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A THIRD MONTE CARLO SAMPLER
(A Revision and Extension of Samplers I and 11)

by

C. J. Everett and E. D. Cashwell

ABSTRACT

Methods are given for sampling some standard proba-
bility densities by means of machine generated “random num-
bers.” The probability theory underlying each device is
briefly indicated. The present collection embodies the
densities of the first two Samplers, and an attempt has
been made to render the explanations less terse and more
understandable. Some additional methods and new densities
have been included. No attempt has been made to quote all
original sources, and no claim to priority is intended in
any case, our sole object being to provide a handbook of
sampling devices.

-1
c

FoREwoRD

In all cases, the density to be sampled is followed by one or more rules

(~) for choice of the variable, in terms of random numbers ro,rl, ...

uniformly distributed on the interval (0,1). A justification (J) for the rule

is given, frequently supported by various formulas (F). Notes supply addi-

tional details, and often refer to the relation with other densities. The

indices (D,C,R) for discrete (D) and continuous (C) densities, and for various

rejection techniques (R), provide “key words” which may help in locating a

desired density, but details in this direction are omitted. Numbers in square

brackets [ ] refer to the references at the end of the report.
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FORMULAS

h(u) h(u)
d

‘1” z 1
f(u,v) dv =h’(u)f(u,h(u)) ‘g’(u)f(u,g(u)) +

f
&f(u,v) dv.

g(u) g(u)

For an idea of the proof, note that

h(u+Au) h(u)

1
f(u +Au,V) dv -

J
f(u,v) dv =

Y +7
g(u+Au) g(u) g(u+Au) g(u)

h(u+Au) h(u) h(u+Au)

+
f

f(u +Au,V) dv -
I

f(u,v) dv =
f

h(u) g(u) h(u)

g(u+Au) h(u)

-J
f(u +&I,V) dv +

J
[f(u + Au,v) -f(u,v)] dv

g(u) g(u)

h(u)

= Ahf(u + Au,h(:)) - Agf(u +Au,g(:)) +
f

[f(u + Au,v)

g(u)

- f(u,v)] dv.

One divides ~ Au, and takes the limit as Au + O.

F2.A. For densities p1,p2 on (O,-), and O < u < ~,

Dl~& f P1(v1)P2(v2) dvl dv2

{}

Vl+w<u

Vi>o

u

I

U-vi
d

-x !
Pl(vl)

[ IP2(v2) dv2 dvl

o 0

u
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---.

.

u
.d
-x [

{f(u,vl)} dvl = 1 ● f(u,u) -0 ● f(u,O)

o

u

+
I

$j-{f(u,vl)} dvl = O- 0

0

u u-v1

+
JI P(vl) &

i IP2(v2) dvz dvl by F1.
o 0

With VI conetant,

U-v1
g_
du J P2(v2) dv2= 1 ● P2(u-v1) - 0 ● p2(0)

o

u-v1

+
f +P2(v2) dv2 = P2(u - Vl) -O+o=pz(u-vl).

o

Hence,

u

D1 =
f

P1(V1)P2(U - Vl) dvl ●

o

Be For even deneities pl(vl), p2(v2) on (~,-), and ~ < u < -, one has

D2+ I P1(V1)P2(V2) dvl dv2

{v2/v@}

oIJ
m 00

d
f f

Uv1

‘z dvl P1(V1) P2(v2) dvz + dvl pl(vl)
~

P2(v2) dv2
Uv1 0 I

3



o co

E I dVlpl(vl) “ (-vi) “ P2(uv1) + f dvl pl(vl) “ (vi) ● P2(UV1)

co co

=

~

dv; pl(-v;) “ (v;)p2(’Ilv;)+ f
dvl P1(V1)(V1)P2(UV1)

o 0

co a

n J dv; pl(v;)(v;)p2(uv;)+
~

dvl pl(vl)(v1)p2(uv1)

o 0
a

-2
1

dvl pl(vl)(vl)pz(uvl) .

0

F3● p(V) = e%~vlv!; v = 0,1,2, ● O*, & > 0, is the Poisson density, with

distribution

n n

P(n) =
z

-Gp(V) = e
z

CVIVI .

0 0

m

I
n-1

A.
n-le-x

(n:l)! x
dx = eg

z
Gv/vl =P(n- 1), n= 1,2, ... .

c o

(Induction onn, integration by parts.) Thus the Poisson distribution

is an incomplete I’-function(see F4.).

B. For ~,n > 0, one has

.

4

n-1

= (n/~)n(n - 1)! e-g
z

6VIV.

o

(By A.)



co

I
n-1

c. n-le~$
‘G= y dy = ~*(n - 1)! e-g

x
~“/v! = ~m(n- 1)! e%g,

1 0

n-1

where S5 :
x

C%l ! (n = 1 in B.)

o

m

F4.
fl’(n)s ~n-le- du; n real > 0, is the I’-function.

o

a

A. I’(n)= 2
J

v2n-le-v2 dvo
(u =V2)

o

B. r(l/2) = rl/2. (See F50G.)

r(m)l’(1-m)=r/sin~,O<m <1. (Not easy. See [23; p. 89].)

c. I’(n+ 1) = nl’(n). (Integrationby parts.)

D. For integral n = 0,1,2, .... r(n + 1) =n!, O! E 1.

E. #m-1 r(m)I’(m+ 1/2) = I’(1/2)1’(2m);m real > 0.

(Legendre’s identity. See F!jH.)

1

F5.
I

m-lB(m,n) = v (1 - V)n-l dv; m,n real > 0, is the B-function.

o

lr/2

A. B(m,n) = 2
f

Sinh-l , co62n-1
e de (V = sin2e.)

o

B(l/2,1/2) = m.

a

B.
!

B(m,n) = z‘1 Clz/(1+2)* (z =v/(1 -V)e)

o



1

c. I ~m-l(l - X)*-l d~/(x + a)* = B(m,n)/(1 + dman;

o

a,m,n>O. (Latx=y/(l+y) andy=az/(l+a).)

a

D.
~

(a +x)ml(a-x)n-l~. (2a)*-lB(m,n); a,m,n> O.

(x =a/(2v - 1).)

1

E.
I

m-1
B(m,n) = (y + Y*-l) @/(l + Y)*”

o

1 w

1

(FromB, B(m,n) = z
m-l

dz/(1 +2) J
*+ Zm-l

dz/(1 +2)*

o 1

1 1

f
m-1= Y Jdy/(1 +y)*+ y

n-1
dy/(1 + Y)*,

o 0

for z = lly.)

F. B(m,n) = I’(m)r(n)/I’(m+n),B(m,n) = B(n,m). (By F4.A.,

a Ca

f
r(m)l’(n)= 2 y2w~e72 dy , 2

[
~2n-le-x2 ax

o 0

Ce

f

lr/2
2(m+n)-le-p2 dp . 2

=2
I

~inh-l
P 6 COE!2*%de

o 0 ●

☛

= I’(m+ n)B(m,n).)

Go r(l/2) = $/2. (m =n = 1/2 in F.)
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H. Proof of Legendre’s identity F4.E.:

lr/2 K/2

B(m,m) = 2
J

~in2Urle co~2m-1
e dO = (1/2)2~1

J
~in2m-1

2e d(2e)

o 0
d

J
w/2

(1/2)2’”-1 “ *%*2M-1D $d$= (1/2)2m-1 ● 2
f

~in2m-le de

o 0

- (1/2)*lB(m,l/2).

Hence, I’(m)r(m)/I’(2m)= (1/2)‘-11’(m)I’(1/2)/l’(m+ 1/2).

II
n

z Uisl

1
Ili>o

Proof by induction on n. For n = 1, see F4.C. Letting IJ= Mtil,

n

s=’ *~9 s =
z

Si, one has

1

II
n+lz lli~l

1
lli>o



1

o

n

Jf-r ‘i-l ~v

‘i i
1

(vi-vim -U))

n

z
Vi<l

1 I
n

11
r(si)

n
r(8)r(s+l) 1= B(s,S + 1) r(8i)/r(l + s) = r(8+s+l) r(l+s)

1

n

r(s) ~ r(si)

1
= r(s+s+l)

where we have used F5.F. for B(s$ S + 1).

F7. v(u) E Jfi dvi =un/n!
1

II
n

x
Vi<u

1
Vi>o

Let vi =uvi and use F6.) Hence A(u) E dV/du =U ‘-l/(n - 1)!

F8. v(u) :

1()N /2

z
2
‘i ~u

1
Vi>o

N

H dv - ~N/2uN,2N-l
i

Nr(N/2).

1

.

w

8



-.
●

(Let v. - ~v:/2 and use F6.). Hence A(u) =
A

Note. V(u) 1 2wN’2uN/Nl’’(N/2)is the volume
N/2uN-l

radius u, A(u) = 2r /1’(N/2)Xts area.

dv/du =nN’2u*1/#_lr(N/2).
of the full N-sphere of

For the full unit sphere,

v(1) = 2mN/2/N1’(N/2),and A(l) = 2fiN’2/I’(N/2)= J d$l,where Q

Q

= (01, N) is the direction in N-space.● co, 0

w

F9. C(n) Z z l/jn; n real > 1, is the g-function.

1

A. Ga(n) a
z

(-l)j+l/jn = (1 -(1/2n-l))C(n),

1

Ce

Cu(n) s
x

l/(2j - I)n= (1 -(1/2n))C(n).

1

Proof. By subtraction and addition of the series

C(n) = 1 + l/2n+ l/3n+ l/4n+ ...

Ca(n) = 1 - l/2n+ l/3n- l/4n+ ...

one obtains ~(n) - Ca(n) = (2/2n)~(n),

and

C(n) + Ca(n) = 2Cu(n), whence the result.

B. It is known that C(2n) = (-l)n-1(2r)2%2n/2(2n)!; n = 1,2,3, ... , where
B2 = 1/6, B4 = -1/30, B6 = 1/42, ● .. are the Bernoulli numbers. Thus

c(2) = W2/6, c(4) = n4/90, c(6) = W6/945, ... . Computation shows that

K(3) = 1.2021 .... and



c. GU(2) = (1 ‘(1/22))d2) = (3/4)(r2/6)=u2/8.

D. For n > 1,

W w

J ~n-l
Jdv/(ev - 1) = Vn-l dv =-v/(l - e-v) = ~Vn-l dv ~ e - j V

o 0 0 1

‘z ‘1”*)J“v)n-’e-dv‘(3V)=C(*)’(*)“
1 0

w

f

2
E. For* > 1, 2P2*-1 dw/(eU - 1) = q(n)Un). Let u = V i / 2 .

o

F1O. Define Fi = (al ... an)/(al - ai) ..o (ai-l - ai)(ai+l - ai) ● *O

(a - ai) for n ~ 2, and distinct ai > 0.
n

n

A.
z

Fi = O.

1

Proof. For f(z) = (al ... an)/(al - Z) c.* (an - z), O*e h=

n

(1/211i)
I

f(z) dz =
z

Res(ai), where c is any circle of radius

c 1

R>max ai, and the residue Res (ai) = Ifi (Z - ai)f(z) = +iO
z +a

%

f

n

Hence (1/2wi) f(z) dz - -
z

Fi. But

c 1

.
9

Iff(z) *I ~2wRy If(z)l ‘OasR+os ‘incen22e
c

10



.

n

B.
E

Fi/ai = 1.

1

Proof. The function g(z) = (al ... an)/z(al - z) ... (a- - z) has

residues at z = O, a
1’ .... an where Res(0) =

Res(ai) = Iim (z - ai)g(z) = - Fi/ai. Hen-
z+a

i

n

A, the sum of all residues is 1 -
z

Fi/ai =

1

lim zg(z) ~ 1, and
Z+o
by the type of argument in

o.

F1l. For O< A~l, n>l,

m co

I n-1
v

I
dv/(A-lev + 1) _ vn-l dvAe-v/(l + ~-v)

o 0

co es

= x J(-@++&jn) jn#-le-jv dv

1 0

w

s Ga(A,n)I’(n),where Ca(A,n) = z (-l)j+lAj/jn .

1

F12. ForO<A~l, n>l,

Ce 00

! vn-1 dv &-v/(l -A2e-b ) = ~ (A2j-1/(2j - l)n)

o 1

w

●

~

(*j - l)nvn-le‘(2j-l)v dv = ~u(A,n)I’(n),where c#,n)

o

Ce

1

11



F13. Define ~(u) E ~ cosh NOeW ‘“she dO; (0,-), N~OO

o

m

IA. ~(u) = 1/2 e-Neem CoShe dO. (From definition.)
4

co

f

B. ~(u) = 2-(~l)uN #+l)e-(x +(tJ2/4X))~xo (ee = 2x/uinA.)

o

c.

D.

F14.

KJu) =

=

a

r(U2)uN
J

(V2 - l)N-1/2e~v dv

2Nr(N+ 1/2) ~

1
r(l/2)uN

f
‘(2N+1)(~ - ~2)~1/2e~/x dxox

2Nr(N+ 1/2) o

co

F#2v 1’2) = 2-lVN’2
I

x-(N+l)e-(x +(v/x)) dxo

o

For n, ~ > 0,

C9 a

I n-le-g(x2+l)1’2 dx =
J

v (V2 - ~)(n/2)-le-~vdvx

o 1

a

J=(~/n) (V2 - l)n’2e-gvdv
1

((X2 + 1)’/2 =v)

a
.

.-
.

(Cf.[12; p. 185])

(v = l/x.)

-Cv
(parts: u = e , dv =v(v2 - ~,(n/2)-l dv)

(U= 2v1/2 in B.)

9
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9
()= I’(n/2) 2

m r %#*

(F13.C., 1st eqn., with u = g, N = (n + 1)/2.)

F15. Fern, a> O, O< A<l,—

w

((~n-l 1/2~xl *-lea(x2+l) + ~

)

m

= I n-lAe-a(x2+l)1/2x
( )

dx/ l+ Aea(x2+1)l’2

o

Ce Ce

E ~ 1/2
= (-l)j+lAj ~n-le-ja(x2+l) dx

1 0

n-1 m

=2~(r(n/2)/1’(1 /2)) ~(-l)j+lAj Kn+l (ja)/(ja)
+

. (See F14.)
1

F16. Fern, a>O, O<A~l,

C9 co

J n-1 -av
Ae dv/(1 _ A2e-2avv

I
1

) _ ~ A2j-1 = vn-le-(2j-l)av dv

1 1

co

=z *2j-lD
(2j-l)a’

1

4 where Dg is defined and evaluated in F3.C.

u
F17. For ~(u) aa in F13., and O ~ N < n,

13



m

Ln-1 (u) dU= (NU2)/2NNN + 1/2)) J
N-112

u dv (V2 - 1)
o 1

Ce

f
n+N-1=-uV

$
● u du= (r(U2)r(n+N)/2Nr(N+l/2)) (F13.C.)

o

co

f

v-(n+N)(v2 - ~lN-1/2
● dv - (r(l/2)r(n+N)/2 %(N+ 1/2)) (F4.)

1

1

f
~((n-N)/2)-l

● (1 - g)@+l/2)-l dg (v= g-llz)

o

= (r(U2)r(n + N)/2w1

● I’(N+ l/2))B((n -N)/2, N+ 1/2) = r(l/2)r(n +N) (F50)

● I’((n- N)/2)/2N+1r((n+N+ 1)/2) = 2n-21’((n-N)/2)r((N+n)/2)o

(F4.E. within= (n+

m--

F18. Define EN(u) = ~
~-Ne-uv

1

A. ~(u) = ~ #-2em/x dx.

o

F19. For ~(u) as in F18., and

N)/2.)

dv; (0,=), N~O.

N~O, n>O, n+N>l,

00

J ‘N(u) ‘u= fdvp&lrv ‘un-1
u

o 1 0

ao

~
dv V-(n + N)

= r(n) = r(n)/(n +N - 1).

(cf. [11.)

(v = 1/’.)

(F18.) :

(F4.)

1

14



This is the “inclusion-exclusion”principle, which gives the number

Sk).

(#)

of elements In the union S1 U ... U Sk of k subsets of a set in terms

of the number of elements in the intersections of these sets, taken any

f)
k

number at a time, there being ~ terms in the j-th sum. The result is

easily proved

= (*1 + *2)

00

F21.
z

wl)Yq/(l

q-l

by induction on ~~ 2, with the obvious basis #(SlU S2)

- #(sls2).

-Yq) ~Yl(~
H

-y)2; y < 1.

In this identity of Liouville, $(q) is Euler’s $-function, which counts

the number of integers in the set {1,2, .... q} which are prime to q.
al ‘%Clearly $(1) = 1, and if q = pl ..o pk is the standard factorization

of q~ 2 into primes, then one knows that $(q) = q(l - l/pl) ...

