandable. Some additional methods and new densities
have been included. No attempt has been made to quote all
original sources, and no claim to priority is intended in
any case, our sole object being to provide a handbook of
sampling devices.

FOREWORD

In all cases, the density to be sampled is followed by one or more rules

(Rg) for choice of the variable, in terms of random numbers rgp,ry, ..

uniformly distributed on the interval (0,1). A justification (J) for the rule
is given, frequently supported by various formulas (F). Notes supply addi-

tional details, and often refer to the relation with other densities.

indices (D,C,R) for discrete (D) and continuous (C) densities, and for various

rejection techniques (R), provide "key words" which may help in locating a
desired density, but details in this direction are omitted. Numbers in square

brackets [ ] refer to the references at the end of the report.
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FORMULAS

h(u) h(u)
d

Fl. o / £(u,v) dv = h'(u)f(u,h(u)) - g'(Wf(u,g(u)) + f :_uf(u’v) dv.

g(u) g(u)

For an idea of the proof, note that

h(ut+Au) h(u) g(u) h(u)
£(u + Au,v) dv - / f(u,v) dv = / +
g(utAu) g(u) g(uthu) g(u)
h(u+bu) h(u) h(u+bu)
+ f £f(u + Au,v) dv - f £(u,v) dv =
h(u) g(u) _ h(u)
g(utbu) h(u)
- £(u + Au,v) dv + / [£Cu + Au,v) - £(u,v)] dv
g(u) g(u)
h(u)
= AhE(u + Bu,h(@)) - Agf(u + bu,g(d)) + f [£(u + Au,v)
g(u)

- £(u,v)] dv.

One divides by Au, and takes the limit as Au + O,

F2.A. For densities p;,ps on (0,%), and 0 < u < =,

d
& f P1(v1Ip2(v2) dv) dv,

Dy =
v1>0
u
d
;l—f p1(vy) f pa(vy) dvy dvy
0 0

s 2

Ll



x-’“

ne
g
N

{£(u,v1)} dvy = 1 ¢ £(u,u) = 0 » £(u,0)

2

+ | 3 (E(u,v)}r dvy =0 -0

o\“:

u u=v
9
-I-f p(Vvi) "5';;/ p2(v3) dv,} dv; by Fl.
0 0
With v; constant,
u=vy
d
El- PZ("Z) dVZ =1 . pz(u—\)l) - e p2(0)
0
u=vy
9
* / 3a P2(V2) dvy = pa(u = v;) = 0 + 0 = py(u = vy).
0
Hence,

u
D = fPl(\'l)pz(u -v)) dv; .
0

B. For even densities p;(v;), pya(v,) on (-=,®), and —» < u < ©, one has
_d f
Dy = T P1(v1Ipa(v3) dvy dv,

{(vo/v,<u}

0 © a1
d
= K 3 / dv, pl(v],) f pz(\’z) dv, +f

dv) p1(vy) / p2(vy) dv,
u\’l 0 -00



F3.

A.

0 o
= fd\’lpl(\’l) e (=v1) ¢ p2(uv)) +fd\’1 p1(v1) * (v1) « pa(uvy)
-0 0

- _[d"; Pl("’i) . (\’;)Pz("u“;) '*'/d"l P1(V1)(Vp2(uvy)
0 0

(-] ©

« [ o1 216DODR) + [ vy 21D IR
0 0

=2 /dV1 P1(v)(vidpaluvy) .
0

p(v) = e “E°/vl; v = 0,1,2, <o, £ > 0, is the Poisson density, with
distribution

n n
P(n) = Z p(v) = e v Z vt .
5 0

L n—-1

(,ni—l),fxn-le'x dx = e ZE"/\»! =P(n - 1), n=1,2, oo .
£ 0

(Induction on n, integration by parts.) Thus the Poisson distribution
is an incomplete I'-function (see F4.).

For £€,n > 0, one has

f yn-le-(E/n)y dy = (n/E)" fxn-le-x dx (5 = nx/E.)
n g
n-1
- (/)% - 1)1 e Z /v, (By A.)
0

e

) 3
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C.

F4.

A.

B.

C.
D.
E.

F5.

A.

) n-1

D = fy""‘le‘Ey dy = £ % - 1)1 &° Z £/vt = £ % - 1)1 e'gsg,
1 0
n-1
where SE = Z £ /vi (n =1 in B.)
I'(n) = fun-l B du; n real > 0, is the I'-function.
0
I'(n) = / 20-1 -v V. (u = v%)
0
T(1/2) = “1/2. (See F5.G.)

P(m)T(l -~ m) = n/sin mn, 0 < m < 1. (Not easy. See [23; p. 89].)
I'(n + 1) = nT'(n). (Integration by parts.)
For integral n = 0,1,2, «.ee, '(m + 1) = nl, O! = 1,
27 1 (m)r(m + 1/2) = [(1/2)T(2m); m real > o.
(Legendre's identity. See F5H.)

B(m,n)

1
/vm-l(l - v)n"1 dv; m,n real > 0, is the B-function.
0

/2
B(m,n) = Zf sinzm.le coszn-le de (v = sinze.)

B(1/2,1/2) = x,

B(m,n) -fz““1 dz/(1 + 2)™™ (z = v/(1 - v).)
0



C.

D.

E.

F.

G.

1
/ xm-l(l - x)n.-1 dx/(x + a)m+n = B(m,n)/(1 + a)man;

0

W

M

amn > 0., (Let x =y/(1 +y) and y = az/(1 + a).)

a
f (a + x)m-l(a - x)n-l dx = (2a)m+n-lB(m,n); a,myn > O,
-a

(x = a/(2v - 1).)

1
B(m,n) -f (ym-l + }'n-l) dy/(1 + y)m-i-n.
0

1 ®
(From B, B(m,n) = fzm-l dz/(1 + z)m-i-n +fzm-1 dz/(1 + z)m-i-n
0 1

1 1
./'ym-l ay/(1 +y)m+n +fyn—1 dy/ (1 +y)m+n’
0 0

for z = 1/y.)

B(m,n) = I'(m)T'(n)/T(m + n),B(m,n) = B(n,m). (By Fé.A.,
r 2m—-1 2 r 2n-1 -x2
F(m)T(n) = 2 fy e’ dy o 2 fx e dx
0 0
© 2 x/2
- 2/ pZ(m + n)-le-p dp « 2 / sinzm-le coszn-le de
0 0

= I'(m + n)B(m,n).)

r(i1/2) = 11/2. (m=n=1/2 in F.)



'lﬂ

e

H.

Fé6.

Proof of Legendre's identity F4.E.:

w/2 x/2
B(m,m) = 2 / 6102 1o cos?™ 1g g0 = (1/2)2%1 f s1n?™ 1 20 4(20)
0 0

n n/2
(1/2)21 f e1in® Ly 4 = (/201 . f sin™ 1o g0
0 0

(1/2)™ 15(n,1/2). -

Hence, T(m)I'(m)/T(2m) = (1/2)2 lrm)rc1/2)/rm + 1/2).

n
PR

1
ui>0

n s -1 n n
T " i d"i - ]-[ I‘(si)/l‘ (1 +z: 81>; 8, >0 .
1 1 1

Proof by induction on n. For n = 1, see F4.C. Letting yu =

ntl’
n
8= 8 .10 S = E 8y, one has
1
n+l 31-1 1 -1 n 81_1
f n My du, = [ u du f n Wy du,
1 0 1
n+l n
Z :uigl E u /(= w1
1 1
u, >0



1 n
s,~1
= fus-l dp (1 - u)s f n vii dv, (v, = uil(l - u)) 2

=]
Miw

n
]-I I'(s,)

= B(s,S + 1) n I‘(si)/r(l +8) = II‘.E:).I;.(: :. B ;(1 +8)

n
r@) [ res,)
1

I'(s +s + 1)

where we have used F5.F. for B(s, S + 1).

F7. V(u)

n
J/. ]-[ dvi - un/n!
1
n
PIRRS
1

v1>0

Let vy = upy and use F6.) Hence A(u) = dV/du = un-I/(n - 1)1

N
F8. V(u) = f 1T av, - /252" e vy
' .
N \/2 - ]
(?E::vi <u ’
1
vi>0



F9.

A.

B.

1/2 N/ZuN-llzN-l

(Let v, =up,"" and use F6.). Hence A(u) = dV/du = = r(N/2).
Note. V(u) = ZnN/ 2ul/‘/NI‘(NIZ) is the volume of the full N-sphere of
N/2 N-1

radius u, A(u) = 2r ""u /I'(N/2) its area. For the full unit sphere,

/ /Z/I'(N/Z) - fdﬂ, where @

Q

V(1) = 20V 2/Nr(N/2), and AQL) = 20F

= (wl, IR mN) is the direction in N-space.

-]
Z(n) = Z 1/jn; n real > 1, is the Z-function.
1

Z(-l)j“/f‘ - 1 =172 Y)e),
1

I;a(n)

G = D1/ - D™ = (-2
1

Proof. By subtraction and addition of the series

g(n) = 1+ 1/2% + 1/3% + 174 + ...

g (n) =1 - 1/72% 4+ 1/3% - 174% + ...

one obtains Z(n) - ?.'a(n) - (2/2n)1.'(n),

and

t(n) + ¢ a(n) = 2Cu(n), whence the result.

It 1is known that 7(2n) = (-l)n-l(Zu)?nan/Z(Zn)!; n=123 ..., where
B, = 1/6, B, = -1/30, 36 = 1/42, ... are the Bernoulli numbers. Thus
z(2) = 1!2/6, T(4) = 1r4/90, z(6) = 1r6/945, ese o Computation shows that
z(3) = 1.2021 ..., and



C.

D.

E.

F10.

10

£ (2 = (1 =(1/25)8(2) = /8?16y = w78,

Forn > 1,
/vn’ldv/(e"-n-f vl gy eV - )-f nldvz v
0 0 0 1

-E(I/:]n) f )™ e a@gv) = t@)re) .
1 0

Forn > 1, /211 du/(e = 1) = z(n)T(n). Let u = \»1/2.

Define Fi = (al eee an)/(al - ai) ese (81_1 - ai)(ai_'_l - ai) XX
(an - ai) for n > 2, and distinct a, > 0.

n
EFi
1

Proof. For £(z) = (a1 eoe an)/(a1 - Z) oo (an - z), one has

n
(1/2w1) ff(z) dz = E Res(ai), where c is any circle of radius
c 1

)-lim(z-a)f(z)-

R > max a,, and the residue Res (a
z+ai

i 1°

n
Hence (1/27i) ff(z) dz = -Z Fi' But

c

f £(z) dz‘ £ 27R max ‘f(z)l + 0as R+~ since n > 2.
c

(4

y

doeg

)



B.

Fll.

F12,

n

ZFi/ai =1,

1

Proof. The function g(z) = (a ces @ )/z(a -2) .es (a - z) has

residues at z = 0, 81, oo, @ where Res(O) = 1im zg(z) = 1, and
z+0

Res(ai) = 1lim (z ~- a, )g(z) = - F /a Hence by the type of argument in

zra {

n

A, the sum of all residues is 1 - E F,/a

1/84 = 0-
1

For 0<A<1,n>1,

f Vol + 1) = f v auae V7 + 2™
0 0

Z( DIl /4 )fj“ eI ¢

= ¢ (LT, where ¢, (Aw) = ) (03It |
1

For 0<A<1,n>1,

f vl gy e/ - 2272 - Z (123 - pY
0 1

/ (23 - (2"1 l)v = Cu(A,n)I‘(n), where cu(A,n)

= ZAZJ'I /(23 - D
1

11



F13. Define K (u) = f cosh Nee ® €M% 40, (0,#), N > 0.
0

A. KN(u) =1/2 / e.“Nee-u coshd dé. (From definition.)
p, 2
B. KN(u) - 2-'(1%1)11N ‘/‘x"(m-l)e-(x Hu"/4x)) dx. (ee = 2x/u in A.)
0
N -]
. K = }1;(1/2)11 f o2 - pl2w 4
2°T(N + 1/2)

(c£.[12; p. 185])
1

1

N
Nr(1/2)u /‘ D) o 2N-1/2 —u/x v = 1/x.)
2T(N + 1/2)
D. KN(2V1/2) - Z-IVN/Z f x.-(m'l)e-(x Hv/x)) dx. (u = 2v1/2 in B.)
0

Fl4. For n, & > O,
(.-

fxn-le-E(xz-i-l)l/ 2 = [+ o - p@rige

(2 + 12 = vy
0 1

= (&/n) f 0 - Y% 4
1

(parts: u = e-E\’, dv = v(v2 -1 (n/2)-1 dv)

12

1

l’b‘:‘-‘ 1 y

| |



n-1

2z

- I'(n/2) (_2_) K .. (E)
& T(1/2) g +1 *
- =
i (F13.C., lst eqn., with u = £, N = (n + 1)/2.)

= Fls. Forn’a>0’0<A$l’

2...1/2
/‘ Al g /(A-lea(x e 1)

0

= f xn-lAe-a(x2+l)1/2 dx/ (1 + Ae-a(x2+l)1/2)
0

1 0

n-1 d n-1
=27 amram) Y nity K, (18)/(ja) ° . (See Fl4.)
1 -

Flé. For n, a >0, 0 <AL,

/vn-lAe-av dv/(1 - Aze-Zav) = Z p24-1 fvn-le-(Zj-l)av dv
1 1

_ 24-1
Zl: A I)(Z:l-l)a’

e where DE is defined and evaluated in F3.C.

Fl7. For S‘(u) as in F13., and 0 { N < n,

13



"Ry (w) dw = (r(1/2)/2°T + 1/2) f av o2 - p¥2

0 1

. /‘ G L r/2) T + N) /2T + 1/2))
0

(F13.C.)

o V2 L2 gy o raire + m2™ e+ 12) @0

1

1
/E((n N)/2)- 1 g)(N-l-l/Z)-l a
0

= (I(1/2)T(n + N)/2¥
e TN + 1/2))B((n - N)/2, N + 1/2) = T(1/2)T(n + N)

. I - N)/2)/2"

(F4.E. withm = (n + N)/2.)

F18. Defime E (u) = fv‘Ne'“" dv; (0,%), N > 0.
1

1

A. EN(u) / N-2 -u/x dx.

0

F19. For EN(u) as in F18., and N > 0, n > 0, n + N > 1,

(-2 L. -
/ un-lEN(u) du = f dv v-N / un-le-uv du
0 1 0

= T'(n) f v TN ey N - D).
1

14

(v=¢g

-1/2)

(F5.)

I((a + N + 1)/2) = 2%°20((n - N)/2)T((N + n)/2).

(ct. [1].)

(v = 1/x.)

(F18.)

(F4.)

rb‘f!
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Wk

k-1
F20. #(Sl Ueee U Sk) - #Sil - #éilsiz) + eee + (-1) #(Sl ooe Sk)o
k k
1) 2

This is the "inclusion-exclusion" principle, which gives the number (#)
of elements in the union Sj U ... U Sig of k subsets of a set in terms
of the number of elements in the intersections of these sets, taken any
number at a time, there being ? terms in the j~th sums The result is
easily proved by induction on k > 2, with the obvious basis #(SIL)SZ)

= (#Sl + #Sz) - #(SISZ).

F21. Z:¢(q)yq/(1 -yY = y/a - pk; 7| <1
q=1

In this identity of Liouville, ¢(q) is Euler's ¢—function, which counts

the number of integers in the set {1,2, ..., q} which are prime to q.
a

Clearly ¢(1) = 1, and if q = pil... Pk 1is the standard factorization
of q¢ > 2 into primes, then one knows that $(q) = q(1 - 1/p1) ...
(1 - 1/py)e It can be proved that

z :¢(d) = q,
dlq
where d ranges over all positive divisors of q. The latter property

of ¢$(q) permits an easy proof of Liouville's identity. The right side is

2 2 3

2 4
y/1-y)=yQ +y+y + ...)2 =y+2y +3y +4y + .00 o

On the left we have
o + hH2 + e+ oHt +
+ o3 + G52 + % + et + ..

+ oD + G2+ e+ e .

15



A particular power y4 of y occurs in just those terms $(a){(yd)
+ (y4)2 + (39)3 + ...} for which d divides q. Hence on the left,
the coefficient of yd is

Z $(d) = q,

qu
and the identity follows.

F22, /s:ln x dx/x = x/2. (Not easy. Cf. [20; p. 88].) From this,

0

2 2
f sin x dx/x = - (sin x/x) sin x ] + fsin 2x dx/x
0 0 0

-0+fsinydy/y-1r/2,
0

where we have integrated by parts, with u = sinzx, dv = dx/xz.

F23. /x cschxdx-fo dx/(ex-e-‘x) =4 xdx/(ex-e‘x)
-00 =00 0
-4 fxe’x dx/(L - e 2*) = 4 Z 23 - 172
0 =1

3f<u-1fo“r“xu-4%ana)
0 .

- 4(x2/8)(1) = n2/2. (See F9.C.)

16
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e 4

YAh e

F24, C = fe-az s:l.nh(‘bz)l/2 dz -%

- Bk - 22 (bz = z%)
e g dg

[ -]
Jr -e (z = -n)
0] 0
. 0o _ %nZ_n ® _.%ﬂz_c
‘g-fe T'ldﬂ"fe g dg
=00 0
® a b2 . b
-=In + + —
--i b(“ Z) ba ).
b,/e n dn (n+28) g
=00

© —'352
(-eb/58 1 /'e b (‘g _ 122_) i

2

Bl
= (®*2/b)(b/2a) (b/a) /% [ e d(/aTs £)

§'\,s

- (eb/48b1/2/283/2) N 2 . (l/2)T(1/2) - eb/4a(b")l/2/233/2.

A Note on Statistics

In judging the reliability of a sampling device, the following test may be
useful. For a discrete density p(v), precompute p; = p(i) for any
desired set of argument values v = i, For a continuous density p(v),

compute
bi
pi -‘Jr = p(v) dv
8

for a suitable set of intervals (ag,bj). Let the density p(V) be
sampled for v a large number N of times, according to the rule adopted,
and tally the number fj of times the sample results in V = i, or

v ¢(aj,bj). Fixing attention on any one such index i, this may be
regarded as a Bernoulli sequence of N trials, with pj the probability of

“success,” qi = 1 = pjy the probability of "failure” in any one trial,
and fi the total number of successes.

17
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In this situation, the law of large numbers states that

- - - 2 po 3
By = B{|(£,/N) pi‘ <epgt > 1= (qu/0%pM + 1, »
while the central limit theorem asserts that jf

2 1/2 -
PN o((p piN/qi) ) + ZN -

where
Z 2

8(z) = (1/2m) /2 f e /2 gz, ana 2> 0.
-z

Note that the statistical reliability of a rule, insofar as it is correct,
depends only on the density p(v), and not on the rule. On the basis of
the central limit theorem, the chance of a relative error < p)

= (qi/piN)llz is = ®(1) = .6826, while the chance of a relative

error < 20y, is = ®(2) = ,9544.



l'.'n

N

Dl.
D2,
D3.

D4.

D5.

D6.

D7.

D8.

D9.

D10.

Dil. (n - l)qn-sps; n=8,8+%+1, ¢ec o

Dl2.
D13,

D14,

D~INDEX

Discrete Densities

p(v) .
e g’/
My
/5" .

P{f(\’) - u} .

n
npi(vi) .
1

P{f(vl, LX X I \)n) = u} .

(:) qn—sps; 8 =0,1, «eo, n o

(:)M(M +a) eeo M+ (8 - 1)a)

L4 N(N + 8) XX
(N+(n=-8-1)a) .

b
M N M+N+He~-2p 2u-k
U/\R — q P

a

an-ll(l +a)?® .

(a/(1 + agN% (1 +8) ...
(1 +(@ - 1)8)la .

d+s~-1\d s
s~1 J4P -

General discrete.
Poisson.

Log series. [22, v.l; p. 166]

Zeta, Zipf-Estoup, word distribution.
[22, v.1; p. 240

Density for value of a function.

Vector density.

Density for value of a function.
Binomial, drawing with replacement.

Polya's Urn.

Binomial difference. [22, v.l; p. 55]

Negative binomial.

Geometric.
Pascal.

Polya.

Failures before s—th success.

Failures before lst success.

Hypergeometric, drawing without
replacement.

19



e )

. [0 - (s - 1))/((M + )
Dlgo I/N(N - 1) XX (N -n + 1) .

)

D210 {1 - 1/1! + 1/2! = esee

+ DN F o - .

Y1 '
D22. (n!/ull oo ].Ifl) pl see pf .

k
D23. (i) z (-1)1<11‘)(k - Y

0

D2 D £(10) .
h|
D25, p* Z (1‘:’) S E I .

12k/n

D26, D p(4 )
J

p27. 0 D e ) .
p28. /ety ) (e HIonFrn
"'X(l . ) s k=0

D29, E (e q /k!)I‘(Kj + k)(p )j

. PRI ] Kk o=1,2, o0

20

Negative hypergeometric. [22, v.l;

Irv

A

Random permutation.

Random combination.

k coincidences, matching. [22, v.l;

Multinomial, macrostate, particles in
boxes.

Arfwedson, occupancy. [22, v. 1;
p. 251}

Discrete~discrete marginal.

Poisson-compounded binomial.
[22, v.1; p. 190]

p(j)~compounded £, (k) density.

3

Log series—compounded Poisson.
[22, v.1; p. 211]

Neyman type A, contagious, Poisson-
compounded Poisson. [22, v.l; p. 217]

Poigsson—~compounded negative binomial. v
[22, v.1; p. 196]



"

N

3-1
1<k /N

e-l; k=0
k

D31. Z e"‘(k - i)(xp)jqk-j/j! ;
i=1

kK = 1,2, euu

D32,

Mz

( ;‘) (¢3 »* (pe ) qN-j Mkl .

D33, dx £(x,k) .

k -x

o'\,m “'\50‘ =

D34, x e  dx/klg
©
= Z e-Eav-l/vl .
vek+1
b
D35.fdx p(x)fx(k) .
a
k k
D36. e-'aEav/v! - e_bzbv/v! .
0 0

D37. ¢p°r(s + k)/T(a)k! .

D38. (f:)n(k +a, N~k +b) .

D39. I'(s + k)B(a + s,b + k)/I'(s)k! .

k-N,N"‘l, eoe o

D30, " Z e-A<Nk-1)(ApN)jqk.Nj/jl ; Generalized Polya-Aeppli. (22, v.l;

p. 197]

Polya-Aeppli. [22, v.l; p. 197]

Binomial~compounded Poisson,
[22, v.1; p. 186]

Continuous discrete marginal.

Residual Poisson, Poisson's
exponential, binomial 1limit. [22,
ve.l; p. 262]

p(x)-compounded fx (k) deunsity.

Uniform—compounded Poisson. [22,
vel; p. 184]

Negative binomial, 8 > O arbitrary,
I'-compounded Poisson. [22, v.l;
p. 125]

B-compounded binomial. [22, v.1;
pe 79]

B—-compounded negative binomial.
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D40. B(a + 1,1 + k) . Simon, power—compounded geometric.
[22, v.1l; p. 245]

-

D41, / e-(Aﬂ)“(l - e—Bu)k du . Yule, exponential-compounded

0 geometric. [22, v.1l; p. 245]

atb
D42. 1/(e” -1) . A density for fractioms a/b. [22,
v.l; p. 31]

K
D43, n P i(v i) . Random sequences of integers.

. . ,

Discrete Densities

pl. E(\’); v = 0,1,2, cee o

k
Rg. Set v = min {k; E p(V) 21,4
0
k k-1
J. p(k) = E p(v) - E p(v) is the probability for v = k.
0 0

v
The continuous analogue in Cl is f p(v) dv = T,
a
Note. In this and other densities, the obvious changes required for
other domains of the variable are left to the reader.
D2. p(v) = e CE'/vl; v = 0,1,2, ees, £ > O

k

Rgl. Set v = min {k; E F.v/vl 2 roe‘E .
0

Jl. Special case of Dl. (see F3.)

- - . ~n »N A -e
Ry2. Set Vv 1 + min {n; T Ty eee T <e’}l

£y o1 - -
J2. Note that P = P{r, ... r <e }=1-P{r; ceer e }

-V
=] - fdrl ees drn. Making the transformation r, = e i

i
{rl ose rn Z e-g}

22
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Rye3.

J3.

D3.

n
-V
0<vi<°°, this becomes Pn-l-fne
1

Zv i Lg
vy >0
It is shown in C45 that the latter integral, namely the distribution
1 =V, -,
function for the sum u = E vy under the density e eee € , has the
1
g [
value f n-1 e " du/(n - 1)!. Hence Pn -‘/.un-'le_u du/(n - 1!
0 g
n-1
= E e Ev/v!, the Poisson distribution. (F3A.)
0

If pn is the probability that, in a sequence EI’EZ’ eees Of random

numbers, n is the first index for which ;'1 eee ;n < e-E s then

-£ -£
P{rl eee Tot1 e } - P{ 1 ces T e }+ Po+1® So by the preceding

result, we have E p(v) = E p(v) + P Hence p(n) = P g0 and the
0

rule follows. Note that Py = e-E = p(0).

(For large £.) Sample the density e-yz/Z/(Zu)l/2 for y on (—=,») by C60
or R9., If £ ~-1/2 + 51/2 < 0, set v = 0, Otherwise let v be the
nearest integer to £ - 1/2 + 51/2

For large £, the Poisson distribution is approximately normal, namely

v w12 -0
) = ) e eVt = (1/2m)1/?2 [ 2 g
0 ~
[21; p. 717.] The rule results from setting (v + 1/2 - t-;)/s;l‘/2 e

p() = A /4L(V); = 1,2, eee, 0 <A < 1, LEA) = ~ga(l = A)e

23



k
Ry Set § = min|k; Z;ﬁ‘/; 2 LG
1

(-]
J. Noting that L(A) = E lj/j, the rule follows from DI,
1
D4, q(4) = 1/1%¢(n); j =1, 2, eeey n > 1, z(n) the {=function of F9.

K
Rge Set = min{k; Zl/jn}_ro c ! .
1

Je The rule follows from Dl.

D5. q(u) = P{f(v) = u} = :E: p(v); p(v) discrete density
{v;£(v)mu}
for v = 0,1,2, .4, £(v) defined for v = 0,1,2, ... &
Rxe Sample p(v) for v. Set u = £(v).
J. q(u) is the density for the value u of the function £(v).

n
D6. p(v) = p(vl, ...,vn) - ]-I pi(vi); pi(vi) density for vy
1

Rgxe Sample each pi(vi) for vi. Set vector v = (vl, ooy vn).

J. p(v) is the density for a vector whose components are independent.

D7. q(u) = P{f(vl, ”""n) =y} = Z pl(vl) pn(vn); pi(vi)
{vi£(v)mu}
£(v) defined for v = (vl, ...,vn).

discrete density for Vys

Ry+ Sample each pi(vi) for v, Set u = f(vl, vees vn).

i
J. q(u) is the density for the value u of the function
f(vl, esey vn) under the density pl(vl) cos pn(vn).

D8. q(s) = (:) " % 8 =0,1, eoe, n, 0<p<1, q=1-np.

Rge Set s = number of random numbers rl, seny rn for which ri < p.

q for vi = 0
Je. For vie{O,l}, pi(vi) - { s, 1 =1, «¢., n, the

p for vi = 1

function £(v) = v, + cee t+ v under the density pl(vl) coe pn(vn),

24
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has the probability P{f(v) = g} = :E: pl(vl) ces pn(vn)
{v1+...+vn-s}

- qn-sps 2 : 1 - (:) qn-sps. The rule follows from D7.
{\’l"'o . o'*"\’n-s }

Note. The binomial density q(s) is the probability of s "successes” in
n trials of an elementary event for which p 1s the chance of success
(vi = 1), Ia the urn model, this means drawing “with replacement.”
Thus, if p and q are respectively the chances of drawing a white or
or black ball, then psans is the chance that, in n successive drawings
with replacement, exactly s balls should be white, while :) is the
number of ways in which the s white balls could appear.

)M(M + a) oo (MF (s = 1)a) « N(N +a) ooo (N+ (n -8 = 1)a);

D9. p(8) =\ J5(s ¥ a) (S* (n - Da)
8 = 0,1, eee, n, S =M+ N, an integer > O.
Rxe One follows the steps:
l. PutM+M, S+§, 0+s, 1 +¢.
2, If rt_<_ﬁ/§, put:ﬁ-i-a-*ﬁ, s+1+s8. Go to (3).
1f r, > W/8, go to (3).
3, If t =n, exit with s, If t <n, put t +1 + ¢, §+a-> §, and
return to (2).
J. p(s) is the probability of drawing s white balls in n successive draw—

Ings from an urn initially containing M white and N black balls, subject
to the condition:

(C) On the t-th drawing, the ball drawn is replaced, and a more balls,
of the same color as that drawn, are added to the urn.

Note l. The second factor of p(s) is the chance of a drawing in which

any designated set of s positions are white, and :) is the number of

ways in which the white balls might appear.

Note 2, For a = 0, p(s) = 1;:n*‘n“""/s"‘ = (‘;‘)(n/s)‘“"’(u/s)8 is the

binomial density of DS8.

b
- Z N\ MH#+k-2u 2uk
D10. p(k) (k:)(u-k)q P s ~N<k <M,
u=a

25



a = max {O,k}, b = min (M,N +k}, 0<p <1, q=1-p.

Rx+ Set u = number of Tis ooy Ty such that ri £ p. ::
Set v = number of ri, ceey rl'i such that rs £ p. Set k =yu-=-v, .
J. p(k) is the probability that the function u - v have value k, =
-N { k <M, where u and v have respectively the binomial densities -

M) M- -
pl(l-l) -<l-l)q upl-l; u=20,1, oo, M,

N} N-
pz(\)) - (\’)q vp\’; v = 0’1’ seey N.

M
- MY M-p puf N\ N-(u—k) u—k
For, Z p; (Wp, (V) Z(u)q P (u_k)q P
p=v=k u=0
M
- M\/ N \ M#N+k-2p 2p-k
Z ufl uie)? P ’
u=0

where necessarily 0 <y <M, and 0 < u -k <N, i.e.,
O,k <u<M, N+k.
This accounts for the limits a,b in the above sum on u. The rule then

follows from D7 and D8,
D1l. p(n) -(: - i s n=s8, 8+ 1, cuo, 8 > 1 fixed, 0 <p < 1,

q = 1~ Pe
Rgxe Set n = first m for which s of the random numbers rl, ceey rm are < p.

- 1\ (n-1)-(s-1) s-1

"successes” occurring for the first time on the n-th trial.

Note 1. 1= (I - q)-sps N Z (=8)(=8 = 1) eee (8 = d + 1) (_q)dps
d=0

p is the probability of exactly s

d!

(8 +d=1) vee (8 +1)(8) d s Z(s+d-1)ds
1 qp = . d q P
d=0 d=0

) Z(: - :)qmps - E(: : i)qn'sp".' DIFOF -

n=g n=g n=g

L 2
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D12.

This verifies that p(n) is indeed a density and accounts for the term
"negative binomial.”

Note 2. For an alternative rule, see D12, Note.

Note 3. p(n) < p (n+ 1) iff n < (s - 1)/p.

Jl.

Ry2.
J2.

g(n) = Lo n=1,2,3, oo, 0<p<1, q=1-p.
Set n = min {m; r < pl.
Case s = 1 of D11, g(n) is the probability of the first success
occurring on the n—th trial.
Set n = k where k is defined by k = 1 < &n r;/%n q Lk, (k > 1).
The rule follows from D1, which would set n = k, where
k-1 k
qu-lp < rog_qu-lp , 1e€e, 1 - qk-'1 < ros_l - qk ,
1 1
or, with r, = 1 - T» qurl < qk-l .