(1 - l/pk). It can be proved that

x $(d) ‘q,

I
dq

where d ranges over all positive divisors of q. The latter

of ~(q) permits an easy proof of Liouville’s identity. The

property

right side is

Yl(l - y)2=y(l +y+y2+e..)2=y+2y2+ 3y3+4y4+ ● .. ●

On the left we have

$(l){Y1) + (y1)2 + (y1)3 + (y1)4 + ...}

++(2){(y2) + (y2)2 + (y2)3 + (Y2)4+ .**}

+$(3){(y3) + (y3)2 + (y3)3 + (y3)4 + ..0} + .0. ●

15



A particular power yq of y

+ (yd)2 + (yd)3 + ...} for

the coefficient of @ is

E $(d) ‘q,

I
dq

and the identity follows.

w

F22.
f
SiIl X dx/x = W/20 (Not

o

e

occurs in just those terms $(d){(yd)

which d divides q. Hence on the left,

easy. Cf. [20; p. 88].) From this,

C9 m

I 2 2
sin x dx/x u=- (sin x/x) sin x + sin 2x dx/x

o 00

Ce

=0+
f

sin y dy/y = ~/23

o

where we have integrated by parts, with u = sin%, dv = dx/xz.

a m Ca

F23.
f

xcschxdx=2
!

x dx/(ex - ea, = 4 ~x dx/(ex - e%

-c9 -.00 0

w w

=4
!

xen dx/(1 -e-2x )=4~(2j -1)-2

o j=l

a

f

(2j - 1)2 xe
-(2j-l)x

● *= 4cu(2)r(2)

o

.

2
= 4(s2/8)(1) = n /2. (See F9.C.)

16



.
*
+

,

()b‘+ x-e

Ce a2

= (eb/4a/b)(b/2a)(b/a)l’2
f

e- $ d(~ ~)

b/4a(bn)l/2,2a3/2.- (eb/4ab1/2/2a3/2). 2 ● (1/2)1’(1/2)=e

A Note on Statistics

In judging the reliability of a sampling device, the following test may be

useful. For a discrete density p(v), precompute pi = p(i) for any

desired set of argument values v = 1. For a continuous density p(v),

compute

bi

‘i = I
= p(v) dv

‘a
i

for a suitable set of intervals (af,bi). Let the density p(v) be

sampled for v a large number N of times, according to the rule adopted,

and tally the number fi of times the sample results in v = i, or

v ~(ai,bi). Fixing attention on any such index %, this may be

regarded as a Bernoulll sequence of N trials, with pi the probability of

“’success,”’qi = 1 - pi the probability of “failure*’in any one trial,

and fi the total number of successes.

17



In this situation, the law of large numbers states that

IPN = p{ (fi/N) - Pil < pPi}2 1 - (qi/P2piN) + 1,

while the central limit theorem asserts that

PN= 4((p2piN/qi)l’2)+ZN

where

z

Q(z) = (1/2w)1’2
f

e-c%2 dC, and ZN+ O.

-z

Note that the statistical reliability of a rule, insofar as it is correct,

depends only on the density P(v), and not on the rule. On the basis of

the central limit theorem, the chance of a relative error < P1
= (qi/piN)l/2 iS = Q(l) = .6826, tile the chance of a relative

error < 2P1, is = O(2) = .9544.

8
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D-INDEX

Discrete Densities

.
●

D1. p(v) .

D2. e-tcv/v! .

D3. Xj/j .

D4. l/jn .

D5. p{f(V) = U} ●

n

D6.
H Pi(vi) ●

1

D7. P{f(vl, .0., U*) = u} ●

D80
()

n-e s
;~ p;s=O,l, ....n.

D9.
()
~M(M +a) ... (M+(s - l)a)

General discrete.

Poisson.

Log series. [22, v.l; p. 166]

Zeta, Zipf-Estou
Y[22, V. 1; p. 240
, tmrd distribution.

Density for value of a function.

Vector density.

Density for value of a function.

Binomial, drawing with replacement.

Polyats Urn.

● N(N +a) ..0

(N+(n-s-l)a) .

I),().~~)(,: ,),MW*-2VP2”* ● Binomial difference. [22, V.l; p. 55]

a

()

-ln-ss
D1l. ~-lq P ; Q = s,s + 1 , ... . Negative binomial.

n-1D12. q p . Geometric.

D13. an-l/(l + a)n . Pascal.

D14. (a/(l + @))d* (1 + 6) ... Polya.

(1 + (d - l)f3)/d! .

’15C t:f~ ?qdps “

D16. qdp ●

’17” (?(fls) “

Failures before s-th success.

Failures before 1st success.

Hypergeometric, drawing without
replacement.

19



’180[F..(+Yiw
● [(M - (s - 1))/((M+N)

-(n-l)] .

D19. l/N(N -1)... (n+l)l) .

10D20. 1 ~ .

D21. {1 -“1/1! + 1/2! - ● .,

+ (-l)N*/(N - k)!}/k!

Ml Uf
D22. (n!/~l! ... Vf!) pl ● .. Pf

“23. @ (-O1:)OC - i)n,fn

D24.
x

f(j,k) .

j

D25. pk
Z(9

‘%j/j! ●:q
Qk/n

D26.
z p(j)fj(k) .

j

D27. (~k/k) ~jk-l(Ae-$)~ .

j-l
a

●

9

9

D28. (e-X/k!)~(Xe-$)j($j)k/j! .

0

e-A(l ‘pK);k=O

I

w

D29. Z[ (e-Xqk/k!)I’(Kj+k)(ApK)j

1

1● (l’(Kj)j!)-l ; k=l,2, ...

Negative hypergeometric. [22, V.l;
p. 157]

Random permutation.

Random combination.

k coincidences,matching. [22, V.l;
p. 264]

Multinominal,microstate, particles in
boxes.

Arfwedson, occupancy. [22, v. 1;
p. 251]

Discrete-discretemarginal.

Poisson-compoundedbinomial.
[22, V*1; p. 190]

p(j)~ompounded fj(k) density.

Log series-compoundedPoisson.
[22, V.l; p. 211]

Neyman type A, contagious, Poisson-
compounded Poisson. [22, Vol; p. 217]

●

Poisson-compounded
[22, v.l; p. 196]

negative binomial.

20



I
e-A; k = O

’30” ,~,N ‘-A(~:~)(AJ+qk+”” ; %%”=’ ‘“1’’-*=’’”” ’22’ ‘“l;
.

k= N,N+ l,....

1e-A;
k.”

‘3’0 ~=-’$::)(’’)’’ij’;j’;Polya-Aeppli. [22, V*1; p. 197]
=

\ k = 1,’, ..O .

N

D32.
X()

‘( -$$’N-’A * .‘ $j)k(pe

o

b

D“.
1

‘x f(x,k) .

a

E

D34.
“r

Xke-x
‘x/kI~

o
co

= x e-$ ’’_l/v! .
V-k+l

b

D35.
J

‘x p(x)fx(k) .

a

Binomial-compoundedPoisson.
[22, V.l; ‘. 186]

Continuous discrete marginal.

Residual Poisson, Poissonts
exponential, binomial limit. [22,
v.l; ‘. 262] .

p(x)-compounded fx(k) density.

k k

D36. e=
z

-bav/v! - e
z

bv/v! . Uniform-compoundedPoisson. [22,
o 0 v.l; p. 184]

D37. qkpsr(s +k)/r’(s)k! . Negative binomial, s > 0 arbitrary,
I’-compoundedPoisson. [22, V.l;
p. 125]

(}D38. ; (k+a, N-k+b) . B-compounded binomial. [22, V.l;
‘O 79]

D39. I’(8+k)B(a +s,b +k)/r’(s)k! . B-compounded negative binomial.
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D40. B(a+ 1,1 +k) . Simon, power-compounded geometric.
[22, v.l; p. 245]

@

D41.
!

=-(A+B)u(I _ e-Bu)k du
● Yule, exponential-compounded

geometric. [22, v.l; p. 2451
0

D42. l/(ea+b-l) ●

,-

D43. n Pi(vi) ●

1

D1. p(v); v = 0,1,2, ● .. ●

k

lx
~. Set v = tin k; p(v)

A density for fractions a/b. [22,
V.l; p. 31]

Random sequences of integers.

Discrete Densities

J. p(k) ‘~P(v) ‘~ p(v) is the probability for v = k.

o

The continuous

Note. In this

other domains of the variable are left to the reader.

o
v

analogue in Cl is
i

p(v) dv = ro.

a

and other densities, the obvious changes required for

D2. p(v) = e-%v/v!; v = 0,1,2, .... E> o.

I $ v f - o q eRxl. Set v = min k;

J1. Special case of D1. (see F3.)

%2. Set V = -1 +min {n; ~l;2 ... ;n < e-g}.

J2. Note that Pn~ P{rl ... rn < e-g} - 1 - p {rl ... rn~e-g]

1 -v
=1-

i
drl ... drn. Making the transformation ri = e ,

.

{

-c
‘1 ... rn~e

}

22
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RX3.

J3.

n

O < Vi < ~, this beCOmSS Pn = 1 - f n e - v idvi.

1

II

Zvig

Vi>o

It is shown in C45 that the latter integral, namely the distribution
n

x

-v1 -v
function for the sum u = vi under the density e ... e ‘, has the

1
6 00

value
f

n-lemu du/(n - l)!. Hence P =
f

Un-le-u du/(n - 1)!n

=z e-Egv/v!, the Poisson distribution. (F3A.)

o

If pn is

numbers, n is

{
P rl ... rn+l

the probability that, in a sequence ~l,;2,

the first index for which ~1 ... ~n < e-g,

<e -E
}{

-E= P r ... rn <e1 }
+ Pn+l* so by

● ☛☛ of random

then

the preceding
n n-1

result, we have
~p(v) ‘~p(v) + ‘n+l” ‘rice ‘(n)= ‘n+lJ and ‘he
o 0

-crule follows. Note that PI = e = p(o).

(For large ~.) Sample the density ev 2%(2u) 1/2 for y on (-=,=) by C60

orR9. If5- 1/2 +y~
1/2

<O, setv=O. Otherwise let v be the
1/2nearest integer to g - 1/2 + y~ .

For large g, the Poisson distribution is approximately normal, namely

v (v +z 1/2 -e-e~’’/v!= (1/2u)P(v) =

o

[21; p. 717.] The rule results from

D3. P(j) =Xj/jL(A); j = 1,2, .... 0< X

1/2 - E)/E112

[
e-~2/2 d~ .

1/2setting (v + 1/2 - C)lc = y.

< 1, L(A) =-ti(l -A).
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k

Iz
Rx. Set j = min k; IAj/j ~roL(A) .

1

Ce

J. Noting that L(A) =
z

Aj/j, the rule follows from D1.

1

M. q(j) = UjnG(n);j = 1, 2, .... n > 1, C(n) the ~-function of F9.

k

lx
Rx. Set j =min k;

I

l/jn ~ r. C(n) .

1

J. The rule follows from D1.

D5. q(u) = P{f(v) = u} = x
p(v); p(v) discrete density

for v = 0,1,2, .... f(v) defined for v = 0,1,2, ... .

Rx. Sample p(v) for v. Set u = f(v).

J. q(u) is the density for the value u of the function f(v).

n

M. p(v) = p(vl, .O.,vn) =
11 Pi(vi); Pi(vi) density for vi.
1

~. Sample each pi(vi) for vi. Set vector v = (vl, .... vu).

J. p(v) is the density for a vector whose components are Independent.

D7. q(u) =P{f(vl$ .O.,vn) mu} =
z Pl(vl) ● ** Pn(vn); Pi(vi)

{V;f(v)-u]

discrete density for vi, f(v) defined for v = (vl, ....vn).

~. Sample each pi(vi) for vi. Set u =f(vl, .... Vn).

J. q(u) Is the density for the value u of the function

{

qforvi=O

J. For vie{O,l], pi(vi) = , i = 1, .... n, the
pforvi=l

function f(v) = v + ... +v
1 n

, under the density pl(Vl) ... pn(vn)~

24
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.r-

has the probability P{f(v) = s} = z P1(~l) Q~* Pn(vn)

{Vl+e● .iwn-s]

n-s s
‘q P z

()
1 = : qn-ps. The rule follows from D7.

{Vl+.● .+va%l

Note. The binomial density q(s) is the probability of s “successes”in

n trials of an elementary event for which p is the chance of success

(vi = 1). In the urn model, this

Thus, if p and q are respectively

s ‘-s is theor black ball, then p q

with replacement, exactly s balls

means drawing “with replacement.”

the chances of drawing a white or

chance that, in n successive drawings

should be white, while
()
~ is the

number of ways in which the s white balls could appear. \ 1

D9.
M(M+a) ... (M+ (s - l)a) . N(N+a) ... (N+ (n -s - l)a);

P(s) =
● ** (S+ (n - l)a)

s = 0,1, .00, n, S= M+ N, an integer ~0.

Rx. One follows the steps:

1. Put M+ti, S+& O+s, l+ t.

2. Ifrt~l?/;, put fi+a+ti, s+ 1+s. Go to(3).

If rt >ti/#, go to (3).

3. Ift=n, exitwiths. Ift<n, putt+ l+t, ~+ a+;, and

return to (2)0

J. p(s) is the probability of drawing s white balls in n successive draw-

ings from an urn initially containingM white and N black balls, subject

to the condition:

(C) On the t-th drawing, the ball drawn is replaced, and a more balls,

of the same color as that drawn, are added to the urn.

Note 1. The second factor of p(s) is the chance of a drawing in which

any designated set of s positions are white, and
()
~ is the number of

ways in which the white balls might appear.

Note 2. For a = O, p(s) =
()
~MsNn=/Sn =

()
~ (N/S)n= (M/S)s is the

binomial density of D8.

b
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a=msx{O, k}, b=min{M,N +k], O<p<l, q= l-p.

~. Set w = number of rl, .... rM such that ri ~ p.

Set v = number of rt
1’

.... r’ such that r’ ~po
N j

J. p(k) is the probability that the function w - v

-N~k~M, where u and v have respectively the

()M 14-11M
Pl(ll)= ~ q P ; v = 0,1, .... M,

(}

N N-v V
P#O = v p ; v = 0,1, .... N.

Setk= v-v.

have value k,

binomial densities .

where necessarily O SU <M, and O ~~ - k~N, i.e.,

This accounts for the limits a,b in the above sum on u. The rule then

~~=-s+’~ ●ooss2’fixeds
q-l-p.

Rx. Set n =,first m for which s of $he random numbers r,,

{( ) 1
A

J.
- 1 (n-l)-(s-l)ps-l

p(n)= ~-lq p is the probability of exactly s

O<p<l$

● **, rm are ~ p.

“succes$&” oc&rring for the #irst tfm on the n-th trial.
ao

Note 1. 1 = (1
z

(-s)(-s - 1) ● .. (-s - d + 1) ~W)dps
- Cl)%s = d!

d-O

Cez (s+d - 1) ... (S +l)(s)qdps=
d!

.~(s+:-i)<;

d=O d=()‘ .
●
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●

This verifies that p(n) is indeed a density and accounts for the term

“negative binomial.”

Note 2. For an alternative”rule,see D12, Note.

Note 3. p(n) < p (n+ 1) iff n < (s - l)/pe

D12. g(n) = qn-lp; n= 1,2,3, .... O<p<l,q=l-p.

~1.

S1.

%2.

J2.

setn=tin{m; r ~ p}.

C-e s = 1 of Dll~ g(n) is the probability of the first success

occurring on the n-th trial.

Set n=kwherekis defined byk- 1 < 2nrl/2nq~k, (k~l).

The rule follows from Dl, which would set n = k, where

k-1 kz v-1
q z

v-1
p<ro~ q P ,1.e.,1-q ‘-l< ro~l-qk ,

1 1

or, with rl = 1 - ro, qk ~rl < qk-l .

Equivalently, k 2n q ~ ~n rl < (k - l)$n q.

Since both logs are negative, the rule follows.

Note. If each of s independent variables ni has the density g(n)

n-1
‘q P, n = 1,2,3, ... of D12, then

‘1 + ““”
+ ns have the value n under

P{nl + ... +ns=n}= z
{nl+...tis=n}

the

the

probability that their sum

product of these s densities is

(“5)●**K;’p)
= z n-s s

()

-1 n-s s
qP=:_lq P*

{nl+e..tis-n}

For, the number of terms in the final sum is the number of vectors

(nl,...,ns), for

is well known to

partition places

which n + ... +n =n,n1 12 1 (compositions),and thiss

‘4)n -1
s- ~ , namely, the number of ways of choosing s - 1

outofn- 1 possible places 1, 2, .... n - 1.

Hence the density of Dll may be regarded as

variables Vi, each with the density of D12.

we have for Dll the alternative rule:

the density for the sum of s

Thus, by D7 and D12, %2.,
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Set n =
z~ ‘j’

where k
j
-l<2nrj/2nq~k .

j

D13. q(n) = an-l/(l + a)n; n = 1, 2, 3, .... a >0.

Rxl. Set n = tin {m; rm ~ 1/(1 + a)].

%2. Set n = k, where k - 1 < 2n rl/(2n a - h(l + a)) <k.

J. Special case of D12, with p = 1/(1 + a).

D14. h(d) = (1 +@) ‘l’s(a/(l + a~))d 1 ● (1 + 13)... (1 + (d - 1)~)/d!;

%“

J.

D15.

d = 0,1,2, .... h(0) = (1 +af3)
-1/6

, a > 0$ f3e {lsl/2Jl/3$ ...1.

Define s = 1/6 e {1,2,3$ ...}. p = 1/(1 +a6). Set d = = + (first n

for which s of the random numbers rl, .... rn are~p).

Special case of Dll, with p = 1/(1 +@3), q = a6/(1 +a8), s = l/t3. In

fact, h(d) = (1 +aB)
-1/f3

(aB/(1 +a6))d(l/8)(1/6 + 1) ...

● (1/6 + (d - 1))/d!

The rule follows from D1l. Note that h(0) = ps, as required.

Note. See D12, Note for another rule for D1l.

q(d) -P::; l)Ff; d ‘0$1~2$ ● **$ s ‘nteger~lJ 0 ‘p <1$\ -- r

q= l-p.

Rx. Set n = first m for which s of the random numbers rl, .... rm are <p,

andd=n-s.

()

n -ln-ss
Jo Ford=n- S, one has q(d) = s - ~ q p;n=s, s + 1, .... as in

D1l.

Note. q(d) is the probability of d failures before the s-th success.

D16. q(d) = qdp; d = 0,1,2, ● **, O<p<l, q-1-p.

Rxl. Set d = -1 + (first m for which rm~p).

Q2. Setd =-l+k,@erek - 1 < ~n rl/finq~k.

J. Ford=n- 1, one has q(d) ‘q
n-1

p, n = 1,2, .... as in D12.

Note. q(d) is the probability of d failures before the first success.
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;max{Q,n -N}&s~min{n,M], l ~n~M+N.

Rx. One follows the steps:

1. Put M+ti, N+& M+ N~~, O +s,l~

Ifrt>~~,put~-l+fi. Go to(3).

3. Ift=n, exit withs. Ift<n, goto

t.

Go to (3).

(4).

4. If ~ = O, exit with s(-M). If i > 0, goto (5)0
5. If fi=O, put (n- t) +s + s, exit with s. H ii> 0, go to (6).

6. Putt+ l+t, ib 1 + ~, and return to (2)0

J. p(s), as written above, is obviously the probability of obtaining s

white balls in a choice of n balls from an urn containing M white and N

black balls. If we write

P: = M(M - 1) . . . (M-s+ 1) =M!/(M -S)!

for the number of permutations of M things taken s at a time, it is easy

to show that

‘(s)‘(+~+’5)(:)swhich is the chance of drawing s white balls

in n consecutive dr’swingsfrom the urn, without replacement. The rule

is based on the latter interpretation.

I
%N wNote that Ps n-s Pn is the chance of such a drawing in which the

first s balls are white, while
()
~ is the number of possible orders in

which the s white balls might appear.

Note. In step (5) of the rule, if fi= O, then t = s + N, and hence for

s’ =n - t+s=n - N~M, one has s’ <M, as it must be.

M

D18. q(n) = (M+ N)-(n-l); n=s~s+l$ . . ..s+N.

M,N,s integers > 0, s fixed, 1 <s < M.—
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~. One follows the steps:

1. Put M+& M+ N+& O~u, l +t .

2. If rt ~A/~, put fi-l+ti, u+l+a. co to(3).

If rt >W, go to (3)s

3* Ifa<s, puti -l+s, t+l+to Return to(2)o

Ifu=s, exitwithn=t.

J. q(n) is the probability that the rth drawing without replacement from

an urn containingM white and N black balls should produce a total of

exactly s white balls for the first tlnw. For, by D17, the first

fraction above is the chance that the first n - 1 draws should produce

exactly s - 1 white balls, while the second fraction is the chance that

the next (n-th) draw should then be white.

Note. This is the “without replacement” analogue of the negative

binomial density D1l.

D19. p(~) = l/N(N- 1) ... (N - n + 1); Ifranging over the P: equally

likely permutations II= (Cl, ● **, Cn) of the integers 1, 2, ,.., N,

taken n at a time.

Rx. One follows the steps.

1. List the integers 1, .... N.

2. PutN+fi, l+t.

3. Set K -tin {k; k~firt}, Kc {1, .... fi}.

4. Set Ct = K-th integer of the remainin~ list, and delete this integer

from the remaining list.
5. Ift<n, putl+t+t, fi- 1 +~, ad retun to (3).

If t = n, exit with permutation II= (Cl, .... Cn).

a’
C ranging over the

()

N
n equally likely combinations

c = {cl, ●... Cn} of the integers 1, .... N, taken n at a ttme.

~. Obtain the random permutation Ii= (Cl, .... Cn) from D19.

Let C be the unordered ge& {Cl, .... Cn}.

J.

(j

The P: = N!/ N - n)! equally likely permutations of D19 may be parti-

tioned into
Nn = N!/nl(N - n)! classes, each containing the same number

n! of permutat ens. The classes are therefore also equally likely.

30
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D21. p(k) = (1/k!){l - 1/1! +1/2! - ... +(-l)N-k/(N-k)!};

k= 0,1, .... N.

Rx. One follows the steps:

1. List the integers 1,2, .... N.

2. PutN+~, l+”t.

3. Set K=min{k, k~firt}, Ke {1,2, .... fi}.

4. Set Ct = K-th integer of the remaini~ list, and delete this integer

from the remaining list.

5. Ift<N, putt+l+t,fi -l+ fi,andretumto (3). Ift=N, go

to (6) with random permutation II= (Cl$ .... CN).

6. Setk= number of integers i for which Ci= i, k = 0,1, .... N.

J. The rule is the obviow adaptation of that in D19, since p(k) is the

probability of exactly k coincidences (fixed points) in a random

permutation of the integers 1, .... N. This may be seen from the

inclusion-exclusionprinciple of F20 as follows. Consider first a set

of integers 1, 2, .... n, and let Si be the set of all their permuta-

tions which leave the integer i fixed. By F20, the number of permuta-

tions which leave at least one integer fixed is

zFJ()#(sl . . . * Sn) = #s - #si Si +..0 +(-l)n-l #sl .0. s
‘1 n 12 n

n
1 2

= (n!/l!(n - l)!)(n - 1)1 - (nf/2!(n - 2)f)(n - 2)! + ...

+

+

Hence the number of

(+)n-1 (n!/n!O!)(0)l= n!(l/l! - 1/2! + ...

(-l)n-l/n!).

permutations which leave no integer fixed is—
nl(l - 1/11 +1/2! - ... + (-l)n/n!). Now, the number of permutations of

of the original set 1, ... ,

()

N which leave exactly k integers fixed is
N
k times the number which leave any particular choice of k integers fixed,

with the’remaining N - k all unfixed. It follows from above that
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p(k) = (1/N!)(N!/k!(N-k)!)(N-k)! (1 - 1/1! + 1/2! - ...

+ (-l)N-k/ (N - k)!) = l/k! {1 - 1/1! + 1/2! - ...

+ (-1)‘-k/(N - k)!}.

V I Vf
D220 I@, ●**, Uf1 = (n!/vll ... Vf!)pl ... pf ; domain: all “rmdti-

plicity” vectors [Ul, 9**, Vfl ~th IIj~ O and sum

~. One follows the steps:

k

2. Set K= min {k;
E

pj ~rt}. PutllK+l+llKe

1

3. H t < n, put t + 1 ● t and return to (2)0 Otherwise eflt ~th

[111, ●**, Ilfl*

J. P[vl$ .... Uf] is the probability that a

have 111components 1, .e.~ vf components

component vi has probability pj of value

Note 1. We may partition the fn vectors

vector (V~, .... Vn) should

f (multiplicities),where each

j, j = 1, .... f.

(v,, .... Vm) into multi-

plicity classes” C[vl, ●.*, Ilfl,v of the ~omponents Vi having value j.

Such a class necessarily has Ml + ... + Vf = n, U3 LOO me number of

f] in the do~l(~~~;~)~~h~~s~~~~r~~

such classes is easily shown to be

vectors [v , .... v1 1
number of vectors (V , ....1

Vn) belonging to a particular class

C[vl, ““”’“f]‘S(wn”””r-’fii”o‘Vf-’)=n’’”l““”“f”
‘1 ‘f

each such vector ( V I ’ , . . . . Vn ) having probability PI ... Pf . ‘l’he

.

probability of the class CIV1, .... Vn] is therefore
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‘1 ‘f
(n!/vl! ... uf!) pl ... pf .

.
.W
J-

Note that algebraically

1 = (pl + ● ** +pf)n =
z Pv ● ** Pv

(Vl,● ● *,Vn)
1 n

C[l.1]Vec[v] C[lll

Example. PtM1, ●**, Vf] is the probability of assigning n balls to f

boxes, P. being the probability of box j, in such a way that box 1

containeJvl balls, .... box f contains IJfballs. For equally likely

l-es, P[vl, ●*O, Uf1 = (n!/Ml! ● ** llfl)(l/f)n*

Note 2. The density for the-u -VI + ... +Vn is not e~ily

expressed (although easily sampled). Only for the case f = 2 do we

have a connection with the binomial densit~ D8.

D23. p(k) = ~)~ (-l)i~)(”~; k = 1,2,..., min {f,nl.
i-cl

●

Rx. One follows t~e steps:

1. Puto+lll, .e., o+llf; l+to

2. Set K=min{k; k~frt}. Put 1 +% +VK.

3. If t <n, put t+ 1 + t, and return to (2). If t -n, go to (4).

4. Set k = number of positive components of vector [Nl, .... I.If]and

exit with k.
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J. The rule is the obvious adaptation of that in D22, since p(k) is the

probability of exactly k of f boxes being occupied, if n particles are

assigned to f eqhally likely boxes (P = l/f~ j = 1$
j

●**, f). Thie may

be seen from the inclusion-exclusionprinciple of F20. Fix on any one

()

f
of the kp ossible choices of k boxes to be occupied, the rest vacant.

Let Si, i = 1, .... k, be the set of all assignments of the n particles

to these k boxes which leave the i-th of these boxes empty. Then

S1 U.*. Usk is the set of all such assign=nts which leave at least

one vacant. By F20, the number of these assignments is

#(Sl U ... Usk) =x%,-z , z

#(si Si ) + ● oo + (-l)k-l #sl ● 00 Sk

~) $)

()=~(k-l)n
()

-:(k - 2)n+ ..0 + (-1)
0

k-1 kk (0)no

The set of all assignments of

cardinal kn, so the number of

vacant is the difference

the n particles to these k boxes has

assignments leaving none of these k boxes

Dskn-
()

k~ (k
()

- l)n + : (k - 2)n - ... + (-1)
()

k : (0)n.

()fSince there are k choices of the k boxes to be occupied, the totality

of assignments o the n particles to the f boxes leaving exactly k of

()

f
of boxes occupied is k D. Finally, the total number of assignments of

n particles to f boxes is fn.
0

Hence p(k) = ~ D/fn, which is the

formla given in D23.

Question 1. Is it true that

p(k) =z (n!/vl! ... llft)(l/f)n,

where the sum ranges over all vectors [Ml, ●**, ~f], such that

> 0, with exactly k positive components?Ml+e. o+vf=n~uj _

Question 2. If f > n, at mmt n boxes can be occupied. Is it true that

the formula for p(k) in D23 is automatically zero if k > n?

.
a.

.

.
*
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w

D24. q(k) =
x f(j,k); k = K, K+ 1, ... , f(j,k) density for j ~J, k~K.

-J
Ce

~. Sample the marginal density p(j) =
E

f(j,k) for j ~J. For this j,

k=K

Isample the j-dependent k-density p(k j) = f(j,k)/p(j) for k~ K.

J. Consider the obvious relations:

1. p(j) =~f(j,k)

k

I
2. p(k j) = f(j,k)/p(j)

3. q(k) = x f(j,k)

j

4. p(jIk) = f(j,k)/q(k)

From (3) and (2), we have q(k) = ~ ~(j)~(klj), -.. gives the rule.

j
Moreover, (4), (3), (2) implY

p(jlk) = f(j,k)/x I /z Pqj)p(j)$f(j,k) = p(k j)P(j)

j j
which is Bayes* theorem.

Note 1. The analogues for other domains of j, k, discrete or continuous

are obvious.

Note 2. The idea in this and all related rules is that the given density

q(k) is difficult to sample, but can be recognized as the marginal

k-density of a two variable density f(j,k), and that the marginal j

density p(j) =~f(j,k)
I

, and the j-dependent k-density p(k j)

k

= f(j,k)/p(j) are

that
E

q(k) = 1

k

relatively easy to sample. Moreover, the necessary fact

may then be verified from the relation
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D25. q(k) = e-~pk Z()
nj nja j !. k = (),1,2,...*
kq

A/j, A>o, o<p <l,

j~ln

q=l - p$ n S {1,2,3,0..}.

‘A~j/j! for j e {0,1,2, ...&o Sample p(j) = e } by D2. Ifj=O, setk=O.

If j~l, setk=numbarof rl, .... r such that ri ~ p.

()

nj

J.
nj nj-k k

The function f(j,k) = (e-AXj/j!) k q p is a doubly discrete density

on the set of all lattice points ( Sk) for ma k ~ OS j zk/n~

equivalently, j ~ O, 0 Sk ~nj. Its marginal k-density is the q(k)
nj

given above, whereas its margiul j-dewity is P(j) = ~ f(j,k)

= e-A~j/j! Moreover, for each j > 0,

()

nj nj-k~
p(klj) = f(j,k)/p(j) = k q p;k

I
and for j~l~ p(kj) i he binomial

obvious extension of D24) follows. A
00

k=O

the j-dependent k-density is

= 0,1, ●00,
I

nj. Since p(k O) = 1,

density of D8, the rule (an

continuous analogue is C1350

D26. q(k) = z p(j)fj(k); k = K,K+ 1, ●*O, P(j) density for j = J,

=J

J+l, .... fj(k) density fork =&K+l, .... for each j~J.

~. Sample p(j) for j ~ J. For this j, sample fj(k) for k~k

J. Corollary of D24, with f(j,k) ~p(j)f~(k). Note that p(j) is then the

I
marginal j-density, and p(k j) = fj(k~.

co

j
D27C q(k) =L-l(~)(~k/k! )~jk-l(~e-) ;k = 0,1,2,..., O<A< 1, $>0,

+=1

Rx.

J.

D28.

L(x) = -~(1 - ~ ) .

Sample p(j) = xj/jL(A) for j e {l,z~s,.o.} W D3c For t~s j~ s-le

fj(k) = e‘j+(j$)k/k! forke {0,1,2,...} byD2.

w

One hasz P(j )fj(k) = q(k) as given, and the rule follows from D26.

j=l

00

q(k) = (e-A/k!) z
(Ae-$)j($j)k/jl;k =0,1,2, .... ~, $>0, and

..>
.

“

9.
,-

*

j - o
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(N.B.!)(#j)k s 1 for j = O,k = O by definition.
-~ jRx. Sauple p(j) = e A /j! for j c {0,1,2$...} by D2. Ifj=O, setk=O.

*j($j)k/k! for k e {0,1,2, ...} by D2.For j ~ 1, sample f (k) = e
j

m

J. We write q(k) =
E

(e-A~j/j!)(e-$j($j)k/k!)in the form of D26, where

j-o

P(j) ‘e-A~j/j! is a de=ity for j G {0,1,2,...},and fj(k)

-e ‘@j($j)k/k! is adeneity forke {0,1,2,...},for each such j. For

j 21, fj(k) is a Poisson density with parameter F =$j > 0, es in D2,

whereas for j = O, fj(k) = 1 fork = O, and O for all k > 0 ~ defini-

tion. The rule then follows from D26.

e-~(l ‘pK); k = O
00

D29. q(k) =
z

Kj
(e-Aqk/k!)r(Kj+k)(~p ) /r(Kj)jl; k= 1,2, .... A, K>O,

=1

O<p<l, q=l-po
-~ jRx. Sample the Poisson density e A /jl for j e {0,1,2, ...} by D2. If

j - o , set k = O. If j ~ 1, sample the negative binomial density
k Kj
q p I’(Kj+k)/r(Kj)kl for k e {0,1,2, ...} by Dll or D37, with s =Kj.

(ForK integral, obtainn from Dll and set k =n - s.)

‘Axj/jl; j = 0,1$2, .... end for every such j, weJ. We define p(j) ‘e

define the function fj(k) for k e {0,1,2, ...} by

{

lforj=O, k=O; Oforj =0, k=l,2, ...
fj(k) =

qkpKjr(Kj +k)/1’(Kj)k! for j ~ 1, allk= 0,1,2, ... .
w

One then verifies that, for each k = 0,1,2, ....
z p(j)fj(k)

j-o

= q(k) as given, and the rule follows from D26. In fact, for k = O,
CQ 40 coz z -A x{(e-AAj/j !)P(j)fj(O =P(o)fo(o) + p(j)fj(@ =e ● 1+
j-o j-l j-l

j-l j-o
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= =-A(17K) = q(0) as defined. Moreover, for each k ~ 1, we have

co Ce

jj p(j)fj(k) = p(o)fo(k) + ~ p(j)fj(k) = 0 + x { (e-AAj/j!)

j = o j = l j=l

}
● (qkpKjr’(Kj+ k)/1’(Kj)k! = q(k)

as defined for k = 1,2$ ... .