Equivalently, k %n q < &n T, < (k- 1) q.
Since both logs are negative, the rule follows.

Note. If each of s independent variables n, has the density g(n)

i
= qn-lp, n=1,2,3, ... of D12, then the probability that their sum

n, + cee + n, have the value n under the product of these s densities is

n, -1 n -1
P{n1+...+ns-n}- Z: Glp)n-(qsl))

{n1+. . .+n8-n}

- n—ss.n-l n-s s
z: q P s-lq P

{n1+. eotn =n}
8

For, the number of terms in the final sum is the number of vectors

(nl,...,ns), for which n, + ... + n_=m, o, 2 1 (compositions), and this

1
is well known to : : i , namely, the mumber of ways of choosing s - 1

partition places out of n = 1 possible places 1, 2, ¢ss, n = L.
Hence the density of D1l may be regarded as the density for the sum of s

variables \Ji, each with the density of D12. Thus, by D7 and D12, Rg2.,
we have for D11 the alternative rule:
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s
Set n = Iij, where kj -1< 4n rj/!.n q -<-kj

D13, q(n) = an—]'/(l + a)n; n=1 2, 3, ¢ecp, a > 0,

Rxle Set n = min {m; rmg 1/(1 + a)}.

Ry2. Set n =k, where k = 1 < &n rll(ln a - (1l +a)) <k.
J. Special case of D12, with p = 1/(1 + a).

D14, B(@) = (1 + a8) Ba/cl + a8)% 1 ¢ (1 +B8) vu. (1 + (4 = DB)/AL3
d=0,1,2, oo, h(0) = (1 +aB) B, o >0, 8¢ (1,1/2,1/3, ...}
Rge Define s = 1/8 ¢ {1,2,3, «eo}, p = 1/(1 + aB). Set d = =8 + (first n

for which s of the random numbers Tys oo rn are £ P
J. Special case of Dll, with p = 1/(1 +oB8), q = aB/(1 + aB), 8 = 1/B. In

fact, h(d) = (1 +a8) YB(ag/(1 + a8))2(1/B(L/B + 1) ...
. (/8 + (@ - 1))/l

= psqd(d = 1+4+8) ees (8 +1)(8)/dl = (d +§ - 1) qdp8

-(d:iI 1) qdp8 -(: : 1) qn—sps’ where n = d + s.

The rule follows from Dll. Note that h(0) = ps, as required.
Note. See D12, Note for another rule for Dll.

D15. q(d) = (d : i; 1)qdps; d =0,1,2, «¢os, 8 integer 21, 0 <p < 1,

q=1-p.

Rxe Set n = first m for which s of the random numbers Tys eees T are { p,
and d = n - 8.

J. Pord=n—-s, one has q(d) = (: : 1) n-sps; ams, 841, eon, a8 in
D11,
Note. q(d) is the probability of d failures before the s-th success.

D16. q(d) = qdp; d =01,2, ,e0, 0<p<1l, q=1=p.

Ryl. Set d = =1 + (first m for which r £ P).

Ry2. Set d = -1 + k, where k = 1 < &n rI/an_<_k.

-1
J. Ford=n ~1, one has q(d) = qn p, n =12, ..., as in D12,
Note. q(d) is the probability of d failures before the first success.

28
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D17.

p(s) -(g)(nljs)/(uzﬁ); mex {Q,n - N} < 8 { min {n,M}, 1 {n <M +N,

Rx.

Je

D18.

One follows the steps:
l. Put M+ M, N+ N, M+N+5, 0+s, 1 +t¢t.
2. IfrtS_ﬁ/g,putﬁ-l-*ﬁ,s-l-l-*s. Go to (3).

I r, >WS, put N-1+8 6o to (3.
3, If t =n, exit with s. If t < n, go to (4).
4, If M = 0, exit with s(=M). If M > 0, go to (5).
5. Ifﬁ-O, put (m - t) +8 + 3, exit with s. Ifﬁ>0, go to (6).
6. Put t +1+¢t, §-1+§, and return to (2).
p(s), as written above, is obviously the probability of obtaining s
vhite balls in a choice of n balls from an urn containing M white and N
black balls. If we write

pz = MM -1) eoe M-8+ 1) =MI/(M - g)!
for the number of permutations of M things taken s at a time, it is easy
to show that

p(s) = P:PI; -s/ +N) » which is the chance of drawing s white balls

in n consecutive drawings from the urn, without replacement. The rule
is based on the latter interpretation.

Note that PMP l:i-N is the chance of such a drawing in which the

first s balls are white, while : is the number of possible orders in
which the s white balls might appear.

Note. In step (5) of the rule, if N = 0, then t = g + N, and hence for
En-t+s8=n-N<M, one has 8' < M, as it must be.

(ilfl)(niIS) ] M-(s-1)

q(n) = (H-i-N) (M+N)—(n-1)’n'3’8+1’ eeey 8 + N,
n-1

M,N,s integers > 0, s fixed, 1 {8 < M.

29



Rye

One follows the steps:
1. Put M+M, M+N+8§, 0+0, 1L+t .
2, Ifrtﬁﬁ/§,putﬁ-l+ﬁ,o+1+o. Go to (3).

If r > H/8, go to (3).
3. Ifo<s, put §-1+8, t+1+t, Return to (2).

If 0 = 8, exit with n = t.
q(n) is the probability that the n~th drawing without replacement from
an urn containing M white and N black balls should produce a total of
exactly s white balls for the first time. For, by D17, the first
fraction above is the chance that the first n - 1 draws should produce
exactly s - 1 white balls, while the second fraction is the chance that

Note. This is the 'without replacement” analogue of the negative

N
p() = L/N(N = 1) vos (N=n + 1); I ranging over the P equally

likely permutations I = (Cl, coes Cn) of the integers 1, 2, ¢.., N,

4, Set Ct = K~th integer of the remaining list, and delete this integer

5, Ift<n,put 1+t +¢t, N-1+N, and return to (3).
If t = n, exit with permutation II = (Cl, eves Cn).

p(C) = H/(E); C ranging over the (E) equally likely combinations

C= {Cl, coey Cn} of the integers 1, ..., N, taken n at a time.
Obtain the random permutation II = (Cl, coes Cn) from D19.

Jo
the next (n-th) draw should then be white.
binomial density Dll.
D19,
taken n at a time.
Ry One follows the steps.
1. List the integers 1, esey N.
2, Put N+ N, 1 +¢.
3. Set K = pmin {k; k_)_ﬁrt}, K e {1’ seey ﬁ}o
from the remaining list.
Je Obvious.
D20,
Rye
Let C be the unordered set {Cl, soey Cn}.
Je

30

The Pg = NI/(N - n)! equally likely permutations of D19 may be parti-
tioned into S) = N!/nl(N - n)! classes, each containing the same number
n! of permutations. The classes are therefore also equally likely.



e ol

p21. p(k) = (1/kD{l = 1/11 + 1/21 = ... + (-DN¥/(w - 0)13;
k = 0,1, «oo, N
Rye One follows the steps:
l. List the integers 1,2, ..., N.
2. Put N+ N, 1 »¢t.
3. Set K = min{k, k > ﬁrt}, Ke {1,2, ..., N}.
4, Set Ct = K-th integer of the remaining list, and delete this integer

from the remaining list.

50 If t<{N,put t+1>*>¢t, N-1+ ﬁ, and return to (3). If t = N, go
to (6) with random permutation I = (Cl, coey CN).

6. Set k = number of integers i for which Ci =43, k=20,1, ..., N.

Je The rule is the obvious adaptation of that in D19, since p(k) is the
probability of exactly k coincidences (fixed points) in a random
permutation of the integers 1, ..., N This may be seen from the
inclusion—exclusion principle of F20 as follows. Consider first a set
of integers 1, 2, ..., n, and let Si be the set of all their permuta-
tions which leave the integer i fixed. By F20, the number of permuta-

tions which leave at least one integer fixed is

n-1
#(Sl cees Sn) = #sil -Z #silsiz + see + (-1) #Sl ses Sn

n n
) G
= (nl/1!(n - D@ - 1)! = (a!/21(n - 2)!1)(n - 2)I + ...

+ (=11 (a1/n101)C0)1 = nl(1/11 = 1/21 + ...

+ (-1 /an),

Hence the number of permutations which leave no integer fixed is

ni(l - 1/1! + 1/21 = (.. + (-l)n/nl). Now, the number of permutations of
of the original set 1, ... , N which leave exactly k integers fixed is

: times the number which leave any particular choice of k integers fixed,
with the‘remaining N - k all unfixed. It follows from above that
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D22,

p(k) = (L/ND)(NI/RI(N = K)D)(N - k)I(1 - 1/11 + 1/21 = ...
+ -DYE n - k)1) = 1/ {1 - 1710 + 1/21 - ...

+ DY/ - 013

u u
1 £ "
p[ul, ceey uf] = (n!/ull cos uf!)p1 eee Pg3 domain: all "multi-

Jo

32

plicity” vectors [ul, eoes uf] with uj_z 0 and sum

£ £
Zuj'-n; pj>0,ij-l.
1 1

One follows the steps:

1. Puto”'ul, ...,O*uf;l'*t.
k

2. Set K = min {k; E Py Z.rt}. Put u + 1+ ue.
1

3, Ift<n, put t +1 +t and return to (2). Otherwise exit with
["1’ coey uf].

p[ul, cees uf] is the probability that a vector (vl, cosy vn) should

have ¥, components 1, ..., Mg components f (multiplicities), where each

pj of value j, j =1, ..., £f.

Note 1. We may partition the £ vectors (vl, ceey vn) into "multi-

component vi has probability

plicity classes” C[ul, cses uf], uj
Such a class necessarily has y + .00 + Mg = m, uj 2 0. The number of

+ -
such classes is easily shown to be n £ f 1 l); this is the number of

vectors [ul, cesy uf] in the domain of p[ul, eoes ufl. Moreover, the

number of vectors (vl, ooy vn) belonging to a particular class

n-=—=u N = H, = eee =1
n 1 1 £-1
C[ul, LI IPY uf] is (ulx ].l2 )ooo ( l_lf ). n!/ull ooe ufl’
u H

each such vector (vlg cesy vn) having probability pl1 ees pff. The
probability of the class C[ul, ceey un] is therefore

of the components vi having value j.



u u

1 4
(n!/ull soe uf!) pl eoe pf .

Note that algebraically

n E
(pl + ee0 + pf) = p\) oo p\)

(vl,...,vn)

C[ul,too,uf] (Vl,ooo,vn)ECIul,ooo,uf]

u H u H
Z § : 1 £ E 1 £
pl oo pf (n!/ull coe uf!)pl XXy pf

Clu] vec[ul clul

E plul.

Clul

Example. p[ul, veey uf] is the probability of assigning n balls to f
boxes, pj being the probability of box j, in such a way that box 1
contains uy balls, ..., box f contains e balls. For equally likely

boxes, pliy, «oey ul = (l/u ! .o uf!)(llf)n.

Note 2. The density for the sum u = v

+... +
1 vn is not easily

expressed (although easily sampled). Only for the case £ = 2 do we
have a connection with the binomial densié} D8.

x
n
p23. p(k) = (i) z (-1)1(‘;)(1‘ - 1); k = 1,2, vo., min {f,n}.
1=0 :

Bx. One follows the steps:

1.
2.
3.
4,

Put 0 + ul, ceey 0 uf; 1~+¢t.

Set K = min{k; k.Z.frt}° Put 1 +u + ue.

If t<n, put t + 1 * t, and return to (2). If t = n, go to (4).
Set k = number of positive components of vector [ul, seey uf] and
exit with k.
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J.

34

The rule is the obvious adaptation of that in D22, since p(k) is the
probability of exactly k of f boxes being occupled, if n particles are
assigned to f eqdally likely boxes (p:j =1/f, § =1, eee, £)e This may
be seen from the inclusion—exclusion principle of F20. Fix on any one
of the i possible choices of k boxes to be occupied, the rest vacant.
Let Si’ i'=1, ..., k, be the set of all assignments of the n particles
to these k boxes which leave the i-th of these boxes empty. Then

S 1 Useseoe U Sk is the set of all such assignments which leave at least
one vacant. By F20, the number of these assignments is

#(S, U ver US)) -Z #sil - E#(silsiz) oo+ (D5 s
k k
Y

k n k n k-1[k n

- (1)(k - 1) - (2)(k - 2) + oo + (-1) (k)(O) .

The set of all assignments of the n particles to these k boxes has
cardinal kn, so the number of assignmeunts leaving none of these k boxes
vacant is the difference

Kt - (1;)(1( -+ (‘;)(k -2t -+ (-l)k(t) ()

Since there are gi) choices of the k boxes to be occupied, the totality
of assignments of the n particles to the £ boxes leaving exactly k of

D

of boxes occupied is lfc D. Finally, the total number of assignments of
n particles to £ boxes 1is f%. Hence p(k) = (i) D/£", which is the
formula given in D23,

Question 1. Is it true that

p(k) -Z (nl/ull ces ufl)(llf)n,

where the sum ranges over all vectors [ul, cesny uf], such that

u + eee + Be = 1, uj 2 0, with exactly k positive components?

Question 2, If f > n, at most n boxes can be occupied. Is it true that
the formla for p(k) in D23 is automatically zero if k > n?



D24. q(k) = Zf(j,k); k=K K+ 1, «oo , £(3,k) density for § > J, k > K.

J=J

Rx. Sample the marginal density p(j) = E £(3,k) for jJ > J. For this j,

Je

k=K
sample the j-dependent k-density p(k'j) = £(j,k)/p(j) for k > K.
Consider the obvious relations:

L p(1) = ) £(4,0) 3. qk) -E £(3,k)
k

j
2. p(kj:n = £(§,k)/p(3) b pQ|k) = £(3,k)/q(k)

From (3) and (2), we have q(k) 'E p(j)p(k'j), which gives the rule.

3
Moreover, (4), (3), (2) imply

p(3[k) = £(4,k) / Z £(3,k) = p(k[$)p(1) / Z p(k|$)p(1),
3 i

which is Bayes' theorem.

Note 1. The analogues for other domains of j, k, discrete or continuous
are obvious.

Note 2. The idea in this and all related rules is that the given density
q(k) is difficult to sample, but can be recognized as the marginal
k-density of a two variable density £(3j,k), and that the marginal j

density p(j) = z £(3,k), and the j-dependent k-density p(k|j})
k

= £(3,k)/p(j) are relatively easy to sample. Moreover, the necessary fact

that E q(k) = 1 may then be verified from the relation
k

Do =Y 3 ew]n) = Do) D pa|) = D e = 1.
k k h ] h| k h|
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D25.

qk) = e " E (z:‘) M EI s =0,1,2 w0, A>0,0<p <1,
j>k/n

q=1-p, ne {1,2,3,...]},
Sample p(j) = e-)‘lj/jl for § ¢ {0,1,2, «¢o} by D2, If j =0, set k = O,

Rye
If § > 1, set k = number of Tis ooy 1':n:l such that r, < < pe
J. The function £(j,k) = (e )\j/jl)(n? nj p is a doubly discrete density
on the set of all lattice points (j,k) for which k > 0, j > k/n,
equivalently, j > 0, 0 <k < nj. Its marginal k—densitg is the q(k)
n
given above, whereas its marginal j-—density is p(3) -Z £(3,k)
k=0
=e Aj/ j! Moreover, for each j > 0, the j-dependent k-density is
p(k|1) = £(3,1)/p(3) = g? @*5 k= 0,1, «v, ng. Stnce p(k[0) = 1,
and for j 2> 1, p(klj) i3 fhe binomial density of D8, the rule {(an
obvious extension of D24) follows. A continuous analogue is C135.
o
D26. q(k) = Zp(j)fj(k); k = KK+ 1, «es, p(j) density for j = J,
j=J
J+ 1, ooy fj(k) density for k = K,K + 1, ..., for each J > J.
Ry. Sample p(j) for j > J. For this j, sample f (k) for k > K,
J. Corollary of D24, with £(j,k) = p(j)f (k). Note that p(j) is then the
marginal j—density, and p(klj) - fj xk).
o
p27. q(k) = L ()(E/KD) Z jk‘l(xe'*)j; K =0,1,2,000, 0<A< 1, ¢ >0,
i=1
L(A) = -ga(l - A).
Rg. Sample p(j) = A /3L(r) for j e {1,2,3,...} by D3. For this j, sample
fj(k) =g j‘#(;w) /k! for k € {0,1,2,...} by D2.
J. One has Ep(j)fj (k) = q(k) as given, and the rule follows from D26.
4=1
D28, q(k) = (e /k1) Z e HIen®/315 k = 0,1,2, «oey A, 6> 0, and

=0
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J.

D29,

(N.B.!)(4>j)k =1 for j = O,k = 0 by definition.
Sample p(j) = e-xxj/j! for j ¢ {0,1,2,¢00} by D2, If j = O, gset k = O,
For j > 1, sample fj(k) = e-¢j(¢j)k/kl for k ¢ {0,1,2, ...} by D2.

We write q(k) = :E:: (e-klj/jl)(e-¢j(¢j)k/k!) in the form of D26, where
j=0

p(3) = e-llj/jl is a density for j ¢ {0,1,2,...}, and fj(k)

- e-¢j(¢j)k/k! is a density for k ¢ {0,1,2,...}, for each such j. For
j21, fj(k) is a Poisson density with parameter £ = ¢j > 0, as in D2,
whereas for j = 0, fj(k) = ] for k = 0, and O for all k > 0 by defini-
tion. The rule then follows from D26.

Aa - P k=0

a0 =] D @ ADIES + ©OPII/IEDIL K = 1,2, o, A, K> 0,
31

Je

0<p<Kl, q=1-p.

Sample the Poisson density e-AAj/jl for j ¢ {0,1,2, ...} by D2. If
j=0,set k =0, If j > 1, sample the negative binomial density
qkadr(KJ + k)/I'(Kjd)k! for k € {0,1,2, ...} by D11 or D37, with s = Kj.
(For K integral, obtain n from D1l and set k = n - 8.)

We define p(j) = e-Alj/j!; j=0,1,2, ..., and for every such j, we

define the function fj(k) for k € {0,1,2, ...} by

1l for =0, k =0; O for j =0, k = 1,2, ...
£, (k) =

3 pNIr®y + K)/TRIE! for § 2 1, all k = 0,1,2, ... .

One then verifies that, for each k = 0,1,2, ..., E p(j)fj(k)
j=0
= q(k) as given, and the rule follows from D26. In fact, for k = 0,

- -3
D PO = p(020(0) + Do, =™ e 1+ D eI gn

10 3= 31
_ 0 _ <« _ _ K
c ) =Y P = ) o - R
=1 =0
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D30.

K
= e-)‘(l-p ) . q(0) as defined. Moreover, for each k 2 1, we have

- =3
jzo:pmfj(k) - p(O)E (k) + jzl:p(j)fj(k) 0+ jzl:{«e 230

¢ @@+ /EDEL = g0

as defined for k = 1,2, «s0

e '3 k=0
Q(k) = E e‘-A (N: : i)(lpu>jqk-Nj/jl; k = N, N + 1, cee
1&Em

Jo

38

A >0, Ninteger > 1, 0<p <1, q=1-np.

Sample e-lxj/jl for j € {0,1,2, «os} by D2, If j = O, set k = 0. If
k =1 k-Nj NJj

j 2 1, sample (Nj - 1)q p for ke {Nj, Nj +1, ...} by D11, with

s = Nj.

Define p(j) = e-l)‘j/jl; j =0,1,2, ..., and for each such j, define the

function

1 for § =0, k =0; Ofor j =0, k =1,2,3, ...
£ (k) =

j ad -
(Nl; - i)qk ijNj for j 2 1, K = Nj, Nj + 1, eees

the domain D of (j,k) being all lattice points for which j > 0, k > Nj,
i.e., all lattice points j > 0, k > 0 on or above the line k = Nj. One

can verify that, for each k = O,N,N + 1, ..., E p(j)fj(k) = q(k)
(3,k)eD
as defined above, and the rule follows from D26. (Cl30 is a continuous

analogue.) In fact, for k = 0, we have E p(3 )fj(O) = p(O)fo(O)
(3,0)eD
= e « 1 =q(0), as defined, and for each k = N, N + 1, ...,

Z (3 (k) = o £, = O de™sn (k1
h 3 Ny

(§,k)eD 1<§<k/N 1<§<k/N

d qk-ijNj} = q(k) as defined for k = N, N+ 1, ... &



L
[N}

L’,“ '

e_)‘; k=0

k
\ “Afk -1 k-
D31. q(k) -1_‘;1 e (j _ 1)(Ap):’q j/;]!; k=1, 2, 3, «e0, 220, 0<p<K1,
q.l-po

Jo

D32.

j 2 1, sample 1; : iqk--jp:| fork ¢ {j,j + 1, ...} by D11 with s = j.

Sample e *3/41 forj € {0, 1, 2, veo} by D2, If § =0, set k = 0. If
Case N = 1 of D30,
N
q(k) = E(?)(¢j)k(pe-¢)jqn~j/k!; k=0,1,2, oo, $ >0, 0<p <1,
3=0

J.

D33.

q=1-p, and (N.B.!)(tbj)k =1 for J =k = 0 by definition.

Set j = number of Tys eeos rN such that r1$P° If § =0, set k = 0,

If § > 1, sample e-¢j(¢j)k/k! for k ¢ {0,1,2, ...} by D2,

N
We write q(k) = E ((;‘)qn'jpj> . (e"’j(qu )k/k!) in the form of D26,
§=0

where p(3j) = (;‘)qN-jpj is a binomial density for j ¢ {0,1, ..., N}, and

for each such j, fj k) = e-¢j(¢j)k/k! is a density for k ¢ {0,1,2, ...}.
For 3 2 1, f.1 (k) is a Poisson density with parameter £ = ¢j > 0 as in

D2, whereas for j = O
1l fork =0
£y @) '{o for k > 0
by definition. The rule follows from D26 and D8.

b
q(k) -f dx f(x,k); k =K, K+ 1, ..., £f(x,k) density for a < x < b,
a

k = K’ K + 1’ o0
Sample the x-marginal density

p(x) = Z £(x,k)

k=K
for x on (a,b). For this x, sample the x-dependent discrete k-density
p(k|x) = £(x,k)/p(x)
for k > K.
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J.

D34,

This is the continuous—discrete version of D24, where explanations are
given which are applicable to all four combinations of domain for the
variables (j,k).

E ©
a(k) -/xke~x dx/k1E = Z e v k= 0,1,2, ..., E> 0.

0 vsk+1

J.

D35,

For x = rOE, sample e-xxk/k! for k ¢ {0,1,2, ...} by D2.

The rule follows from D33. For, the density £(x,k) = xke-x/k!E on
g

0<x<E&, k=0,1,2, ..., has marginal k-density fdx f(x,k) = q(k) as
0

given, and marginal x-density p(x) = Z f(x,k) = (e-x/E) Z xk/k!

k=0 < k=0
= 1/E., Moreover, the x—dependent k-density is p(klx) = £f(x,k)/p(x)

- e-xxk/kl; k ¢ {0,1,2, ...}, the Poisson density of D2. The value of x
X

results from Cl, since r, = fp(x) dx = x/E.
0

Note. The identification of q(k) with the sum in D34 follows from F3A,

11 k
since f xke-x dx/klE = E-l 1 - kae.-x dx/k! ) = E-l 1 - e-E Z 5\’/\’!
0 § Y

-l E £V /vl = Z T
. Kl e

q(k) = fdx p(x) fx(k); k =K, K+ 1, ees, p(x) density for x on (a,b),
a

Je

D36.

fx(k) discrete k—density for each value of parameter x on (a,b).

Sample p(x) for x on (a,b). For this x, sample density fx(k) for k > K.
Corollary of D33, with f£(x,k) = p(x)fx(k). Note that p(x) is the
f(klx).

marginal x density, and fx(k)

k k
qk) = (b - a) e Za"/v! -e? Zb"/w s ko= 0,1,2, ee,
3 0
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D37.

0<ac<hb.

Set x = a + (b - a)r. For this x, sample the Poisson density e-xxk/k!
for k ¢ {0,1,2, ...} by D2.

For the uniform density p(x) = 1/(b - a) on (a,b), and the Poisson
x—dependent k-density fx(k) = e-xxk/kl for k € {0,1,2, ...} one has

b
fdxp(x)f k) = (b - a)" fdxe =/l = (b - a) }

k
,f fdxe x/k! = (b~ a) ,Ze a/v! —Ze-bb“/vl
0

by F3A, and this is the given q(k). Following D35, we may sample p(x) for

x=a+ (b - a)r on (a,b) by Cll, and for this x, sample fx(k) - e-xxk/k!

for k > 0 by D2.

q(k) = qkpsl‘(s + k)/T(s)k!; k = 0,1,2, .., 0<p<1l, q=1~=p, 8>0,

J.

s € {1,2,3, «..}. (For integral s, use D11 for n > s, and set
k=n-8)>0.)

s-1 -u
Sample u e /I(s) for u on (0,») by C64 or R27. Set x = uq/p. For
this x, sample e-xxk/k! for k € {0,1,2, ...} by D2,
For p(x) = (p/q)sxs-le-xp/qll‘(s) on (0,»), and fx(k) - e_xxk/k!,

ke 0,1,2, ...}, one finds f dx p(IE (k) = ((p/@)°/T(6)k!)
0

(-]
. f dx xs-i-k-le-x/q = q(k) as given. By D35, we may sample p(x) for

0
x > 0, and for this x, sample fx(k) for k > 0. But for x = uq/p, one has

s-le-u du/r(s), and the rule follows from C2.

p(x) dx = u
Note. One can adapt Note 1 of D1l to show that E q(k) = 1 for non-

integral s. This also follows from Z q(k) = Zfdx p(x)fx(k)
0 00
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D38.

-]‘dxp(x)-l.
0

q(k) = ({:)B(k +a,N -k +b)/B(a,b); k=0, 1, «ee, N, 3, b > O,

Je

D39,

Ne {1,2,3, «oele
Sample the density xa-l(l - x)b-I/B(a,b) for x on (0,1) by C75 or R28 if
b# 1, or by CL5 or Cl16 1f b = l. For this x, set k = number of
Tys ooy Ty such that ry £ x.
For the density p(x) = xa_l(l - x)b-I/B(a,b) on (0,1), and the binomial
density fx(k) - (:j)(l - x)N-kxk, k = 0,1, o0, N, with 0 < x < 1, one
1
finds that f dz p(x)fx(k) = q(k) as given. Following D35, we may

0
sample p(x) for x on (0,1), and for this x, considered as a probability

p, We may sample the binomial density fx(k) for k ¢ {0,1, ..., N} by D8.
The rule follows.

q(k) = r(s + k)B(a + 8, b + k)/r(s)kl B(a,b); k= 0,1,2, seey a,b’s > 00

Je

D40,

Sample p(x) = xa-l(l - x)b-]'/B(a,b) for x on (0,1) by C75 or R28 if
b# 1, or by Cl5 or C16 if b = 1, For this x, sample fx(k)

= (1 - x)kxsl'(s + k)/I'(s)k! for k € {0,1,2,...} by D11 if s is integral,

or by D37 if not.
1

For the densities defined above, one has f dx p(x)fx(k) = q(k) as
0

given. The rule then follows from D35,

Note. Included here are the special cases: Beta—compounded geometric
(s = 1), power-compounded negative binomial (b = 1), and power-
compounded geometric (s = 1 = b). See D40, D4l for the latter.

q(k) =aB(a +1, 1 +k) = ak!/(a +1)(a +2) ... (a +1 +k);

Ryl.

Ji,
sz ®

42

k = 0,1,2, e0a, a > O,

Sample p(x) = axa-1 for x on (0,1) by C15 or Cl6. For this x, sample
fx(k) = (1 - x)k x for k ¢ {0,1, ...} by D12, (Specifically, one takes
p = x, samples D12 for n > 1 and sets k = n -~ 1.)

Case s =1 = b of D39.

Choose any A,B > O such that a = A/B (e.g., A = a, B = 1),



J2,

D41.

Sample q(k) for k € {0,1,2,...} as in D41, R,l.
Under the substitution a = A/B, x = e-Bu, one finds that

1

1 1
q(k) = f dx p(x)fx(k) = fdx axa-l(l - x)kx =g fxa(l - x)k dx
0 0 0

= (A/B) f (e BuyA/B(y _ Buyk p -Bu du) = q(k) as in D4l.
0

Note. For a = 1, q(k) = 1/(k + 1)(k + 2).

-}
q(k) = fAe-(“B)“(l - e B qus k = 0,1,2, ..., A,B > O.
0

Rgl.

Jl.

Ry 2.
J2.

D42. p(a/b) = (e - 1)%/(e

Sample p(u) = Ae-Au for u = -A-l 2n r on (0,®) by C29.

For this u, sample £ (k) = (1 - ¢ *)¢ ™" for k on {0,1,2, ...} by D12.

(Specifically one samples D12 with p = e-—Bu

k-n-lo)

for n > 1 and sets

[
One verifies that f p(u)fu(k)du = q(k) as above and uses D35.
0
Define a = A/B, and sample q(k) for k ¢ {0,1,2, ...} as in D40, R,l.

Under the substitution a = A/B, e-Bu = X, one sees that

i = f 2@l Bk { (e BHMB(y - Bk
0 0

1
. (Be D" du)} =a /xa(l - x)F dx = aB(a + 1,1 + k) = q(k)
0
as in D4Q.
Note. The apparent circularity is intentional, in order to justify the
key word of the index.

+
athb 1); a,b integers > 1, (a,b) = 1.
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m .
Rxe Set m = min’m; 2.¢o(q)/(eq -1) _>_r1(e - 1)-2 , m> 2, and
q.

Je

D43,

j = min{j; 3 Zr2¢(m)}. List the ¢(m) integers a on {1,2, ..., m}
which are prime tom as 1 = a, < a, € eee K a“m). Set a = 8;]’
b=m-a,. (For notation, see F21l.)

Classify all a/b according to the sum q = a + b > 2, The probability of

the class a/b with a particular sum q is Z p(a/b) = Z{(e - 1)2 .

atb=q a%b=q
@ - e e - D2l - DT D) 1= e - Pt - DT,
a,b>l
(a,b)=1
atb=q

and according to D42, all a/b belonging to a particular class are equally
likely. The rule follows.

Note 1. JYp(a/b) = 1 is a consequence of liouville's identity (¥21).
For using the above results for the probability of a class q, we have

S am = D pam = e - D2 s@ied - 1) = e - 1)

q=2 atb=q q=2
D s@e ™ - e = e - DY s@eVa -
q-2 qnl

- la-el=e-niea-e™hHi-ela - e™h)

(where we have substituted y = e-1 in F21)

- (e - 1)2(51/(1 - e’lp{;/(l - e'l)z- 1} )
= e-D% @A - N e - DX/ - 1% - 1.
Note 2. The version (D40) in the second Sampler appears to be wrong.

- -]
n pi(vi). Methods are given in [18,19], based on "Poisson sequences
1
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of trials,” for producing random sequences of integers with stipulated
asymptotic densities.



C-INDEX

Continuous Densities

Note. If a I or B density involves an exponent not in the set {1/2, 1, 3/2, 2,
eee }, see R27, 28 if not explicitly referred to.

cl. p(v) .
2. p(y) dy = q(x) dx .

c3. z ay(¥)

Ch. 1+ v2 .

¢5. q(w) =S piEM) <} .

n
C6. ]:I pi(vi) .

¢7. q(w) = & PlE ), w0y V) Cub .

C8. q(u) = F(u)A(u) .

C9. 8(0),?(0),q(u) b4
ClO. p(\)) .

Ccl2. co + cl\D .

2
013n co + cl\) + sz .
C140 l - \)2 .

€15,C16. ™ X, m> 0 .

cl7. i ajvj .
0

cl8. u-l .