()N jqk+j/j!; k -N, N+ 1, ● 00 sAp

A> O,Ninteger~l, O<p <l, q=l-p.

Rx. Sample e-AAj/j! for j e {0~1~2, ...} ~ D2* ~ j = OS set k = ‘* lf
- ~ k+lj Nj

()
j~l$s_leN~-~q p for k e {Nj, Nj + 1, ...} by Dll, with

s = Nj.

J. -~ jDefine p(j) = e ~ /j!; j = 0~ls2~ .**> and for each such j, define the

function

Ilforj=O, k= O;Ofor j= 0,k=l,2,3, ...
fj(k) =

()

k- 1 k-NjpNj f
Nj - ~q orj ~ 1, k+=Nj, Nj +1, ...$

the domain D of (j$k) being all lattice points for which j 20, k~Nj~

i.e., all lattice points j ~0, k ~0 on or above the line k = Nj. One

can verify that, for each

as defined above, and the

k= O,N,N+ 1, ....
x p(j)fj(k) ‘q(k)

(j,k)&D

rule follows from D26. (C130 is a continuous

analogue.) In facts

-A
=e . 1 =q(0), as

for k = O, we have z P(j)fj(o) =P(o)fo(o)
(j,O)eD -

defined, and for each k = N, N + 1, ....

x p(j)fj(k) = x p(j) fj(k) = x{
()

(e-AAj/j!) “ N:: ;

(j,k)sD l~Qc/N lQ~/N

.

, qk+jpNj
}
= q(k) as defined for k = N, N + 1, ... .
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a:-
.
.
--
,% E4&MK2k=1’2’3’””p<”<

q-l-p.

~. Sample

J. Case N

D32. q(k) =

-A je A/j! for

(~

c {0, 1, 2, ...} by D2. Ifj=o, setk=O. If
k- : ~kti jsample
j-

p fork e {j,j + 1, ...}~ Dllwiths -j.

= 1 of 30.

N

X()
~ ($j)k(pe-*)jqN-j/k!;k = 0,1,2, ..-, 1#1>0, 0< P < 1,

i-o

q= I ‘p, end (N.33.!)(~j)ks 1 for j -k = O by definition.

Rx. Set j = number of rIs ●**, rN such that ri ~ p. Ifj=O, setk=O.

“j($j)k/k! for k e {0,1,2, ...} by D2.lfj~l, samplee

We write q(k) = ~(@qN~pj) ●
(e-$j(~j)k/k!)in the form of D26,J.

j-o

where p(j) =
()

N N-j j
p is a binomial density for j e {0,1, .... N}, andjq

“j($j)k/k! is a density for k s {0,1,2, ...}.for each such j, fj(k) = e

For j ~ 1, f (k) is a Poisson density with parameter g = $j > 0 as in
j

D2, whereas for j = O

fj(k) =
{
lfork=O
Ofork>O

by definition. The rule follows from D26 and D8.

b

D33. q(k) =
!

dxf(x,k); k=& K+ 1, ●00, f(x,k) density for a < x < b,

k=& K+l,eeo

~. Sample the rmarginal density

co

P(x) = z
f(x,k)

k=K

for x on (a,b). For this x, sample the x-dependent discrete k-density

Ip(kx) =f(x,k)/p(x)

fork~K.
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J. lhis is the continuous-discreteversion of D24, where explanations are

given which are applicable to all four combinationsof domain for the

variables (jSk).

c co

D34. q(k) =
1

~ke-x
dx/k!g =

E
e-~&v-l/v!; k=(),l,2,

● .0, E >0.

0 v - k - f - l

-xkRx. For x=rog, sample e x /k! for k e {0,1,2, ...} ~ D2.

J. The rule follows from D33. k a/k!~ onFor, the density f(x,k) = x e

0<x<g,k=0,1,2,

e
.... has marginal k-density

f
dxf(x,k) =q(k) as

o
m 00

given, and marginal x-density p(x) = ~ f(x,k) = (e%/g) ~ xk/k!
k-o .k=o

= l/gO Moreover, the rdependent k-de~ity iS P(klx) ‘f(x,k)/p(x)
-xk

-e } the Poisson density ~f D2. The value of xX /k!; k c {o$l~2, ... ~

x

results from Cl, since r. =
1

p(x) dx = X/E.

o

Note. The identificationof q(k) with the sum in D34 follows from F3A,

b

D35. q(k) =
~

dx p(x) fx(k); k = K, K+ 1, .... p(x) density for x on (a,b),

fx(k) discrete k-density for each value of parameter x on (a,b).

~. Sample p(x) for x on (a,b). For this x, sample density fx(k) for k~%

J. Corollary of D33, with f(x,k) E p(x)fx(k). Note that P(X) iS the

I
marginal x density, and fx(k) = f(k x).

...*
.

k

Iz

k

D36. q(k) = (b -a)
-1 e-a -bav/v! - e

O

bv/vl ; k = 0,1,2, ....

0 0
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.-..

.
..*

O<a <b.

Rx. Set x = a + (b - a)r. For this x, sample the Poisson density emxk/k !

for k e {0,1,2, ...} by D2.

J. For the uniform density p(x) = l/(b - a) on (a,b), and the Poisson

x-dependent k-density fx(k)

b

J
dx p(x)fx(k) = (b -a)-l

a

i- m

= e%xk/kl for k e {0,1,2, ...} one has

b

!
dxe-xk/kl = (b ‘a) -1

a

by F3A, and this is the given q(k). Following D35, we may sample p(x) for

x=a+(b- -xka)r on (a,.) by Cll, and for this x, sample fx(k) = e x /k!

for k~O by D2.

D37. q(k) = q‘ps~(s+k)/r(s)k!; k= 0,1,2, .... 0 <p < 1, q = 1 ‘p, s > 0,

S c {1,2,3, ...). (For integral s, use Dll for n~ s, and set
k=n- S > o.)

s-Te-u
Rx. Sample u /l’$)kfor u on (0,-) by C64 or R27. Set x=uq/p. For

this x, sample e x /k! for k e {0,1,2, ...} by D2.

J. s ‘-leW’q/I’(s) on (O,-), and fx(k) = enxk/k!,For p(x) = (p/q) x
-

k e {0,1,2, s**}, one finds f dxp(x)fx(k) = ((P/q)s/r(s)k!)
o

@

●

❉

* xs+k-le-x/q
= q(k) as given. By D35, we may sample p(x) for

o

x > 0, and for this x, sample fx(k) for k ~ O. But for x = uq/p, one has

S-le-u
p(x) dx = U du/I’(s),and the rule follows from C2.

m

Note. One can adapt Note 1 of Dll to show that
x

q(k) = 1 for non-

integral so ~s also follows from~q(k) = ~~dx p,x)fx(k,
o 00



00

= .(dx p(x) = 1.

0

D38. q(k) = - k + b)/B(a,b); k = O, 1, ● 00, N,a, b>O,

N e {1,2,3, ...}.

a-l(l -x)Rx. Sample the density x b-l/B(a,b) for x on (0,1) by C75 or

b#l, or by C150r C16ifb =1. Forthisx, setk=

r , .... r such that r < x.1 N i-

J.
a-l(l - X)b-l

For the density p(x) = x

(7

/B(a,b) on (0,1),

density fx(k) = k (1 ‘x)
N-k k

x,k=O,l, .... N, with
*J,

finds that
J

dx p(x)fx(k) = q(k) as given. Following

o
sample p(x) for x on (0,1), and for this x, considered

number of

. .. .

*-* .

R28 if

and the binomial

O<x<l, one

D35, we mSy

as a probability

p, we may sample the binomial density fx(k) for k e {0,1s .... N} by D8.

The rule follows.

D39. q(k) = r(s + k)B(a + s, b + k)/I’(s)k!B(a,b); k = 0,1,2, ..0, a,b,s > 0.

Rx. Sample

b#l,

=(1-

P(x) = Xa-l(l - X)b-l/B(a,b) for x on (0,1) by C75 or R28 if

or by C15 or C16 if b = 1. For this x, sample fx(k)

ks
x) x r(s + k)/I’(s)k!for k e {0,1,2,...} by Dll if s is integral,

or by D37 if not.
1

J. For the densities defined above, one has
f

dx p(x)fx(k) =q(k) as

o

given. The rule then follows from D35.

Note. Included here are the special cases: Beta-compounded geometric

(s = 1), pmer-compounded negative binomial (b = 1), and pmer-

compounded geometric (s = 1 = b). See D40, D41 for the latter.

D40. q(k) =a(a+l, l+k)=ak!/(a+l)(a+2) ... (a+l+ k);

Rxl.

J1.

RX2.

42

k = 0,1,2, .... a > 0.
a-1Sample p(x) = ax for x on (0,1) by C15 or c16. For this x, sample

fx(k) = (1 - X)k x for k e {0,1, ...} by D12. (Specifically,one takes

p=x, samplesD12forn~ landsetsk=n-1.)

Cases=l=bofD39.

Choose any A,B > 0 such that a =A/B (e.g., A = a, B = 1).



.

Sample ~(k) for k & {0,1,2,...} as in D41, %1.

J2. Under the substitution a = A/B, x = e-Bu, one finds that

1

f
q(k) = dx

o

= (A/B)

Note. For a

1 ~

f

.
p(x)fx(k) =

o

o

dxaxa-l(l -x)kx=a
J

Xa(l - X)k dx

o

_ e-Bu k) (Be-Bu du) = ~(k) as in D41.

= 1, q(k) = l/(k + l)(k + 2).

D41. ~(k)= J ~-(A+B)U(l -e-Bu)kdu* k= O 1 2
9 99P .... A,B > 0.

0

1$#.

J1.

%2.

S2.

Sample p(u) = As-Au foru=+i -1
h r on (0.-) bv C29.---

For this u, sample fu(k) = (1 - e-Bu)ke-Bu for k on

(Specifically one samples D12 with p = e-Bufor n~
k.n- 1.)

m

One verifies that
I p(u)fu(k)du ={(k)

o

Define a = A/B, and sample q(k) for k c

{0,1,2,...} by D12.

1 and sets

as above and uses D35.

{0,1,2, ...} as inD40, ~1.

Under the substitution a = A/B, e-Bu = x, one sees that

1

~J
● (Bs-BU du) = a Xa(l - x)‘dx=aB(a +l,l+k)= q(k)

o

as in D40.

Note. The apparent circularity is intentional,

key word of the index.

D42. p(a/b) = (e - 1)2/(e
a+b

- 1); a,b integers~ 1,

in order to justify the

(a,b) = 1.
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m

Rx.

I F
Set m = min m;

-2
$(q)l(eq - 1) ~rl(e - 1) I,m~2, and

q=

j = mln{j; j ~ r2$(d30 List the $(m) integers a on {1,2, .... m}

which areprimetomasl=al <a2<.. o<a Seta=a
~(m)” j’

b=at-a~. (For notation, see F21.)

J. Classify ~11 a/b according to the sum q = a + b~ 2. The probability of

the class a/b with a particular sum q is z p(a/b) =
z{

(e - & ●

a+&q al-b-q’

(ea* - 1)-1)= (e - l)2(eq - 1)-1 x
l= (e- l)2(eq - l)%CI),

a,b>l
(a,n=l

and according to D42, all a/b belonging to a particular class are equally

likely. The rule follows.

Note 1. ~p(a/b) = 1 is a consequence of Llouville’s identity (fil).

For using the above results for the probability of a class q, we have

Ce

z P(a/b)=2 z p(db) = (e - 1)2E
$(q)/(eq-l)=(e-1)2

q=2 a-l-b-q q=2

a co

z -eA) = (e - 1)2● +(q)ew/(l p +(q)ew/(l - e=)
q=2 q=l

I-(e-l/(l -. e-~)) = ( e - l)2{e-1/(1 - e-1)2 - e-l/(l - e-l)}
(where we have substituted y = e-l in F21)

= (e - l)2(e-1/(1- e-l)){l/(l - e-l) - 1}

= ( e - 1)2 (e-l/(l -e ‘1))2 = (e - 1)2(1/(e - 1))2 - 1.

Note 2. The version (D40) in the second Sampler appears to be wrong.
00

D43e ~ Pi(vi). Methods are given in [18,19],

1

of trials,” for producing random sequences

asymptotic de~ities.

based on “Poisson sequences

of integers with stipulated

.
..-- .

i.
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r-:...
-r

.

.,
.

Note. If a r or B

... }, seeR27, 28

cl. p(v) ●

C-INDEX

Continuous Densities

density involves an exponent not in the set {1/2, 1, 3/2, 2,

if not explicitly referred to.

C2. p(y) dy -q(x) * ●

C3.
x

a ( V ) .
j

C4. 1+V2.

C5. q(u) = *P{f(v) <u} .

n

C6. H Pi(vi) ●

1

C7. q(u) -~ P{f(vl, ●.*, Vn) ~u} ●

C8. q(u) =F(u)A(u) .

C9. S(u),p(u)sq(ll)●

Clo. p(v) ●

C1l. l/(b -a) .

C12. co + CIV ●

C13. co + Clv + C2V2 ●

C14. 1 - V2 .

m-lC15,C16. U ,m>O.

w

-1c18. U ●

C19. 1/(1+Bx) ●

General continuous.

Change of variable.

Sum of positive terms, interpolated
density.

Thomson scattering.

Density for value of a function.

Vector density.

Density for value of a function.

Special case of C7. A geometric
device.

Densities for VI +V2, VIV2, v2/vl.

A general device avoiding Cl.

uniform.

Linear, disk radius.

Certain quadratics, shell radius.

Special quadratic.

Power, sphere radius, completely
degenerate gas momentum.

Power series, Butler.

Hyperbolic.

Truncated type VI, Bradford.
[22, V. 3; p. 891
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C20,21. v
Ill-1

,m>o.

x m+l
ex/(6 + e ) .C22.

C23.

c24.

C25.

c26.

C27.

C28.

C29.

C300

C3L

c32.

C330

C34.

C350

c36.

C37.

C38.

C39.

C400

C41O

46

e7/(1 + $-1e7)ti1.
(y + 1)-(*1), m >0 .

eBx/(1 + eBx)2 ,

g(;) + g(~) ●

2s(;) ●

s(w) ●

-au
e.

e=/(l - Aev) .

e=l” - e*2u .

-1al-l a2
Y -Y “
n

z

a -1.iF;*y .

1

n

z

-au
je

~ ‘je

-au -au
BIe 1 + B2e 2

●

II
e-a u-b

●

Xb-le=xb
●

cosh 6 .

Sinh e ●

(1 + ex) exp{-(x + * 0x2)} .

Power.

Generalized logistic 1.
[22, v. 3; p. 17]

Centralized logistic II.
[22, V.3; p. 17]

Pareto.

Kahn, approximate normal.

Folded.

Folded symmetric.

Symmetric.

Exponential, Laplace I, decay time,
collision distance.

Log series-compoundedexponential.

Mfference of exponential.

Exponential convolute.

Difference of powers.

Power convolute.

Sum of exponential.

Hyperexponential, residence times.

Bilateral exponential, Laplace II.

Weibull.

Hyperbolic cosine.

Hyperbolic sine.

Linear failure rate, lifetimes.
[22, V. 3; p. 268]

.

.

.

.



C42.

-...

.*

.

C43.

C44.

.
C45.

c46.

C47*

c48.

C49*

C50.

C51.

C52.

C53.

C54.

C550

C56.

C57.

*
C58.

[1 + 6(1 - e=)]

,- exp{-[x + O(x + e= - 1)1} .

exp(z - e - ) ●

e-(z-c)/e e={a-(2-c)/el .

~n-le-u; n = 1$2,3, ... .

(1 + y)e3’K .

~n-l/(ev - 1), n = 2,3, ... .

u2n-1/(eu2 - 1), n = 2,3, ... .

v2n-le-v2
9 n= 1,2, .Q~ ●

Re-’2 ●

-v2
e ; (0,=) ●

U-l exp{-(!tn2u)/2b}.

I[1‘(+)21“‘m-(1’2)[’
+ 6 8iQh

( )1
c.-lx-

A

,
exp{-fn2u} .

(x -

cosh

0)-1 ● exp{-[h(x - 0

#/2b} ●

(~w/a2) ● exp{-(w2

+E2)/2a2} ●

cosh(G*/u2) ● exp{-(f?2

+#)/2u2} .

2
C59. ea ; (~,~) .

Life times. [22, v.3; p. 268]

Extreme value. [22, v.2; p. 277]

2 parameter extrem value.
[22, v.2; p. 2771

r-type, Erlangian, Pearson.

sum of r-types.

Planck Type, Bose-Einstein.

Version of C47.

Gauss type, Rayleigh, Maxwell.

Gauss type, n = 1.

Error function.

Log normal.

SU curves. [9; p.

SB curves. [9; p.

Pseudo log-normal.

126]

130]

3-parameter log-normal,

Cobb, Douglas. [22, v.2; p. 113]

Normal symmetric sum.
[22, v.3; p.1361

Folded normal. [22, v.3; p. 136]

Normal version.
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C60.

C61.

c62.

C63.

C64.

C65.

C660

c67.

C680

C69.

C70.

C71.

C72.

C73.

C74.

C75.

C76.

C770

c78.

C79.

=72/2;(40,0a)●
~2n-le#

s n = 1/2,3/2, •~. .

“2n-ll(ev2 - 1), n= 3/2,5/2, ... .

~n-l
/(e” - 1), n = 3/2,5/2, ... .

vn-1e-v,n u 1/2,3/2, ... ●

‘-l!tnn-l(l/y).Y

#-le%P

=-$t/ts -t/ulexp{-pe .

(1 + (x/a))abe-bx .

~,xn+leb/x
●

x-(n+l)e-a2/2x ,

X csch X

un-lEJu) ●

n-U $% (u) .

Vn-l -v 2 -2V
e /(1-Ae ); (0,-) ●

~m-l(l - ~)n-l ,

z‘%1 +z)* ,

Sin&-l e cos2n-le

#P-+~ - “p)n-l
●

(x - a)ml(b - x)n-l .

(x - b)R/(x - a)Q .

x/2 -x/2 2m
l/(e +e ) .

-x/u m%
“6/(1 + pe ) .e

Normal.

Gauss type, Maxwell speed.

Planclcversion.

Plan& type.

I’-type,Maxwell
spectrum.

energy, fission

Power-log power.

I’-version.

Compertz. [22, v.3; p. 271]

Transition type III. [9; p. 78]

Transition type V. [9; p. 81]

One sided stable, recurrence timas.

x ● hyperbolic cosecant,

Schl&ilch, neutron diffusion.

Bessel.

Lema for R210

Beta types, pwers of sin, Coso
(See R28.)

Pearson types I II, general Beta.
[22, V*3; p. 37]

[22, V02; p.13;
%7; W ‘“

Logistic power, power of sech-square.
[22, V.3; pp. 5,17]

4-parameter generalized logistic.
[22, v.3; p. 271]

...-. .
.

● ✍

✎

.

48



-2..

.*

.

c80.

c810

C82.

C83.

c84.

C85.

C86.

c87.

C88.

c89.

C90.

C91*

c92.

C93.

C94.

C95.

c96.

C97.

c98.

C99.

7nx/cJ -x/a n-1e (1-pe ) .

(1 - (x/a)2)n-1 .

zrl/(l+z), O<m<le

x(x - a)‘-1(b - X)n-l .

xm-l(1 - X)n-l/(x + a)* .

(a + x)m-l(a - X)U-L .

F(x) + X-2F(X-1) ●

(xm-l +xn-j/(l +x)* ,

J/p+lwl’’m]*●

N1X12exp -
‘i “

1

p($l),Q = (Wl, ..*, UN) ●

( ))N

F
E

2 1/2
‘i “

1-

(N/2)-le-s/2b8 ●

~N-lem2/2b

~(N/2)-lei?v;2b
●

~N-le-Np2/2b
●

l/(H(t2/N))@+l)’2 ●

l/(c2 -i-(q -Q2)m .

1/(1 +t2) ●

1/[1 +((Z -e)/A)2] .

4-parameter generalized exponential.
[22, v.3; p. 271]

Transition type 11. [9; p. 74]

Restricted Beta.

x ● Beta.

Modified Beta.

Centered Beta.

Reflected density.

Reflected Beta.

Centralized Cauchy, Rider.
[22, v.2; p. 162]

N-nomal, Maxwell velocity.

Uniform (isotropic)direction
space, point on unit N-sphere

Radially symmetric densiky.

X2 density.

x density.

Mean square, X2/N.

1/2Root mean square, (X2/N) .

Studentts t.

Pearson type VII.
[22, V.2; p. 13; V.3; p. 114]

Cauchy.

2-parameter Cauchy.
[22, V.2; p. 154]

in N-

H
0=1.
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Clooo

Clol.

C102O

C103.

C104O

C105.

c106.

CI07.

c108.

C109.

Cllo.

Clll.

C112.

C113.

C114.

C115.

c116.

C117.

c118.

C119.

50

[1 + [(W2 + e2)/A2)]

● [1 + 2((W2 + e2)/a2)

+ ((W2 - e2)/A2)2]-1 ●

2 ● (Cloo).

sech x .

1/(1
2 1/2

-u).

~(”/2)-1/(1 + (~/N))(Mw)/2 ,
(M+N)/2J#%(l + (MH2/N)) .

~n-le-~y; (1,C8)●

zn-le-Ez/~; (q,=) .

ze -; (n,-) ●

v‘-lea’’/(l -A2e-tiv); (1,~) .

{
u; (0,1)
2 -u; (1,2) .

{
4(x -a)/(c - a);
4(c -x)/(c -a) .

IIl-x,

{

al(x)

a2(x) .

{

h(x - a)/(b - a)
h(c - X)/(C - b) ●

ai(x); (xi$ xi+l) ●

{

px/a2

pqi-l{(l + ip)a - px}/a2 .

l/(ex+b+em),-2<b< 2.

l/(ex +e=) .

Cauchy symmetric sum, (-@,00)
[22, v.2; p. 163] ..-. .

Folded Cauchy, (0,00).
[22, v.2; p. 163]

Hyperbolic secant. [1; p. 64]

Sine of uniform angle.

Snedecorts F.

Square root of Snedecorts F, rms/rms.

Lams for R230

Residual Fdensity.

Hesidual l’-density(n = 2),
Carey-Drijard.

Lemma for R240

Triangular, sum of two random numbers.

Symmetric triangular, tine.
[22, v.3; p. 641

Centered triangular. [22, v.3; p. 64]

Composite.

Ceneral triangular.

Asymmetric Leplace. [22, V03; P* 311

Ceneral composite.

Binomial-uniform,traffic flow.
[22, V.3; p. 70]

Symmetric exponential I.
[22, V.3; p, 15]

Hyperbolic secant. [22, vo3; p. 151

.



C120. l/(ex + 2 + e ) .
-

e-.
.

.P* c121. l/(ex + b + em)~ b > 2 ●

-
c122. l/(b + 2 cosh a(y - Ye)) ●

c123. l/t{t/to)a+ b + (t/to)=} ●

b

c124.
J

dx f(x,y) ●

a

(

2
c125. e-ay - e

?
‘by /y2 .

C126.

c127.

c128.

C129.

C1300

C131.

c132.

Logistic, sech-square~ growth mrve~
symmetric exponential II.
[22, v.2; p. 244; v.3; Po31

Symmetric exponential III.
[22, V.3; p. 151

Champernowne, income, Perks.
[22, v.2; p. 242]

Champernowne$ income.
[22, v.2; p. 2431

Marginal, composition,Butler.

Marginal normal.

Non-central t. [22, v.3; p. 2041

0
1/2,

● exp{-((v/N -6)2/2} ●

Ce

f
dx X(+ze+mz Sample covariancee [22, v.3; p. 231]

o

● exp{-(y - (PKX/H))2/X2(l - P2)x} ●

(eay - e -by)/y , Exponential marginal.

( l/n
e-ay

)
- e-byl”n /yl/n . Exponential marginal, n # 1.

Y

1 dx f(x,y) . Triangular marginal, composition.

a

(1/2)(13(w)+ g(-)) . Symmetric sum.

4(w - p)e‘w +Q(w - p)epw . Compound Laplace. [22, v.3; p. 321

C133* o(~-$!-~+$(-~ 3-parameter compound Laplace.
[22, v.3; po32]

)6=+?0--
$
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Y

C134. e-Y
J

& xn-j(y - X)n .

0

b

C1350
I

dx f(x,y) ●

Y~

C136.
f

dx t(x)/tl ●

Y
en

C1370
I

n-le-Bx
dx X ●

Y

n-1

C138. e%y
z

(By)v/v! .

0

C139. bm - ym ●

b

C1400
f

dxp(x)fx(y) .

a

1

C141*
J

~ xm-(3/2)
exp(-y2/2bx) .

0

c142. {(1 + ay)e-ay - (1 + by)e‘by)ly2 .

C143 ~k-l
9 (X)p(x)[l -P(X)lN+ ●

C144. A. P(x)[l ‘P(x)]N-l ,

B. ~N-1
(X)p(x) ,

co p(x)[P(x)(l - P(X))IM ●

C145. (x - a)k-l(b -

C1460 ~k-l
(1 -x)N+

N-kx) ●

●

C147. e%

52

exp(-k e%) ● [1

- exp(-e=)lN+.

Marginal Gamma.

Marginal, triangular region.

Tail-end density.

Ceneral Gamma tail-end.

Gamma tail-end, n integral.

Power tail-end.

Marginal, composition,Butler.

Romsnowski, modulated normal,
equinormsl (m = 1), radico-normal
(m = 3/2), lineo-normsl (m = 2)0
[22, v.3; p. 276]

Time between calls, uniform-compounded
exponential. [2; p. 69]

Ceneral order statistics.

Min, msx, median statistics.
[22, V02; po3]

Order statistics (uniform).
[22, v.3; p. 38]

Order statistics (random numbers).
[22, v.3; p. 38]

Order statistics (extre= value).
[22, v.2; p. 279]

.
*

.
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.-..,.

.D
*

.

&

-(N-k+l)x,(l+ ~~)H1 .
C1480 e

C149.
[
1/2 +

[
● 1/2

[
● 1+

( )1

k-1
(l/w) arctan ~

x-o ‘+

(1
- (1/T) arctan ~

( nx -e ‘1
T ●

c150 xb-le=b(NA+l)●

C151.

C152.

C153.

C154.

C1550

c156.

C157.

c158.

C159.

b k-1

[1
● 1 -e- .

(1 -e-)
‘-le-(N-k+l)x .

[rX(n)1‘-1(xn-lem/T(n) )

● [1
N-k

- rx(n)1 .

(m/x)(~/x)m(N*+l)

. [(i - (6/x)mlk-1 .

t-3/2 exp{-A(t - p)2/2112t}●

t-3/2 exp{-(d - vt)2/26t} ●

m-lyn-lx F(x,y) ●

m-ly%l -x -Y)n ●x

exP{-Q/2(1 - P2)} ,

Q - ( - y -a(yl)
.(_)+(_j’ ●

exp{-Q/2(1 - P2)} s

Order statistics (logistic)”
[22, v.3; P.81

Order statistics (caunChy)●

[22, V02; p. 1571

Order statistics (Weibull).
[22, v.2; p. 2541

Order statistice (exponential)●
[22, v.2; p. 2141

Order statistics (Gain@.
[22, V02; p. 1911

Order statistics (pareto)●

[22, v.2; p. 2411

Inverse -ussian, first passage time.
[22, v.2; p. 1381

Brownian motion with drift.
[22, v.2; p. 1381

Bivariate with marginal Beta.

Bivariate with Beta marginals.

General 2-variable normal.

Centered reduced 2-variable normal,

Q-x; +pxl~++
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c161. P(a,at)

n-variable normal.

Klein-Nishina total cross-section.
%. R16, 17, 30 for polarized =eo

..-. .

● ✎

✎
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Continuous Densities

cl. P(v); (a,b).

v b

Rx. Define P(v) =
I

p(V) dv, P (~) ‘~p(V) due Set v = P-l(rO) or

a v

V = P~l(rl).

v

J.
f

p(v) dv = r is equivalent to p(v) dv = dr, i.e., the probability of V

a

on (V,V + dv) is the probability of the corresponding random number r on

(r,r + dr). This is the “fundamentalprinciple” of sampling, usually in-

applicable, since solution of P(V) = r for V is seldom easy.

Note. Since P(v) +Pl(v) s 1,

=l-rO=rl.

C2* p(y) dy = q(x)(* dx); y = f(x)

Rx. If preferable, sample q(x) for

J. The probability of y on (y$y +

(x,x +dx).

rO = P(v) is equivalent to Pi(v)

monotone.

x, set y = f(x).

dy) is that for the corresponding x on

Note 1. Cl is the special case q(x) ~ 1 on (0,1).

Note 2. Observe that {p(f(x)) “ ldy/dxll * = {q(x)} dx”

A similar rule applies to the n-variable case, with ldy/dxl replaced by

the I Iabsolute Jacobian det[~ /~ ] E J of the tra~forma~ion
Y~ ‘~

Ylll n)= f (x , 9*9, x

●

●

;nl J
= f (x , ●**, x ●

n

Thus {p(fI(x), .... fn(x)) “ J} dxl ... dxn

= {q(xls ●.> Xn)}

J

C3 ● p(v) = z
a (V);
j*

b

dxl ... dxn.

(a,b), aj(V)~O.

1 k k

Rx. Define A =
j f a (v) dv.

j
a

s’-K=~fp~vo[* ‘a-edemity

55



~(v)t~ for v on (a,b).

J. Under the rule, Aj is the probability of sampling the j-th density, so

the total chance of v on (V,V + dv) is

J J

z z
a (v) dv = p(v) dv, as required.

‘j(a3(v)’A3) ‘v = 3

~tethat~Aj =~~aj(v) dv=~p(v)dv=l. .

1 la a

Note 1. The rule provides an elegant way of sampling an interpolated

density p(v) = alpl(v) +a2p2(v), PI(v), P2(v) densities on (a,b),

al’ a2 > 0’ al ‘a2 - 1“ ‘he ‘rter”)
Note 2. If we set f(j,v) = a (v), we recognize p(v) as

j
density in the discrete-continuouscase of D24, and the

that of D24 adapted to this case.

C4. P(v) = (3/8)(1 + V2); (-1,1).

Q. If rO~ 3/4, set v = 2rl - 1. Otherwise set v = (2rl -

J1. The rule is an obvious consequence of c3. We write

P(v) = al(v) +a2(v), where

al(v) = 3/8

1
Al - Jal(v) dv = 3/4

-1

al(v)/Al = 1/2

and use Cl to set

a2(v) - (3/8)v2

1

~ = ~a2(v) dv = 1/4
-1

a2(v)/A2 = 3/2 V2,

v v

‘1 = J
(1/2) dv E (1/2)(V+ 1) or rl =

f
(3/2)v2dv =

-1 -1

obtaining

v= 2= - 1 or 1/3
1

v = (2r - 1) .
1

the v-rginal

above rule is

(1/2)(v3+ 1)

.-
“

.

.

.
.

~2. Generate rl,r2. If r2 ~ (3/4)(1 + (1/3)r~), set a = rl. Otherwise set

a = (4r
2 - 3)1/2. Set v = * a with probability 1/2.
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J2. This is an application of C13 to the density

~(a) = (3/4)(1 +a2); (0,1),

and of C28 for choice of sign. We find from C13 that f(r) = (3/4) ●

(1 + (1/3)r2),with f’(r) = r/2, ft(0) = O, A(S) = (4s - 3)1’2. The rule

therefore follows from C13, part (a).

C5. q(u) = &P{f(v) <u} =% J P(V) dv; (c,d), p(v) density for v on

{f(v)~u}

(a,b), f(v) function on (a,b), c =min f(v), d =max f(v).

%“ Sample p(v) for v on (a,b). Set u = f(v).

Jo q(u) is the density for the value u of the function f(v), since

P{f(v) <u} is its distribution function, and q(u) = dP/du.

Note. The idea here and in related densities is that if the given

density q(u) can be recognized as of the form

@_
du ! P(V) dv

{f(v)<u}

for

way

some function f(v) and density p(v), then q(u) may be sampled in the

described.
n

C6. p(v) = rr Pi(vi); pi(vi) densities on various domains.

RX” Sample each pi(vi) for vi; set vector v = (VI, .... Vn).

J. p(V) is the probability density for the vector v = (vl, .... Vn) where

the components v are independent.
i

n

C7. q(u) =* P{f(vl, ●0., vn)~u} =* fn Pi(vi); (c,d), Pi(vi)
{f(v)<u} 1

densities on (a,b), f(v) function on (a$b) X ... X (a,b), c = tin f(v),

d =max f(v).

Rx. Sample each pi(vi) for vi on (a,b). Set u = f(vl, .... vu).

J. q(u) is the density for the value u of the function f(vl, .... Vn) under

the density pl(vl) ... pn(vn), since P{f(v) :u} is its distribution

function, and q(u) = dP/du.
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Note 1. As in C5, the idea is that if a given density can be recognized

as of the form :...
n

d
fn

-

K pi(vi) dvi #.
“.

{f(v)*} 1

for soaw function f(vl~ ●**> Vn) ~ densities P1(V1)S ●00S Pn n(v ), then -

q(u) can be sampled es in the rule. Examples are c8, C9.