General continuous.

Change of variable.

Sum of positive terms, interpolated
density.

Thomson scattering.

Density for value of a function.

Vector density.

Density for value of a function.

Special case of C7. A geometric
device.

Densities for vl +-v2, vlvz, vzlvl.
A general device avoiding Cl.
Uniform.

Linear, disk radius.

Certain quadratics, shell radius.
Special quadratic.
Power, sphere radius, completely

degenerate gas momentum.

Power series, Butler.

Hyperbolic.

Truncated type VI, Bradford.
[22, v. 3; p. 89]
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1
c20,21. v L, m>0.

c22.

c23.

C24.

C25.
c26.

c27.
c2s.

c29.

c30.

c3i.

c32.

Cc33.

C34,

c35.

C36.

c37.

c3s.
c39.
C40.

c4l.

46

ex/(B + ex)m+1 .

eT/a + g e Ty |

=) s

(y +1)

eBx/(1 + eBx)2 .
gw) + g(=) .
28 (%) .

s(w) .

e /(1 -xe V) .

L -a,u
E : n b §

Fi°e .
1

al-l az-l
y =y .
n
Fn . 91 1
Z 1°7 .

1

2 -a.,u
h
B.e .
2
1
-a,u “au
e—alu-b| .
b
xb le-ax .

cosh 6 .
Sinhe .

(1 + 0x) exp{~(x + 3 6x7)} .

Power.

Generalized logistic I. I
[22, v. 3; p. 17]

Generalized logistic IIL. -
[22, ve3; p. 17]

Pareto. -

Kahn, approximate normal.
Folded.

Folded symmetric.
Symmetric,

Exponential, Laplace I, decay time,
collision distance.

Log series—compounded exponential.

Difference of exponentials.

Exponential convolute.

Difference of powers.

Power convolute.

Sum of exponentials.

Hyperexponential, residence times.
Bilateral exponential, Laplace II.

Weibull.
Hyperbolic cosine.
Hyperbolic sine. >

Linear failure rate, lifetimes.
[22, v. 3; p. 268]



c42.

C43.
C44,

C45.

[1+6(1-e™)]
‘o exp{-[x + 8(x + e X - DI} .

exp(z - e ?) .

e—(z-t;)/e e _e-(z-r;)le} .

xp{

W le™ 5= 1,2,3, ... .

c46, (1 + y)e"y/K .
C47. vn-ll(ev -1), n=23, ¢e0 o«
2
0480 uzn 1/(eu - 1), n= 2,3, eee o
2
c49, v 1V n =12, ... .
2
c50. Re ¥
0510 e ; (osw) .

c52.

C53.

C54.

C55.

c56.

c57.

C58.

C59.

u ! exp{-(enu)/2b} .
[1 +(5—;—")2] . exp -(1/2)[Y
ro o=
6= oo
-(1/2)[y + 68 fn E:—;f_—?]} .
exp{-tn2u} .
(x - 0!+ exp{-Itn(x - )

- ¢1%/2p}

cosh (Ew/az) . exp{--(w2
+ £H126%} .

cosh(&ﬁ/az) . exp{--(ﬁ2

+e%y/26%) .

2
P (=o,») ,

Life times. [22, v.3; p. 268]

Extreme value. [22, v.2; p. 277]

2 parameter extreme value.
[22, v.2; p. 277]

I'-type, Erlangian, Pearson.
Sum of TI'-~types.

Planck Type, Bose-Einstein.
Version of C47.

Gauss type, Rayleigh, Maxwell.
Gauss type, n = 1,

Error function.
Log normal.

SU curves. [9; p. 126]

SB curves. [9; p. 130]

Pseudo log-normal.

3-parameter log-normal,
Cobb, Douglas. [22, v.2; p. 113]

Normal symmetric sum.
[22, v'3; P 136]

Folded normal. [22, v.3; p. 136]

Normal version.
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C60. e

c6l.

C62, v
un—ll(eu
vn-le-v, ns= 1/2,3/2’ eee o

C63.
C64.,

C65. y

C66. t
C67. e

(1 + (x/a))
eb/x

c68.
c69.

C700 X

c71,

c72. u*

C73.

C74.

C75. v

c76.

c77.

c78.

C79. e

48

2
-y /2

2
WL L 172,372, ... .

2n-1/

A- 1 n 1

-$t/o

1/xn+1

3 (mo,@) o

2
€ = 1), n=3/2,5/2, ¢ou o

Q/y

np-le-tp

exp{-pe
ab -bx

x csch x

L
ol

n-1 -v

v
m-1

m—ll(

sinzm-

wmp_l(l -

(x-a

(u) .

(u) .

/(1 - A e

) .

-t/o} .

-(n+1)e-a2/2x .

a- v)n--l

1+ z)m+n

16 cos

™ 1¢

b -

2n-1e ,

1

W,

x)n--l

x - ) /(x - a)? .

1/(e

-mx/o

x/2

/(1 + pe

+ e-x/2 2m .

)

-x/o)m+n

- 1), n= 3/2,5/2, eee o

2y, (0,=) .

Normal.
Gauss type, Maxwell speed.

Planck version.
Planck type.

I'~type, Maxwell energy, fission
spectrum.

Power—-log power.

I'=version.
Gompertz. [22, v.3; p. 271]
Transition type III. [9; p. 78]

Transition type V. [9; p. 81]

One sided stable, recurrence times.

x * hyperbolic cosecant.

Schlomilch, neutron diffusion.
Bessel.,

Lemma for R21,

Beta types, powers of sin, cos.
(See R280)

Pearson types I, 11, general Beta.
(22, v.3; p. 37]

Pearson type VI. [22, v.2; p.13;
v.3; Pe 8

Logistic power, power of sech—-square.
[22, v.3; pp. 5,17

4-parameter generalized logistic.
[22 v.3’ Pe 271]



C80. e

c8l.
cs2.
c83.
c84,
C85.
c86.

c87.

c8s.,

c89,

€90,

co1.,

c92.

c93.

c95.
C96.
c97.

c98,

c99.

-x/a . n-1

(1 - pe ) .

-nx/c

a - @/,

/1 +2), 0<m<1,
x(x - &) 1(p - 0)°7L
24 - 0+ ),
(a + x)m-l(a - x)n-'1 .
F(x) +x 2B(x ) o

a1+ e 0™,

[+ Y
N

exp,_ ngt .
1

p(ﬂ), Q= ((ﬂl, ceay mN) .

I/m]nrl'n

N

(=)

ok
S(N/Z)-le-s/Zb .
N-1_~?/2m .
u(N/Z)-le-N'u/Zb ]
pN'le-sz/Zb .

1/ (142 )y D2

V@?+ ¢ - 120)2)m .

1/ + %) .

/11 + ((z - )2 .

4~parameter generalized exponeutial.

[22, v.3; p. 271]

Transition type II. [9; p. 74]
Restricted Beta.

X ¢ Beta,

Modified Beta.

Centered Beta.

Reflected density.

Raflected Beta.

Generalized Cauchy, Rider.
(22, v.2; p. 162]

N-normal, Maxwell velocity.

Uniform (isotropic) direction in

space, point on unit N-sphere ,ﬂl

Radially symmetric density.

xz density.

X density.
Mean square, x2/No

Root mean square, (x2/N)1/2.

Student's t.

Pearson type VII.
[22, v.2; p. 13; v.3; p. 114]

CaUChy .

2-parameter Cauchy.
[22, v.2; p. 154}

N-
=],
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c1o0, [1 + ((w2 + 62)/12)]
e I1+ 2(w? + 6512
+ (w2 -eHndhyt |
ciol. 2 « (C100).

0102. sech x .

cr06. FM2)71 (1 4 /) MHD/Z

c105. B7L/(1 + ol /m))MH/2
Cc106, yn-le-Ey; (1,=) .
c1o07, zn—le-ﬁz/n; (n,») .

c108. ze-z; (n,») .

€109, v e/ - 2% 2% (1,%) .

cuto, {35 (1)

2 -u; (1,2) .

4(x - a)/(c - a)
Clll, {4(c - x)/(c - )2
cl112, 1 - xl

a (x)
0113.{ (x) .

h(x - a)/(b - a)
Cll4, {h(c - x)/(c = b) .
Cl15.

Cl16., a (x), (xi, xi+1) .

c117. P"/a )

{(1 + ip)a - px}/a” .
C118, 1/(e*+b+e X), ~2<b< 2.
C119. /(e +e %) .

50

Cauchy symmetric sum, (—,®)
(22, v.2; p. 163]

Folded Cauchy, (0,«).
[22, v.2; p. 163] -

[1; p. 64]
Sine of uniform angle.

Hyperbolic secant.

Snedecor's F.

Square root of Snedecor's F, rms/rms.
Lemma for R23.

Residual I'-density.

Residual I'-density (n = 2),
Carey-Drijard.

Lemma for R24,

Triangular, sum of two random numbers.

Symmetric triangular, tine.
[22, v.3; p. 64]

Centered triangular. [22, v.3; p. 64]

Composite.

General triangular.

Asymmetric Laplace. [22, v.3; p. 31]

General composgite.

Binomial-uniform, traffic flow.
[22, v.3; p. 70]

Symmetric exponential I. -
{22, v.3; p. 15]

Hyperbolic secant. [22, v.3; p. 15]



A

C120.

cl2l.

cl22.

cl23.

Ccl24,

Cl25.

C126.

ci27.

C128.

cl129,

C130.

c13l,

cl32,

C133.

1/(ex + 2+ e-x) . Logistic, sech-square, growth curve,
symmetric exponential II.
[22, v.2; p. 244; v.3; p.3]
1/ + b + e_x), b>2., Symmetric exponential III.
[22, v.3; p. 15]
1/(b + 2 cosh a(y - yo)) . Champernowne, income, Perks.
(22, v.2; p. 242]
I/t{t/to)a + b + (t/to)ﬂm} . Champernowne, income.
[22, v.2; p. 243]
b
J/.dx £(x,y) . Marginal, composition, Butler.
a
-a 2 ) 2 |
e ® - )y, Marginal normal.
y, 2
fdx xNe-x /2 Non-central t. [22, v.3; p. 204]
0

. exp{~(Gy/N'2) - 8)%23 .

p: a2
J(.dx x(n—4)/2e-x/2H Sample covariance. [22, v.3; p. 231]

0
2,..2 2
o exp{-(y = (pKx/H)) /2k"(1 = p )x} »
(e - e-by)/y . Exponential marginal.
1/n . l/n
(e-ay -e by )/ylln . Exponential marginal, n # l.
y
Jr dx £(x,y) . Triangular marginal, compositiou.
a
(1/2)(gw) + g(-w)) . Symmetric sum.
o(w - ple ¥ + o(—w - p)ev . Compound Laplace. [22, v.3; p. 32]
-ut
0(—‘5—}5— - %)e ¢ 4 0(- u ; 4 3-parameter compound Laplace.
{22, v.3; p.32]
u
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Cl134.

Cl135.

e f dx xn-ll(y - x)n .

y

0

fdx £(x,y) »

4

Cc136. fdx @)/t .

y

cl137. f dx xn.-le'-Bx .

Cc138,

C139.

y

n-1

e-By Z (By)v/vl .
0

c140. fdx p(x)fx(y) .

Cl4l.

cl42,

Cl43.

Cl44,

Cl145.

Cl4é6.

Cl47,

52

a

1
fdx xm-(3/2) exp(-yz/be) .
0

(AL + ay)e ™ = (1 +by)e D}yl .

2 - )N E

A. p(x)I1 - P(x)]N-1 ,

B. PN—I(x)p(x) R

c. p(x)[P&)( - PGDIM .

N-k

(x - a)k-l(b - x) .

k-
X

e

1<1 - x)N-k .

X exp(=k edx) e [1

_ exp(-e-x) ]N-k .

Marginal Gamma. .

Marginal, triangular reglon. -

Tail-end density.

General Gamma tail—end.

Gamma tail-end, n integral.

Power tail-end.

Marginal, composition, Butler.

Romanowski, modulated normal,
equinormal (m = 1), radico-normal
(m = 3/2), lineo—normal (m = 2),
[22, v.3; p. 276]

Time between calls, uniform-compounded
exponential, [2; p. 69]

General order statistics.

Min, max, median statistics.
[22, v.2; p.3]

Order statistics (uniform). -
[22, v.3; p. 38] 3
Order statistics (random numbers). ~

[22, v.3; p. 38]

Order statistics (extreme value).
[22, v.2; p. 279]



Cl48.

C149. [1/2 4+ (1/%) arctan

C150.

Cl151.

cls2,

Cl153.

C154.

C155.

C156.
cl57.

C158.

Cl159.

e

-(N-k+1)x/(1 + e-x)N+1 .

k-1

X
A
x -0 N-k
. [1/2 - (1/%) arctan( Y )]
-1
x -0
T
b
xp—le-ax (N-k+1)

[ 7

Qa - e-x)k-le-(N-k+1)x .

Ir @ e /@)

c - @I

(a/x) (8 /x)2F D)

. i - @t

t"3/2 exp{-A(t ~ u)2/2u2t} .

t-3/2 exp{-(d - vt)2/28t} .

xg-lyn-lF(x,y) .

xtn--lyn--l/(1 -x - y)1.'1 .

exp{-0/2(1 - pD)} ,

2
S s S S
Q-( %1 )-Zp( %1 )

exp{~0/2(1 - %)} ,
an i - 2y

Order statistics (logistic).
[22, v.3; p.8]

Order statistics (Caunchy).
(22, v.2; p. 157]

Order statistics (Weibull).
[22, v.2; p. 254]

Order statistics (exponential).
[22, Vv.2; p. 214]

Order statistics (Gamma).
[22, v.2; p. 191]

Order statistics (Pareto).
(22, v.2; p. 241]

Inverse Gaussian, first passage time.

[22, v.2; p. 138]

Brownian motion with drift.
{22, v.2; p. 138]

Bivariate with marginal Beta.
Bivariate with Beta marginals.

General 2-variable normal.

Centered reduced 2-variable normal.
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C160. exp{- E b4

c16l1. P(a,a’)

1244

x}.

n-variable normal.

Klein~-Nishina total cross—section.
See R16, 17, 30 for polarized case.



Continuous Densities

R Cl. 2(\)); (a,b).

- v b

= Rye Define P(v) ~/p(v) dv, P (Y) -/p(v) dv. Set v = P-l(ro) or
i a v

Je

c2.

v =B (x))-

v
f p(vV) dv = r is equivalent to p(v) dv = dr, i.e., the probability of v
a

on (v,v + dv) is the probability of the corresponding random number r on
(r,r + dr). This is the "fundamental principle” of sampling, usually in-
applicable, since solution of P(V) = r for v is seldom easy.

Note. Since P(v) + Pl(v) =1, r, = P(v) is equivalent to Pl(v)

=] - ro = rl.

0

p(y) dy = q(x)(% dx); y = £(x) monotone.

Je

c3.

If preferable, sample q(x) for x, set y = f(x).

The probability of y on (y,y + dy) is that for the corresponding x on
(x,x + dx).

Note 1. Cl is the special case q(x) =1 on (0,1).

Note 2. Observe that {p(f(x)) - |dy/dx|} dx = {q(x)} ax. .

A similar rule applies to the n—~variable case, with 'dy/dx‘ replaced by

the absolute Jacobian det:[8y / 3x ]l £ J of the transformation
h |

i
vy = fl(xl’ esey xn)

yn - fn(xl, coay, xn) .

Thus {p(fl(x), ceey fn(x)) o J} dxl eoe dxn

= {q(xl, cey xn)} dxl XX dxno

J
PV = D a3 (a,b), a,(¥) 2 0.
1

Sample density

b k
Define A -/a(v)dv. Set K = min{k; E A, >r t.
h h| ’ > j= o0
a
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Je

C4.

aK(v)/AX for v on (a,b).

Under the rule, Aj is the probability of sampling the j~th density, so T
the total chance of v on (v,v + dv) {is ;
J J i
ZAj(aj (v)/Aj) dv = Eaj(v) dv = p(v) dv, as required. -
1 1

J J b b
Note that ;Aj - Z[aj(v) dv = [p(\)) dv = 1,

Note l. The rule provides an elegant way of sampling an interpolated
density p(v) = alpl(v) + azpz(v), pl(v), pz(v) densities on (a,b),

> Ay >0, a, +a, = 1. (Lee Carter.)

o 17 %

1

Note 2. If we set £(j,v) = a,(v), we recognize p(Vv) as the v-marginal

3

density in the discrete-continuous case of D24, and the above rule is
that of D24 adapted to this case.
p(v) = (3/8)(1 +v2); (-1,1).

Ji.

sz.

56

1/3

If ry < 3/4, set v = 2r, - 1. Otherwise set v = (2r, ~ 1)"/~,

1
The rule is an obvious consequence of C3. We write

p(v) = al(\’) + az(v), where

1

a,(v) = 3/8 a,(v) = (3/8)v2
1

1
A1 - /al(v) dv = 3/4 Az - faz(v) dv = 1/4
1 -1

a,(v)/A) = 1/2 a,(v)/A, = 3/2 vZ,

and use Cl to set

v
r, = f(1/2) dv
-1

obtaining -

v
(1/2)(v + 1) or r, - f(3/2)\)2 dv = (1/2)(\)3 + 1)
-1

v = 21:1 -1 or vV o= (2r1 - 1)1/3.

Generate r,,r,. If r, < (3/4)(1 + (1/3)1%), set a = r;. Otherwise set
1/2

a = (lbr2 - 37" Set v =t a with probability 1/2.



J2. This is an application of Cl3 to the density
p(a) = (3/8)1 + a); (0,1),
and of C28 for choice of sign. We find from Cl3 that £(r) = (3/4) «
(1 + (1/3)r2), with £'(r) = /2, £'(0) = 0, A(8) = (48 - 3)1/2. The rule
therefore follows from Cl13, part (a).
05, qu) = - PLEM) Cud = & f p(v) dv; (c,d), p(v) density for v on
{£(v)<u}
(a,b), £(v) function on (a,b), ¢ = min £(v), d = max £(v).
Rx. Sample p(v) for v on (a,b). Set u = £(v).
J. q(u) is the density for the value u of the function £f(v), since
P{f(v)  u} is its distribution function, and q(u) = dP/du.
Note. The idea here and in related densities is that if the given
density q(u) can be recognized as of the form
%;- f p(v) dv
{£(v)<u}
for some function f(v) and density p(v), then q(u) may be sampled in the
way described.
n
C6. p(v) = ]-[ pi(vi); pi(vi) densities on various domains.
1
Ry Sample each pi(vi) for v, set vector v = (vl, casy vn).
Je p(v) is the probability density for the vector v = (vl, P vn) where
the components vi are independent.
n
Cc7. qu) -:—uP{f(\)l, cees V) L u} -:—u f n p; (v; )5 (e,d), p, (V)
{f(WM)<u} 1
densities on (a,b), f(v) function on (a,b) X ... X (a,b), ¢ = min £(v),
d = max £(v).
Ry Sample each pi(vi) for v, on (a,b). Set u = f(vl, coey vn).
Je

q(u) is the density for the value u of the function f(vl, cens vn) under
the density pl(vl) cos pn(vn), since P{f(v) < u} is its distribution
function, and q(u) = dP/du.
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Note 1. As in C5, the idea is that if a given density can be recognized
as of the form -

n
a f .
u n py(vy) dvy .
{£(v)<u} 1
for some function f(vl, coey vn) and densities pl(vl), cees pn(vn), then -

q(u) can be sampled as in the rule. Examples are C8, C9.

Note 2. The obvious extension to the case of a density p(vl, cesy vn) of
non~-independent variables is left to the reader.

c8. q(u) = F(u)A(u); (0,»), A(u) = dV/du, where
n
V(u) = J/. ]-I dvi for some function f(vl, coey vn), and
{f(\’l,oo'o ,vn)_<_u} 1
n
F(f(vl, coey vn)) = ]-I pi(vi), a product of demsities on (0,»).
Rxe Sample each pi(vi) fo% v; on (0,=); set u = f(vl, coey vn).
Je. Such a q(u) is the density for the value u of the function
n
f(vl, ceey vn) under the density ]-I pi(vi), since
1
n n
4 f np(v)d\» -l f F(f(v v))ndv
du i1 i du 1° ***° "n i
{f(v)<u} 1 {£(v)<u} 1
u
=9 [ PwAG) du = F(u)AG) = q(u)

58

Note 3. The extension to the case of a density p(vl, esey vn) of non-

0
as defined. The rule then follows from C7.
Note 1. This highly artificial looking device is the key to sampling
many important densities. In the sequel, the factor A(u) is identified
as one of the areas in F7, F8. See C45 for a first example.
Note 2. The argument in (J) is based on the consideration of the one- )
parameter family of surfaces f(vl, cens vn) = u. See [26; p. 323].

independent variables is left to the reader.



c9.

u
8(u) = fpl(vl)pz(u - Vl) v, 3 (0,), PP, densities on (0,=).

o

Rye

Je

a
p(u) -fpl(\)l)vzlpz(uvzl) dvl; (0,=), P, density on (0,a), a finite or
0 infinite, P, density on (0,%).

q(u) = fpl(vl)vlpz(uvl) dvl; (0,»), P;sPy densities on (0,),
0

ql(u) = /pl(vl)vlpz(uvl) dvl; (~o,»), Py density on (0,%), P, density
0 on (-,»),

-]
qz(u) - 2 /pl(vl)vlpz(uvl) dvl; (=, ), P;»P, even densities on (~»,»),
0
In all cases, sample pl(vl) for v

(\)2) for v For s(u), set

1* P2 2
= + . - -

u=v, +v, For p(u), set u V¥, For q(u), ql(u), or qz(u), set

u= vz/vl.

For each of the functions f(vl,vz) =v, + Vos ViV and v2/v1, one

d
verifies that 3o f pl(vl)pz(vz) dv, dv, has the form of the
{£(v)<u}
corresponding density above. Verification of s(u) is given in F2A, and
of qz(u) in F2B. The rule follows from C7.

Cl0. p(v); (a,b). A general device.

v b

Rge Define P(v) -f p(v) dv,Pl(v) -f p(v) dv as in Cl, and £(r)

a v
= r-lP(a + (M -a)r), g(r) = r-lPl(b -( -a)r), 0<r <1,
a. If f(r), in particular if p(v), is increasing, set

‘rl if r, £ £(r))

u =
lf 1(r?_) if r, > f(rl), and v = a3 + (b - a)u.
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J.

60

b. If g(r) is increasing, in particular if p(v) is decreasing, set
u .{rl 1f r, < g(r))
L (ry) 1£ 1,5 g(x)), ad v = b - (b - a)u.

Note 1. The functions £(r) and g(r) are well-defined for r on (0,1), and -
113 £(r) = (b - a)p(a), lim g(r) = (b - a)p(b). Since both functions are -

are increasing by assumption, and f(l) =1]= g(l) ‘both have values on
(0,1).

If r, > f(rl), then f (r2) is well—defined on (0,1); in fact, there
exists a u on (r ,1) such that u = £ (r ), i.e., r, = £f(u). A similar
remark applies to g(r) if r, > g(r de The rule is therefore well-
defined. In effect, it sets u = max{rl, £ (rz)} in (a) and u

- max{rl, g (rz)} in (b), where u is on (0,1), and hence v is on (a,b).
Note 2. If p(v) is increasing, then f(r) is necessarily increasing.
For, by Fl, we have

£1(r) = r *{x(b - a)pla + (b - a)r) - B(a + (b - a)r)} > 0,
since, for p(v) increasing, it 1is clear geometrically that
at+(b-a)r
£(b - a)pa + (b - a)r) > f p(v) av.
a .

Similarly p(v) decreasing implies g(r) increasing.
We justify the rule in case (a) for £(r) increasing. An analogous
argument applies to case (b) for g(r) increasing.

First note that for v = a + (b - a)u, with u on (0,1), one has
p(v) dv = p(a + (b - a)u)(b - a) du £ q(u) du, so by C2, we may sample
the density q(u) = (b - a)p(a + (b - a)u) for u on (0,1), and set v
= a + (b - a)u. We shall prove that this q(u) is in fact the density for
the value u of the function
F(r,s) = { r__i'f s < £(r)

£f “(8) if s > £(r), r,s € (0,1),

under the uniform density pl(r)pz(s) on the unit square, where pl(r)
1= pz(s) on (0,1). By C7, we may therefore set r = r;, 8=, and u .
- F(rl,rz), which gives the rule in case (a). Now it 1s clear -
geometrically that



P{F(r,8) {u} = f dr ds = uf(u) = P(a + (b - a)u),

{F(r,s)<u}
by definition of £(r). Hence
-:T; P{F(r,s) {u} = -g; P(a + (b - a)u) = (b -~ a)p(a + (b - a)u) = q(u) as
defined above, so q(u) is indeed the density for the value u of the
function F(r,s).
Note 3. The above device is only practical if f,g are more easily
invertible than P’Pl’ which is indeed the case for all linear densities
p(v), and for certain quadratic densities (Cf. Cl2, Cl13, Cl4). PFor

further details, see [7].

Cll. p(V) = ll(b - a); (a,b)o
Rye Set v=a+ (b - a)ro.
v
J. By Cl, we set T, -/dv/(b -a) = (v -a)/(b -a) and solve for v.
a
-1
Ccl2. p(v) =¢C (c0 +¢,v); (a,b), c, #0,C = o - a)[c0 + (c1/2)(b + a)l.
v =a + max{(b - a)rl, (b+a+ 2c0c1-1)r2 - 2(a + cocl-l)}.
If ¢, < 0, set '
ve=D) - max{(b - a)rl, -(b+a+ ZcOcII)r2 + 2(b + coczl)}.
Jo The rule is an immediate consequence of C10.
Note. For the radius v of a uniform disk, with density
p(v) = 2\)/(1::2 - a2) on (a,b), the rule sets
v=a + max{(b - a)rl,(b + a)r2 - 23}, as compared with Cl, which would
set v = {a2 + (b2 - az)ro}llz. For a =0, b = 1, p(v) = 2y, the
comparison is v = max {rl,rz} against v = r01/2'
Cl3. p(v) = C-lh(V), h(v) = co + cl\) + CZVZ’ (a,b), c2 # 0,
C = (b= aMey+ (c/2)(b +a) + (c,/3)(b° + ba +a?)}, for certain
cases.
Rge Define f(r) = C-l(b - a){h(a) + (1/2)h*'(a)(db - a)r + (c2/3)(b - a)zrz},

with £'(r) = c-l(b - a)z{(1/2)h'(a) + (2/3)c2(b - a)r},
£1(0) = ¢ (b - a)n'(a)/2,
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£1(1) = ¢Mb - ) 2((1/2IM(a) + (2/3)ey(b - 2)}

27 - % ib + (a/2) + (3¢, /bey)}, and

g(x) = ¢ 1(b - a){h(b) - (1/2)h'(b)(b ~ a)r + (e,/3)(b - a)%r?), with
g'(x) = ¢ (b - )’(-(1/2)h" (b) + (2/3)e, (b - )1}, '

g'(0) = <€ (b - a)’n'(b)/2, i
g'(1) = ¢TH(b = @2 {~(1/Dh'(B) + (2/3)ey(b ~ )}

= (21367 (b - &)Pe,la + (b/2) + (3¢;/4e))).

a. If c, > 0 and £'(0) > 0, or if ¢, < 0and £'(0) > 0, £'(1) > O,

a+ (b~ a)r1 ifr, < f(rl)
€V Tla + alxy) 1f r, > £(x)),

where A(s) = (1/2){-(3h'(a)/2c,) + sgn cz[ksh'<a)/zc2)2
1/2
12 Cs
+E;(——-b 5 - na)] } .
b. If c, > 0 and g'(0) > 0, or if cy < 0 and g'(0) > 0, g'(1) > O,

b - (b - a); if r, < g(r))
gset v =
b - u(r,) if r, > g(r)),

where u(s) = (1/2){(3n'(b)/2¢,) + sgn cz[g3h'(b)/zc2)2 +-%§-(39§-;
- h(b))]l/z .

The functions £(r),g(r), computed as in Cl10, both represent parabolas,

each opening up if c, > 0, and down 1if <, < 0.

a. If c, > 0, £(r) opens up, and £'(0) > O insures that £(r) is

increasing on (0,1). If c, < 0, £(r) opens down, and £'(0) > O,

£'(1) > 0 again insures £(r) increasing on (0,1). Hence we may apply the

rule of Cl10 as in case (a). Inversion of s = £(r) gives (b - a)r = A(8)

as defined. Note that sgn c, governs the choice of sign in the solution

of the corresponding quadratic, since this determines the type of

concavity of £(r).

b. An identical argument shows g(r) increasing under the stated condi- -

tions, so we may follow the rule of ClO as given in case (b). -

Note 1. If c, < O, the conditions in (a), (b) are -

a. a< - (c1/2c2), b < -(a/2) - (3c1/4c2).



be b >~ (c1/2c2), a > =(b/2) - (3¢, /4e,).

No parabola can satisfy both conditions. For, assuming (a) and (b), we
have b < -(a/2) - (3c1/4c2) < (b/4) + (3c1/8c2) - (3c1/4c2) = (b/4)

- (3c1/8c2).

Hence (3/4)b 5_-(3c1/8c2) or b 5.-(c1/2c2) in conflict with the first
part of (b).

Note 2. The method, when applicable, is indicated if inversion in Cl

involves a difficult cubic. (See Cl4.) For the radius v of a uniform
spherical shell, p(v) = 3v2/(b3 - a3), Cl sets

v o= {a3 + (b3 - a3)f°}1/3 whereas Cl3 sets

. {a + (b - a)r1 if r, S.f(rl)

"la + A(rz) if r, > f(rl), where
Hﬂ-{h2+h®-ah+(b-ﬂ }ub+ab+£)-3+ﬂﬁ+£L
A(s) = (1/2){-3a + [4(b + ba + a )s - 2]1/2} =D+ [Es + F) /

A, con,y F stored.

Clé. p(v) = (3/2)(1 - v ); (0,1).

Rx. Generate rp,rye If ry < ry(3 - rl)/2, set V = 1 - r,.
Otherwise set v = (1/2)[-1 + (9 - 8r2)1/2].

J. The rule is an application of Cl3, part (b). For, one finds that g(r)
= (3/2)(r - (1/3)r?), with g'(z) = 3/2(1 - (2/3)r), g'(0) > 0, g'(1) > O,
and u(s) = (1/2)[3 - (9 - 8)/2),

Cl15. qu) = mb u 1, ; (O,b), m = k/z k,2 e {1,2,3, ...}

Rye Setu= b(max{rl, cees rk}) .

J. For u = bvz, one has q(u) du = kvk_1 dv, so0 by C2, one may sample the

density kvk-1 for v on (0,1), and set u = bvz. But for the uniform
densities pl(vl) = ,,, = pk(vk) =1, v, on (0,1), one sees that

d
av

P(max {v s seey V }<v)=-§7 / dv, ... dvk-%(vk)

m{vl, eoe ,vk}iv

= kvk s 80 that kvkn1 is the density for the function f(vl, con, vk)
= max {vl, esey vk} under the density pl(vl) vee pk(vk), and the rule
follows from C7. (see Cl46, Note 2.)

Note. kvk_l is the density for the function max {rl, ceey rk} of k

random numbers. Cf. Cl2, Note, for k = 2, 2 = 1, m = 2,
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Cl6. q(u) = C-lum-l; (a,b), 0<a<b,m>0,C= " - am.)/m.
Ry Set us= {a® + (" - m)ro}llm. g
u .
J. Using Cl, we set r, = fq(u) du = " - a")/(b" - a"), and solve for u. -
- -
[ -] -
Cl7. p(v) = Z :ajvj; (0,1), ay > 0.
0
Rge Define Aj -f ajvj dv = aj/(j + 1),
k
Set K = min{k, E }. Set v = ri/(Kﬂ) or set v
= max {rl, .ooo, K+1}
J. The rule follows from C3, and from Cl16 or Cl5, since we may write p(v)

Ci8.