Note 2. The obvious extension to the case of a density P(vl, .... Vn) of

non-independent variables is left to the reader.

c8. q(u) = F(u)A(u); (O,CO)SA(u) = dV/@ fiere

v(u) = Ifi
dvi for some function f(vl, .... Vn), and

{f(vl,e.’.,vn)<u} 1

n

F(f(vl, .0., Vn)) = ~ p,(v.), a product of densities on (0,-).

Rx. Sample each Pi(vi)

J. Such a q(u) is the

lAJ.J.

fo+ vi on (0,=); set u = f(vl$ ●*.$ vn)~

density for the value u of the function
n

f(vl, .... Vn) under the density 11 pi(vi), since

& f fipi(vi) dvi ‘~ lJ F(f(vl, .... Vn)) fidvi

{f(v)<u} 1 {f(v)<u} 1

u
d=—
du f

F(u)A(u) du =F(u)Ji(u) = q(u)

o

as defined. The rule then follows from C7.

Note 1. This highly artificial looking device is the key to sampling

many important densities. In the sequel, the factor A(u) is identified

as one of the areas in F7, F8. See C45 for a first example.

Note 2. The argument in (J) is based on the considerationof the one-

parameter family of surfaces f(vl, .... Vn) = u. See [26; p. 3231.

Note 3. The extension to the case of a density p(vl, ...S Vn) of non-

independent variables is left to the reader.
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C9. s(u) =
f

P1(V1)P2(U - VI) dvl; (%=)> Pl~P2 densities on (O,-).
o

a

P(u) = I Pl(Vl)V~1P2(UV~1)dvl; (0,=), Pl density on (O,a), a finite or

o infinite, p2 density on (0,-).

00

q(u) = f ● (0,=), PI,P2 densities on (O,CO).PI(V1)V1P2(UVI) dvl~

co

ql(u) = f P1(V1)V1P2(UVI) dvl; (~,=), PI density on (0,=), P2 density

o on (-,@).

m

C12(U)= 2 J P1(V1)V1P2(UV1) dvl; (-~-)~ Pl~P2 even densities on (-=,~).

R’X” In all cases, sample pl(vl) for Vl, P2(v2) for V2. For s(u), set

U=V1+V2. For p(u), set u = VIV2. For q(u)> ql(u)~ or q2(u)~ set

u -v /v ●

21

J. For each of the functions

@_
‘erifies ‘hat du f

{f(v)~ul

corresponding density above. Verification of s(u) is given in F2A, and

f(v1,v2) = VI +V2, Vlvp and v2/vl, one

Pl(Vl)P2(V2) dvl dv2 has the formof the

of q2(u) in F2B. The rule follows from C7.

Clo. p(v); (a,b). A general device.

v b

%“ Define P(v) =
J

p(V) dv~pl(v) =
j

p(v) dv as inCl, and f(r)

a v

= r-lP(a + (b - a)r), g(r) = r‘lP#b - (b-a)r), O<r<l.

a. If f(r), in particular if p(v), is increasing, set

f
rl if r2~f(rl)

u = ~f_1(r2) if r2 > f(rl), and v = a + (b - a)u.
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b. If g(r) is increasing, in particular if P(v) is decre=i~, set

{

rl ff r2<g(rl)
u.

-1
g (r2) if r2> g(rl), andv -b - (b -a)u.

-A-1..
.

Note 1. The functions f(r) and g(r) are well-defined for r on (0,1), and “-
● .

lim f(r) = (b - a)p(a), ::~ g(r) = (b - a)p(b). Since both functions are
r+()
are increasing by assumption, and f(1) = 1 = g(l), both have values on

(0,1).

If r2 > f(rl), then f-1(r2) is well-defined on (0,1); in fact, there
-1

exists a u on (rl,l) such that u = f (r2), i.e*, r2 -f(u). A similar

remark applies to g(r) if r2 > g(rl). The rule is therefore well-

defined.
-1

In effect, it sets u = max{rl, f (r2)} in (a) and u

=max{rl, g-1(r2)} in (b), where uis on (0,1), andhencev is on (a,b).

Note 2. H p(v) is increasing, then f(r) is necessarily increasing.

For, by Fl, we have

f’(r) = r-2{r(b - a)p(a+ (b - a)r) - P(a + (b - a)r)} > 0,

since, for p(v) increasing, it is clear geometrically that

a+(b-a)r

r(b - a)p(a + (b - a)r) >
1

p(V) dv.

a

Similarly p(v) decreasing implies g(r) increasing.

J. We justify the rule in case (a) for f(r) increasing. An analogous

argument applies to case (b) for g(r) increasing.

First note that for v = a + (b - a)u, with u on (0,1), one has

p(v) dv =p(a+(b -a)u)(b -a) du E q(u) du, so @ C2, we may sample

the density q(u) = (b - a)p(a + (b - a)u) for u on (0,1), and set v

= a + (b - a)u. We shall prove that this q(u) is In fact the density for

the value u of the function

F(r,s) =
{

r if s<f(r)

f-l(s) if s > f(r), r,s c (0,1),

under the uniform density pl(r)p2(s) on the unit square> where pi(r)
~ 1 ~ P2(s) on (0,1). By C7, we may therefore set r = rl, s = r2 and u

= F(rl,r2), which gives the rule in case (a). Now it is clear

geometrically that

.

.

.
u
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P{F(r,s) <u} = J dr de

{F(r,s)~u}

by definition of f(r). Hence

~P{F(r, s) ~u} =& P(a + (b -

defined above, so q(u) is indeed

function F(r,s).

= uf(u) = P(a + (b - a)u),

a)u) = (b - a)p(a + (b - a)u) = q(u) as

the density for the value u of the

Note 3. The above device is only practical if f,g are nmre easily

Invertible than P,PI, which is indeed the case for all linear densities

P(v), and for certain quadratic densities (Cf. c12, c13, c14). For

further details, see [7].

C1l. p(v) = l/(b - a); (a,b).

%’

J.

C12.

Rx.

Jo

C13.

Set v= a + (b -a)rO.

v

By Cl, we set rO =
f

dv/(b - a) = (v - a)/(b - a) and solve for v.

a

p(v) =C-l(CO+CIV); (a,b), c1 # O, C = (b - a)[co+ (cl/2)(b +a)].

If c1 > 0, set

v . a +~X{(b

If c1 < 0, set

v-b - max{(b

The rule is an

Note. For the
9

- a)rl, (b +a +2cocl-1)r2 - 2(a + Cocl-1)}*

- a)rl, - (b + a + 2cOc~1)r2 + 2(b + coc~l)}.

immediate consequence of C1O.

radius v of a uniform disk, with density
-

P(V) = 2v/(b& - az) on (a,b), the rule sets
v . a +-{(b - a)rl,(b + a)r2 - 2s}, as compared with Cl, which would

1/2
set v = {a2 + (b* -a2)ro} . For a = O, b = 1, p(v) = 2v, the

1/2comparison is v = max {r ,r } against v = r12 0°

P(V) = C-lb(v), h(v) = Co + CIV + C2V2, (a~b)~ C2 # %

C=(b - a){co + (cl/2)(b + a) + (c2/3)(b2+ be + a2)], for certain

cases●

Rx. Define f(r) =C-l(b -a){h(a) + (1/2)hc(a)(b-a)r + (c2/3)(b -a)2r2},

with ft(r) =C-l(b - a)2{(l/2)ht(a) + (2/3)c2(b - a)r},

ft(0) =C-l(b-a)2hc(a)/2,
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ft(l) =C-l(b - a)2{(l/2)h’(a)+ (2/3)c2(b - a)}

= :C-l(b - a)2c2{b + (a/2) + (3cl/4c2)}, and

g(r) = C-l(b - a){h(b) - (1/2)h1(b)(b- a)r + (c2/3)(b - a)2r2}, with

g’(r) =C-l(b - a)2{-(1/2)h’(b)+ (2/3)c2(b - a)r},

g’(o) = -C-l(b- a)%t(b)/2,

g’(l) = C-l(b - a)2{-(1/2)hc(b)+ (2/3)c2(b - a)]

= -(2/3)C-l(b - a)2c2{a + (b/2) + (3cl/4c2)}.

a. If C2 > Oand f*(0)~O, or if C2 < Oandft(0) > 0, ft(l)~O,

1a+(b - a)rl if r2 ~f(rl)
set v =

a + ~(r2) U r2 > f(rl)~

/ [
where A(s) = (1/2) -(3h1(a)/2c2)+sgn C2 (3ht(a)/2c2)2

[
+Q Cs 1/2

h(a)
c2b-a )1 ~

●

b. If C2> Oandgt(0)~O, or if C2< Oandgt(0) > 0, g’(l)~O,

{

b- (b - a)rl if r2 ~ g(rl)
set v = b- v(r2) If r2 > g(rl),

{ [ (
where V(S) = (1/2) (3hf(b)/2c2)+sgn C2 (3ht(b)/2c2)2+~ &

1/2
- h(b))] \

C2
●

J. The functions f(r),g(r), computed as in C1O, both represent parabolas,

each opening up if C2 > 0, and down if C2 < 0.

a. If C2 > 0, f(r) opens up, and f’(0) ~ O insures that f(r) is

increasing on (0,1). If C2< O, f(r) opens down, and f’(0) > 0,

f’(l) ~0 again insures f(r) increasing on (0,1). Hence we may apply the

rule of C1O as in case (a). Inversion of s = f(r) gives (b -a)r = X(s)

as defined. Note that sgn C2 governs the choice of sign in the solution

of the corresponding quadratic, since this determines the type of

concavity of f(r).

b. An identical argument shows g(r) increasing under the stated condi-

tions, so we may follow the rule of C1O as given in case (b).

Note 1. If C2 < 0, the conditions in (a), (b) are

a. a <- (cl/2c2), b ~ -(a/2) - (3cl/4c2).

.
:-
-.

.

.
“
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b. b >- (cl/2c2), a ~ -(b/2) - (3cl/4c2).

No parabola can satisfy both conditions. For, assuming (a) and (b), we

have b~-(a/2) - (3c@2):(b/4) + (3c@2) - (3c1/4c2) = (b/4)

- (3cl/8c2).

Hence (3/4)b ~-(3cl/&2) or b ~-(cl/2c2) in conflict with the first

part of (b).

Note 2. The method, when applicable, is indicated if inversion in Cl

involves a difficult cubic. (See C14.) For the radius v of a uniform

spherical shell, p(v)”= 3v2/(b3 - a3), Cl sets
3. 1/3v = {a3 + (b3 - a )=.} whereas C13 sets

{

a+(b- a)rl if r2~f(rl)

v = a + A(r2) if r2 > f(rl), where

f(r) = {3a2 +3a(b - a)r + (b - a)2r2}/(b2 +ab +a2) 5 ~ + r(~ + N“),

A(s) = (1/2){-3a + [4(b2 +ba +a2)s - 3a2]1/2} ~ 5 + [& + ~]1/2,

~, .... % stored.

C14. p(V) = (3/2)(1 - V2); (0,1).

Rx. knerate r1,r2. If r2~r1(3 - rl)/2, set v = 1 - rl.

Otherwise set v = (1/2)[-1 + (9 - 8r2)1’2].

J. The rule is an application of C13, part (b). For, one finds that g(r)

= (3/2)(r- (1/3)r2),with g’(r) =3/2(1 - (2/3)r), gt(0) >0, gt(l) >0,

and B(S) = (1/2)[3 - (9 - 8s)1’2].

C15. q(u) = mb=um-l; (O,b), m=k/2, k,g & {1,2,3, ...].

RX” Set u = b(max{rl, .... rk})$.

J. For u = bvt, k-1one has q(u) du = kv dv, so by C2, one may sample the
k-1density kv for v on (0,1), and set u = bv2. But for the uniform

densities pl(vl) = ... = pk(vk) : 1, vi on (0,1), one sees that

$P(max {Vl, ●*., vk}~v) =+ dvl ● .. dvk =$-(vk)

max{v ,..*,V
1 k}<v

= kvk-l k-1
, SO that kv is the density for the function f(vl, .... Vk)

= max {v , ●**, Vk} under the density pl(v1) ... pk(vk), and the ~le

follows ~romC7. (see C146, Note 2.)

Note.
~k-l

is the density for the function max {rl, .... ~} of k

random numbers. Cf. C12, Note, for k = 2, 2 = 1, m = 2.
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c16. q(u) - C-lure-l;(a,b), O~a<b, m> O, C = (bm-am)/m.

RX”
l/mSet u = {am + (bm - am)ro} . ●*

u

J

“

J. Using Cl, we set r. = q(u) du = (urn‘am)/(bm -am), and solve for u. ‘--
a .

m

C17. P(v) = x
ja v ; (0,1), a > 0.

Oj
j

1

Define A =
f

a vj dv = aj/(j + 1).%“

s@. K=:Q&#ro/* ‘tv=r:’(K+l) Or set v

= max {rIs .... rK+l}.

J. The rule follows from C3,
m

=
zo ‘j(aj‘v)’Aj“ ‘et K

and from c16 or C15, since we may write p(v)

as in the rule, and then sample the density

aK(v)/~ = (K + l)vK for v on (0,1).

C18. q(u) = C-lU-l; (a,b), O < a < b, C = 2n(b/a).

Cro l-r r
Rx. Setu=ae =a ‘b ‘.

u

J.
f

-1 -1
Using Cl, we set r. = C du/u = C la u/a, and solve for u.

C19. p(x) = B/(1 + ~x)h(l ~ ~); (0,1), 6>- 10

%“ Set x = S-l{- 1 + exp[ro2n(l + B)]].

J. The mle follows from Cl, where we set
x

‘o = J
p(x) dx = $n(l + Bx)/2n(l + ~), and solve for x.

o

Note. For x = 6-1(- 1 +u), one has p(x) dx = du/utn(l + ~) =q(u) du on

(1,1 + B) as in C18. This, of course, results in the same rule.

C20. p(v) = mf3mv--l; (8,=), B> O, m=k/~; k, 2 e,{l,2,3, ...}.

RX” Set v = 6/(max{rl, .... rk))t.

.
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J. For v = I/u, one finds that p(v) dv = m(l/6) ua ‘l(~u) on (0,1/6),with

m = k/2 as in C15. Hence by C15 we set u = (1/6)(max{r1, .... rl.})zand

v = UU by C2.

C21.
-1 -m-1

p(v)=c v ;

Rx. Set v = 1/{B- -

J. By Cl$ we set r.

v

for v.

Note. For a = -, we have the simple rule:
l/m l/m

set v = f3/(1- ro) ,orv= B/r1“

C22. q(x) = n@mex/(~ + ex)til; (~,=), ~,m >0.

%“
m -m-1Sample p(v) = @ v for v on (~,~) by C20 or C210

J. The function x = tn(v - 6) increases from x = n to x
m -m-1and q(x) dx = m~ v dv on (6,=). The rule follows

Note. For m = s = 1, q(x) = ex/(l +ex)2 = l/(ex + 2

C23. ‘leT/(l + $-le-y *1
r(y) = m~ ) ; (~,=), S,m > 0.

RX”
m -m-1

Sample p(v) = @ v for v on (~,~) ~ C20 or C21.

J. For y = ~, one has

Set x = gn(v - $).

= = for v on (~$~)$

from C2.

+ em) as in C120.

Set y = -2n(v - B).

r(y) dy = mB-lex(-dx)/(l + S e )‘1 x al = m8mex(-dx)/(@ + ex)dl on (~,-),

as in C22. Thus the rule follows from C22 and C2.

C24. q(Y) =m(y+l)-(rl); (0,-), m> 0.

%“ sety”v- 1, where v is obtained from C20 or C21, with 6 = 1, a= =.

J. -m-1Fory=v- l,onehas q(y) dy=mv dv on (1,=).

C25. f(x) = ~Bx/(l + eBx)2; (a,=), B > 0.

%“ set x = B-lM(r~l - 1).

J. Under the

y=ce for

by C2, we

A
Bx

transformationy = 1 + e , which increases from y = 1 to

x on (-*,-), one has f(x) dx = dy/y2, with y on (1,~). Nence
2

may sample l/y for y on (1,=), and set x = B‘1%n(y - 1). But

65



w

f

-1
from Cl, setting rl = dyly2 gives y = rl , and the rule follows.

Y
is of course also the result of C20 or C21.

C26. h(~) = g(;) + g(%); (0S-), g(z) de~ity on (-~-).

% II
Sample density g(z) for z on (-~=). Set ~ = z .

J. Obvious.

C27. h(~) = 2s(;); (O,*), s(w) symmetric de~ity on (-*@)o

Rx. IISample s(w) for w on (~,~). Set ~ = w .

J. Special case of C26.

C28. s(w); (-@,=), s(w) symmetric: S(-w) = s(w).

Rx. Sample density 2s(~) for ~ on (O,-). Set w = k ~ ~th probability

J. Obvious.

Note. c26, 27, 28, 131 are closely related, and each has its uses

independently.

C29. p(v) = se-v; (0,~), a >0.

Rx. set v = -a-lgn rl.
w

J.
1

By Cl, we set rl = a e‘v dv . e-av, and solve for V.

This
<-
.

1/2.

Note. This is the first link in the following chain of densities on

(0,-).
C29. p(v) = e-v, v = -hrl, by Cl.

n

C45. q(u) =un-leW/r(n), n = 1,2, ● *O, u = -~n
H

r , by C29, C8.i
1

2
n

C49* p(v) = 2V2n-le* /l’(n),n = 1,2, .... (2n even), V = (-~n
n r%)l/29
1

byc45, C2.
2

C50. p(R) = 2Re* , R = (-2nrl)1/2,by c~~, n = lo -

2
-vl,=l/2C51. p(vl) = 2s sv~ =R COS 6, ~C50, C20

2
C61. q(u) = 2U2n-le~ /r(n), ~ = 1/2, 3/2, .... (a ~d~ji

u = {-tn(rl ... rh)+~} , by c51, c8.
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c64. p(V) = Vn-1 -ve /l’(n),n = 1/2$ 3/2s ...$
.--- u = {-tn(rl ..O rh) + T2], by C61, C2..

-:
C30. q(y) = Aevl(l - Ae7)L(A); (0,=), O < A < 1,..

- L(A) = -M(I - A).

Q1. Set y = -gn A-l{l -exp[-lL(A)]}.

J1. By Cl, we set rl =
f

q(y) dy ‘-(1/L(A))2n(l -~ev),

Y
and solve for y.

k

%2. Set K = min{k;
z

~j/j~roL(~)}. Set y = -K-lgn rl.

1
J2. The rule results from C30 For, we may write

00z (Aj/jL(A))(jeay), set Kas in the rule, and sample Ke
-Ky

q(y) = for

1

y on (O,-), which gives y = - K

C31. q(u) =
;lZ (fllu-f12u)~J~~:””2.

+ Set u = - a~l tnrl - a~l 2nr2.

J. q(u) is the density for the sum u = VI + V2 under the density pl(vl)

. -aV
● P2(v2), where pi(vi) = aie i on (0,~), i = 1, 2, so the rule follows

from C7 and c29. In fact,

f

u u-v
< d

f f

2

du Pl(vl) dvl P2(v2) dv2 ‘~ P2(v2) dv2 pl(vl) dvl
{V1+V2<U} o 0

u
.L
- du f

l?(u,v2)dv2

o

= 1 ● F(u,u) - 0 ● F(u,O)

u

+
f

& {F(u,v2)} dv2
o

(cf. Fl)
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u

1{
d=0-0+ P2(v2) dv2 ~

o

U—
= ! P2(v2) dV2 PI(u - V2)
o

u

1
~*2v2 e-al(u-v2)

ala2
dvz

o

-a u u ‘(a~=l)vz dv

J
1=

ala2e 2
0

(- ala2 e-alu ~ - e
)

-(a2-al)u

a2%l

= ala2

( )
e-lu-e=2u =

a2-%

as given.

Note. One may of course use C9, but the above proof is more

conformity with the induction in C32.

n

x

-a u
C32. qn(u) = F~e

i ; (O,-), where
i-l

F: . al ““” an

‘al-ai) ““e ‘ai-l-ai)(ai+l-ai) ● *” ‘an-ai)
s

ai
distinct > 0, n~ 2.

n

%“ x
Setu=- “-1 ~a% finr.

1

q(u) du,

in

.
.

.
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J. It can be shown by induction on

Sumu=v+
1 ... + Vn under the

-a,v.

n ~ 2 that qn(u) is the density for the

density pl(vl) ... pn(vn), where pi(vi)

=aei L ‘, so that the rule follows from C7 and C29. The basis (n = 2)

for the induction is provided by C31. Letting v = VI + ... +V
n
, we

compute

f

n
d
x p~l(v~l) ‘Vn+l H

Pi(vi) dvi
{v**l<u} 1

f
.d u
du Pn+l%-H) dvn+l

fii Pi(~i) dvi
o {v<u-v*13 1

u
~~

f
F(u,vn+l) dvn+l = 1 ● F(u,u) - 0 ● F(u,O)

o

u

+
f &F(u*vn+l) dvn+l =0-0

o
(See Fl)

u

f J

n
+ d

P*@*l) dv~l ~
n Pi(vi) dvi

o {Vl + ..0 +Vn<u-v *11 1

u
n
f qJv*p dvn+flJu - V*1L
o

by the induction hypothesis.

Hence, the density for the sum u = v + ... v
1 n+l ‘s

u

~

n
‘an+lvn+l

x

-ai(u-v )
F~e n+l

an+le dvn+l
o 1

n

E -aui
u ‘(a&lai)vdl dv

= n
‘ian+le J

e
n-l-l

1 0

n F~afil

E

-au

(

-(an+l-ai)u
=

~ei l-e
1 )
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n F~an+l
=
z z

e-ai” - n ~aF;an+l .j.-MI”

1
‘an+l-ai) 1 n+l - ai

n

z

-a u
u

‘+1’ -($’:’+%):an+’”

n+le i + ~n+l ‘an+lu
‘i

1

*+1

=
z

n+le-aiu
‘i

- 0 = qtil(u).

1

L-
.

.

--.

(See F1OA.)

Ce 00

J
n

JE

n
-a u

Note 1. %(U) du = F~e i du =
z

(F~/ai) = 1 by F1OB.

o 01 1
Note 2. As the derivative of an increasing distribution function, it

appears that qn(u) is non-negative on (0,-). This is an interesting

inequality for which we have no direct proof. Consider the case n = 3,

=l,a =2,a = 3.
al 2 3

Note 3. It is shown in C45 that u‘-lea/I’(n) is the density

U=vl+.e.+v under the density p (v ) ... pn(vn), where
n 11

- ate-aivi, and all ai = 1.

(

ala2 al-l a2-1
C33. p(y) ‘— Y -Y ; (0,1), O<al <a2e

a2 - al

for the sum

Pi(vi)

RX” {Set y = exp a~12nrl
}

+ a~1gnr2 .

J. For y = ea , which decreases from y = 1 to y = O for u on (O,-), one has

ala2

(

-a u
1

)

-a u
2

P(y) dy = e -e (-du) as in C31. From this and C2, the
a2 - al

rule follows.
n

C34. p(y) =
z

qyai-l;

1

in

(0,1), where the F: are defined in C32.

Rx. lx I
-1

Set y = exp a ~nri .i
1

J. For y = ea, one has p(y) dy = %(u) (-u), for the ~(u) in C32. The

rule follows from this and C2.
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n

z
Bjeaju; (0,-), Bj > 0.C35. p(u) =

1

k

RX” Iz
Set K = min k;

I
‘Bj’aj) ~ ‘o ‘ and u = - %1%”

1

J. The rule follows from C3 and C29, since
w

1 -a u
A-Be j.‘aju du = (Bj/aj)~ j j j
j j

and a (u)/A = a e

o

C36. p(u) = (2a2/~)e-hu/T+2((l -a)2/~)e-2(1-a)u/T; (o,=), ~ > 0, o<a

< 1/2.

RX” If rosa, Set u = ‘(?/2a)2nrl. Otherwise set u = - (?/2(1 - a))hml.

J. Special case of C35, with BI = 2a2/T, al = 2s/?, B1/al = a, B2

= 2((1 - a)2/~), a2 = 2(1 - a)/r, B2/a2 = 1 - a.

C37. q(u) = (a/2)e-a ; (e,=), a > 0, b arbitrary.

Rx. Set ~ = - a-lgnro, w = k @ with probability 1/2, and u = b +w.

J. IIFor u = b +w, one has q(u) du = (a/2)e-a w dw = s(w) dw, where s(w) is

a symmetric density on (~,=). Hence we may sample s(w) and set u = b

+w. But by C28, we may sample 2s(t?)= ae-a@ for 0 on (0,=), and set w
-1= i 0 with probability 1/20 By C29, we set & = - a %nro, and the rule

follows.

C38. p(x) = abxb-le-axb; (0,-), a,b > 0.

%“
J.

Set x = (-a-l~nr )l/bO

For x = ~1/b, 0one has p(x) dx = ae‘au dv on (O,@) as in C29, where we set
-1v--a $nro. The rule follows from C2.

4 C39. p(e) = S-l cosh 8; (O,t), S = Sinh t.

&l. Define Al = (et - 1)/2S. If ro~Al, set e = 2n[l +rl(et - 1)].

Otherwise set (3= - gn[l - rl(l -e-t)].

J1. Following C3, we write p(e) = al(e) + a2(e), where

71



al(0) = e“/2S, a2(0) = e4/2S,

Al = (et - 1)/2s, ~ = (1 - e-t)/2S,

al(e)/Al = e8/(et - 1). a2(tl)/A2= e‘e/(l - e<).

e e

By Cl, we set rl =
1

ee del(et - 1), or rl =
~

e-e de/(1 -e-t), and

o 0
solve for e, obtaining the values of e in the role.

~2. Set e = 2n{Sro + [(Sro)2+ 1]1’2}.

e

J2. By C1, we may set r. =
f

p(e) de = (ee - e4)/2S. Solving for e gives

o

the setting of the rule, where the choice of sign ie obviously mandatory.

C40. p(e) = C-l Sinh e; (O,t), C = (coSh t) - 1.

%x” Set e = gn{(Cro+ 1) + [(Cro+ 1)2 - 1]1/2}.

e

J. By Cl, one may set r. =
I

-ep(e) de = (ee i-e - 2)/2C, obtaining e

o

= 2n{(Cro+ 1) t [(Cro+ 1)2 - 1]1/2}. For either sign, ro= O gives e

= O. The choice of (+) sign is indicated, since r.

e = gn{cosh t + [c~~h2t - ~11/2} = h{cosh t + sinh

may aleo note that, for r. > 0, (Cro + 1) - [(Cro +

= 1 then gives

t} 9 ~net=t. One

1)2 - 1]1’2 < 1,

i.e., (Cro)2 < (Cro)2 + 2(Cro), since C = (1/2)(et + ey) - 1> 0 for

t > 0, whereas ee > 1.

C41● P(X) = (1 +ex) exp{-(x+(l/2)ex2)}; (0,=), e > 00

%“ Set x = e-l{-l + [1 - 2tlgnr]1/2}.

J. For the increasing function v = x+ (1/2)ex2,we see that p(x) dx

‘v due
-v

-e By C29, we sample e forv=- Inr on (0,=), and set x

= x(V). But solving the quadratic v = x + (1/2)6x2 for x gives x = x(v)

- e-l{-l k [1 + 2ev]1’2}, where the (+) sign is obviously required.

C42. q(x) = [1 + e(l - e- )] exp{-[x+fl(x+ea - 1)]]; (O,-), e > 00

Rx. Set v. = -lnr ●

o
Solve the equation V. = x + fl(x+ e- - 1) for x

= x(vo) on (0,-). See Note below.
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J. For x on

=Otov

in C29.

(O,=) the functionv =x+e(x+ em- 1) is increasing fromv

=~,withdv=[l+e(l-

‘1’herule follows from C20

Note. The equation V. = x + e(x +

Newtonts method. For the function

f(x) =x+e(x+em-l)-vo

one

>1

hLW f(())= ‘V. < 0, and f(vo)

- Vo. Moreover,

f’(x) =

and f“(x) =

Since the curve

‘o = ‘o’

f(x_

l+e(l-jem)>O

ee- > 0 on O,~o

e=)] dx. Eence q(x) dx -ew dv as

en - 1) may be solved for x by

-’0
= e(v + e - 1) > 0, since e-“oo

y = f(x) is increasing and concave up, Newtonls sequence

J 1 - (1 +xn)e ‘-n

‘n+l=xn-’~=
r -1l+el-en

converges to x from above. L J

C430 q(y) = exp(-y - e~); (-=,-).

%“ Set y = -2n(-gnr).

J. For y = -~nv, one has q(y) dy = ew(+v) on (O,-) as in C29. From this

and C2, the rule follows.

Note. This is a special case e = 1, q = O of C440

C44. p(z) = e-le‘%exp{-e- W}; (~,=), 6>0, C arbitrary.

RX” Set z = G - t3~(-g~).
-Y

J. For z = ~ + ey, one has p(z) & = ev= dy on (~,=) as in C43. The

rule then follows from C2.

C45. q(u) . un-lew /1’(n);(O,@)$ n e {1,2,3, ...}.

n

%“ n
Set u = - gn ri.

1
J. The rule is an application of c8. In fact, q(u) =F(u)A(u), where F(u)

=e ‘-l/(n -‘andA(u)=u 1)! By F7, A(u) = dV/du, for

73



‘“ f ii’”i~

n

and moreover, for the function f(v) = z
v , one
i -*‘.

1 1
.

.

n

-z ‘i n

has I?(f(v))= e
1=

T1
e-i, a product of identical densities on

(0,=)0 We

u = f(v) =

1

-“i
therefore sample each e for u,( = -gnri, by c29), and set

i“i ‘%%)=-h k“
1 1

Note.
n-1e-w

q(u) = u /r(n)

-v1 -v
density e ... e ‘, and

1

is the density for u = VI + ... + Vn under the

u u

hence Q(u) = [ Jq(u) ‘u = U‘-lem du/(n-l)!

o 0

is its distribution function:

j- fie”i dvi. Q(u) may be evaluated by F3A.

1

II
n

z
V,<U

1 “,>0

+K/(K +K2); (O~~)Sc46. m(y) = (1 +y)e K>O.

% If ro~ 1/(1 +K)~ set Y = - Wnrl. Otherwise, set y = - K2nrlr2.

J. Folloting c3, we write m(y) = al(y) + a2(y)~ where

+K/(K+d), 7’K/(K + l?),al(y) = e a2(y) = ye

Al = 1/(1 +K), A2 =K/(1 +K),

~/K/Ko ~/K/K20
al(y)/A1 - e a2(y)lA2 = ye

For y = h, For y = Ku,

w duo a2(y) dy/A2 = uem ‘u.al(y) dy/Al = e

u

74



“d.
.
Y

The rule then follows from C3, C2, C29, C45.

“K for y on (O,Y), where Y >> 1, oneNote. To sample &(y) = C-l(l + y)e

may follmv the above rule, accepting y only when y ~Y. In such a

method, the probability of rejection is

00 Ce

(1/(K +1))
I

e_y/K
dy/K + (K/(K + 1))

J
ye~/K

dy/K2 = (1/(K + l))e-y’K

Y Y

-Y/K+ (K/(K+ 1))(1 +Y/K)e

. e-Y/K
(1 + (Y/(1 + K)).

C47. p(V) = Vn-l/(e” - l)G(n)I’(n);(O,@), nc {2,3,4, ...}. (See F9D.)

k

lx I
n

Rx. Set K = min k; (l/jn) ~ ro~(n) , and v = - K-12n ~ ri.
1 1

Jo We may write p(v) = r-l(n)r-l(n)v
n-le-V/(l - e-v) - ~-l(n)r-l(n)

co C9

E Vn-le-jv -
E (l/jnq(n))(jvn n-le-jv/r(n)),winch is a sum

1 1

form in C3. We may therefore set K as in the rule, and sample

Sity K% ‘-le-Kv/r(n) f:lV~ (O,a)o But for v = u/K, one has
&n-le-Kv

dv/I’(n)= u - e du/I’(n)as in C45. Hence we set

n— .

of the

the den-

u = -h
H

ri, and v = K-lu by C2. (Noted for n = 4 by C. Barnett,

1

E. Canfield.)

C48. q(u) C(n)I’(n);(0,~), n c {2,3,4, ...}.

Rx. Sample p(V) for V on (O,m) as in C47. Set u = Vi/2.

J. For u = vi/2, one has q(u) du = p(v) dv, and the rule follows from C2.

- 2v2n-le-v2
.

C49. p(v) /r(n); (0,=), n e {1,2, ...}. 2neven.

1/2

()

n

Rx. Set V = -~n
IJ ‘i “
1
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J. For v = ul/2, One has p(V) dv = Un-leu du r(n) = q(u) as in C45. The
rule then follows from C2.

C50* P(R) = 2Re-R2; ~q:a).

%“ Set R = (-2nrl)1’z.

J. Case n = 1 of C49.

2

C51. p(v,) = 2e /
-VI =1/2; (o,~)o

Rxl. set VI = R cos 6, V2 1/2= R sin o, where R = (-gnrl) , 6 = (m/2)rt.

(Two independent samples Vl and V2 are obtained.)

J1. Under the polar transformationv = R cos 6, v
1 2

= R sin 0, with Jacobian

R, one has

-v2 2
l/2]e -v 2

(2/u 1 dvl . (2/~l/2)e 2 dv2 = 2~-R ~ ● (2/w) d6.

The rule follows from C2, C50.

&2. ObtainS=~~+~~~las inR1. set VI = {(-2nrl)/S}l’2f~> V2

= {(-hrl )/S}l’2~2.