- E Aj(a:1 (v)/Aj), set K as in the rule, and then sample the density

aK(\:)/A.K = (K + 1)\)K for v on (0,1).

q@) = ¢l a,b), 0<a<b, C= galb/a).

Cr lr r

Rye Set u=ae °=a % °,
u
- -1
J. Using Cl, we set Ty -fC 1 du/u = C "fa u/a, and solve for u.
a
C19. p(x) = g/(1 + gx)en(1l + B); (0,1), 8 > - 1.
Rgye Set x = 3-1{- 1+ exp[rozn(l + g)l}.
Jo The rule follows from Cl, where we set
X
r, = /p(x) dx = 2n(l + 8x)/2n(l + B), and solve for x.
0
Note. For x = B-l(- 1 + u), one hag p(x) dx = du/utn(l + B) = q(u) du on -
(1,1 + B) as in C18. This, of course, results in the same rule.
-1
C20. p(v) =mg"v © ; (B,®), B> 0, m = k/% k, % ¢ {1,2,3, ...}. -
Ry Set v = 3/(max{r1, cees rk})z.
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-m m-1

J. For v = 1/u, one finds that p(v) dv = m(1/8) u ~(=du) on (0,1/B8), with
m = k/% as in C15. Hence by Cl5 we set u = (1/8)(max{r1, coey r:k})'c and
v = 1/u by C2.
c2l. p() =¢ ™ (8,a), 0<B<almm>0,C= (™=~ a™)/n
Bge Setv=1/{g " ~-(p "~ a-m)ro}l/m, or set v=1/{a  + (8" -ar I}I/m
v
J. By Cl, we set ry = ‘/.C-'lv‘-m"1 dv=(g =-v @ -a™, or r,
B
a
- f C-lv.-m--1 dv=( " -a )/ (B‘m - a-m), and solve
v
for v.
Note. For a = =, we have the simple rule:
get v = g/(1 - ro)llm, v = B/ri/m.
c22. q(x) = mg"e¥/(p + x)“” (==,), B,m > O,
Rx+ Sample p(v) = agv for v on (B8,») by C20 or C21. Set x = fn(v - B).
J. The function x = fn(v - B) increases from x = —» to x = » for v on (B,»),
and q(x) dx = mBmv—m-l dv on (B,w). The rule follows from C2.
Note. For m=g =1, q(x) = o /(l + ex)2 = 1/(e" + 2 + e~x) as in C120,
€23. () =mp e/ + g e THy™ (-u,), 8m > 0.
Rz Sample p(v) = mBmv_m-1 for v on (B,») by C20 or C21. Set y = =fn(v - B).
Je For y = -x, one has
r(y) dy = n8 le X(-ax)/(1 + g™ - X (-ax) /(8 + €)™ on (=),
as in C22. Thus the rule follows from C22 and C2.
c26. _q(y) = miy + D™D (0,0, n > 0.
Rye Set y = v - 1, where v is obtained from C20 or C21, with g = 1, a = =,
J. For y = v - 1, one has q(y) dy = mv-m-1 dv on (l,»).
625, £(x) = Be/(1 + &% (w=,), B > 0.
Ree  Set x = 3 laa(e]! - 1),
Je Under the transformation y = 1 + eBx, which increases from y = 1 to

y = » for x on (-»,»), one has f(x) dx = dy/yz, with y on (1,®). Hence
by C2, we may sample 1/y2 for y on (1,2), and set x = B_lzn(y - 1), But
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[ -]
from Cl, setting r, = f dy/y2 gives y = ril, and the rule follows. This

is of course also the Zesult of C20 or C21. -
€26. h(w) -i(v'i) + g(_-\s); (0,*), g(z) density on (—=,®). ks
Rg. Sample density g(z) for z on (~~,®). Set W= |z|. il
J. Obvious.

c27. h@w) = 28(w); (0,), s(w) symmetric density on (-=,®),
Rgs Sample s(w) for w on (—»,»), Set W= 'w'.
Je Special case of C26.
c28. s(w); (—»,»), s(w) symmetric: s(-w) = s(w).
Rye Sample density 2g(w) for w on (0,). Set w = + w with probability 1/2.
J. Obvious.
Note. C26, 27, 28, 131 are closely related, and each has its uses
independently.
C29, p(v) = ae-av; (0,»), a > 0.
Rxe Set v = -a_lzn .
®
Je By Cl, we set ry -/ a e-av dv = e-av, and solve for v.
v
Note. This is the first link in the following chain of densities on
(0,).
€29. p(v) = e-v, v = ~fnr,, by cl.
n
C45. q(u) = un.le-u/l'(n), n=1,2, «eo, u==4n n T by C29, C8.
1
2 n
C49., p(v) = 2v2n-1e-” /T(n), n = 1,2, .¢., (2n even), v = (-2n ri)]'/z,
by C45, C2. , l
C50. p(R) = Re ™ R = (-znrl)l/z, by C49, n = 1.
‘“i 1/2 :
CS1. p(\)l) = 2e /x »V, = R cos 6, by c50, C2. :
2n-1 -u2 b
C6l. q(u) = 2u e = /T(n), n=1/2, 3/2, .cc, (2n odd),
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c64. p(v) = Vi le™/T(n), n = 1/2, 3/2, ..., ,
u= {-ln(rl XX rh) +T }, by C61, c2.
€30. _q(y) = Ae /(1 = Ae DILA); (0,=), 0 < A < 1,
L(A) = =ga(l - ).
Rgyl. Set y = —gn x-l{l - exp[-rlL(A)]}.
L -
Jl. By Cl, we set r -fq(y) dy = -(1/L(}))n(l - Ae_y),
y
and solve for y.
k
Rg2. Set K = min{k; Z M /3 2 rL(1)). Sety = < lgn r .
1
J2, The rule results from C3. For, we may write
[
q(y) = E (Aj/jL(l))(je-jy), set K as in the rule, and sample Ke-Ky for
1
y on (0,2), which gives y = ~ K1 fnr, by C29.
a.a -a_u ~-a,u
1%2 1 2%)
c3l. q(u) ﬁ (e e ), (0,‘”), 0 < al < az.
Bye Set u=- a-l gnr, - a—l far
1 1 2 2°
Je q(u) is the density for the sum u = vy + v, under the density pl(vl)
.oTayv
. pz(\:z), where pi(vi) =ae on (0,o), 1 = 1, 2, gso the rule follows
from C7 and C29., In fact,
u u-v
d / d f 2
Fm Py(V)) vy py(vy) dvy =35 f Py(vy) dv, f Pp(vy) vy
{vl-l*vz_<_u} 0 0

u
fF(u,vz) dv,

1 ¢ F(uyu) = 0 ¢ F(u,0)

2|
o

u
+f§—u- (F(u,v,)} dv, (cf. F1)
0
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c32.

u
d
-0”0+/{p2(vz) d\’zm ::.
0
u—v2 o

_/ p,(v) dvl} -

0
u

= [ 2,000 @, By = vy
0

u
“a,v, -al(u-vz)
= ala2 e e dv

0
-(a,-a )v
/ 2 1 d\)2
0
a,a, alu( --(az-a1 )u)
= e l-e

H™

-alaz -alu_ —a,u - e d
2,4 e e q(u) du,

2

as glven.

Note. One may of course use C9, but the above proof is more in

conformity with the induction in C32.

n

68

n -aiu
qn(u) = E Fe ; (0,), where
i=1
n al [ X X ] a
Gl-a ) eee (ai 1~ 1)(ai+1 ai) cee (a -a, ) ?

a, distinct > 0, n 2> 2.

n -
© -1 N

Set u E a1 2,nr1. '
l -



J. It can be shown by induction on n > 2 that qn(u) is the density for the
sum u = v, + oo + v, under the density pl(vl) cee pn(vn), where pi(vi)

- -a_,v

N = ae 1 i, so that the rule follows from C7 and C29. The basis (n = 2)

B for the induction is provided by C31. Letting v = v_ + .., + vn, we

1
compute

n
d
du / Pot1 V1) Ppyg n Py (vy) dvy

vy, <u} 1

a

d

du f Prt1 Ont1) Ppag f n Py (vy) dvy
0

{v(u—vu_'_1

F(u,v_,.) dv =1 F(u,u) = 0 ¢ F(u,0)

(1]
gl
~ =

n+l n+l

+ [ 3-r ) @y, =0-0 (See F1)

ou

o§.~\= o

u n
d J/‘

"'f Prt1 V1) Ve ao n Py (Vy) dvy
0 {\)1"' XX +\’n.<_u"'\’lr'-1} 1

u

= f Prt1 Vp1? p @ = Vo),
0
by the induction hypothesis.

Hence, the density for the sum u = v, + ,,. Vv is

1 ntl

u n

-a Vv -a (u-\’ )
n+l ntl n i ntl
/ 218 ®ot Z Fye
0 1

n

- Z Pt S L 1)“)
n (apermap) ©

133

"4
m

dv

u
e‘(an+1'ai)"n+1
n+l
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n Fna a,u L Fna -a
_Z ool 4 _Z 1%n+l nt1"
: LT N (a4 ~ 3
. Zn . U A B 15 N gl potl) Tt E
1 o+l 1 +1 -
1 1
n+l —a.u
n+l i
E F, e 0 qn_'_l(u). (See F10A.)
1

o 0 n n
-a,u
Note 1. fqn(u) du f E Fie du E (Fi/ai) 1 by F10B.
0 0 1 1

Note 2. As the derivative of an increasing distribution function, it
appears that qn(u) is non-negative on (0,*). This is an interesting
inequality for which we have no direct proof. Consider the case n = 3,
=2 a, =3,

2 3
Note 3. It is shown in C45 that un-le-u/ T(n) is the density for the sum

u=v + eee + v, under the density pl(vl) aee pn(vn), where pi(vi)

al-l,a

-a v
i1
= ae , and all a = 1.
a,a a. -1 a,-1
- 12 1 - _ .72 "\,
C33. p(y) 5, - 5 (y y ), (o,1), 0 < a, < a,.
- -1 -1
Ry Set y exp{a1 znrl + a, znrz}.
Je For y = e-u, which decreases from y = 1 to y = 0 for u on (0,»), one has
aa, -au ~a,u
p(y) dy = a——_—a—(e -e )(-du) as in C3l. From this and C2, the
2 1
rule follows.
n
ai-l n
C34. p(y) = E F:y s (0,1), where the F, are defined in C32.
1
n .
-1 =
Rge Set y = exp; E a; znri . -
1 >
7 -u
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For y = e , one has p(y) dy = qn(u)(-du), for the qn(u) in C32. The
rule follows from this and C2.



n
-a.u
c35. p(u) -ane 3% (o,w), B, > 0.
1

k
. |
k; ; (Bj/aj) 2 ryls and u a, fnr,.

Je The rule follows from C3 and €29, since

Rye Set K = min

-a.u

(u)/A, = a,e 3 .

] k|

P ~-a,u
Aj '--O/.Bje 3 du = (Bj/aj), and a
€36, p(u) = (2a%/1)e 28T 4 3((1 = a)¥/r)e 217U/T, (4 0y 150, 0<a
< 1/2.
Rye If r < a, set u=—(t/2a)fnr

1 Otherwise set u = - (t/2(1 - a))lnrl.
J. Special case of C35, with B = 232/1, a = 2a/T, Bl/a1 = a, B,

- 2((1 - a)%/1), a, = 2(1 - )/, Byla, = 1 - a.

C37. qu) = (a/2)e-a|u-b|; (—=,»), a > 0, b arbitrary.

Ryge Set ¢ = - a_lznro, w = + @ with probability 1/2, and u = b + w.

Je For u = b + w, one has q(u) du = (a/2)e-a|w' dw = g(w) dw, where s(w) is
a symmetric density on (—»,~), Hence we may sample s(w) and set u = b
+ w. But by C28, we may sample 2s(®) = ae-aa for #® on (0,~), and set w
= + @ with probability 1/2. By C29, we set & = - a-lznro, and the rule
follows.

b
C38., p(x) = abxb 1e ax ; (0,»), a,b > 0.
1 1/b

Ry Set x = (-a~
1/

znro)

J. For x = v''", one has p(x) dx = ae & dv on (0,*) as in C29, where we set

vV = - a—lznro. The rule follows from C2.

C39. p(8) = S * cosh 85 (0,t), S = sich t.

Rxl. Define A = (e® - 1)/28. 1f ro LA, set 6 = fnll + rl(et - DL

Otherwise gset 6 = - gnfl1 - rl(l - e-t)].
Jl. Following C3, we write p(6) = al(e) + 32(6), where
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Ry2.

J2.

C40.

al(e) = ee/ZS, a2(9) = e-e/ZS,

]
y

A = et - 1)/2s, A, = (1 - e ty/2s, ol

N
i

al(e)/A1 - ee/(et - 1). | az(e)/A2 - e-e/(l - e_t).
0

0
0 t -8 -t -
By Cl, we set r; = e d6/(e- - 1), or r, = e do/(l - e "), and
0

0
solve for 6, obtaining the values of 6 in the rule.

Set 9 = zn{Sro + [(Sro)2 + 1]1/2}.

0

By Cl, we may set r, -/ p(6) d6 = (ee - e-e)/ZS. Solving for 6 gives
0

the setting of the rule, where the choice of sign is obviously mandatory.

p(6) = C_1 sinh 6; (0,t), C = (cosh t) - 1,

J.

C4l.

Set 6 = zn{(CrO +1) + [(Cr0 + 1)2 - 1]1/2}.

0
By Cl, one may set ) -f p(6) do6 = (ee + e-e - 2)/2C, obtaining 0
0

= R,n{(Cro + 1) £ [(Cr0 + 1)2 - 1]1/2}. For either sign, r, = 0 gives 6
= 0. The choice of (+) sign is indicated, since ry = 1 then gives

@ = fn{cosh t + [coshzt - 1]1/2} = ¢n{cosh t + sinh t} = znet = +, One

may also mote that, for ry > 0, (Cry + 1) - [(Cr, + n? - 1]1/2 <1,
i.e., (Cr0)2 < (Cro)2 + 2(Cry), since C = (1/2)(e* + e ) - 1> 0 for

t > 0, whereas ee_z 1.
p(x) = (1 + 8x) exp{~(x + (1/2)0x2)}; (0,%), 8 > 0.

Je

C42.

Set x = e-l{-l + [1 - 2eznr]1/2}.

For the increasing function v = x + (1/2)6x2, we see that p(x) dx

- e-v dv. By C29, we sample e—v for v = - %nr on (0,%), and set x

= x(v). But solving the quadratic v = x + (1/2)0x2 for x gives x = x(v)

-1 1
=0 "{=1 £ [1 + 20v] /2}, where the (+) sign is obviously required.

q(x) = [1 +6(1 - e )] exp{-[x + 6(x + e ~ - 1)]}; (0,®), 8 > O.
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Set Vo " -%nr.. Solve the equation v, = x + 0(x + e = - 1) for x

0
= x(vo) on (0,). See Note below.
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"Wy

“I

J.

C43.

For x on (0,®) the function v = x + 6(x + e > - 1) is increasing from v
=0tov=wm withdv=[1+0(l -e )] dx. Hence q(x) dx = e ° dv as
in C29. The rule follows from C2.

Note. The equation v, = x + 6(x + e ¥ - 1) may be solved for x by
Newton's method. For the function

f(x) =x+0(x+e X ~-1) - Vo

-~ -V

one has £(0) = - o < 0, and f(vo) = B(vo + e 0. 1) > 0, since e

>1 - Vo* Moreover,

£'(x) =1 +0(1 ~e )>0
and £"(x) = ge = > 0 on 0,,

Since the curve y = f(x) is increasing and concave up, Newton's sequence

% " Vo
*a

. oy f(xn) ] Vo + e[i -1+ xn)e ]

ntl n £'(x) -x

n 1+ e[l -e d]

converges to x from above.
‘75.
b4

(~=,®).,

q(y) = exp(~y ~ e

Je.

C44.

Set y = —gn(-gnr).
For y = -2nv, one has q(y) dy = e V(-dv) on (0,») as in C29. From this
and C2, the rule follows.
Note. This is a special case 6 = 1, = 0 of C44.
z=

z—
p{z) = G-Ie 8 exp{-e o }3 (=»,»), 6 > 0, z arbitrary.

Jo

C45,

Set z = ¢ - ggn(-gnr). -
For z = ¢ + Oy, one has p(z) dz = e’ ® dy on (-~»,») ag in C43., The
rule then follows from C2,

q) = u" e ¥/r@); (0,%), n e {1,2,3, ...}

J.

n
Set u = - ¢n I-I 1°
1

The rule is an application of C8. In fact, q(u) = F(u)A(u), where F(u)
-1
=e " and A(u) = u" /(a - 1)! By F7, A(u) = dV/du, for
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n

n
V= f n dvi, and moreover, for the function f(v) = E vi, one -
1 1 -
n -
E vi_Su -
1 vi>0

-y

n
has F(f(v)) = e 1 = n e i, a product of identical densities on
1

w
(0,»). We therefore sample each e 1 for vi( = —far,, by C29), and set

n n n
u = £(v) = Z"i -Z(-znri) -- [[ -
1 1 1

Note. q(u) = un-le-u/r(n) is the density for u = v, +oeee + v under the

u u
-V -V

density e 1 eee @ 2, and hence Q(u) = fq(u) du = _/'un“leﬂ1 du/(n-1)!
0 0
is its distribution function:

n
w
f n e 1 dv,. Q(u) may be evaluated by F3A.
1
n

vi_<_u
1 v1>0

c46. my) = (1 +y)e 7 %/ ® + k); (0,=), K > o.
Ry If r, £ 1/(1 +K), set y = - Kznrl. Otherwise, set y =

- K!,nrlrz.
Je Following C3, we write m(y) = al(y) + az(y), where
a; (y) = e-y/K/(K + Kz), az(y) - ye-Y/K/(K + Kz), .
A, =1/ +K), A, =X/(1 +K), -
a, /A, = 75k 2,91k, = ye I 512,
For y = Ku, For y = Ku,
al(y) dy/Al =e * du. az(y) dy/A2 = ue U du.
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C47.

The rule then follows from C3, C2, C29, C45.

Note. To sample m(y) = C-l(l + y)e_y/K for y on (0,Y), where ¥ >> 1, one

may follow the above rule, accepting y only when y Y. In such a
method, the probability of rejection is

(1/(k +1)) f e"y/K dy/K + (K/(K + 1))fye"7/K dy/K2 = (1/(K + 1))e'Y/K
Y

+ (R/(R + 1)U + Y/K)e-Y/K

R (¥/(1 + K)).

p() = v /(¥ - Dr@Irm); (0,9), n e {2,3,4, ...}. (See F9D.)

k n
-1
Set K = minlk; E (l/jn) 2 roc(n) , and V = = K "£pn I | ry.
1 1

We may write p(v) = ¢ L@ @V e/l - e ) = £ 1 a)r Ln)

Je
Z n-1_=jv Z (1/1"(m)) (g™ -1 j"/r(n)), which is a sum of the
1 1
form in C3. We may therefore set K as in the rule, and sample the den-
sity a -1 l(\,/I'(n) for v on (0,%), But for v = u/K, one has
v 1 v dv/T(n) =« 1 e " du/T(n) as in C45. Hence we set
n
u=-%n ]—[ Ty and v = K_lu by C2. (Noted for n = 4 by C. Barnett,
1
E. Canfield.)
2n-1/( u2 )
C48. q(u) = 2u e = 1t(n)l(n); (0,2), n € {2,3,4, «co}.
Rx. Sample p(v) for v on (0,®) as in C47. Set u = v1/2
J. For u = vl 2, one has q(u) du = p(v) dv and the rule follows from C2.
. C49., p(v) = szn -1 v /I‘(n), (0,2), ne {1,2, ...}, 2n even.
- n 1/2
i Rxe Set Vv ={-fn n r, .

1
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Jo

1/2, one has p(v) dv = o~ 1 @ du I'(n) = q(u) as in C45. The

rule then follows from C2.
2

For vs=aqgy

C50. p(R) = 2Re ™ ; (0,).

Rge Set R = (-znrl)l/z.
Je Case n = 1 of C49.
2
-V
c51. p(v)) = 2 t/;llz; (0,%).
1/2 ,

Rxl. Set V; =R cos 9, V, = R sin 6, where R = (-2nr1) y 8 = (W/2)r'.

(Two independent samples vl and v2 are obtained.)
Jl. Under the polar transformation vl = R cos 0, v2 = R 8in 0, with Jacobian

R, one has

2 2
-V -V 2
@/t Tav o @D Pav, = me® @t - (2/m) as.
The rule follows from C2, C50.
A2 A2 1/2A

Ry2. Obtain S = r] + rz.ﬁ 1 as in Rl. Set v, = {(-gnr )/S} v,

- (- /832

1/2 1/2

J2. The rule follows as in J1, with cos 6 = r /8777, 8in 0 = r /s

obtained as in Rl.
Rg3. Obtain S = ?i + fg_g 1 as in Rl. Set v, = {(- an)/S}I/ZA v,

- {(-zns)/s}llz“
J3.

76

Under the transformation (vl,vz) « (p,0):

v, =R cos 8, v, =R sin 6, with R = (-2200) 12, (0,%) % (0,%) = (0,1)

X (0,7/2), with Jacobian RR' = R(1/2)(1/R)(-2/p) = - 1/p, one has

2 2
-v =V,

@/t Pe T av . (2ntlte 2 v, = 20 do + (2/%) 40, since R = - fnp
-R2 2

and e = p~. By C2, we may sample the latter two densities for p,0 and

transform to VisVpe But from the equivalence 2p dp * (2/%) d6 = (4/w)

* dx dy on the unit disk in quadrant I, we may sample the disk for §,§

2

uniformly in area, and take the corresponding polar values p

< 1/2, and 6 with cos 0 = x/p, g8in 6 = y/p. Since this is just

= ( y)
what Rl does, and p = SI/ ,» one has R = (-24np) 1/2 = (-.V.npz)ll2



= (-an)l/z
(Box, Muller, Marsaglia.) See also R10.

» and the rule follows from the transformation to (vl,vz).

C52. q(u) = ut exp{-(lnzu)/Zb}/(Zﬂb)1/2; (0,»), b > 0.
. 1/2
Rye Sample e > /11/2 for x on (~~,») by C59 or Rll. Set u = eX(Zb) .
2
J. For this substitution one finds that q(u) du = e * dx/ﬂl/2 on (== ),
and the rule follows from C2.
Note. The "log-normal” density q(u) is the density for the function e*
2
under the normal density e ~ /Zb/(Zwb)llz. For,
2 log u 2
< f e/ 4r/(2em)1/? « 4 f e/ ax/omp) 2 = q(u) as
{e"<u} -
above. (See C5.) /
249-1/2 2
c53. p(x) = (2:)’1/21\"16[1 +(1‘—;—") ] exp{-(l/Z)[Y + 8 sinh'l(x - E)] };
(-»,»), &,y arbitrary, A, 8§ > O.
2
Rge Sample e’ /n1/2 for y on (-»,») by C59 or Ril.
Set x = £ + A sinh((Zl/zy = Y)/8).
Je The preceding function x = x(y) increases from x = — ® to x = ® for y on
(-»,»), Moreover,
x-§ 2 2 1/2 2 1/2
1+ (__37_-) = 1 + sinh™((2™'%y - v)/8) = cosh“((2"'“y - v)/6), and
1/2 1/2 2 12
dx = A cosh((2"'%y - v)/8)(2*'“/8) dy. Hence p(x) dx = &7 dy/x"'“, and
the rule follows from C2,
-1/2. -1 fx - g\ x -g\?
C54. p(x) = (2%) A8 S (1 - 5 exp "(1/2)[Y
x -§ 2
+ 64n (m)] ; (8,8 + A), &, v arbitrary, A, § > 0O,
2 1/2
Rxe Sample e /g for y on (~w,») by C59 or RIl. Set x = £ + [A/(1
+ E)], where E = e-Y and Y = (21/2y -Y)/$8.
J. First note in p(x) that (x - E)/((E + 1) - x) > 0 for £ < x < £ + A. The

function x = x(y) =& + [A/(1 + e-Y)] increases from x = £ to x = § + )

77



C55.

for y on (~»,»). Moreover, (x = E)/A = 1/(1 + e ) 1-(x=E)))
=/ +e ), and (x - E)/(E + A - x) = Q/ ‘iii)'e°

Finally, dx =2A(1l + e ) 2e Y(21/2/6) dy.

A

2
Substitution shows that p(x) dx = e 7 dy/'rrl/ 2

Cz.
qu) = exp(-znzu)/

, and the rule follows from

1/4 1/2 (0,=).

Rye Sample e’ /11/2 for y on (-w,») by C59 or Rll.,
Set u = ey+(1/2). (Cashwell.)
y+(1/2)
J. The function u = e increases fromu = 0 to u = ® for y on (~»,»),
2
and q(u) du = e dy/1r1/2. The rule follows from C2.
e56. p(x) = (x = ) (2ub) " 2expi-Lon(x - 0) - £12/2b}; (8,%), b > 0, 6, ¢
arbitrary.
Rze Sample e-y/ 1/2 for y on (~w,®) by C59 or Rl1l. Set x = ¢
2
+ exp{z + (2b) 1 v},
J. The preceding function x = x(y) increases from x = 0 to x = for y on
2
(=>,®), For Y=g + (2b)1/ y, one has x — 6 = eY, fn(x - 0) =Y, and
2
dz = e Y(Zb)ll2 dy. Hence p(x) dx =e 7 dy/-nllz and the rule follows
from C2,
Note. For 6 =y = 0, C56 is the log-normal density of C52.
2.2
€57, s(w) = (21r02) 1/zcosh(t‘;w/crz)e (w487)/20 ; (—»,»), & arbitrary, o > O.
Rx. Sample e’ /1:1/2 for v on (-»,®) by C59 or Rll., Set z =& + (2¢ )"/2
and w = + z with probability 1/2.
J. One first notes that s(w) = (1/2)((g/w) + g(~w)), where g(z)
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2, 2
e (z78) /20 /(21‘02)1/2 is a density on (-»,»), Hence by Cl31, we may

sample g(z) for z on (—~,»), and set w = * z as in the rule. But for

1/2 -v2 1/2

z=( + (20’ )
from C2,

v, one has g(z) dz = e dv/a°'", and the rule follows



~2. .2 2
N -(w + 2
2)1/2 cosh(&w/oz)e w47)/20 ; (0,»), & arbitrary, o > O.

C58. h(w) = (2/%¢
2
Rxe Sample eV /ﬂ1/2 for v on (—»,») by C59 or R11l. Set w = |¢
+ (20 )1/2
Je

C59. p(x) =e

The rule follows from C27 and C57. For, h(w) = 28(w), where s(w)

2
= (21r<12)'-1/2 cosh(Ew/oz)e-(w /20 is the symmetric density of C57.
By c27 we can sample s(w) for w on (—»,®) ag in C57, and set w = 'w'
The rule follows,
2

(-oo w),

Sample p(vl) - ///1/2 for v, on (0,») by C51. Set x = * v, with

The rule follows from C28., See also Rll.

Sample p(x) for x on (~w,®) as in C59. Set y = 21/2

Under this transformation, one has q(y) dy = p(x) dx as in C59, and the

2
qu) = 2u2n-1e-u [T(m), (0,»), n e {1/2,3/2, ...}, 2n odd. (For n = 1/2,

kfine h =n - 1/2 h € {0 1 2’ ooo}’ 1030’ 2n = 2h + 1. Sample

-T// 1/2 for t on (0,») by C51 or R10, Set u = {-zn(r see rh)

Rx.

probability 1/2.
J.

2/2/ 1/2

C60. q(y) =e "/2n)%; (~=,®).
Rxe
Jo

rule follows from C2. See also R9Y.
Cé6l.,

use CSI.)
Rx'

+ 1 2 1/2
Je

For arbitragz N =1,2,3, ..., one can write the density q(u)

2
= 228 2™ /r(8/2) = F(u)A(u), where F(u) = zNe'“AN/ 2 and ACu)
N
2L Nl 8/2). By F8, ACw) = dV/dw for V = f TT @,
N /2 1
<u
Vi A
1
vi>0
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C62.

N 1/2

and moreover, for the function f(v) = E vi , one has F(£(v))
1

N 2
™1/ 172
- n 2e b , a product of N densities on (0,»). Thus q(u) is the
1

N 1/2

2
density for the value u of the function £(v) = E vy under the
1

N 2 .
-V 2
density n (Ze 1/rl/z), and by C8, we may sample 2¢ " /“1/2 N times for
1

N 1/2

the Vys 88 in C51, and set u = z vi o Now, if N is even, as in
1
C49, N = 2h > 2, this gives the h pairs (\)l,vz), cees (vﬂh-l’VZh)’ with

"zi-l + "§1 = ~far, in C51, Rgl, and leads to the same sample u = £(v)

= ((-znrl) + .00 + (-.Q,nr:h))ll2 - (-.Q,nrl cee l:h)l/2 as that obtained in
C49 on simpler grounds. However, for N = 2n = 2h + 1 > 1 odd, as here in
C6l, we get from C51,

(vl,vz), coey (“Zh-l’th) and Vol = T

and the rule above follows. R10 will also give T.

2
p(v) = 2v2“'1/(e" - Dz(a)I(n); (0,), n € {3/2,5/2, +..} (See FIE.)

80

k
Set K = pnin k; E (lljn) ZrOC(n) ° let h=n ~ 1/2 € {1,2, ooo}o
1

2
Sample Zeq/rl/z for T on (0,~) by C51 or R10.

h 1/2
Set v = K-l(-zn n 1:1 + 12) .

1



2 2
Following C3, we write p(v) = 2;'1(n)r 1(n)v2n 1e v//(l -eV )

Je
® 2 [ ]
- 27 Y eI L) :(l/jnc(n))<2:l ny2e-lgdy /r<n)).
1 1
2n-1 -sz
Hence we set K as in the rule, and sample the density 2% e //P(n)
2
for v on (0,2). But for v = u/Kl/z, we have 2Knv2n 1 kv dv/T(n)
- 21,12n-1e_u du/T(n) as in C6l. From this and C2 the rule follows.
€63. q(u) = u*1/(e® - Dg(n)F(n); (0,%),n € {3/2,5/2, oo}, (See FID.)
Rye Set K= min.’k; E (I/jn)_z roc(n)‘. Let h = n - 1/2, Sample
h
-12 1/2 -1 2
2e T for Tt on (0,») by C51 or RI0O. Set u = K [-%n ]-I Ty + 17}
1
J. For u = v2, one has q(u) du = p(v) dv as in C62. The rule follows from
this and C2.
C64. _p(») = v 1e™V/r(n); (0,%), n € (1/2,3/2, ...}
-12 1/2
Rxe Define h=n - 1/2, h e {0,1,2, ...}. Sample 2e T for t on (0,»)
h
by C51 or R10. Set u = —fn n r, + 12.
1
2 2n-1_ -2
J. For v = u”, one has p(v) dv = 2u e du/T(n) as in C6l. From this
and C2, the rule follows. (For n = 1/2, u = 12.)
c65. g(y) = A%* Lea™ /9y /rmd; (0,1, A > 0, n e (1/2,1,3/2,2, ...}.
Rye Sample 21 e */T(n) for x on (0,) by C45 or C64. Set y = e X /A
J. For y = e-x/A, one has g(y) dy = - 1 _x(-dx)/r(n), and the rule follows
from C2.
- P
c66. g(t) = pt"P 17t /I‘(n); (0,2), p >0, ne {1/2,1,3/2,2, .eu}e
Rx. Sample xp-le_xlr(n) for x on (0,») by C45 or C64. Set t = xl/p.
Je For t = xllp one has g(t) dt = x e ~le® dx, and the rule follows from C2.

(For p = 2, gee C49, C61.)

81



-¢t/o -t/
C67. p(t) = (p¢/al‘(¢))e be/ exp(-pe / ); (==,=), p,0,¢ > 0.
R« Sample w¢-1eﬂw/r(¢) for w on (0,%) by C45, C64, or R27. Set t N
= ~gin(w/p). -
Je. For the preceding (t,w) transformation, one has p(t) dt t
w7t e "(-dw)/T($). The rule then follows from C2. i
C68. p(x) = € 1(1 + (x/a))%PeP%; (-a,), a,b > 0, C = ae®Pr(ab)/(ab)2P,
Rye Define n = ab + 1. Sample wl e "/r(n) for w on (0,o) by C45, C64, or
R27. Set x = (w - ab)/b.
J. The function x = (w — ab)/b increases from x = -a to x = « for w on
(0,*), and for this substitution, one sees that p(x) dx = c (w/ab)
e b, dw/b = n-l dw/r(n), and the rule follows from C2.
C69. p(X) = b /r( ) o+l b/x’ (0’“’)’ b’n > 0.
Rx. Sample W n-l e /P(n) for w on (0,®) by C45, C64, or R27. Set x = b/w.
J. The function x = b/w decreases from x = ® to x = 0 for w on (0,®), and
p(x) dx = wn-leﬂw(-dw)/r(n). The rule follows from C2,
2
C70. f£(x) = a2% (WD) "8 /2x/onnc iy (0,0), a > 0, n e (1/2,1,3/2,2, +.u}
Rge Sample yn-le_y/P(n) for y on (0,®) by C45 or C64., Set x = 82/2y.
J. For x = a2/2y, one has f(x) dx = yn-le-y(-dy)/r(n) on (0,~), and the rule
follows from C2.
C7l. s(x) = (2/ﬂ2) x csch x; (-»,»), (See F23.)
k
R, Set K = min|k; Z @ - D 2 r G, £ = - 2R - D7 arr,, and
x = * £ with probability 1/2.
J. Since s(x) is symmetric, we may sample density 28(£) for £ on (0,*), and
let x = £ §, as in the rule (C28). But 2s8(%) may be written in the form
©0
20(8) = (8/79E/(e" - &™) = (B/rDETH A - e = D LcarD )
1 »
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e 25 - D2 . (23 - g HTLE

the rule, and sample density p(§) = (2K = l)zEe
But for £ = (2K - 1)-1n, one has p(§) di = ne-n
follows from C45, with n = 2,

as in C3. Hence we may set K as in

-(2K-1)% for £ on (0,%). -

dn. The rule therefore



c72.

Note. Cu(2) - Z 1/(23 - 1)2 - 1rz/8 by F9C.

1
q(u) = ¢ u EN(u), (0,»), N> 0, n+N>1, ne {1/2,1,3/2,2, ...},

J.

Cc73.

EN(u) - J/.v-Ne-uv dv, C = I'(n)/(n + N - 1). (See F18,19.)
1

Sample pl(v )=(x +N - l)vn*N 2 for v, = ri/(n+N-1) on (0,1) by Cl6,

and p,(v,) = vg-le ~2 2/P(n) for v

The rule follows from C9, since
; 1 -u/v

fplcvl)v';lpz(u/vl) av, = ¢y /v’f’ze Vav, = ¢lu™ g ()

0

= q(u), by F18. Thus q(u) is the density for the product v, v_ under the

12
density pl(vl)pz(vz) on (0,1) X (0,»).

on (0,») by C45 or C64. Set u = v.v

2 17°2°

Note. For N =0, ne {3/2,2,5/2, ...}, EN(u) = e-u/u, and q(u)

= u® 2e-ull‘(n ~ 1), which may be sampled for u on (0,*) by C45 or C64.

q(w) = ¢ ™ R ()5 (0,%), n >N 20, n, Ne {0,1,2, ..u} or m,

Jl.

Ne {1/2,3/2,5/2, ..}, R(u) -fcosh Noe ™ S8R O 45 ¢ m 2P 2p((n
0

- N)/2)T((n + N)/2). (See F17.)

Define H = (n - N)/2 J=(n +N)/2, H, J e {1/2,1,3/2,2, «..}. Sample

-V
pyv,) = V] 5/r<u>, p,(v,) = v) ‘e j/}(J) for v;,v, on (0,%) by C45

or C64. Set u = 2(v 1/2

2)
First note that, under the substitution u = 2v1/2, one has q(u) du

1/2
=C 12n -1, (0/2)- IKN(ZV ) dv = p(v) dv, so it suffices to sample p(v)

2
for v on (0,%), and set u = 2v1/ by C2. Second, using C9 and F13D, one

sees that
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Ry 2.

J2.

C74.

f il (w/v,) dv, = v « 2. x (2wt
P (V¥ (VYY) By = TETEY N2 Ky
0 ]

- ol (a/2)-1

k (2v1/?) = p(v).

Hence p(v) is the density for v,v, under pl(vl)pz(vz), and we set

v = vlvz as in C9.

Define H = (n - N)/2 and K = N + (1/2). Sample p(g) = €7 11 - )Y/

-V
B(H,K) for £ on (0,1) by C75, and pz(vz) = \)Izrm-le 2/I‘(n + N) for v, on
(0,») by C45. Set u = Ellzvz.

N-(1/2)

For the density pl(vl) = 2v1 1 - vl) B(H,K) on (0,1), and the

1

-1
density pz(vz) above on (0,%), one finds that ./‘pl(\)l)\’1 pz(u/vl) dvl
0

= M+ (1/2)/(0@ + DBE,ROT1/2)) v R W) = ¢ e Ry (w)

= q(u) as given. Here we have used the value of KN(u) in F13C, and the
Legendre identity of F4D, with m = (n + N)/2 to identify the constant
with ¢ . = 1/2“'2r(“ 3 N)r(“ *2' N). It follows from C9 that q(u) is the

density for the product ViVa under the density pl(vl)pz(vz), 80 we may

sample pl(vl) for v, on (0,1), and pz(vz) on (0,») and set u = Vi Vg But

for v, = 61/2, we see that pl(vl) dv1 - Ea_l(l - E)Krl d¢/B(H,K), so by

C2 we may sample the latter for § on (0,1) and set v, = 51/2. The rule
follows. (Noted by Kalos [24] for n = N + 2.)

q(v) = c_lvn—lAe-v/(l - Aze_zv);_. (0,), 0<AL 1,

84

ne {3/2,2,5/2,3, ¢eo}, C = cu(A,n)P(n), where Cu(A,n) = :E::
1

24-1

AT/

(25 - 1)n§. (See Fl12.) .

k -
k; Z a3 oy - ™ > rocu(A,n)g. .
1

Set K = min




J.

C75.

Sample un-le-“/r(u) for u on (0,®) by C45 or C64.
Set v = u/(2K - 1).
(-]
We can write q(v) in the form of C3, since q(v) = C lvn 1 E
1

423-1

)nvn-le-(Zj-l)v

AT LN " (B2 - e (a2 - 1 /T()).

Hence we may set K as in the rule, and sample the density pK‘V)

= (2K - 1)“v°’1e-(2K’1)“/r(n) for v on (0,%). But for v = u/(2K - 1),
n-1 —u

one has pK(v) dv = u e du/I'(n), and the rule follows from C2.

B(v) = v" 11 - " Y/B(m,n); (0,1).

Je

b(z) = 2% /(1 + 2)™ B(m,n); (0,=).

q(6) = 2 sinzm-le coszn-le/B(m,n); (o,n/2).

cw) = pw™ 11 - w?) Y/B(m,n); (0,1).
m,n € {1/2 1,3/2,2, «..} in all.

Sample x* -l e */T(m) and y* -1 e Y/T(n) for x,y on (0,») by C45 and/or
1/2
),

C64. Set v=2x/(x+y), z=v/(1l -v) =x/y, 6 = arcsin (v
1/p

w=v T,

The densities b(z), q(8), C(w) are equivalent to B(v) under the indicated

substitutions. In virtue of C2, it therefore suffices to sample B(v) for

v on (0,1). But under the transformation x = uv, y = u(l - v), with

Jacobian -~ u, and inverse u = x +y, v = x/(x + y), one sees that

xm.-le-x dx yn-le-y dy um+n—1e-u du vm--l(1 _.v)n-l

~T(m) T(n) TTTm Ao B(m,n) :

80 by C2, we may sample the first two densities for x and y, and set
v = x/(x + y) as in the rule. _
Note l. The same rule results from taking b{(z) aé the basic density, and

-V -v,
noting that, for pl(vl) - vl e /;(n), p2(v ) = v;’le /P(m), one has

as in C9, pl(\)l)\)lpz(z\’l) d\)1 = -Z—T——m Tn dVI
0
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zm-lr(m + n)
F(m)T(n)(1l + 2)
density for vzlvl under the density pl(vl)pz(vz). Note that v, =y, v,

—= " zm-I/(l + z)mnB(m,n) = q(z). Thus q(z) is the Pe

= Xo

Note 2. For n = 1, see Cl5. o

Note 3. Form = 1/2 or n = 1/2, q(6) involves cos 6 or sin 6 only.
Note 4 For m = 1/2 = n, get 6 = (w/2)r, v = sinze, z=v/(l -v), or
use Rl to obtain v = §§/S, z = (32/§1)2.

Note 5. The same rule results from the equivalence

2 2 2
2€2n_1e § d§ 2n2m_1e-n dn 292(m+n) le-p 2 sinzmrle cos

I'(n) * I'(m) = I'(m + n) * B(m,n)

2n--1e de

under the polar transformatfion £ = p cos 6, n = p sin 8. We omit the
details.

Note 6. The transformation x = uv, y = u(l - v) is frequently employed
in the sequel. See R27.

q(x) = (x - a)m-l(b - x)n-I/(b - a)m+n-lB(m,n); (a,b), a < b, myn > O.

C76.
m~-1 n-1
Rge Sample B(v) =v (1 - v)"  "/B(myu) for v on (0,1) by C75 or R28. Set
x=a+ (b - a)v.
J. For this (x,v) substitution, one has
b - )" L™ - ) la - 9 - a) dv
q(x) dx = win-1
(b - a) B(m’n)
- vm-l(l - v)n-1 dv/B(m,n).
The rule then follows from C2. Note. See Cl45.
¢77. px) = (b - )TN Mz - M - )BQ -R -1, R+ 1); (b,®), b > a,
Q>R +1>0.
Rxe Definem=R+ 1, n=Q~R - 1. Sample b(z) = zmrll(l + z) B(m,n)
for z on (0,») by C75 or R28. Set x = b + (b - a)z.
J. For this (x,z) substitution, one finds that p(x) dx = zmm1 dz/(1 + z)m+n.
B(m,n), and the rule follows from C2, -
c78. p(x) = 1/Bmm(e™? + /52 (ca,m), m > 0.
Ry Sample zm-I/(l + z)sz(m,m) for z on (0,») by C75 or R28. Set x = %nz.
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Je For x = fnz, one has p(x) dx = e dx/(e” + l)sz(m,m) = zm-1 dz/
(1 + z)sz(m,n) = p(z) on (0,~) as in C75, R28.
Note. p(x) = sechzm(xIZ)/4mB(m,m).

m_ -mx/o -x/o)m+n

C79. p(x) =p e /oB(m,n)(1 + pe ;3 (=»,»), p,o,m,n > O.

Rxe Sample b(z) = z“rll(l + z)m+nB(m,n) for z on (0,») by C75 or R28. Set
x = = o&n(z/p).

J. For this (x,z) substitution, we find that p(x) dx = zmrl(-dz)/(l + z)m+n
+ B(m,n), and the rule follows from C2.
Note 1. See Cl48 for the case p = o =1, m=N-k + 1, n = k.,
Note 2. For p = o =1 =m = n, p(x) reduces to C120. For this, the rule
in C79 would set x = - zn(znrllznrz), whereas that in Cl120 sets x
- zn(rO/(l - ro)). Moral: Never use a general method for a simpler
special case.

C80. e(x) = pme_mx/c(l - pe-x/a)n-I/oB(m,n); (o2np,»), p,o0,m,n, > 0.

Ry Sample B(v) = vm?1(1 - v)n-llB(m,n) for v on (0,1) by C75 or R28. Set
x = - oa(v/p).

J. The function x = - ofn(v/p) decreases from x = ® to x = onp for v on
(0,1), and e(x) dx = vm-l(l - v)n-l(- dv)/B(m,n). The rule follows from
c2.

Note l. See Cl51 for the case p = o = 1, m=N~-k + 1, n = k,

Note 2, For p = o =1=p = n, e(x) = e = on (0,%).

c8l. p(x) = (1 — (x/a)®)* }/aB(1/2,n); (~a,a), a,n > O.
Rx. Sample v

1/2(1 - v)n-I/B(1/2,n) for v on (0,1) by C75 or R28. Set %
= av1/2, and x = * £ with probability 1/2.

J. Since p(x) is symmetric, we may sample 2p(£) for £ on (0,a) and set x
= + 2 ags above, by C28. But for & = avllz, one has 2p(R) df
= v-llz(l - v)n'-1 dv/B(1/2,n) for v on (0,1), and the rule follows from

from C2.

C82. b(z) = zm-ll(l + z)B(m,1 - m); (0,%), 0<m< L.

Ry. Sample b(z) as in C75 if m = 1/2, otherwise use R28.

J. Special case of b(z) = zm-ll(l + z)m+n/B(m,n) withn=1-m, and
B(myn) = B(m,1 — m) = T(m)T(l - m) = w/sin mn (F4B).
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C83. q(x) = C-lx(x - a)m-l(b - x)n-l; (a,b), 0<a<b,myn>0,C

mwin-1 {mb + na
(—m) * Blm,n).

= (b - a)

mb + na m-
Rx. Define A1 - a/(m). If r, £ Al, sample v

v on (0,1) by C75 or R28. 1If r, > Al’ sample vi(l - v)n-l/B(m + 1,n) for
v on (0,1) by C75 or R28, 1In either case, set x = a + (b - a)v.
J. For x = a + (b -~ a)v, we find that q(x) dx = {al(v) + az(v)} dv where

min-1 m-1
av

1(1 - v)n-l/B(m,n) for

al(v) - C-l(b - a) (1 - v)n_l.

1

0
a, (/4 = 1A - W B@,0),
az(v) = C-l(b - a)mvm(l - v)n-l,
A2 = m(b - a)/(mb + na),
a.z(v)/A2 - vi(l - v)n-]'/B(m + 1,n).
The rule therefore follows from C2 and C3.

c84. p(x) = ¢ =t -~ 0™ /x + )™ (0,1), a,myn > 0,

C = B(m,n)/(1 + a)®a". (See F5C.)

Rz Sample zm-l/(l + z)mB(m,n) for z on (0,») by C75 or R28. Set x
= az/[1 + a(l + z)].

J. For x = y/(y + 1), which increases from x = 0 to x = 1, y on (0,%), we
find that p(x) dx = le'ym-1 dy/la + (1 + a)y]m, while for y = az/
(1 + a), the latter becomes zm-ldz/(l + z)m-mB(m,n). The rule then
follows from C2, since the iterate of the two transformations x

= y/(y+ 1) and y = az/(1 + a) 18 x = az/[1 + a(l + z)], as in the rule.

C85. q(x) = C-l(a + x)m-l(a - x)n-l; (-a,a), a,myn > 0, C = (Za)m-l
e B(m,n).

Rz Sample vm-l(l - v)n-I/B(m,n) for v on (0,1) by C75 or R28. Set x
= a(2v - 1).

J. x = a(2v - 1) increases from x = —a to x = a for v on (0,1), and
q(x) dx = vm-l(l - v)n“1 dv/B(m,n). The rule follows from C2.
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C86. p(x) = F(x) + x-zF(x-l); (0,1), F(z) density on (0,).
Ry. Sample F(z) for z on (0,*). If z <1, set x=2z. If z > 1, set
x =1/z,
J. Under the rule, the probability of x on (x,x + dx) in (0,1) is F(x) dx
+ F(z)(-dz), 0 < x <1, 1<z <®, where 1/z = x. But this i{s F(x) dx
+ F(xml)(x-'2 dx) = p(x) dx, as required.
c87. px) = "1 + =" 1y/(1 + )™ B@m,n); (0,1), mn > 0. (See FS.E.)
Ry. Sample b(z) = zm-l/(l + z)m-'“B(m,n) for z on (0,») by C75 or R28.
If z<1, set x=2. If z > 1, gset x = 1/z.
Je For the density b(z) = zm-ll(l + z)th(m,n) on (1,), one has
x-zb(x-l) - xn-]'/(l + x)mB(m,n), and the rule follows from C86.
min
C88. p(x) = 1/2 mAB(m,n){l + |(x - 9)/>‘|1/m} s (=°,®), 0 arbitrary, A,m,n
> 0. ' '
Rx. Sample b(z) = zm-I/(l + z)m.mB(m,n) for z on (0,%) by C75 or R28. Set
w=z" and w = £ w with probability 1/2. Finally, set x = 0 + Aw.
J. For x = 0 + Aw, one finds that p(x) dx = dw/2mB(m,n){l + lw]llm}
= 8(w) dw on (-»,#), Hence we may sample s(w) for w and set x = 6 + Aw.
But s(w) is symmetric on (—~,®) so by C28, we sample density 2s(w) for
¥ on (0,»), and set w = & v';', as in the rule. Since 2s(w) dw
= dw/mB(m,n){1 + GI/m}m, we see that, for w = z, we have 2s8(w) dw
= zm.-l dz/(1 + z)mB(m,n). Hence we may sample the latter for z on
(0,2), and set w = z". The rule follows.
N
332
i
c89. p(vl, coes vN) - w_le e 1 s = < vy <o Nt {1,2,3, ...},
Rxe For even N = 2h, obtain the h pairs

(vl,vz), esey (v )

2h-1°"2n

by sampling e-\’z/'lrl/2 on (-»,®) by C59 via C51, where (note) the samples
are produced in pairs. For odd N = 2h + 1, obtain also the additional
pair (v
R1ll1,

2h+1’v2h+2)° In either case, set v = (Vl, coes VN)- See also

89



N 2
i/ 1/2
Since p(v) = n e , the rule follows from C6. L4

Jeo
1 -
Note. The density for the value of the function ¥
N 1/2 )
x = £(v) -( E v:) is 2uN-1e-u/I‘(N/2), as seen in C93 with b = 1/2.
1
N/2
C90. p(R) = I'(N/2)/2x '". (See F8).
Rx. Obtain vector v = (vl, cooy VN) as in C89. Set @ = (ml, ceey wN),
where
N 1/2
w, =v,/u and u = Evz .
i i i
1
Je The rule determines a uniformly distributed direction @ in N-space,
equivalently, a point on the unit sphere '9' = 1, See also R3,5,6.
Note. Observe that in C51, C59, the source of the vy these components
2 2
of v are produced in pairs 0’21-1’”21)’ with Vos-1 + Voy = = znri or
- &nS i This saves time in computing u.
N ) 1/2
CcI91. p(vl, XXX VN) = F(E \’i) - Vi < @®, N e {1,2, ooo}. (Radially
1
symmetric density.)
ZwN/Z N-IF
Ry Sample the density q(u) -r—(my u (u) for the radius u on (0,»).
Sample the unit sphere 'Q' = ] for @ = (ml, ceey wN) by C90 or R3,5,6.
Set \’i = umio
J. To see that the above q(u) is indeed the density for the value u of the
N 1/2
radius f(v) = (E vi) under the density p(vl, esey vN), we note that :
1 -—
q(u) may be written in the form q(u) = F(u)A(u), with the given F(u), and -
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N
A(u) = ZRN/z uN‘-1 = dV/du, where V(u) = / n dv, is the
T(N/2) ’ 1

1

N 1/2
() «
1

volume of the full N-sphere of radius u, as in F8. Since for £(v)

N 1/2
-(E vf) , we have F(f(v)) = p(vl, ceey vN), it follows from C8, Note
1

3, that q(u) is the density for the radius u, as stated.

N
-2
Y1
-N/Ze 1 s use c89,

Note. For p(vl, coey vN) =q

(N/2)~1e-s/2b

C92. p(s) = s 1202 @y2); (0,2), b > 0, N & {1,2, ...}
Rge Sample w(N/Z)-le-w/r(N/Z) for w on (0,») by C45 or C64. Set s = 2bw.
Je For 8 = 2bw, one has p(s) ds = w(N/z)-le-w dw/T(N/2), and the rule
follows from C2,
N
Note. p(s) is the density for the value of the function s -Z v:(- x2)
1
N -v2/2b/
under the density n e 1 (21rb)1/2; -o< vy < », (See C93.)
1
N-1 ~2/2b /. N/2
C93. q(u) =2u ‘e (2b) "' “T(N/2); (0,»), b > 0, N e {1,2, ...}.
Rxe Sample w(N/Z)_le-w/r(N/Z) for w on (0,») by C45 or C64. Set u
- )2,
J. For u = 81/2, one has q(u) du = p(s) ds as in C92.

Note. q(u) is the density for the value of the function u

1/2
N -v2/2b

N
-(E vi) (= x) under the density n e i (21rb)1/2, - vy < »,
1 1

For, we note that q(u) is the form F(u)A(u), where F(u)
2
- e DL y2 ana ace) = 2725 ris2) = av/au, for V(w)
91



C9%.

Je

N

- f n dv L the volume of the full N-sphere of radius u, as
o
1

. .

(Z v2>1/2<u -
i —

1

N
2 1/2
in F8. Moreover, for the function £(v) = E vy , We see that
1

N 2
-, 2b
F(f(v)) = ﬂ e I /(Zwb)llz. Thus, by C8, the given q(u) is the

1
N
1/2
density for (Z vi under the latter density.
1
ag(w) = WV 2,271 B/ (503 2008/2); (0,%), b > 0, N & (1,2, «uule
Sample w(N/Z)-le-w/I‘(N/Z) for w on (0,®) by C45 or C64. Set u = 2bw/N.

For p = g/N, one has qo(u) dp = p(s) as in C92.

N
Note. g¢q o(u) is the density for the function u -( E V:YN (= xz/N, mean
1

N 2
—*\)i/2b 1/2
square) under the density n e (2%b) s = ® < v { =,
1
2
095, p,(p) = 28V/2N1 e /2%21,)"/21'(:«/2); 0,2), b >0, Ne {1,2, ...}.
Rz Sample W(le)‘le-w/l‘(N/Z) for w on (0,®) by C45 or C64.
Set p = (2me/M)/2,
ge For p = (s/N)l/z, one has pl(p) do = p(s) ds as in C92.

92

Note. pl(p) is the density for the function
N

Z 2, Y2 5 172
p = vi/N = (x°/N) (root mean square) under the density ¢
1 -



ne (2%b) ,-°°<vi<°°.
1

- 1/2 9 (N+1)/2
; C96. q,(t) = I((N + 1)/2)/(Nx)"""T(N/2)(1 + (£°/N)) 3 (=2,

Ne {1,2, eee}e

- (N/2)-1e-w

Ryl. Sample w /T(N/2) for w on (0,») by C45 or C64. Set p

2
- (w/N)llz. Sample e-'a/ﬂl/2 for o on (-»,®) by C59 or Rll. Set
t = o/p.

2
Jl. PFor the density pl(p) - 2N'N/2;>N_lemNp /Zb/(Zb)N/ZI'(N/Z) on (0,) of C95

2
i /2b (Zwb)llz

and the density pz(o) - on (-»,»), one finds, as in C9,

(-4

fpl(p)ppz(tp) dp = ql(t:) as given. (One makes the substitution z
0

= (N + tz)pZ/Zb.) Thus 9 (t) is the density for t = ¢/p under the
density pl(p )pz(O), regardless of the value of b! The rule therefore
follows from C9, C95, C59, where we have used the value b = 1/2.

N 1/2

Note. ql(t) is the density for the value of t = o/(E vf/N
1

-zz/2b 1/2
(Student's t), where the v, and ¢ all have density e (2xb) on
i
(~»,»), independently of b. For N = 1, use C98.
Ry2. Sample xp_le-x/r(m) with m = 1/2 by C64, and yn_le-y/P(n) with n = N/2

by C45 or C64 for x,y on (0,*). Set z = x/y and t = (Nz)llz. Set

t = & t with probability 1/2.

J2. Since ql(t) is symmetric on (-»,®), we may sample the density 2q1(t) for

t on (0,#), and set t = + t as in the rule (C28). But for t = N1/2z1/2
one has 2q,(§) af = M + 1)/2z % aa/x/Praizy 1 + o) WD/2

* - 2-1/2 dz/(1 + z)(N+1)/2B(1/2,N/2) - z"’-1 dz/(1 + z)m*“B

= 1/2, n = N/2. Thus we may sample the latter density for z on (0,*) and
set t = (Nz)llz. But sampling for z by C75 gives z = x/y, where x and y

(m,n) where m

are found as in the rule.
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m
c97. p(g) =2 1/(c2 +(z - c0>2) B(1/2,m - (1/2)); (—=,®), ¢ > 0, g,
arbitrary, m ¢ {1,3/2,2,5/2, ...},
(N/2)-1 -w
Rxe Define N = 2m-1 ¢ {1,2,3, ...}, Sample w e /T(N/2) for w on
2
(0,») by C45 or C64. Sample e—o//;l/Z for ¢ on (-»,%) by C59 or Rll,
Set ¢ = g, + (ca/wllz).
Jo With N as defined and ¢ = ;0 + ct/NI/Z, one finds that p(g) dg
- ql(t) dt, where ql(t) is the density for Student's t in C96. There,
2
one sets t = g/p = 6/(W/N)1/2, 80 we now set ¢ = ;, + (c/NI/ ) .
(oNl/Z/wl/z) =% + (co/wl/z), as in the rule.
c98. ql(t) = 1/%(1 + t2); (=»,»), (Cauchy density, case N = 1 of Student's t,
C96.)
Rxl. Set t = tan (n/2)(2ro - 1).
t
Jl. By Cl, we set r, = J/.ql(t) dt = (1/%)(arctan t + (n/2)) and solve for t.
-0
Rx2. Set t =y/x as in R2,
J2. The ratio y/x in R2 is the tangent of an angle 6 uniformly distributed on
(_'“/29'/2)0
Note. One can show using 09(q2) that Cauchy's density is the density for
the function t = v2/v1 under the density pl(vl)pz(vz), where pi(vi)
-e %23)1/2, < v, <o, 1= 1,2,
C99., p(z) = 1/ax[1 + ((z - e)/A)zl; (-»,»), A > 0, 0 arbitrary.
Ryele Set z =g + ) t:an(2r0 = 1)(x/2).
Jl. For z =0 + At, one has p(z) dz = dt/x(1 +'t2) = ql(t) dt, where ql(t) is
Cauchy's density C98. The rule follows from this and C2.
Rzx2. Set z =6 + A(y/x), where y/x is obtained from R2,
J2. See C98, J2.
2.,2 2 2. .2 2 2,22
Cl00. s(w) = [1 + ((w2 + 6 )/A)1/aall + 2¢w +0°)/A) + (w =08 )]s

9

(=w0,%), A > 0, 6 arbitrary.



R,. Sample p(z) for z on (-»,®) as in C99. Set w =% z with probability
1/2.
Je The rule follows from C131, since s(w) = (1/2)(p(w) + p(-w)).
Cl0l. h(w) = 2s(w); (0,«); s(w) the density of Cl100 on (-w,=),
Rge Sample s(w) for w on (-w,») as in Cl00. Set W= Iw', f,00, W = Izl
for z as obtained in C99.
J. The rule follows from C27.
C102, p(x) = (1/%) sech x; (-»,»),
Rye Set y = - in tan (wr0/4), and x = + y with probability 1/2.
J. Since p(x) is symmetric, we may sample density 2p(y) for y on (0,®), and
set x =+ y as in the rule (C28)., But for y = - 2nz, one has 2p(y) dy
= (4/m)e” dy/(1l +e 7Y = (4/x)(~dz)/(1 + 2°) with z on (0,1). By Cl,
z

we set 1) -/ (4/w) dz/(1 + zz) = (4/w) arctan z, and hence z = tan
0

(wro/4). The rule follows.

€103, g(w) = 2/x(1 - uH%; (o,1).

Rgle Set 8 = (x/2)r and u = sin 6.

Jl, For u =sgin 6, one has q(u) du = (2/x) do.

Note also that for u = vl/z, one obtains q(u) du = v-1/2(1 - v)-l/zl
B(1/2,1/2). Cf. C75, Note 4.
Ry2. Use Rl to obtain S = ff + fi_s 1, and set u = ?2/81/2.
J2, wu is the sine of an angle 6 uniformly distributed on (0,%w/2). As an
arc sin u
example of C5, note that % f (2/7) do = (2/%) %: f de
{sinf<u} 0
- 2721 - uHY2,
c104. q®) = /W EFM D4+ o) M BBws2,n/2); (0,9,
M,N e {1,2, eoel}e

Rx. Define m = M/2, n = N/2. Sample xm-le-x/r(m) and yn-'le_y/r(n) for x,y
on (0,®) by C45 and/or C64., Set z = x/y and F = Nz/M,

J. For F = Nz/M, one finds q(F) dF = zm'.1 dz/(1 + z)m+nB(m,n) on (0,») as in

C75, which sets z = x/y, as in the rule.
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Note. It follows from C9 that q(F) is the density for the value of F
= y/x under the density qN(x)qM(y), where qN(x)

- NV/2,(8/2)-1 ~Nx/2b ;0 N/2000/0y  ang 4 = MM/Zy(M/Z)-le-Hy/Zb / -

‘!

(2b)M/21‘(H/2) as in C94. Thus q(F) is the density of the function = -
M N
| F= E ui/M E v;/N « (Snedecor's F) where all ui,vj have density
i 1 1

2
e 2 / Zb/(z-,,b) 1/2 on (-»,») (regardless of the value of b.)

c105. p(E) = 20/ 21 + P ¥ Z5002,8/2); (0,),
M,N e {1,2,3, ...},

Rx. Define m = M/2, n = N/2. Sample xm-le-x/r(m) and yn-le-y/I'(n) for x,y
on (0,%) by C45 and/or C64., Set z = x/y, F = Nz/M, and E = Fl/z.

J. For E = FI/Z, one has p(E) dE = q(F) dF, the density for Snedecor's F in
Cl04. The rule follows from Cl104 and C2.

Note. p(E) is the density for the value of the function

M 1/2// N 1/2
E = E ui/}i v?/N (quotient of root mean squares), where all
1 1
-£%/2p

have density e (2%b) 1/2 on (~»,»), regardless of b.

l-lia\’j
-1 n-1

C106. a(y) = Dy 'y e, (1,®), £50, ne {1,2, ...}, D = £ a - Die™

E’

n—-1
8 = Z £V /vl (See F3C.)
0

k
Rxe. Set:l(-mzl.nk;ZE“/NZI‘OSE (0{K<n-1)andy=1
0

n-K
- E-lzn n ri. -
1

J. Under the substitution y = 1 + (u/E), one has q(y) dy

(u + t";)n.-le.-u du = _(.n_:l—l-)-!-s- (u + E)n-le-u du = p(u) du, so by
g

n &
DEEe

96




C2, we may sample p(u) for u on (0,») and set y = 1 + (u/§). But we may

n-1
1 (n - 1)! n-1-v_v -u

write p(u) "(':T_—T)"@ via~-1-v)1 ¢ e
0

n-1
-Z (Ev/v!SE)(undv-le-u/(n -~ v = 1)!1) in the form of C3. We may
0

therefore set K as in the rule and sample the density

u(n—K)-le-u/(n - K - 1)t for u on (0,%) by C45, i.e., set u
n-K
= - %n n Ty and the rule follows. Note that n =K > 1.
1
c107. @ n,~1 n-1 -gz/n,
. q(z) = (Dgn ) z7 e s (n,®), €,n> 0, n e {1,2, «oe}, DE defined as
in C106. (See F3B.)
Ry. Sample q(y) for y on (l,») by C106. Set z = ny.
J. For z = ny, one has q(z) dz = Dg]‘yn"le-":y dy as in Cl106, and the rule
follows from C2,
Cc108. q(z) = f);lze-z; (=), n > 0, B =1 + ).
Ryl If ro(l +n)>1l, set z =qn ~ znrl. Otherwise set z = n — znrlrz.
Jl. This is the rule of Cl07 for the special case n = 2, £ = n.

Ry2e

J2.

Note. The preceding method seems simpler and more direct than that of
Carey and Drijard [3], given below, and of course allows extension to the
more general case of ClO7.

(Carey-Drijard). One follows the steps:

l. SetP=e ", A=e (1 +n), B =1/ +n).

2. Generate random numbers P1sPye

3. If ° <B, go to (4). If oy > B, go to (5).

4, Set r, -Apl, r, =p,5 80 to (6).
5. Set r, = P exp{(1 + n)p1 - 1}, r, = sz/rl; go to (6).
6. Set z = -~ Anr_Tr..

172
The justification of this rule is based on the following remarks.

a. To sample the density ze-z/I‘(2) on its full range (0,%), one

generates random numbers TsTos and sets z = ~ R,nrlrz as in C45, where
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(rl,rz) may be thought of as a point uniformly distributed in the unit
square.

b. But for the residual density on (n,*), one requires only such points
(rl,rz) for which z = - znrlrz >n, i.e., r,r, <e'zep. (One could of
course accept only those points (rl,rz) lying below the hyperbola

r,r, = P, but the efficiency would be poor for large n.)

c. The above (non-rejection) device is valid, since the two transforma—
tions in steps (4), (5) both have Jacobian A = e—n(l + n), independent of
PysPys and so transform the two rectangular areas of the full (pl,pz)
unit square determined by the line Py = B in a uniform way into the two
required areas of the (rl,rz) unit square; the first a rectangle of base

e n and height 1, of area e-n, and the second lying directly below the
hyperbola rr, = e-n, with base 1 -~ e-'n and area ne-n.

-1 n-1

c109. g(») = 0 W e /(1 - A%, (1,8), a >0, 0< A< 1,

J.
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S

E’

- 23~ - M, _ -
ne (2,3, ...}, D ZA lD(Zj-l)a’ where Dy = £ " - 1)I ¢ 5, S,
1

n-1

- E Ev/v! (See Fl16.)
0

o
Compute partial sums 8y of 8 = EAzj-l(Zj - 1)'ne-23"s(2j_1)a, where
1
SE is defined above. Set K = min{k; 8k 2 ros}. Use Cl106, with &
= (2K - 1)a, to obtain y on (1,#). Set v =y,
© o
One can write q(v) = D-lvn-l Z AZj-le-(Zj-l)av = Z D"]’Az:"-lD(zj_l)a
1 1

vn-le-(Zj-l)a\’/D(zj_l)a « Since this sum is of the form in C3, we can

k

2j-1
ks Z A 3 D(Zj-l)a 2 rOD s and sample the density
1

set K = min

u“"le'(m'l)“"/D(ZK__I)a for v on (1,) by Cl06, with £ = (2K - 1)a. Note

that the inequality involved in setting K is



k -]
ZAZj'l(zj -1 " - 1)xe"(23"1)"‘s(2j_1)a >, Z[Azj-l(Zj-l)-n
1 1

. a-n(n - 1) S(Zj-l)a] , and the common factor a_n(n - 1! ea,

independent of j, has been deleted in the rule.

" e-(Zj-l)a

) U;(OQI)
C110. s(u) =
2 - u; (1,2)0
Rye Set u = rl + Tye
J. For the uniform densities pl(vl) z=1¢s pz(vz), v, on (0,1), it is obvious
geometrically that
u?/25 (0,1)
P{\J1 +v, Lu} = 2
1 -(1/2)(2 - w)7; (1,2).
Hence %;-P{vl + vz.g u} = g(u) as given, and the rule follows from C7.
Note. s8(u) is the density for the sum of two random numbers.
(See Fig. Cl110.).
e s(u)
1

Clll. t(X) = {

‘\\\\\\\\\\\ 1=-(u-1)

Fig. C110

4(x - a)/(c - a)%; (a,b)
(a + c)/2.

4(c - x)/(c - a)2; (b,c), a<ec, b

- Rx'
“ Jo

Set x = a + (1/2)(c ~ a)(r1 + r2).
Under the transformation x = a + (1/2)(c - a)u, one has t(x) dx = s(u) du
as in Cl110, and the rule follows from C2.

Cl12, t(x) =1 = |x|; (-1,1).

Rx.

Set x = r1 - r3.
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Je

Special case of Clll, with a = -1, b = 0, ¢ = 1, where one sets x

= -1+ (1/2)(2)(1'1 +ry)=-l+r +r,=1 - (1-r) =1 -1, -
Note. 1 - |x| is the density for the difference of two random numbers. .
a;(x); (a,b) <.
cL13. q(x) .{az(x); (b,c), a<b<c. -
b c )
Rye Define A1 -/ al(x) dx, A2 = faz(x) dx, where A1 + A2 =1, If T,
a

S-Al’ sample density al(x)/Al for x on (a,b). If r, > A sample
az(x)/A2 for x on (b,c).

J. This may be regarded as a special case of C3, where al(x), az(x) are
taken to be zero outside of (a,b) and of (b,c) respectively.
{h(x - a)/(b - a); (a,b)
Cll4, t(x) =
h(c - x)/(c = b); (b,c), a<b<ec, h= 2/(c - a).
Rx. Define A, = (b - a)/(c - a). For rg LA, set x=a
+ (b - a) max {rl,rz}. If T, > Al, set x = ¢ - (¢ = b) max {rl,rz}.
b
J. Following Cl113, we compute Al - f al(x) dx = (b - a)/(c - a) and A2
a
c
= / az(x) dx = (¢ - b)/(c - a). Hence al(x)/A1 = 2(x - a)/(b - a)2 and
b
az(x)/A2 = 2(c - x)/(c - b)z. For x=a + (b - a)u, and x = ¢
- (¢ = b)u, respectively, one has al(x) dx/Al = 2u du, and az(x) dx/A2
= 2u(-du) on (0,1). By C15 (with b = 1, m = 2), we see that the demsity
2u on (0,1) may be sampled by setting u = max {rl,rz}. Hence the rule
follows from C113, C2, and Cl5. See also RIS.
Note l. Using Cl6, we could replace max{rl,rz} above by r;/Z.
Note 2. Cl14 is the most general "triangular” demsity. For b
= (a + c)/2, the midpoint of (a,c), it reduces to Cl110, 111, or 112. :
Ase™; (—=,0) -
Cl15. q(x) -{ —bx -
Bbe ; (0,~), A,a,B,b > 0, A+B =1,

100



oy

3

Clleé.

> A, get x =~ b-lznr .

If r 1

If T, LA, set x = a_l,enr
Following Cl13, we find

1° 0

0 ©
Alszaeaxdx-A, AZE/Bbe-bxdx'B,
- 0

a,(®)/A, = ae™™; (~,0) a,(x)/A, = be °%; (0,%).

For x = -y, al(x) clx/Al = ae-ay(-dy) on (0,»)., The rule therefore
follows from Cl13, C29, and C2.

Note. q(x) is continuous at x = 0 iff Aa = Bb.

q(x) = ai(x); (xi,xi+1), i =0,1,2, ... (Composite density.)

J.

Cl17.

%+ -
Define Ai - / ai(x) dx, where E Ai = 1, Set K =min{ k;
0

%

k
EAi 2 ryle Sample density aK(x)/AK for x on (xK,xK+1).
0

Obvious application of C3, and generalization of Cl13.
2
ag(x) =px/a’; (0,a)

q(x) =
ai(x) = pqi-ll(l + ipla - px]/az; ({a,(1 + a), 1 = 1,2, ...

Je

a,p,q > 0, p+q=1.

Define AO =p/2, If PN SAO’ set x = ar:l/2 If r, > A, set K

1 ° 0 0
= min{k; (/2)[1+ (1 + @) +q +eee +05 D] 2205 k> 1. (See Note

2.) Set x = (a/p){l + Kp - [1 - (1 + Qdpr, 12,

a
Following C116, we compute A, -fao(x) dx = p/2, ao(x)/Ao = 2x/a2, and
0
(i+l)a
for i 2 1, Ai - f ai(x) dx = pqi-l(l +q)/2, a.i(x)/A1
ia
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X
= 2[(1 + ip)a - px]/az(l + q). If Ty SAO, we get r, = /ao(x) dx/A0
0

and find x = arilz. 1f T > AO’ we obtain K > 1 as in Cl116, and set r,
x

- f aK(x) dx/AK. Solving the latter by quadratic formula gives the x of
Ka

the above rule.

Note 1. The choice of sign in solving the quadratic referred to for x
= (a/p){(1 +Kp) - [1 - (1 + q)prlll/z} is in accordance with the fact
that r, = 0 gives x = Ka, while r, = 1 gives x = (K + 1)a, as required.
Note 2. For Ty > A,, the rule demands that K be the least k > 1 for

which (p/2)[1 + (1 + Q)1 +q + voe +q" D] 2 r. (The rule given in
the second Sampler is wrong!) This may be simplified to the condition
K K-1

¢ <21 ~ry)/(1+q)<q .

Note 3. q(x) is a continuous broken line, with corners at x = 0, a, 2a,

ese, and values ao(O) = 0, ao(a) = al(a) = p/a, and for 1 > 2, ai_l(ia)

- ai(ia) = pqi-lla. q(x) has maximum at x = a, and thereafter decreases
by a factor q at each step.

Note 4. Since the density aK(x)/A,K is linear, the method of Cl2 may be
used instead of Cl, which involves a square root.

C118. p(x) = C /(X + b + e X); (~=,®), = 2<b< 2, C=B L(nf2

-~ arctan(b/2B)), where B = (1 - (b2/4))1/2.
Ry. Set x = n{-(b/2) + B((b/2B) + tan(CBr;))/(1 - (b/2B)tan(CBr,))}.

Je For x = £ny, one sees that p(x) dx = C-1 dy/(y2 + by + 1)

= ¢ ag/i(y + /2))% +8%) = qy) dy on (0,»). By Cl, we set r

b4
-1 - +
- f q(y) dy = C lB 1{arct:an l(}b/2) = arctan bﬁ}, and solve for y
0

= ~-(b/2) + Btan{arctan(b/2B) + CBro}. Since tan(X + Y) = (tanX + tanY)/
(1 - tanX tanY), the rule follows.

Cl19, p(x) = C“I/(ex + e-x); (=»,®), C = %/2,
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2 2

Ry Set x = 4n tan((w/2)r0), or generate ;l’f" until S = fl + f'z £1, as in
Rl, and set x = zn(?:z/fl) - anZ - znf-l.
Je Special case b = 0 of Cl118,
Note. An equivalent form of Cl19 is p(x) = (1/x) sech x.
€120, p(x) = C /(X + 2 + e %); (=o,®); C = L.
Ry Set x = znro - gn(l - ro).
2 2
J. For x = %ny, we find p(x) dx = dy/(y + 2y + 1) = dy/(y + 1)” = q(y) dy
y
on (0,=). Bycl, we set z) = f a(y) &y =3/ +3), giving y
‘0
- rO/(l - ro). The rule follows.
Note. Othe; equivalent forms are p(x) = 1/ (ex/22+ e-x/2)2
= (1/4)sech®(x/2) = eX/(* + 12 = eF/1 + e"x)l.
Cl21, p(x) = C-l/(ex +b + e-x); (=,»), b > 2, C =D en((b/2) + D), where D
- (¥ - Y2,
Rxe Define 8 = (b/2) + D, d = (b/2) - D. Set x = 2n(E - 1) - gn(s - dE),
2r02.ns
where E = e N
Je For x = fny, one has p(x) dx = C"1 dy/(y2 +by +1) = C-l dy/((y
2 2 7
+ (b/2)) - D) = q(y) dy on (0,»). By Cl, we set r, -/q(y) dy
0
= (1/2CD)2n :—g:—:%-, and obtain y = (E - 1)/(s - dR), which yields the
rule. Note here that sd = (b2/4) - D2 = 1, and CD = g¢n((b/2) + D) = gns.
Cc122, q(y) = C-la/(b + 2 cosh aly - y3)); (==,®) a > 0, y, arbitrary, b > - 2.
Ry. Sample p(x) for x on (-»,») by C118, 119, 120, or 121 (depending on the
value of b). Set y = Yo + (x/a).
J. For y = Yo (x/a), one has q(y) dy = C-.1 dx/(ex +bte )= p(x) dx as
in the cited references. The rule follows from C2.
-1
€123, £(t) =C a/e{(t/e)® +b + (t/ty) 1, (0,®), a,ty > 0, b > - 2.
Rxe Sample p(x) for x on (~~,®) by Cl18, 119, 120, or 121 (depending on the

value of b). Set t = toeX/a.
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Cl24.

/o
0 -
the cited references. The rule follows from C2.

For t = t e~ , one has r(t) dt = C-'1 dx/(eX + b +e ) = p(x) dx as in

b .
q(y) = /dx £(x,y); (ec,d), £(x,y) density for a < x < b, ¢ <y < d. N

a

J.

Cl25.

d
Sample the marginal density p(x) -/ £(x,y) dy for x on (a,b).
c
For this x, sample the x-dependent y-density p(y|x) = £(x,y)/p(x) for y
on (c,d).
This is the continuous=-continuous case of D24, where explanations are

given.

2 2
q(y) = C_l(e-ay - e-by )/yz; (0,»), 0<a<b, C= 1r1/2(b1/2 - 31/2).

Je

104

Sample Tl-l/ze-n/ﬂ'l/:Z for n on (0,®) by C64. Set y = 711/2/[81/2
1/2 1/2
+ (b -a )ro].
-1 2
For the density f(x,y) = C ‘e = on (a,b) X (0,®), one has the

b b
2
y-marginal density fdx £f(x,y) = c"1 f dx e ¥ ¥ q(y) as given above.
a

a
©

Following Cl24, we compute the x-marginal density p(x) = f f(x,y) dy
0

0
2
= C 1 /e-xy dy = x l/2/2(1)1/2 - a1/2), where we have made the substi-
0

1/2, 1/2

/x

1/2,.1/2 -'xyz
= £(x,y)/p(x) = (2/v""“)x"' “e o By Cl24, we may sample p(x) for x on
(a,b), and, for this x, sample p(y|x) for y on (0,%). For the first, we

tution y = n o Hence the x—-dependent y-density p(y lx)

1/2 1/2 2 -

12 L w2 _ g )%

x

1

set r, -fp(x) dx by Cl, obtaining x = [a
a

1/2 -
Moreover, for y = n / /x1 , one has p(ylx) =7

we sample rl-.llze-n/ﬂ’]'/2 for n on (0,») by C64, and set y = n
V2 _ 1/2

- nl20% 4

/2 1/2 /2

- 1

en dn/® " . Hence

1/2, 1/2
/x

)rol, as in the rule.



C126.

1/2 _ 52

1 /‘ ax e = 2/2 o~(1/2) (xy/N

(y) =
wy 2 O-D7Z T2 o

J.

Cl27.

(—w,»), & arbitrary, N ¢ {1,2,3, eeelte
Sample E(N/z)-l -E/r(N/Z) for £ on (0,») by C45 or C64. Set x

- (25)1/ . Sample e / 1/2 for n on (—»,») by C59 or Rl1l, and set
y = @Y% + o'/ ?x.
For the function f(x,y) above, of which q(y) is the y-marginal density,

one finds p(x) = ff(x,y) dy =

-00

1 xNe-x2/2
2112003 1/200/2)

. f e_(1/2)<N—37 - 5>2 dy. For the substitution n -(;% - 6)/21/2.

-0

21/2 1/2 _n2 21/2N1/2
this integral becomes s f e dn = —

)

e 2+ 1/2 « T(1/2)

1/2.1/2 1/2 2
2N '"n 1 N-1 —x"/2
= « Hence p(x) = = X ‘e
x 2(N/2) II‘(N/Z)

o (1/2)(xy/N

on (0,«), and

1/2 _ .2

1/2 for y on

8)

p(y'x) = £(x,y)/p(x) = (1/(2xN)""“)x «

(~~,®). Thus, we may sample p(x) for x on (0,»), and for this x, sample

p(y|x) for y on (=»,»), Now for £ = x2/2 we have, for £ on (0,x),
(N/2) -1 -E 1/2

p(x) dx =

d&/T(N/2), and for n = —T)Lz- §)/27° ", one finds
N

1/2

that p(ny) dy =e " dn/n'%, with n on (-w,®), Hence the rule follows

from C2.

q(y) .fdx x(n-4)/2e-x/2]:[ exp{-(y = (pKx/H)) /2K (1 -p )x}
[25K2(1 - 02)11/2(282) (@D 2 - 1y/2)

(-co co)’

ne {56,7, ..}, H,K > 0, 'p’ < 1.
Sample g(n-3)/2 'F'/r((n = 1)/2) for £ on (0,») by C45 or Cb64. Set x

- 252 E. Sample e / 1/2 for n on (-»,®) by C59 or Rll. Set y = (pKx)/H
+al2a - pHx 2,
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C128.

For the function f£(x,y) above, of which q(y) is the y-marginal density

p _ 2 (n-1)/2
one finds p(x) -/f(x,y) dy = x(n 3)/2e-x/2H /(2H2)

r((n - 1)/2)

x-1/2

on (0,*), and p(ylx) = 77 ° exp{~(y - (DKx/H))2/2K2(1

IZIK?(I - 92)1
- pz)x} for y on (=»,®), But for x = 2H2£, one has p(x) dx
= 5(n-3)/2e-!;'. d&/T((n - 1)/2) on (0,*), and for y = (pKx)/H
2

/2

n dn/w1

+ n[2K2(1 - pz)x]]'/z, one sees that p(y|x) dy = e
The rule then follows from C2.

a3 = ¢ ™ - ey /s (0,%), 0<a<b, C= 2albla).

on (_m’oo)

Je.

Cl129.

Generate r,r' and set y = - (znr')/aecr.

For the density f(x,y) = C-le-xy, a<{x<b, 0 <y < » one sees that the
b

y-marginal demsity is /dx cle™ - C-l(e-a'y - e-by)/y = q(y) as given.
a

- -]
Following Cl124, we find the x—marginal density to be p(x) = f [ C-l

0

. e-xy] dy = C-.lx'-1 on (a,b), while p(y|x) = £(x,y)/p(x) = ze O for y on
(0,»).- Hence, we sample p(x) for x on (a,b), setting x = aecr as in C18,
and for this x, sample p(y|x) for y on (0,®), setting y = - x-lznr' as in
C29. The rule follows. Note that the value of C is implied by the

b
equation 1 = f p(x) dx.

a

o .1/ 1/!9
q(y) =¢ l(e ay gy ) Mn 0wy, 0<ach, n>0, ntl,C

106

=T+ DG - 2™/ - o).
If n<1l, set x = (a]'-'1 + (bl_n - al-n)ro)l/(l-n), if n > 1, set x

ro)ll(l-n). (Note that the formulas for x are

(al-n _ (al-n - bl-n)

identical.) Sample nn-ledn/I‘(n) for n on (0,%) by C45, C64, or R27. Set
y = (/2"



1/n
Jo The density £(x,y) =C le-xy s a<x<Db, 0 <y <o, has y-marginal
L 9 b . 1/n
" densityfdxc e O
»
- a

= q(y) as given.

Following Cl124, we find p(x)

_ 1/n

-f 1=y dy = I'(a + 1)/cz™ on (a,b), so p(y|x) = £(x,y)/p(x)
0

1/n

- xle ™™ I'(n + 1) on (0,).
- - n)x(l-n)-l/(bl-n -
a-l

Moreover, one sees that p(x)
b

al.n), and for y = (n/x)n, one has p(y|x) dy
dn/r'(n), and the rule follows from Cl6, 21, 2.
-fp(x) dx -C-ll‘(n + 1) o b

Note that 1
-n+1 ~-n+l

-~ a
a

— determines C.
y
Cc130,

q(y) -/dx f(x,y); (a,b), £(x,y) density for x,y on region R bounded by
a
lines x =a, y =b, x =y. (a < b). See Fig. C130.
b
Ry.

X

Define p(x) -/ f(x,y) dy for each x on (a,b). Sample demsity p(x)
for x on (a,b).

For this x, sample density p(y|x) = £(x,y)/p(x),
x <y <b, for y on (x,b).
Je.

This is an obvious modification of Cl24,
Note.

For (a,b) = (-»,®), R is the region above the line y = x.
y

,, e

Fig. C130.
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1/25

2
p /2

Ci31l. s(w) = (1/2)(g(w) + g(-w)), (~=,»), g(z) density on (-=,*),
Rye Sample g(z) for z on (-w,»). Set w = t z with probability 1/2.
Je According to the rule the probability of w on (w,w + dw) is
(1/2)g(w) dw + (1/2)g(-w) dw.
2
c132. s(w) = (p/2)e® 2(aw = p)e™¥ + 8(-w = p)eP*}; (-, %), b > 0, B(y)
Y2
= (1/2‘H)1/2f e X /2 dx.
£/ 1/2
Rxe Sample e ]ﬁl for £ on (-»,») by C59 or Rll. Set z = 2
- p-lznr, and w = + z with probability 1/2.
Je By Cl131, it suffices to sample the density g(z) = pe

108

#(z - ple °2 for
z on (—=,®), and set w = * z as stated. But for z = p + y, one has

2
g(z) dz = pe P /ZO(y)e Py dy q(y) dy, so we may sample q(y) for y on

(-»,») and set z = p + y. We now write q(y) explicitly as q(y) = J(.dx

2 2
. pe? /23-x /Ze-py/(zw)I/Z

» and follow C130, i.e., we consider the

-02/2_ =12 -0y,., \1/2
density £(x,y) = pe e e 7/(2x) for all points (x,y) above

y
the line y = x. The y-marginal density of f(x,y) is then fdx £(x,y)

= q(y) on (-—»,») as above. Moreover, the x-marginal demsity is p(x)

2, 2 2
- ff(x,y) dy = e 12X 127P%) gy /2 L =02 (5 12 (e .
X

Hence, p(y'x) = £(x,y)/p(x) = pe-p(y-x) for x <y < » By Cl30, we may

sample p(x) for x on (—~,»), and for this x, sample p(ylx) for v > x.

Now for x = - p + 21/25, we have p(x) dx = eFE dE/nI/Z, with £ on (-»,»)

as in C59, Rll., Finally, for y = x + p ln, we find that p(y'x) dy
dn, with n on (0,%), as in C29, with the rule n = - fnr. Collect-

ing these results, we set z = p +y = p + (x + o n) =p + (~p + 21/25)



)

W e

2
+ p-ln = 21/25 - p-lznr, where § 1is obtained on (-»,») from e-'E /1r1/2 by

C59 or R1l. The rule follows.

2 u- u=-g
(c/)"/2 - - -
C133. t(u) = & % L&o‘-%% ¢ +4—l?5-9e¢};&%ﬂ,m

J.

C134.

Vo2
¢ > 0, ¢ arbitrary, ¢(y) = (1/21:)1/2 [e-x /2 dx.

-C0

Sample s(w) for w on (—»,») ag in Cl132, with ¢ = 0/¢. Set u =g + ow.
The rule follows from C2, since for the substitution u = { + ow, one has
t(u) du = s(w) dw as in C132,

y
a(y) = c'le""/'x“'1 dx/(3 - x)% (0,%), 0<n <1, C = (@)l - n)
0

J.

Cl135.

= x/8in nnv. (See F4B.)
Sample xn-le—x/r(n) and n(l-n)-ledn/r(l - n) for x and n on (0,») by
C64 or R27, Set y =x + n.

For the density f(x,y) = C-le-yxn-

1

/(y - x)" on the first quadrant above
y

the line y = x, one has the y-marginal dens:ltyf dx £(x,y) = q(y) as
0

given. Following Cl130, we compute the x-marginal demsity p(x)
-] o0 €0
-1 n-1 -1 n-1 -
-f f(x,y) dy = C x ./'e-y dy/(y - x)n =C x fn-ne (xtn) dn
X x 0

= C-lxn-le-xl‘(l -n) = xn-'le_x/l‘(n), and the x-dependent y-density p(y|x)

= f(x,y)/p(x) = (y - x)-ne-(y-x)/l‘(l - n)s By C130, we may sample p(x)
for x, as in the rule, and for this x, sample p(y|x) for y > x. But
for y = x + n, one has p(y|x) dy = n-ne-n dn/r(l1 = n) on (0,%), and the
rule follows from C2,
b
q(y) -fdx f(x,y); (a,b), £(x,y) density on region R bounded by lines
Y

Xx=b, y=a, y=x(a <bl). See Fig. C135,
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X

Rys Define xmarginal demsity p(x) = ff(x,y) dy, for each x on (a,b).
a
Sample p(x) for x on (a,b). For this x, sample the x—dependent y-density
P(Y'x) = £(x,y)/p(x) for y on (a,x).
Je Obvious variant of Cl130.
Note. For a = 0, the region R is that bounded by the x-axis, the
vertical x = b, and the line y = x.
y
b
a
0 a b X
Figo C135.
b
cl136. q(y) -/dx t(x)/t:l; (0,b), t(x) density on (0,b) with first moment t
Y
b
-fxt(x) dx.
0
Ry. Sample the density p(x) = xt:(x)/t:1 for x on (0,b). Set y = XX e
J. This is a corollary of Cl35 (with a = 0). For the region R bounded by

110

the x—axis, the vertical x = b, and the line y = x, the density f(x,y)
t:(x)/t:l has y-marginal density q(y) as given, x-marginal density p(x)

X X

- ff(x,y) dy = (t(x)/tl) /dy = xt(x)/t:l, and x-dependent y—-density
0 0

p(ylx) = £(x,y)/p(x) = 1/x (independent of y!) Thus we sample p(x)
- xt:(x)/t:1 for x on (0,b), and for this x, sample p(y|x) = 1/x for y on

4

'y .



y

(0,x). But for the latter, Cl sets T, -‘J(.dy/x = y/x, giving y = Xr,
0
- and the rule follows.
K Note 1. To sample the "tail-end” density
N b
B q(y) -/dx t(x)/t;
y
of a density t(x) on (0,b), it suffices to be able to sample its "first
moment” density p(x) = xt(x)/t1 on (0,b).
Note 2. The "tail-end" density of t(x), which is really its (upper)
distribution function normed by tl’ is not to be confused with its
"residual” density t(x)/Ta on a fixed terminal interval (a,b), where
b
Ta - J/.t(x) dx, examples of which are given in C106, 107, 108,
a
o
C137. q(y) = f ax 3% " 13X 0 + 1); (0,%), B, n > O.
Y
Rge Sample Ene-g/r(n + 1) for £ on (0,*) by C45, C64, or R27. Set y
= r,(&/B).
J. This is an application of C136 to the demsity t(x) = ann_le-Bx/P(n) on
(0,»), with first moment
o ®
£, = f B 2% 4x/T'(n) = f (Bx)"e °* d(Bx)/BT(n)
0 0
o
= I'(n + 1)/BI'(n) = n/B. For, ft(x) dx/t:1
y
- = (B/n) /ann—le-Bx dx/T(n) = q(y) as given.
g y
» Following C136, we find that p(x) dx = xt(x) dx/t1 = p7Hin, Bx dx/T'(n

+1) = (Bx)%e F d(Bx)/T(n + 1) = % © d&/T(n + 1), for x = E/B. The

rule follows from C136.
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n—-1

C138. q(y) = (B/nde 7 Z (By)’/v1; (0,%), B> 0, n e {1,2, «00le
0
nt+l
Rye Sety = -(rO/B) £n n T
1
Je. This is the special case of Cl37 for n integral. For, using F3A, we see
o
that q(y) -f dx Bn+1xn -1 -Bx/I‘(n + 1) = (B/n) /d (Bx)(Bx)n 1 .Bx/I‘(n)
y y
n-1
= (B/n) fd-‘; £ e 1 E/(n - 1! =(B/n) e yz (By) /vl = q(y) as above.
By
The rule therefore follows from Cl37, since sampling Ene-g/n! by C45
n+l
gives &--znnri.
1
c139, ¢(3) = (@ + DG - y™)/w™ 5 (0,b), m,b > 0.
Rys Sample (m + I)xm/bm""1 for x on (0,b) by Cl5 or Cl6. Set y = Xrg.
J. The rule is an application of C136 to the density t(x) = mxm.llbm on
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(0,b), with t, -f xt(x) dx = wb/(m + 1). In fact, / dx t:(x)/t:1

= (@ + 1" fx“"l dx = (@ + 1)/mb™ )™ = ™) = q(y) as given.
y

Moreover, p(x) = xt:(x)/t1 = (m + l)xm/bm+1. The rule then follows from
Cl36.

Note. Direct sampling by Cl leads to the equation ym-"1 - (m + l)bmy
mil
= mb r, = 0.
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l";

b

C140. q(y) -/dx p(x) fx(y); (c,d), p(x) density on (a,b), fx(y) continuous

a

y~density on (c,d) for each value of parameter x on (a,b).

Ryxe Sample p(x) for x on (a,b). For this x, sample density fx(y) for y on

(c,d)e.
Je The function f£(x,y) = p(x)fx(y) is a density for x,y, since

b d b d b

/ff(x,y) dx dy -fdx p(x) ffx(y) dy -fdx p(x) = 1.

a ¢ a c a

d
Moreover, the x-marginal demsity of this f£(x,y) is f £(x,y) dy
c
d
-fp(x)fx(y) dy = p(x) itself, and p(y|x) = £(x,y)/p(x) = fx(y).
c
Hence, Cl40 may be regarded as a corollary of Cl24.
1 2
Cl4l, q(y) = (m/(21rb)1/2) /dx xm_(3/2)e-y /be; (=2,®), m,b > 0.
0 .

Rx» Sample the dens;.ty p(x) = 2™ ! for x on (0,1) by C15 or Cl6. Sample

the density e-v/nl'/2 for v on (-»,=) by C59 or Rl11. Set y = v(2bx)1/2.
J. We define f(x,y) = (mxm-l)(e-y /be/(Z'rrbx)I/Z) for 0<x<1, —»<y

< @, This is of the form p(x)fx(y) as in Cl40, so we sample p(x) for x

on (0,1), and for this x, sample fx(y) for y on (=»,»), But for y

- v(2bx)1/2, one has £ (y) dy = e-vzdv/'lrll2 on (-»,®), and the rule

follows from Cl140 and ’éz.
cl42. q(y) = {(1 +ay)e™ - (1 + by)e /5% - a); (0,%), 0 < a < b
Rze Sety =- ,Q,nrz/[a + (b -~ a)rll.
J. For the uniform density p(x) = 1/(b - a) on (a,b), and the x~dependent

-xy

y—density fx(y) = xe on (0,), defined for each x on (a,b), we find
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b b by
that fdx p(x)E_(y) = (b - a)-1 fdx xe X = (b - a)-l}'_2 / "‘;'e_E dg
a a ay

= q(y) as given. Hence, following C140, we sample p(x) = 1/(b - a) for x
=a+ (b~ a)rl, as in Cl1, and for tt_lis_ X, sample fx(y) = xe J for y

= - x-lznrz, by C29. The rule follows.

Note. q(y) > 0, since £(z) = (1 + z)e - 1is decreasing. In fact, £'(z)
=e Z-(l+2z)e > ==-2ze2<0. q(y) > 0 also follows from the integra-

b
tion q(y) = (b - a)-1 f dx xe .
a

C143. q(x) = k(ﬂ)pk-l(x)p(x)[l - B V5 (a,b), p(x) demsity on (a,b), B(x)

x
-fp(x) dx; ke {1, ..., N}.
a
Rx. Sample p(x) independently N times for_:.xl, cees Xye Order these x, as
xiixéi...iﬁ;. Setx-xl;.
Je q(x) is the density for xl'(, the k-th largest component of the vector
(xl, coes xN), the X, being independent, each with density p(x). For,

b4
the corresponding distribution function Q(x) = / q(x) dx = P{x1'c £ x} is
a
the probability that at least k of the x, are { x. Hence Q(x)

- (z)Pk(x)ll O (k y ‘)Pkﬂ(x)[l o 102) B (N N 1)

« @ - B +(§)r“(x), and one finds that q(x) = Q'(x)

z)kPk-l(x)p(x)[l - P(x)IN-k. (The derivative sum telescopes, leaving
only the first term.)
Note. In densities of this form, the above rule is feasible for
moderate N, and may compare favorably with more direct methods.
Cléb. A. q(x) = Np(x)[1 - P(x)]N-l; (a,b),
B. q(x) = NB" '(x)p(x); (a,b),
Coq(x = ((2M + DIMMDPE [P = BT (a,b).
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X

- In A,B,C, p(x) is a density on (a,b), and P(x) = fp(x) dx.
r a
' Rx. Sample p(x) for Xy eees Xy, Where N = 2M + 1 in case C. For A, set x

. - min{xi}; for B, set x = max{xi}; for C, where N = 2M + 1 is odd, order

' ' - ! '
- the Xps ooy £ eee £x and set x Xl (the middle xi).

o+l 22 %) M+1

Je One sees from Cl43 that the above densities are respectively those for
the least (k = 1), the greatest (k = N), and for N = 24 + 1, the middle
(k =M + 1) component in size in the sequence of X,

c145. q(x) = k(ﬂ)(z -6 - 00 - oY (a,m), ke U, ..., WL

.

* [ - - '
Byl. Generate r;, «se, Tye Order as rj < ..o {rye Set x =a+ (b - a)ry.

N
Jl. For the uniform density p(x) = 1/(b - a) on (a,b), one has P(x)
x
= fp(x) dx = (x -~ a)/(b - a), and 1 -~ P(x) = (b - x)/(b - a). Substi-
a

tution in Cl143 gives the above q(x). Hence we should sample p(x) for X,
=a+ (b - a)rl, cosy X ™ a + (b - a)rN, where the order of the x, is
that of the corresponding r g The rule follows.

Rxe Definem =%k, n =N -k + 1, and sample the density (x - a,)m-1

e (b ~ x)n-ll(b - a)m-lB(m,n) for x on (a,b) as in C76.
J2. This is gn obvious alternative.
Cl46. q(x) = k@x“’lu -0%%; 0,1), ke {1, ..., N

Rx. Generate r;, .., Ty. Order as rj < ... {ry. Set x = 1.
Jl. Case a =0, b = 1 of Cl145.
1

Rxe Definem =k, n=N -k + 1. Sample density (L - x)n-l/B(m,n) for
x on (0,1) by C75.
J2. An obvious alternative.

Note 1. The method of R,1 provides a useful test for the randomness of
machine generated "random numbers.”

Note 2, For k = N, the rule R;l samples q(x) = NxN-l for x on (0,1) by
gsetting x = max{rl, cons rN}. The direct method of Cl would set x

= - r:)/u. See Cl15,16.
N

Cl47. q(x) = k(Je-x exp(-kedx)[l - exp(-edx)]N-k; (=»,»), k € {1, cees N}.
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Generate r), .., Tye Order as ti L ooe <_rl". Set x = -2n(-2nrl':).

Je. For the density p(x) = exp(~—x - e-x) on (—»,») of C43, one has P(x)
x
= J(.p(x) dx = exp(-e-x). (Let x = -£n&.) Substitution in Cl43 gives
e
the above q(x). To sample p(x), we set x = —%n(~%nr) as in C43. Since
the function - n(-f%nr) is increasing, the rule follows.
Note. For k = N, q(x) dx = Ne © exp(—Ne-x) dx = Ne_Nn(-dn) = e-c(-d?.')
under the substitutions x = —fnn, n = /N, By C2 and C29, we could set
X = -zn(-N-lznro).
C148. q(x) = k(g)e—(N-kﬂ)x/(l + e (@), ke (1, ..., W
Rxl. Generate Tys eeey Tye Order as ri_ﬁ voe S.r&. Set x
- zn(ré/(l - ré)).
Jl. PFor the density p(x) = e Z/(1 + e-x)2 on (=»,») of C120, one has P(x)
x
- J,.p(x) dx = 1/(1 + e ). Substitution in C143 gives the above q(x).
The rule then follows from C120, since the function n(r/(1l - r))
= .Q.n(l/(r-1 - 1)) is increasing.
Rzx2. Definem=N-k+ 1, n=k, p =0 =1, Sample e /(1 + e-x)m+nB(m,n)
for x as in C79.
J2. An obvious alternative.
N x -0 k-1 x -6 Nk
k(k)[(I/Z) + (1/n)arctan< Y )] [(1/2) - (l/ﬂ)arctan( X )] H
Cl49, q(x) = —. =
mf1 + (&)2
A
(=»,©), A > 0, 0 arbitrary, k € {1, ..., N}.
Ry. Sample the density p(x) of C99 for X5 sees Ko Order as xi_ﬁ cee
5.x§. Set x = xé
X
Je For p(x) = 1/nA[l + ((x - 6)/1)2] in C99, one has P(x) H‘J(.p(x) dx
oo
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= (1/2) + (1/%) arctan ((x - 0)/X). Substitution in Cl43 gives the above
q(x). The rule follows from Cl43.

1

1
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q(,

C150.

Note. If Rzl of C99 is used, one may generate Tys sees Ty order as

ri < vee £ rN, and set x = 6 + A tan(Zr - 1)(n/2).

blk-1
q(x) = k(:)abxb-le-ax (N-kﬂ)[l - e-ax] ;s (0,»), a,b > 0,

k e {1, ceey N}o

Ry Generate Tys sy Tye Order as ri pd ré 2 eee 2 r;‘ (Sic!). Set x

= exp[b-lln(-a-lznrl;)].

b
J. For the Weibull density p(x) = abx? 178X on (0,2) in C38, one has
p b
P(x) = f p(x) dx = 1 - ¢ 2* , and substitution in Cl143 gives the above
0
q(x). The rule follows from C38, since the function x
= exp[b-lzn(-a-lznr)] is decreasing, with
L L 1
rl Z.ooo z.rk 2.000 Z.rN
] ) ]

corresponding to x; £ oo S_xks_ eoe £ Xye
C151. q(x) = k(:)(l - e’x)k'le'(N‘k“)x; (0,9, k € {1, ..., N}.
Rxl. Generate Ty, ees, Tye Order as rj > ..o > Iye Set x = - lnrl'c.
Jl. Case a = b = 1 of C150.
Rx2, Deffnem=N-k + 1, n=k, p =0 =1, Sample the density e(x) for x

on (0,*) by C80.
J2. Obvious 1 ernative.

k-1 n- 1 -x
C152. q(x) = ki (I' (m))" “Ix /T(n)][1 -T (n)] 3 (0,2), n > 0, I'x(n)
X
= fxn 1 xdx/I‘(n) ke {l, ¢eo, N}.
0

Rys Sample density p(x) = 1 e */r(n) N times for X5 eee, X oM (0,») by

4 64 L] ' LN X J L = '.

C45, C64, or R27 Orderasxlﬁ_ ixN Set x xk

x
J. Since p(x) has the distribution function P(x) = f xn-le-x dx/T'(n)
0

= I'x(n) as defined, substitution in Cl143 gives the above q(x), and the
rule follows from Cl143.
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X

Note. For an integer n = 1,2,3, ..., one has I'x(n) --‘/‘xn.-le“x dx/(n
0
© n-1
-1 =1 -/xn-le-x dx/(a - 1)1 =1 - e"‘z x /vl from F3A.
X 0
c153. q@ = () @m@m 0 - @™, 6,9, ne > o,
ke {1, ooy, N}¢
Rxe Sample the density anx-m-l for X5 eses Xy OM (B,») by C20 or C21.
Order as xi £ eee le'q. Set x = xl".
x
J. For the density p(x) = nﬂmx-m—l, one has P(x) -fp(x) dx =1 - (B/x)m,
8
and substitution in Cl143 gives the above q(x). The rule therefore
follows from Cl43.
Note. If the formula x = B/rl/ln of C2l1 is used to sample p(x), one may
generate T, sees Ty order as ri 2 eee 2 rr", and set x = 8/(1'1'() "
c156, p(e) = /20 %32 expiaace = w/2u%ed; 0,9, Au > 0,
Ry Define ¢ = A/2u, and sample q(x) for x as in R25. Set t = px.
Je For t = ux, and ¢ = A/2u, one sees that p(t) dt = q(x) dx, where q(x) is
Wald's density in R25,
1/2, =3/2 2
C155. p(t) = (d/(2w8) " )t exp{-(d - vt) /28t}; (0,«), B,d,v > O.
(Brownian motion.)
Rye Sample p(t) for t as in Cl54, with the parameter values )\ = dZ/B,u
= d/v.
Jeo Under this identification of parameters, C155 is a case of Cl54.
Cl56, £(x,y) = C-lxm-lyn_ll?(x + y); Region: {(x,y); x,y > 0, x+y < a}, a
a
fixed, 0 < a {», myn > 0, C =A + B(m,n), where A = /um-l F(u) du.
0
Rxe Sample density A-lum-lF(u) for u on (0,a). Sample density vm-l(l
- v)n-I/B(m,n) for v on (0,1) by C75 or R28, Set x =uv, y = u(l = v).
J. Since the Jacobian of the preceding transformation is -u, one has
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f(x,y) dx &y = A-lum-ll?(u) du B-l(m,n)vm-l(l - v)n--1 dv on (0,a)

t.‘
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X (0,1), and the rule follows from C2.
Note l. The inverse of the transformation, u =x +y, v = x/(x + y),

shows that the (x,y) region is mapped into the rectangular (u,v) region
(0,a) X (0,1), downward diagonals going into upward verticals.

- Note 2. For the function F(z) = e ” and a = o, gee C75.
] C157. £(x,3) = ¢ ™ 5% /(1 - x - )7, Reglom: {(x,5), %,y > 0, x +y < 13,
m>0, 0<n< 1, C=1x/m sin nr.
- - -1
Ryx. Sample um*n 1(1 - u)(l-n) 1/B(m +n, 1 -n), and vm-l(l - " /B(m,n)
for u,v on (0,1) by C75 or R28., Set x =uv, y = u(l - v).
J. Case a = 1, F(z) = 1/(1 - z)" of Cl156.
1
Note. A -/ um-l(l -u) " du = B(a + n,1 - n),
0
- - I'(m + n)I'(1 = n) TI'(m)l(n) - _ -
= AB(m,n) Tm + D T(a ¥ 1) F(n)F(1 - n)/m = w/a sin nn.
See F4B.,
x - u - H
c158. p(x,,x,) = (2wo 0,R) e-Q/ZR Q= 1 2
1°72 172
Xy = Wy 2
+ ——;;——— 3 X;5X%, on (—2,»), 0150, > 0, Hysky arbitrary, R" = 1 - p .
Ipl <1
2/ 172
Ryx. Sample e [n for Yys¥, On (—»,®) by C59 or Rll. Set
1/2
x =+ 2 ol(Ry1 + pyz),
1/2
xz = uz + 2 0‘2y2.
Je Under the preceding transformation, with Jacobian 20102R one finds that
-1 -(71 + 72)
p(xl,xz) dx1 dx2 - (ZwolozR) e (20102R) dy1 dy2
2 2
- 4 - -y
n 1/ze 1 dy1 LR ] 1/ze 2 dyz, and the rule follows from C2.
2
-1 2R 2 2 2
: C159. p(xl,xz) = (27R) e—Q/ » Q= x] - prlx2 + x5, X,,%, on (=»,2), R
- 2
: =1 -p°, |p| < 1.
Rge Set x = 21/2(Ry1 + pyz), x, = 21/2y2.
Je

Case My =, = 0, 01 - 02 = ] of C158,
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C160. p(xl, ey, xn) = C-le_Q, Q = inaijxj; xj on (-“,“)’ j - 1, eeey 10,

nxn matrix A = [a, ] symmetric, positive definite.

1]
T ~y%/ 1/2
Ry Construct nxn matrix S such that S'AS = I. (See Note.) Sample e //n

independently n times for Yy» o5 ¥, oOR (-»,®) by C59 or Rll. Define
X,, eeey, X by the linear transformation
1 n

4!
X = E = SY,.
Tn
Jo In column vector notation, we have the transformation X = SY, and hence

Q= XTAX - (SY)TA(SY) - YT(STAS)Y - YTIY = YTY, if.e., Q 'Z xiaijxj

= yi. The Jacobian of the transformation being det S, we see that

p(xl, coey xn) dx1 ces dxn = C-1 exp -(E yi) . 'det S'

i -y
-n/2 1 1/2
* dyl eeoe dy s =T / e dyl eee dy -(e dy1/|'r / ) e

n

2
-y -
(; n dyn/NI/%), where C 1 |det Sl - u-n/2 necessarily. The rule then

follows from C2.

Note. The matrix S may be obtained by the Gram—Schmidt process [17].
Without going into its machinery, we remark here that it is a definite
algorithm for constructing, from any n linearly independent vectors, an
equivalent set (spanning the same space) which are orthonormal with
respect to an arbitrary given inner product. If we define in E® the
inner product (X,Y) = XTAY, then the Gram-Schmidt algorithm, applied to

the linearly independent "l-gpot™ vectors 61, ceey Gn, produces a set of
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clél.

vectors Sl, coey Sn which are orthonormal with respect to this inmer
product (X,Y), and we need only define the matrix S as S = [Sl, eeey Sn]
with the vectors Si as its columns. For then S = [Sl, ceey Sn] =T .

[Sl, seey Sn] = [61, XX NS Gn][Sl’ ssey Sn], and hence 61j = (Si,sj)

E SyBkyo Z S48 44 Z 81 (Sio89)8gy = gskiakzszj’ or in

matrix form, I = STAS.
P(a',a); Compton scattering, Klein-Nishina cross section.

The following 1s a complete procedure for obtaining, from an arbitrary
incident photon energy a = E(MeV)/.511 2 .002, the value of the scattered
photon energy E' = ,511 a' MeV, where a' = ax, and the resulting deflec-
tion cosine y = cos 6 =1 + (1/a) - (1/a'). Set a, = 202,

1, n=1+ 2a

2. g = 1/n

3. N = %nn

4, a2a0+(5),a<a

0

0 b d (11)0

5. T=1~ &'2

6. Gl =N+ (T/2)

7. Generate r,r'

8. Gr' <N»(9), 6r' >N+ (10).
9., x = exp(-Nr), EXIT.

10. x =@ - 02, Exir.

11. B8 =1/a

12. ¢ = ¢(a). See TABLE.

13. x0-€+(1-§)¢

14, M = #nx

0
16, 2 - llx
17. 3 =] - 28(1 + 8) 2
18, Fo =K {(1/2)(A +x) +8 (n +K) - MK}

19. G = 2a(l + a)Ez + 48 + NK3
20, JO = FO/G
21, Generate r.
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J.

122

22.
23.

24,
25,
26.
27.
28,
29.
30.

The tabulated 'e' is the maximum relative error in x on the corresponding

r<J) > (23), £y I, (29,
R = r/J0

f
A

2
- - FO/Z
B = FO + (Fo/fo) - 3K1.
C. = Ao - (Fo/fo) + ZKI
x = 1 +R{A) + R(B; + RC)}, EXIT
Ao =M+ N/ - Jo)
x = x exp{-Ao(r - Jo)}, EXIT

QO O © O

TABLE I
002 <o < 4962 ¢ = 425
962 < a < 1,642 ¢ = .20

1.642 < a < 2,002 ¢ = .17

2,002 < a < 10 ¢ = .15

10 < a < 52 ¢ = .25
52 < a < 202 ¢ = .25

range.

The rule is based on an accurate fit for the inverse of the Klein-Nishina

distribution. This is cited in [15] and is

For details see [11,16,14].

an improvement on the method used in the earlier version [10].

€

€

.0211
.0218
.0218
.0213
0177
.0194

L’

l‘( ’



Rl.

R3.

R4.

R5.

R6.

R7.

R8.

RY.

R10.

R1ll.

R12.

R13.

R14.
R15.
R16.
R17.

R18.

R19.

R-INDEX

Rejection Techniques

cos 6, sin O, tan O ;
p(8) = 2/%; (0,7/2) .
cos 6, sin 6, tan O ;
p(0) = 1/%x; (=x/2,7/2) .
cos ¢, sin ¢ ;

p(¢) = 1/2m; (0,2m) .
(az _ y2)1/2 .

Q= (wl,wz,w3) .

Q= (wl, coes wN) .

p, (x){B, (1(x)) - B,((g(x))} .

2
e /2 (0,0 .

2
eV 12 (wo,@) .

2
P ;s (0,%) .

e "3 (=,») ,

e 8% g1on (b2) /2 .
pl(x)h(x) .

b - &) lpx)/p .
Fle(x)
K~-B cosz¢ .

K - SZ(Q cos 2¢ + U sin 2¢) .

h(x - a)/(b - a)
h(e - x)/(e = b) .

sinzx/x2 R

Uniform direction, quadrant I.

Uniform direction, quadrants I, IV,

Uniform direction in plane, point on

unit circle.

Sampling torus, uniform in volume.

Uniform direction in 3-space, point on

unit sphere.

Uniform directfon in N-space, point
unit sphere 'Q =],

Density x distribution.

Half normal.
Normal.
Half Gaussian.

Gaussian.

Fission energy spectrum, Watt
spectrum.

Density x bounded function.
Uniform x bounded density.
Uniform x bounded function.
Polarized Compton Scattering.
Polarized Compton Scattering.

General triangular.

Quasi-periodic.

on
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R20. E ajpj(x)hj(x) . Sum of products, Butcher.
‘.h':
R21. vn-I/(Aflev +1) . NR non—-degenerate electron gas energy. .
R22, y1/2/(ey-n +1) . Fermi-Dirac. )
e 2,441/2
R23., x" 1e 5(="41) * R extreme non-degenerate electron gas
momentum, Maxwell-Juttner.
9 1/2
R24. xn'-]/(A-'lea(x +1) + 1). R non-degenerate electron gas
momentum,
-3/2 2
R25. X exp{-tb(x - 1) /X} . Wald. [22, V-z; Pe 138]
R26. (1 - Rz)(T-l)/z/(l + p2 Leipnik, circular correlation.
_ ZpR)'13/2 . {22, v.3; p. 240]
R27. = e ®, m>0. General T~type. [22, v.3; p. 39]
R28. vm-l(l - v)n-'1 , General B-type. [22, v.3; p. 39]
zm.—ll(1 + z)1n+n ,
sinzm-le coszn-1 6; myn > 0 .
2m-1 -22
R29., 2z e ,m>0., General Gauss type.
R30. P(a'/a,8) . Polarized Klein-Nishina.
Rejection Techniques
Note. 1In all cases, the process is iterated until the stated condition
for acceptance is satisfied.
Rl. cos 9, sin 6, tan 6, for p(8) = 2/x; (0,7/2).
Ryo If § = i“i + f‘i L1, set cos 6 = 2'1/81/2, sin ¢ = 32/81/2, tan 6
- r2/rl.
J. The accepted points (rl,rz) constitute a sampling of the unit disk in the
first quadrant which is uniform in area. The angles 0 so determined are
therefore uniform on (0,m/2). ;
Note. In this and other such cases, there is always the alternative of .
sampling the angle uniformly (one random number) and computing the values <
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R2. cos O, sin O, tan O for p(0) = 1/w; (-w/2,7/2).

Rye If S = x2 + yz‘s.l, where x = r,y= 2r2 -1, set cos 6 = x/SI/Z,
sin 6 = y/Sl/Z, tan 8 = y/x (x # 0).

J. See R1J,

R3. cos ¢, sin ¢ for p(4) = 1/2m; (0,2w),

Ryle If S = x2 + yz.g 1, where x = 2r1 -1, y= r,, set cos ¢ = (x2 -.yz)/S,
sin ¢ = 2xy/S. (von Neumann.)

Jl., For accepted (x,y), cos 6 = x/Sl/z, sin 6 = y/Sl/2 are functions of an
angle 6 uniform on (0,7). Hence ¢ = 20 is uniform on (0,2w), and cos ¢
= cog 20 = cosze - sin26 = (x2 - yz)/S, sin ¢ = gin 26 = 2 gin O cos 6
= 2xy/S. (No square roots required.)

Rx2. Use Rl to obtain cos 9, sin © for 0 uniform on (0,%/2). For cos ¢,
sin ¢, change sign of each independently with probability 1/2.

J2. Obvious.

Rg3. If § = x2 + yz.s l, where x = 2r; - 1, y = 2r, - 1, set cos ¢ = x/Sl/z,
sin 6 = y/Sl/z.

J3. See R1J.
Note. Q = (cos ¢, sin ¢) is a uniform direction in Ez.

Ré.  p(y) = (2/1aD)(a” - 32 (-a,0), 2 > 0.

Ry I£2r, - D%+ (2r, - D? <1, set y = a(2r, - D.

J. For y = an, one has p(y) dy = (2/7)(1 - n2)1/2 dn = q(n) dn, so we may

sample q(n) for n on (-1,1) and set y = an. Since the accepted points
(E,n), £ = 2ry =1, n = 2r, - 1 sample the unit disk uniformly in area,
they have the density function f(£,n) = 1/, with n-marginal density
2.1/2
(1-n")
2
2 [ anm - ema-nd
0

follows.

vz q(n) as defined, and the rule

Note. The above density p(y) arises naturally in the problem of sampling
a toroidal solid (anchor ring) uniformly in volume. Suppose the latter
generated by revolving about the y-axis a circular area of radius a, with
center at (b,0) b > a, on the x-axis. Our object is to sample the
circular area for points (x,y) in such a way that they produce by rota-
tion points (&,n,7),
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L = x cos ¢
n=y

> = x s8in ¢ [N

(¢ uniform on (0,2x)) which are uniform in volume within the ring. The
volume of the toroidal ring up to height y is given by

[} l'('

y
V(y) = ‘-/a‘r(xz - xf) dy
2_ 212 2y1/2

wherexl-b-(a -b+(a2-y . Thus V(y)

2

= 4xb f (a2 - 372)]'/2 dy, the total voluem being V(a) = 4xb

. f (a2 - y2) 172 dy = 21!2a2b. The probability distribution function

-a

2 1/2

y
for y is therefore P(y) = V(y)/V(a) = (2/1ra2) f (a” - y2) dy, with
~a

density p(y) = dP/dy = (2/1n512)(a2 - y2)1/2

drawn from this density as in the rule, the corresponding value of x
should be uniformly distributed in area in the annulus generated by the

, a8 in R4. For a value of y,

points (xl,y) and (x2,y), i.e., we should set

2
1)’

2 2 2
ry = (x" - xl)/(x2 -x
and solve for x. (See Cl2, Note.) Using the above values of X1»%, the
result is

2 2

X = {b2 +a° -y° + 2b(a2 - y2)1/2

(2, - D}2,

where y is obtained from the rule.

R5. Q= (wl,mz,m3), uniform direction in E3, point uniform in area on the ¢
sphere IQI = (wi + wg + mg 1/2 =1, *
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tLe

[

R,l.

Jl.

sz.

J2.

R6.

Obtain cos ¢, sin ¢ for ¢ uniform on (0,2%), as in R3. Set cos 6 = 2r
1/2

3
-1, 8in 6 = +(1 - cos 8) , and @ = (gin 6 cos ¢, sin O sin ¢, cos 9).
For spherical coordinates, p(6,¢) d6 dé¢ = sin 6 d6 d¢/4m = pI(e) de

. p2(¢) d¢, where pl(e) d6 = (1/2) sin 6 d6® = =(1/2) d(cos 6)

= =(1/2) du; -1 < u<1, p2(¢) d¢ = d¢/2w, 0 < ¢ < 2w, where u and ¢ are
uniform. The rule follows from C6, C2.

Obtain S, cos ¢, sin ¢ from R3, Ry3. Set cos 6 = 25 - 1, gin ©

=+ (1 - cosze)llz, and Q as in Rgl. (random number ry avoided.)

The accepted points (x,y) in R3, Ry3 sample the unit disk, uniformly

in area, having density dx dy/v. The equivalent p,6 density is p dp
dé/w, with marginal p-density 2p dp. Under the latter density the

/5
function S = 92 has density d/dS f 2p dp = d/ds / 20 dp = (1/2) s~

o2>s

~1/2

25t/ ay,

Hence, S is itself distributed uniformly on (0,1) and may be used in
place of r, in Ryl above.

Q= (wl, ooy W ) uniform direction in EN, uniformly distributed point on

Jo

unit N-sphere ’Ql = 1.
If S = vi + eees + v £ 1, where vi - 2ri -1, set mi =y /S
Accepted points (vl, ceny vN) are uniformly distributed in volume in the

unit N-sphere, and (wl, ceey wN) is the projection of (vl, coey vN) on

/2

the unit N-sphere surface.

Note 1. For N = 2, this is the method of R3, Ry3. For N = 3, it

provides an alternative to RS.

Note 2. Unfortunately, acceptance is poor for large N. In fact, (see

F8), E = V(l)/2N N/2/2 NP(N/Z) + 0, the ratio becoming less than 1/2

for N > 3. See C90 for an alternative.

N E

1 1

2 w/4
3 n/6
4 x2/32
5 n2/60
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R7.

p(x) = A-lpl(x){Pz(h(x)) - Pz(g(x))}; (a,b), pl(x) density for x on

J.

R8.,

y
(a,b), pz(y) density for y on (c,d), Pz(y) 'f pz(y) dy, c < g(x)

c
< hx) £ d.
Sample pl(x) for x on (a,b), and pz(y) for y on (c,d). Accept x if
g(x) <y £ h(x).

b h(x) b
Since f P (x) dx p,(y) dy -/pl(x) dx f P, (y) dy '/
{g(x)<yh(x)} a g(x) a

. pl(x) dx {Pz(h(x)) - Pz(g(x))} = A, A is the probability of acceptance,
and hence p(x) dx is the probability of an accepted x lying on (x,x
+ dx).
Note. In this and other rejection methods based on it, we call the
probability A of acceptance the "efficiency” of the method. Its value is
irrelevant for the actual sampling rule.

2
px) = (2/1r)1/2e-x /2; (0,%).

Je.

RY.

Set x = - znrl, y = —far Accept x if (x - 1)2_5 2y,

2.
-x -y
Special case of R7, with a =c =0, b =d = =, pl(x) =e , pz(y) =e 7,
Pz(y) =1 - e-y, g(x) = (x - 1)2/2, h(x) = », (C29 is used to sample for
x and y.) Specifically, we have

2
2e/m)%p (x) (B, (a(x)) - B,(g(x))} = (2e/1r)1/2e-x{1 - [1 - (=D /2]}

2
- (2e/w)1/2e-xe-(x -2x+1)/2

-x2/2
= (2/n)e = p(x) as given.
Note. Efficiency A = ('lr/2e)1/2 =z 76,

2
4@) =7 an)l/2; (o).

Je

R10,

Sample p(x) for x on (0,») by R8, Set y = + x with probability 1/2.
Special case of C28, See also C60, '

2
~
sv)) =2 fxt/% 0,0,
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- X/21/20

Ryx. Sample p(x) for x on (0,%) by R8. Set v,

J. For the given substitution one has s(vl) dvl = p(x) dx as in R8. (See
also C51.)

Rll. t(x) = e-xi/wllz; (=»,»),

Rxe Sample s(vl) for v, on (0,») by R10. Set x = * 2 with probability
1/2.

J Special case of C28. (See also C59.)

RI2. P(z) = ¢ le™Za1an(bz)!/?; (0,%), a,b > 0, ¢ = ?/*2(bn) /22232 (723).

Ry Define K =1+ (b/8a), L =a MK+ (k% - DV/2), M= aL - 1. set x
= - znrl, y = - znrz. Accept x if (y - M(x + 1))2 £ bLx. For accepted
x, set z = Lx. (After Kalos [25].)

Je The rule follows from C2, C29, and R7. 1In fact, for z = Lx, with

arbitrary L > 1/a, and M = aL. = 1 > 0, we have

1/2 1/2
p(z) dz = ¢l dax e-aLx(I/Z){e(be) - ¢~ (bLx)

C-I(L/z) dx e'(M+l)x e(be)l/2 _ e-(be)1 2

¢ lae/2) dx e

1/2 1/2
= M) 102 ~(b1) }

1/2
clae/2) ax e Y1 - e-[M(x+1)+(be) ! ])

_ (1 _ e~[M(x+l)-(be)1/2]>} i} Afl{e'x dx}{Pz(h(x)) - Pz(g(X))}
as in R7, where

£ =clae"2), pj@ = e on (0,), p,7) = 7 on (0,®), By(y)

=1-¢7, and 0< g(x) = M(x + 1) - (bLx) /2

<h(x) = Mx + 1) + (L) 2 ¢ o,

The condition for acceptance of x: g(x) {y < h(x) gives the above rule.
Note. The choice of values for K, L, M insure that g(x) = M(x + 1)

1/2
- (bLx) / 2 0 on (0,%). For, with £ = x1/2, this is equivalent to £(§)
2 (bL)l/z
=3 A e E+1>0for § > 0. Since the parabola £(£) opens up,
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R13.

with vertex at Eo = (bL)1/2/2M > 0, we see that £(§) 2 0 iff its dis-

*

criminant (bL/MZ) -4<0. ForM=gaL -1, we find (bL/H2) =~ 4 = 0 when

aL. = (K + (K2 - 1)1/2), with K= 1 + (b/8a). The choice of the (+) sign

in the solution of the quadratic for alL makes alL > 1, as required. -
-1

p(x) = A pl(x)h(x); (a,b), pl(x) density on (a,b), 0 { h(x) £ 1. -

0(13

Ry.
Je

130

Sample pl(x) for x on (a,b). Accept x if ro‘s_h(x).

Special case of R7, with ¢ = 0, d = 1, pz(y) £ 1 on (0,1), Pz(y)
y

../f dy =y, g(x) =0, Pz(h(x)) - PZ(O) = h(x). Efficiency A.
0

b b | b
Note 1. 1 -fp(x) dx -fA-lpl(x)h(x) ax < A7 fpl(x) ax = A"}, 8o
a a a

A <1l is a formal consequence.

Note 2. The method is useful in Klein-Nishina (incoherent) and Thomson

(coherent) scattering modified by form factors. Due to the nature of the
latter, efficiency considerations make it expedient to use the Klein-
Nishina density for pl(x) and the form factor for h(x) in incoherent
scattering, whereas in coherent scattering, pl(x) is based on the form
factor, and h(x) on the Thomson cross section. For further details, see
[5; Part II].
Note 3. If a given density p(x) on (a,b) is of form p(x) = s(x)t(x),

b
where s(x), t(x) > 0, S = fs(x) dx is positive and finite, and t(x) is

a

bounded on (a,b) with 0 £ t(x) < t, one can always write
p(x) = (5t)(s(x)/S)(t(x)/t) in the form of R13. (Efficiency 1/St).
Note 4. If p(x) is a given density on (a,b), and one wishes to sample it

by R13, using a particular density pl(x), one can always write

P(x)/pl(x)

p(x) = (H)(pl(X))(——-Tr—-——) in the form of R13, provided M = max
(a,b)

p(x)/pl(x) is finite. See R14, 15, 16, 17 for pl(x) uniform. ’




[ 4

¢

Note 5. Analysis of the assignments to (x,x + dx) according to the
required number of trials shows that the total probability of such an
assignment is pl(x) dx h(x){1 + (1 -A) + (1 - A)2 + o0}
= pl(x) dx h(x)(1/A) = p(x) dx, where A is the chance of assignment to
some interval, and 1 — A the chance of assignment to no interval. The
total chance of assignment on the v-th trial is (1 - A)V-IA, with sum
A+ (1 -AA+ (1~ A)2A + .o = A(1/A) = 1. The expected number of

_ ©
trials for assignment is Zv(l - A)V-IA = 1/A, the inverse efficiency.

1

3

Note here that, with x = 1 - A, 1+2x+3x2+4x +...-§—x-(1 +x-l-x2

3 4 d -1 -2
+ X+ X + o) ix (1 - x) (1 -x) °

R4, p(x) = A (b -~ a) L(p(x)/p); (a,b), p = max p(x), A = 1/(b - a)p
efficiency. (2,b)
Ry. Accept x = a + ro(b - a) 1f r £ p(x)/i;.
J. Special case of R13, with stipulated pl(x) = (b - a)-1 uniform, and
h(x) = p(x)/p L1
b
R1S. p(x) = F L£(x); F = f £(x) dx.
a
Ry Accept x = a + ro(b - a) if r £ £(x)/M, where M = max f(x).
(a,b)
b
J. One can write p(x) = A-l(b - a)_l(f(x)/M), where A = / (M - a)-lf(x)

a

e dx/M = F/(b - a)M, (b - a)-l is the stipulated uniform density, and
f(x)/M < 1. The rule follows from R13.
Note 1. A lower bound on the efficiency A may be obtained as follows.

Let m = min f£(x), M = max f£(x) (as above). Then
(a,b) (a,b)

b b
a= -2 fEwm ez oo f 1@ -0/ )
a a
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And of course, A > (b ~ a)-l(m/H) = m/(b - a)M.

Note 2. The value of F is irrelevant both in the rule and the lower o
bound estimate of A. -
R16. p(¢) = F '£(4), £(4) = K = B cos> ¢; (0,21), K> B > O. -
Rxl. Accept ¢ = Zwro if r, < £(¢)/K.
Jl. Special case of R15. i
Note 1. Since m = min £f(¢) = K -~ B, and M = max £(¢) = K, one may use
R15, Note, to show that efficiency
2%
A2 (1/2w) J/. (- cos2 ¢) do = 1/2.
0
Rx2. Obtain cos ¢ from R3, and accept if next r < £($)/K.
J2. This is just a way of avoiding computation of cos ¢.
Note 2. The density p(¢) occurs in polarized Compton scattering [10,15],
where ¢ itself is not required.
R17. p($) = F l£(4); £(¢) = K - 52(Q cos 2¢ + U sin 2¢); (0,27), K > H
=z sz(Q2 + 02)1/2.
Ryl. Accept ¢ = 21rr0 if r < £($)/ (K + H).
Jl. W write £() = K - 52(0% + v 2110/(@® + ¥)2) cos 26 + [0/(Q2
+ 02)1/2] sin 2¢} = K - H (cos 2¢0 cos 2¢ + gin 2¢0 sin 2¢) = K - H cos{2
(4 - ¢0)}, where 2¢0 is uniquely defined on (0,2%) by the relationms
2 2.1
cos 2¢o = Q/(Q" +U) /2, sin 2¢0 = U/(Q2 + U2)1/2. Hence m = min £(¢)
=K -H, M=max £(4) = K + H, s0 p(¢) = A 1(1/2%)(£($)/M), with A
= F/2xM. The rule follows from the latter and R15, while we find from
the Note in R15 that the efficiency
2% 27
a2 W [ 1) - w/e - w1 ap = (1/am) [ @ - cosas
0 0
- 24)0)) d¢ = (1/47)(2w - 0) = 1/2. P ]
Rx2. Obtain cos ¢, sin ¢ from R3, compute.cos 2¢ = c082¢ - sin2¢, sin 2¢ ’
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= 2 8in ¢ cos ¢. Accept ¢ 1if next r £ £(¢)/(X + H).




J2, This is only a way of avoiding computation of cos 2¢, sin 2¢ from angle
2¢ = 41rr0.
Note. The density p(¢) occurs in polarized Compton scattering [10,15],
where ¢ itself is not required.
{h(x - a)/(b - a); (a,b)
R18., t(x) = a<b<e h=z2/(c -a
h(c - x)/(c = b); (b,e),
Ry One follows the steps:
1. Generate next two random numbers r,r'.
2, Set x =a+ (c - a)r.
3. Accept x1f x { band r' { (x —a)/(b ~a), or if x > b and r'
£ (e = x)/(c = b). Otherwise return to (1).
J. The rule may be regarded as a special case of R13, if we write t(x)
= 2(c - a)-l(t(x)/h), the efficiency being obviously 1/2. See also Cll4,
R19. p(x) = (2/x%) sinzx/xzi (0,). (See F22,)
1
Ry Define A1 -fp(x) dx (= .57), A2 =] - Al. One follows the steps:
0
l. If r <A go to (2). Otherwise go to (3).
2, Sample density (2/1rA1)(1/1)(sin2x/x2) = EIlpl (x)hl(x) for x on (0,1)
by R13, i.e., set x = r', and accept x if r" £ sinzx/xz. Otherwise
iterate (2).
3. Sample density (2/1rA2)(l/x2)(s:ln2x) E E;lpz(x)hz(x) for x on (1,»)
by R13, {.e., set x = 1/r', and accept x if r" £ s:lnzx. Otherwise
iterate (3).
Je The rule results from Cl13, since we may regard p(x) as the composite

function

2/%)(1/1) (s1n2x/x2); (0,1)
p(x) =

@/m W/ ein?0); (1,9,
as in Cl13. Note that hl(x) - sin:lex2 <1 on (0,1), and hz(x) - sinzx

x
£ 1lon (1,2) The settings of x result from Cl, with r' '/dx, x =r',
0

133



R20.

- -]
and r' -fdx/xz, x=1/r'.
X

J
p(x) -;cjpj(x)hj(x); (a,b), aj >0, pj(x) density on (a,b), 0

Rxl.

Ji,

RxZ.
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£ h.‘l (x) <1 for x on (a,b).

b
(J finite or infinite.) Define Aj -/ quj(x)hj (x) dx.

k
Set K = min{k; ZAj Zro « Then:
1
l. Sample density pK(x) for x on (a,b).
2. Accept x if next r 515((x). Otherwise return to (1).
The rule is an obvious consequence of C3 and R13, since we may write

J J J.
-1
p(x) -;aj(:o -Zl:Aj(aj(x)/Aj> -ZI:Aj{cAj a,)(p, (x)) (b G

Note 1. The probability of sampling the j—th density a ,(x)/A, is A,,

h| J
while the efficiency of sampling this density is Aj/aj. Hence

J
E Aj A j/cz j) is the average efficiency of the rule. However, a j/A j is
1

the expected number of trials for acceptance in sampling density a 4 /A 5

80 E Aj (a,/A,) = E aj is the average of the expected number of trials

(finite or infinite. See Note 3.).
J

(J finite.) Define ¢ = E aj. Then:
1

l. Generate next two random numbers r,r'.




¢

o

J2.

R21,

k
2. SetK-mink;Zaj?_ro
1

3. Sample density pK(x) for x on (a,b).
4. Accept x 1f r' { h (x). Otherwise return to (1).

J
The total probability of accepting x on (x,x + dx) is E (a:l /o)pj (x) dx

. hj (x), the total chance of acceptance for all x being the integral 1/c.
Hence the relative probability of an accepted x lying on (x,x + dx) is

J
’z:(czj/a)p:l (x) dx - hj (x)‘/(l/o) = p(x) dx, as required. The overall
1

efficiency of the rule is 1/0, o being the expected number of trials for
acceptance.
Note 2. If pj (x), j =1,2, ... are arbitrary densities on (a,b), then

p(x) = Z (1/3) - pj(x) . (6/1r2j) is a density on (a,b) of the form in
1

R20, for which E aj - E (1/3) does not converge.
1 1
Note 3. As in Note 3 of i{13, any density of the form p(x)
E 8.‘| (x)t (x) may be written in the form p(x) = E (S t )

. (sj(as:)/Sj)(tj(x)/f:l
p(v) = c'l'lv /7l 1) (0,9, 0 <A <1, n e {3/2,2,5/2,3, ..},

) of R20, subject to the obvious conditions.

J.

C, =%,(4,0)I(n), where £ (Am) -Z (-1)

2 re.

1
-l n-l =v
The rule follows from R13, since we may write p(v) = C. v "Ae /(1

1
+1e™) = e vV eV - A% A - ™) =T g,

Sample q(v) for v on (0,») by C74. Accept v if r
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2

- -1 n-1, - -2
where A = c,c 1. Ca(A,n)/Cu(A,n), q(v) = C lvn Ae v/(l -Ae v) is the

density in C74, and h(v) = 1 - Aedv_s 1. Using R13, we accept v from C74 L-
in case T, £1- Ae-v, equivalently Ae-v_s 1 - Iy = Iye
/

\J u{;

p@® = ¢ 52/ + 1); (0,0), - ® < n < 50.

JI.

JII.
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1]

Cagse I. —» < n < 5/2. Sample density yllze-y/P(3/2) for y on (0,%) by
C64. Accept y if r < 1/(1 + en-y).
We write

p() = € r3/2eM 2T r3/2))1 + V)L,

which is of the form in R13, with A = c/r(3/2)e“, the efficiency,
pl(y) - yllze-y/F(3/2), a density on (0,%), and h(y) = 1/(1 + en-y) <1,
the acceptance factor. The efficiency in Case I is never less than 30%,
and drops below 50% only for a short range of n values around n = 2.

n
Case II. 5/2 < n £ 50. Define A 'fp(}') dy, A, =1 - A, If r

0

1/2,.3/2 2/3

S.Al, sample density (3/2)y for y = nr, on (0,n); accept y

with probability (e | + 1)/¢e’ " + 1). If r, > A;, sample the residual

I~ density ye-y/(n + l)e-n for y on (n,®) by Cl108; accept y with proba-

bility W/y'/2(1 + &), where h = min y/2(1 + 7).
n<y<>
We regard p(y) as a composite function

al(y); (0,n)

p(y) =

n
as in Cl113, with Al -./r p(y) dy. We may then sample al(y)/A1 for y on
0

(0,n) with probability Al, and az(y)/A2 for y on (n,») with probability

Ay =1-A. Both densities ai(y)/Ai may be written in the form of R13 £

and sampled accordingly. Specifically, we write

<

3/2 1/2

m3 2™ + 17T
/

™+ 17 r2)y

+ 1D}, and a,(7)/a, = {8,'¢ (n + Dn HyeT/r Hinsy!

a (/A = a7 ¢ (2/3)n

201 + "7y,




1/

where rn = (n + l)e-n, and h = min v 2(1 + en-y). In Case II, the

n<y<=
efficiency on (0,n) always exceeds 1/2, while on (n,®) it drops very
slowly from 89% at n = 3 to 71%2 at n = 50. How far the method can be
extended above n = 50 we do not know.
Note 1. In practice, C is a given physical constant determined by the
electron density and temperature, and the degeneracy parameter n = n(C)
is determined so that

I(n) = fyl/z dy/(e¥™ + 1) = c.
0

The function I(n) is well tabulated (see references in [6]), so that, in
a given physical case, the values of C and n are known.
Note 2. Details of the method, including tables of norming constants C,
Al, efficiencies, and minima h, as functions of n, are given in [6].

1/2

2
P = e e (0,0), £5 0, 0= 2,3,4, ., E

£

3
“
R23,
J.
»

4

= 1/ /r/2)o " P % (0. (see F14.)

2

Sample q(y) = Dglyn-]'e—Ey for y on (1,2) by C106. Accept y with

(n/2)~1

2)) » > 2, For accepted y, set x = (y

probability (1 -~ (1l/y 2

- 1)1/2.

1/2

Under the transformation x = (y2 - 1) , one has p(x) dx = Egly(yz

L 4 (n/2)-1
- DW/DNEY 4y w0, )G gy - () . Hence

by C2, we can sample the latter for y on (1,%), and set x = (y2 - 1)1/2.

But this is of the form (A-l)(pl(y) dy)(h(y)) as in R13, and the rule
follows from C106.
Note 1. The efficlency is A = EE/DE° For n = 2, acceptance 1is certain,

and DE = EE 1s easily verified using F3C and F13C.

Note 2. For n = 3, p(x) is the Maxwell-Juttner relativistic momentum
density ([8].
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R24,

9 1/2
Px) = a2 ) 4 gy 0,%), a>0,0< A< 1, 0

Je

R25.

(n-1)/2 I'(n/2) 33413 (n-1)/2
- 2,34, voo, A2 L D NG RS S CVIE :
1

(See F15.)

Sample q(v) for v on (1,%) by Cl09. Accept v with probability (1
- ") - (1/\’2))(1:1/2)-1. For accepted Vv, set x = (v2 - 1)1/2.

Under the preceding transformation, one has

2(x) dx = A2 - D@D 4y 7L ® 4 1)

n-1

- Afl . 21 avdv (- (1/v2))(n/2)-1
Ae +1
i} A-lvn-l Ae-av

1+ A

n-1, -av
- (%){ o *; -zﬁl’)}lu - 271 - iy @BT,
D(1 - A'e

&V (1 - (1v2yy /D=1

n > 2, which is of the standard form in R13, the density in braces being
the q(v) of CL09. The rule follows from C2, R13, and C109.

2
a(x) = (p/m /232D /x5 my, 4> 0.

Jo
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2

Sample e > /nllz

for z on (-»,») by C59 or Rll. Accept z if r < (1/2)
e (1 - z/(z2 + 44))1/2). (See Note 1.) For accepted z, set x = [(z2

+ 42 & 211102 + 4y M2
The function z = (4>/x)1 2(x = 1) increases from — ® to ©® as x increases

from 0 to ©. Moreover, dz = ¢1/2(x + 1) dx/2x3/2. Hence q(x) dx

2
= 2(e 2 /11/2)(x + 1).-1 dz. To evaluate (x + 1)-1 in terms of z, we

proceed indirectly thus: From z2 =¢(x - 1)2/x follows z:Z + 4¢
= ¢[(x - 1)2/x + 4] = ¢(x + 1)2/x. Hence

/2 /2

- 210

z = (¢/x)) /

2(x + 1),

(x - 1), and (z2 + 4¢)1 - (¢/X)l

By division, we have (x - 1)/(x + 1) = z/(z2 + 4¢)1/2, whence 1/(x + 1)
= (1/2)[1 - (x - 1)/(x + D] = (1/2)[1 - 2/(z> + 4) %], Therefore, we

o ek h
t




W

l'.;n

' A

»

Note 1. The acceptance condition r < (1/2)(1 - z/(z2 + 4¢)1

2
may write q(x) dx = 2(e 2 /31/2)(1/2)(1 - z/(z2 + 4¢)1/2) dz = p(z) dz on

(—»,»). By C2, we may sample the latter p(z) for z on (-»,~) and set x
= x(z). Solution of the preceding equation

Uz + 1) = (1/2)[1 - z/(z2 + 4p)1/?]

for x gives the formula x = x(z) of the rule. But p(z) is of the form
p(z) = A-lpl(z)h(z) in R13, where A = 1/2, the efficiency, pl(z)

- e-zzlwl/2 is a density on (-»,»), and h(z) = (1/2)(1 ~ z/(z2 + 4¢)1/2)
satisfies 0 < h (z) < 1.

Hence, by R13, we sample pl(z) for z on (—»,»), and accept z with
probability h(z), as in the rule.

/2) may be
interpreted thus:

1. If z > 0, accept z 1£f r < 1/2 and (1 - 2r)% > 22/(z2 + 4¢).

2. If z <0, accept z iff (1 - 2r)2 S.zzl(z2 + 4¢).

Note 2. For testing purposes, we have included below an evaluation of

the Wald distribution function

b4
Q(x) "J(.q(ﬁ) d§ in terms of the well tabulated normal distribution,
0
o2
o(y) = (1/21\')1/2 ‘/‘e-’n /2 dn. For convenience we work with
=00

z
2
&(z) = (1/m)/? _/'e“ ar = 021 23).

1/2

From (J) above, with z = (¢/x) " “"(x - 1), we obtain

X z
2
x) 'fq(E) & = (1ml/? f A - 2/z2 + 4 Ve 4z = a(2)
0 O

z
2
- H(z), where H(z) = (1/11)1/2 J/.[c/(z;2 + 4¢)1/2]e-; dt. For a fixed z
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£ 0, the substitution n = - (cz + 4¢)1/2 in H(z) gives H(z) = - e%G(-(z2

+ 4¢)1/2). Since the integrand of H(z) is an odd function, we know H(~2z)
= H(z), so H(z) = - e%G(-(z2 + 4¢)1/2) for all z on (-»,*). Hence for

all x on (0,~), we have Q(x) = G(z) + e4¢G(-(z2 + 4¢)1/2). From (J) we
1/2 2 1/2 1/2

recall that z = (¢/x)" "(x = 1), and (2~ + 4¢) = (¢/x) " “(x+ 1),

so that Q(x) = 6((¢/0) Y 2(x - 1)) + e*a(~(o/x) Y 2(x + 1)) = o((20/0) Y2

x-1)) + e4¢¢(-(2¢/x)1/2(x + 1)). See [22, v.2; p. 141.]

a® = 1 -T2, 4 02 - 2oy 2BC1/2,(T + 1)/2); (-1,1), 0 < p

Jl.

Ry 2.

J2.
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Note 1.

<1, Te {1,2,3, secls

Sample B(v) = vn—l(l - v)n-I/B(n,n) for v on (0,1) with n = (T + 1)/2
by C75. Accept v with probability h(v) = (1 - D)T/((l + p)2 - Apv)le.
For accepted v, set R = 2v - 1,

For R = 2v - 1, one has

2B((T + 1)/2, (@ +1y/2) | T2 - (T - D2y

q(R) dR =
B(1/2,(T + 1)/2)(1 - p)T B((T + 1)/2,(T + 1)/2)

a-pt
(1 + )2 - 40T
and the rule follows from R13 and C2.

73 = (1 - p)JTB(v) dv « h(v),

2"B((T + 1)/2,(T + 1)/2) _ 2'r((T + 1)/2) T((T + 2)/2)

B(1/2,(T + 1)/2) T(T + 1) " TA/2TT + 1D/2)
= 1 by P4E with m = (T + 1)/2.

Note 2. min (1 + p)2 - 4pv = (1 + p)2 - 4p = (1 - p)z.

ve(0,1)

Sample b(z) = zmrl/(l + z)m+nB(m,n) for z on (0,), by C75, with m

= (T + 1)/2, n = 1/2. Accept z with probability (I + p) /[(l + p)Z + (1

- D)zz]T/2 = h(z). For accepted z, set R = (z - 1)/(z + 1).

For the latter substitution one finds

2T z(T-l)/2 dz

q(R) dR = . .
a+pF  a+ 2™ 2%+ 1)/2,1/2)

. (1 + P)T §<1 + p)-’r e b(z) dz * h(z)
[(1+0)2 + (1 - p)22)T/2 2

and the rule follows from R13 and C2.

S owe
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Note 3. min (1 + p)2 + (1 - p)zz = (1 + p)z.
ze(0,)

Note 4. The rules are only practical for small T, their respective ef-
ficiencies being (1 - p)T and (l—;—g)T. For p < 1/3 use Rgl, for p
> 1/3, use Ry2., The efficiencies are then both minimal for p = 1/3,

where (2/3)T is the common efficiency.

R27. p(x) = 2™ ‘e */T(m); (0,%), m > 0, m ¢ {1/2,1,3/2,2, ...}.

Ryl Let m = H + R, where H e {0,1/2,1,3/2, ...}, and 0 < R < 1/2. Define n
= 1/2-R, 0<{n<1l/2. Set g = ri/m, t = r;/n, and iterate until s + t
£ 1. PFor accepted s,t, set v = 8/(s + t). Sample un 1/2 e V/T(H + 1/2)
for u on (0,2) by C45 or C64. Set x = uv. (Johnk.)

Jl. The rule results from the following remarks:

A. Under the transformation x = uv, y = u(l - v), with Jacobian —u, and

inverse u = x +y, v = x/(x + y), one finds that

xm—le-x ax | Ze—l -y dy mﬁn-l U vm—l(1 _ v)n-l dv

I'(m) I'(n) - I'(m+n) ) B(m,n)

on (0,) X (0,1). (See Fig. l.) Hence by C2, we may sample the latter
two densities and set x = uv. The first is possible by C45 or C64, since
m+n=H+1/2 ¢ {1/2,1,3/2,2, ...}. It remains to sample the second
for v on (0,1).

m1 n-1
B. For the density f(s,t) = ms 'nt on (0,1) X (0,1), we find for
s,t the probability of acceptance

1 l-g 1
z-p{s+c51}-fms“"l ds/ at™ ! dc-mfsm'l(l-s)“ds
0 0
= mB(m,n + 1) = n'(m)T(a + 1)/T(m +n + 1) = I'(m + 1)I(n + 1)/T(m + n

+ 1).
Hence the accepted pairs (s,t) have the conditional density function
g(s,t) = E f(s t) = E -1 m-l e -1 for s,t > 0, 8 + t { 1. Under g(s,t),
the density for the value of the function v = 8/(s + t) is found to be
B(v) = v (1 - v) /B(m,n) on (0,1). (See Note l1.) Hence we may
sample g(s,t) for s,t by rejection technique, and set v = s/(s + t) for
accepted s,t, as in the rule.
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Fig. 1,

Fig. 2.
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Fig. 3.

Fig. R27.
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Note l. The density B(v) for v = g/(s + t) may be verified by either of
the following two methods.

(1). The points (s,t) of the unit square for which s + t < 1 and s/(s
+ t) { v are those below the line t = 1 - 8, and above the line t = s(l
~v)/v, which intersect at s = v. (Fig. 2.) Note that s8/(s +t) v is
equivalent to (s + t)/s > 1/v, or t > 8(1 - v)/v. Hence

v 1-8
%}; ./ g(s,t) ds dt = E'l %;/mm-l ds f ntn-l dt
{s/(s+t)<v} 0 s(1=v) /v

- F.'-1 g—; 1 ds{(1 - 8)" - s"Q1 - V'V

~<
B
1

(1 -9t - g; v N1 - v)nvm/(m + n)}

0
= afe™
£ ude™! -4V - Y@+ )
e

(1 - v)° [mvm-l(l -t -l - v)n-l]}

m+n

-1 m-1 n-1 m
= F mv (1-v) {l-v-m-i-n

e lw™ 1 - v)“‘1<1 - ——"‘—-}

m+n

nv
(1-v)+m+n}

I'm +n +1) mn m1 n~-1
"Tm + DIia + 1) m+n" -

N B SR

’

The method of Fl may also be used.

(11). Under the transformation s = S, t = S(1 - v)/v, with Jacobian
-S/vz, and inverse S = 8, v = 8/(s + t), transforming the (s,t) region
with e >0, t > 0, s + t <1 into the (S,v) region with 0 < S < 1, S
Lv<1l (Fig. 3), one finds

1 w1 _n-1

g(s,t) ds dt = E lmns® 57711 - v)2 Ly ("D, -1 _min-1

dev-E mnS

v-(n+l)(1 - v)n-1 ds dv = h(S,v) dS dv, with marginal v-density
v
f n(s,v) d = E lmn(m + 1) W11 - v = v™ 11 - v Y/B(m,n)
0
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R, 3.

J3.
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= B(v). Hence B(v) is the density of v = g/(s + t) under the density
g(s,t).

Define H,R,n as in R;l. If H > 1/2, sample ER-le-E/P(R) for £ on

- -t !
(0,) as in Ryl (i.e., with H = O, m = R.) Sample (E')H 1% /T(H)
for £' on (0,®) by C45 or C64. Set x = £ + &'. (Johnk.)

The density of the function x = § + §' under the density
R-1 =¢ H~-1 -E'

P (EdR(E") = Sps—« 0. 4g, 1y 09,

X

R-1,-% _ gyl (=)
fPl(E)pz(x £) & = fE L x-8) e a

I'(R) I'(H)
0
z RE-1  ;
e-x R-1 H~1 e °x R 1
0 0
RHI-1 —x Rﬁﬂ-l —x m—1 -x

= %T§7fé%7-° B(R,H) = T(R +—4) - ET(ms = p(x), as in R27. Hence the

rule follows from C9.

Note 2. The probability E = I'(m + 1)T(n + 1)/T(m + n + 1) of acceptance

of s,t in R;1 becomes small for large m, but is high for 0 < m = R

1/2. Thus, Ry2 is indicated for large m.

Let m = H + R, where He {0,1/2,1,3/2, ...} and 0 < R < 1/2, One fol-

lows the steps:

le If r { e/(e + r), go to (2). Otherwise go to (3).

2. Set § = (r')l/R. Accept & if r” s_e-g and go to (4). Otherwise
return to (1).

3. Set € =1 ~ fnr'. Accept § if fnr” < (R - 1) 2nf and go to (4).
Otherwise return to (1).

4 If H=0, set x = § (accepted) and exit with x. If H > 1/2, sample
€ )H 1.-¢ /T(H) for &' on (0,®) by C45 or C64. Exit with x =&
+ £'. (Ahrens.) .

One can write q(&) = & /T(R) as q(§) = A pl(E)h(E), in the form of

R13, where A = el'(R + l)/(e + R), and pl(E), h(E) are both composite

functions, namely

R- 1 -

¢ ‘ﬁﬁ. ™

h

L " | .h)
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PR ai

Re¥1/(e + R); (0,1)

p,(§) =
1 eRe™*/(e + R); (1,%),
© 1 ©
a density function sincef pl(E) d§ = fpl(i) dg +fp1(5) dg
0 0 1

= ((eR)/e + R)(1/R + 1/e) = 1, and

e S5 (0,1)
h(g) =
R

AN RON
where 0 < h (§) < L.
The rule samples q(£) for & on (0,®) by R13., The density pl(E) is
1
sampled by Cl113, with Al - /pl(E) dE = e/(e + R), A2 = R/(e +R). In

0
step (2), the setting of £ uses Cl6é. In (3), we use Cl to set r'
0

-fe . e-g d€~e1-g, obtaining £ = 1 - far'. If H=0, R =m, q(§)

13
- grle-gll‘(m) and we exit with x = £ in step (4). If H > 1/2, we sample
(5')n-le-g'/1‘(ﬂ) for £' and set x = £ + £' as explained in J2.

Note 3. The efficiency in Rg3 is
A=¢el(R+1)/(e +R) > .74,
1
R-1 =§
Rgb. Let m = H + R as in Rx3. Precompute A, = £ "e ° dg/T(R),
0

A2 =] - Al. (See [27].) One then follows the steps:

1. Ifr _<_A1, go to (2). Otherwise go to (3).

2, Set &g = (r')l/R. Accept £ 1if " < e-g. Otherwise, iterate (2).

3. Set £ =1 - nr'. Accept £ if fnr" { (R - 1)#nf. Otherwise, iterate
(3).

4, TFor accepted £ from (2) or (3), proceed as in step (4) of Rg3.
(Cashwell.)

J4. The only difference from Ry3 lies in the sampling of q(§) = ;;R-le-%;/
I'(R), which we now write in the form
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R28.

Note 4. The average of the number of trials for acceptance is

AL rr @) R 0,1

q(§) = -1, - - ’
8,1(aeT @) ee H(EF D1 (1,), -

where we use Cl13 directly on q(§), regarded as a composite function, and -

sample al(E)/A1 with probability Al’ and az(E)/A2 with probability A2.
The latter two densities are each of the form in R13, and the rule

follows.

AI/AIRI’(R) + AZ/AZeI'(R) = (e + R)/eT'(R + 1) = 1/A where A is the
efficiency of R.3,
B(w) = v" 11 - v YB@m,n); (o0,1),

J.

R29.

b(z) = 2% /(1 + 2)™ B(m,n); (0,%),
2m—-1 2n-1

q(8) = 2 sin“" "0 cos
{1/2,1,3/2,2, «..}.
Sample xPrle-x/P(m) and yn-le-y/r(n) for x,y on (0,») by C45, C64, or
R27. Set v = x/(x +y), z = x/y, 6 = arc sin v1/2.

The rule follows from C75 J.

0/B(m,n); (0,7/2), m,n not both in the set

2m-1 -22/
t(z) = 22 e I'(m); (0,®), m > 0, m/ {1/2,1,3/2,2, «eo}.

Je
R30.

Sample p(x) = xp—le-xlr(m) for x on (0,) by R27. Set z = x1/2.

For z = xl/2 one has t(z) dz = p(x) dx. The rule follows from C2.
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p(a'/a,8); polarized Compton scattering.

A method for sampling the Klein—Nishina cross section for polarized
photons is given in [10,15]. This involves Cl6l and R16, 17, q.v. The
fit now used for C161 (cf. [11,16,14]) is an improvement on that in [10],
and 1is cited in the later expanded version [15].
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APPENDIX

(Some Tricks of the Trade)

Since the straightforward method (D1, Cl) of sampling is seldom practical,
it may be of some interest to collect here a few of the more ingenious devices
employed above.

1. By far the most frequently exploited procedure is the change of
variable (C2). This is by no means a triviality, especially in the
case of several variables, where is is the basis for sampling many
important densities, in particular the I' and B densities (C75, R27,
R28) with their host of special cases, and the many-variable normal
density (C160).

2. If a given density can be recognized as that for the value of some
function under a second density which can be sampled, the task is easy
(p5, D7, C5, C7). Indeed, this leads, via the geometric result of C8,
to the sampling of a whole hierarchy of basic densities (cf. C29,
Note). A second consequence is the special case in which the sum,
product, or quotient of two variables plays the role of the function
referred to (C9). This also has some remarkable applications (C31,
Cc32, C75, Note 1, C73).

3. A given density q(y) can sometimes be identified as the marginal
y-density of a two—variable density £(x,y), for which the other
marginal density p(x), and the x-dependent y~density p(y|x), can both
be sampled (D24, D33, Cl24). Sampling q(y) can then be effected.
Numerous examples are given in the text. The variations in C130 and
Cl35 are noteworthy. The latter leads to a remarkable method for
sampling the "tail-end” density by way of its "first moment™ density
(Cc136).

4. A density which is a sum of positive terms may sometimes be sampled by
sampling the densities defined by its normed terms (C3, Cl7, C35).
The sampling of an interpolated density, a problem frequently
occurring in practice, may be neatly accomplished by C3.
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5.

6.

7.

8.

The device of Cl0 may always be used for sampling a linear density
(C12) and sometimes for quadratic demsities (Cl3), thus obviating the
inversion of cubic distributions.

As a consequence of Cl2, it appears that the density p(v) = 2v on

(0,1) may be sampled by setting V = max {tl,rz} instead of the

standard v = rl/z.

Generalization to the cagse v = r

/n @ ienv

= max {rl, ceey rn} is provided by Cl5, and by Cl44, which also
reveals the significance of v = min {rl, cosy rn}, in place of v = 1

-1 - /¥,

The method of sampling the unit N-sphere (C90) is indispensable for
large N, and follows by a long chain of derivations from those in (2)

above.

When all else fails, the rejection techniques may prove adequate.
That most frequently used is given in R13, of which R20 is one of many

consequences.
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