J2. The rule follows as in Jl, with cos 6 = ;l/S1/2 1/2, sin 0 = ;2/S ,
obtained as in R1.

~3. obt~ns=~~+~~~lasin W. Setvl= {(-2ns)/s}%l, V2

= {(-ks)/s}%2.

J3. Under the transformation

‘1 = R COS 8, V
2 = R sin

X (O,r/2), with Jacobian
-

76

(V,,V6) * (p,e):

y ((),ce)x (0,-)t3,Lwi~hR = (-22nP) * (0,1)
RRt = R(l/2)(1/R)(-2/p)= - l/P, one has

o

.

.

(2/7r1/2)e-v;dvl . (2/T1/2]e-v~dv2 = 2P dp ● (2/w) dO, since R2 2=-g~

-R2and e = P2. By C2, we may sample the latter two densities for p,e and

transform to v~,v2* But from the equivalence 2P dp “ (2/7r)de = (4/lr) .
m

● dx dy on the unit disk in quadrant I, we may sample the disk for ~,~

uniformly in area, and take the correspondingpolar values p
- & + ;211/2, and e With cos e = ;/P, sin e = ~/P. Since this is just

1/2 1/2 2 1/2what R1 does, and p = S , one has R = (-22np) = (-hp )



= ( - g n ~ ) ’ l z, and the rule follows from the transformation to (VI,V2).
-3 (Box, Muller, Marsaglla.) See also R1O..
. C52. q(u) = U-l exp{-(2n2u)/2b}/(2mb)1’2; (0,=), b > 0.
*

Rx.
1/2

Sample e ~t u - ex(2b)~2/wl/2 for ~on (-w,~) by C59 or R1l. z
●

.
J. For this substitution one finds that q(u) du = em dx/#/2 on (-=’,W),

and the rule follows from C2.

Note. The “log-normal” density q(u) is the density for the function ex

%2/2b/(2mb)1/2cunder the normal density e For,

J
log u

d e-x212b &/(2=b)1/2 = &

~
ea2/2b

z dx/(2rb)1/2 = q(u) as

{ex~u}

above. (See C%)

C53. p(x) = (2W)
A ‘[1 +(+) 21_1’2 -{-(1/2$ +6 .iQfl(*)]2};

-1/2 -1

RX”

J.

(e,=), g,: arbitrary, ~, 8 > 0.

Sample e-y /ml’2 for y on (+,@) by C59 or R1l.
1/2Setx=~ +A sinh((2 y-y)/6).

The preceding function x = x(y) increases from x = - ~ to x = @ for y on

(-,-). Moreover,

()

2
l+?= 1 +sinh2((21’2y -y)/a) = cosh2((21/2y - Y)/6), and

dx -A cosh((21/2y -y)/&)(21’2/6) dy. Hence p(x) dx =e72 dy/rl/2, and

the rule follows from C2.

C540 p(x) = (2Tl)
{-1’2~’’(%wl -W ‘w -(~lz$

; (g,g+~), g, y arbitrary, A, 6 > 0..
.

%K” 21Sample ev /w ‘2 for y on (-=,oD)by C59 or R1l. Set x = ~ + [~/(1
-1! 1/2+E)], where E = e and Y = (Z y - Y)/6.

J. First note in p(x) that (x - ~)/((& +A) -x) > 0 fdr ~ < x < 5 + A. The

function x = x(y) = ~ + [A/(1 +e-y)] increases from x = ~ to x = ~ +A
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for y on (-,co). Moreover, (x - 5)/A = 1/(1 + e-y) 1

= e-y/(l + e-y), and (x - E)/(G + k - x) = (x ~ ~)~1 --+ j !)$?
-Y -2 -Y 1/2

Finally, dx =A(l +e ) e (2 /6)qdy.

Substitution shows that p(x) dx =eVAdy/r 1/2
, and the rule follows from

C20

C55. q(u) =exp(-$n2u)/el’4m1’2; (O,*).

2 1/2 for y on (a,o) by C59 or R1l.%“ Sample ev /m

Set u =ey+(l/2)0 (Cashwell.)

J. The function u = efi(l/2) incre~~ fromu = O to u ‘~ for y OQ (asW)3
A
L

1/2
and q(u) du = ev dy/m . The rule follows from C2.

C56. p(x) =(x -1/2
-e)-1(2mb) exp{-[tn(x - e) - q]2/2b}; (e,00),b >0, e, C

arbitrary.
.

~1/2 for y on (-co,=)~ C59 or RhoRx. Sample ev ~ Setx=e
1/2

+exp{g+ (2b) y].

J. The preceding function x =x(y) increases from x = e to x =- for y on

(~,=). ForY s
1/2

C+(2b) y, onehasx-e=ey, !tn(x- e) -Y, and

dx =e-y(2b)1/2
2

dy. Eence p(x) dx -e= dy/m1/2 and the rule follows

from C2.

Note. For e = L = O, c56 is the log-normal density of c52.

2 -1/2c08h(w,a2)e-(w%#)/2a2C57. s(w) - (21rff) ; (~,~), ~ arbitrary, u > 0.

% Sample e‘2/wl’2 for v on (--,-) @ C59 or Rho Set z = ~ + (2a2)1’2v,

and w = k z with probability 1/2.

J. One first notes that s(w) = (1/2)((g/w)+g(_w)), where g(z)

‘(Z-E)2/2U2/(2ma2)l/2i8 a de~ity on (e,-). Wnce ~ C1319 we ~Y-e

sample g(z) for z on (-=,=), and set w = * z as in the rule. But for

z -g + ~2a2)l/2
2

q dv/n1/2v, onehesg(z)&=e , and the rule follows

from C20

.

.
.

.
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2 1/2 -(;2+g2)/2u2
C58. h(t) = (2/ins) cosh(&/u2)e ; (O,-), ~ arbitrary, u > 0.

%“ Sample e_v2/ml/2 for v on (=,00) by C590r Rho Set~= IE
+ ~2a211/2v ●

I
J. The rule follows fromC27 and C57. For, h(t) = 2s(;), where s(w)

= (2wa2)-1/2 -(w2q2)/202cosh(~w/a2)e is the symmetric density of C57.

By c27, we can sample s(w) for w on (-=,-) as in C57, and set ~ = w .. II
l%e rule follows.

C59. p(x) = e%2/~1/2; (-w,*)e

2

Rx. Sample p(vl) =2e
/

-V1 =1/2
for VI on (O,CO)~ C51. Set x -t VI tith

probability 1/2.

J. The rule follows from C28. See also R1l.

C60. q(y) = eT2/ z~)1/2; (-,-).

Rx. Sample p(x) for x on (-,0) ~ in C590 Set y _ 21/2x0

J. Under this transformation,one has q(y) dy -p(x) dx as in C59, and the

~le follows from C2. See also R9.

C61. q(u)
-2u2n-le-u2,r(n), ~o,ol, n ~ ~1,2 3,2

s 9 ...}. 2n odd. (For n =1/2,

use C51.)

Define h -nRX” A. - 1/2, h e {0,1,2, ...}. i.e., 2n = 2h + 1. Sample

/2e-L w1/2 for ? on (0,~) by C51 or RIO. Set u

2 1/2
+?}.

J. For arbitrary N - 1,2,3, .... one can write the

= {-tn(rl ... r@

density q(u)

/
. ~N-le~2

/
N -U2 ~N/2I’(N/2)=F(u)A(u), where F(u) = 2 e , and A(u)

=WN/2uN-l N-1
/2 I’(N/2).By F8, A(u) =dV/du for 1

v

‘ J h’+HINz a 1/2 1

‘i <u
1

Vi>o
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/N \ 1/2

(z)2-and moreover, for the function f(v) = ‘i , OIlehas F(f(v))

1

.fi (%~~$ a product of N densities on (0,~). Thus

1

q(u) is the

()N 1/2

x
2

density for the value u of the function f(v) = ‘i under the

1

N 2

(/)

.
_V2 =1/2 N ti~S for

density ~ 2e
‘i #2

9 and by c8, we may sample 2e /
1

()

N 1/2

E
2

the vi, as in C51, and set u = ‘i “ Now, if N is even, as in

1
C49, N = 2h ~2, this gives the h pairs (VI,V2), ...S (V2h_l,V2h)Swith

2 2
‘Zi-l + Vzi = -hri in C51, Rxl~ and leads to the SSMS s~~e u ‘f(v)

—

= ((-lnrl) +..O + (-~rh))l/2 = (-tirl ... ~)1/2 as that obtained in

C49 on sippler grounds. However, for N = 2n = 2h + 12 1 odd, as here in

c61, we get from C51,

(VI,V2), .... (V2h_l,V2h)andv2h+l ‘T

and the rule above follows. R1O will also give ~.

c62. p(v) - loci’; (0,=), n c {3/2,5/2, ...} (See F9E.)

k

Rx.
lx

Set K =min k; I(l/jn)~ro~(n) . Let h = n - 1/2 e {1,2, ...}.

1

/
2 1/2

Sample 2e- n for T on (0,=) by C51 or R1O.

Setv=lK_l(-tnfiri+ <j~20

.

.
m
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*

J. Following C3, we write p(v) = 2~-l(n)l’’-l(n)v
2n-lLv7(, - ;,2)

C9 m

E= 2~-l(n)r-l(n) ‘v2n-le-jv2=
z ( /)(l/j’’C(n))2jnV2n-le-jv2 r(n) .

1 1

2
Hence we set K as in the rule, and sample the density 2K%2n-le-Kv / r(n)

1/2 2
for v on (O,-). But for v = u/K n 2n-le-Kv dv/r(n), we have 2K v
- 2u2n-le-u du/r(n) as in C61. From this and C2 the rule follows.

C63. q(u) = un-l/(eu - loci’; (O,~),nc {3/2,5/2, ~..}. (See F9D.)

k

%“ lx
Set K = min k; I(l/jn) ~ ro~(n) . Let h = n - 1/2. Sample

1

/
2 #/2

(

h

2e-T for ‘con (0,~) by C51 or R1O. Set u = K-l -h
n ‘i
1

n
)+?2.

J. For u = VA, one has q(u) du = p(v) dv as in C62. The rule follows from

this and C2.

C64. p(v) =vn-le-v /r(n); (0,=), n e {1/2,3/2, ...}.

RX” Define h = n - 1/2, he {0,1,2,
/

● **}. Sample 2e-2 ~1/2 for T on (0,=)

h

n
by C51 or RIO. Set u=-zn ~ 2r+r.

1

J. For v = U2, 2n-lea2one has p(v) dv = 2U du/I’(n)as in c61. From this

and C2, the rule follows. (For n = 1/2, u = T2.)

C65. g(y) = AnyA-12nn-1(l/y)/r(n); (0,1), A > 0, n e {1/2,1,3/2,2, ...}.

%“ Sample xn-lem /1’(n)for xon (0,~) by c45 or C64. Set y = e%/A.

J. Fory=e -x/A n-le-x, one has g(y) dy = x (-dX)/r(n), and the rule follows
from C2.

tnp-le-tPC66. g(t) -p / r(n); (O,OD),p > 0, n e {1/2,1,3/2,2, ...}.

%“
n-le-xSample x /r(n) for x on (0,=) by C45 or c64. Set t = Xl/p...

J. For t = Xlip one has

(For p = 2, see C49,

n-1 -x
g(t) dt = x e dx, and the rule follows from C2.

C61.)
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C67. p(t) = (p$/ur($))e-$t’uexp(-pe
-t/u

); (-,-), P,u,$ > O*

O-lew/r(@) for w on (0,-) by C45, C64, or R27.RX” Sample w Set t

= -2n(w/p).

J. For the preceding (t,w) transformation,one has p(t) dt
@-le-w(-h)/r(#)O-w The rule then follows from C2.

C68. p(x) = C-l(1 + (x/a))abe-bx;(-a,-), a,b > 0, C =ae abr(ab)/(ab)ab~

%“ Define n = ab + 1. ‘-lew/I’(n) for won (O,-) by C45, C64, orSample w

R27. Set x = (w - ab)/b.

J. The function x = (w - ab)/b increases from x = -a to x = ~ for w on

(O,m), and for this substitution, one sees that p(x) dx = C-l(w/ab)ab .
e-w+ab n-1 w

“dw/b=w e dw/I’(n),and the rule follows from C2.

C69. p(x) = bn/I’(n)xn+leb’x;(0,=), b,n > 0.

RX.
n-1 -w

Sample w e /r(n) for w on (0,=) by C45, C64, or R27. Set x = b/w.

J. The function x = b/w decreases from x = - to x = O for w on (0,=), and
n-1em

p(X) dx ‘W (-dW)/I’(n).The rule follows from C20

2n -(n+l)e-a2/2x nC700 f(x) E a x /2 I’(n);(0,00),a> O, ne {1/2,1,3/2,2, ...}.

Rx“ ‘-~e7/l’(n) fory on (O,-) by C45 or c64. Set x=a2/2y.Sample y

J. For x = a2/2y, one has f(x) dx = y
n-le-y

(~Y)/r(n) on (0,=), and the rule
follows from C2.

C71. S(X) = (2/W2) X csch X; (a,-). (See F23.)

k

%“ lx
Set K = tin k; (Zj - 1)-2 I~ro(n2/8) , g = - (2K

1

x = k 5 with probability 1/2.

J. Since s(x) is symmetric, we may sample density 2e(g)

let x= k g, as in the rule (C28). But 2s(g) may be

28(E) = (8/w2)~/(eg- e‘g) = (8/w2)~e-g/(1- e-2g) =

● (2j - 1)-2 ● (2j - l)2~e-(2j-l)&I as in C3. Hence

- 1)-1 %r2’ ad

.

for E on (0,=), and

written in the form
w

xl (8/w2) .
1 m

we may set K as in

the rule, and sample density p(g)
.

L (2K - l)2ge-(2K-1)~for g on (O,@).

But for ~ = (2K- l)-ln, one has p(g) d~ = ~e-’ld~. The rule therefore

follows from C45, with n = 2.
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00

Note. CU(2) =
z

l/(2j - 1)2 = ~2/8 by F9C.

1
.

-e
. C72. q(u) = C U‘1 ‘-lE#l); (0,-), N~O, n+N> 1, us {1/2,1,3/2,2, ...}.

a

EN(u) = f
“-Ne-uv

dv, C = I’(n)/(n+N- 1). (See F18,19.)

1

%“
niiW2 ~or v = rl/(n+N-l)Sample Pl(vl) = (n +N- l)v1 11

on (0,1) by c16,

and P2(v2) = V~-le-”2/l’(n)for v20n (0,~) byC45 or C64. Setu= VIV2.

J. The rule follows from C9, since

1 1

J
-lun-l -u/v~

P1(Vl)V~1P2(U/Vl)dvl = C f
N-2e dv = C-?In-%N(U)

‘1 1
0 0

= q(u), by F180 Thus q(u) is the density for the product VIV2 under the

de~itypl(vl)p2(v2) on (0,1) x (O,@).

Note. ForN= O, nc {3/2,2,5/2, ...1. ~(u) =ew/u, and q(u)

n-2e-u
-u Ir(n - 1), which may be sampled for u on (0,=) by C45 or c64.

C73. q(u) = c-lun-% (u); (O,a), n>N~O, n, Ne {0,1,2, ...} orn,

.
●

✘

en

Ne {1/2,3/2,5/2, ‘“”~> ~(u) ‘~cosh~e- Cosh 6 de, C = 2n-21’((n

o

-N)/2)r((n+N)/2). (See F17.)

&l* Define H = (n -N)/2, J = (n +N)/2, H, Jc {1/2,1,3/2,2, ...}. Sample—

J1.

P1(V1)
/

= v~-’e*l/r(H), p2(v2) = v~-le-v2 r(J)

1/2
or c64. Set u = 2(VIV2) .

First note that, under the substitution u = 2V
1/21

- ~-12n-lv(n/2)-l (2v dv
% E p(V) dv, SO it

‘or ‘1’V2 ‘n

1/2
, one has

suffices to

for v on (0,=), and set u = 2V
1/2

by C2. Second, using C9

sees that

(0,=) by C45

q(u) du

sample p(v)

and F13D, one
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&2.

J2.

f

~J-1
Pl(Vl)V~1P2(V/Vl)dvl “ ~ ● -& . K##)

o
-12n-lv(n/2)-l~ (2vl/2) = p(v).

=C

Hence p(v) is the density for v1v2 under

v ‘V1V2
as in C9.

Define H = (n - N)/2 and K =N + (1/2).

B(H,K) for g on (0,1) by C75, and P2(v2)

pl(v1)P2(v2)~ and we set

‘-1(1 -E)K-l/Sample p(g) = ~

/
. @+N-le-v2

2
r(n +N) for V2 on

(0,-) by C45. Set u = ~1/2V2.

/

N-(1/2)
n+-1(1 -v:)For the density Pl(vl) = 2vl B(H,K) on (0,1), and the

1

deuity P2(v2) above on (0,=), one finds that f Pl(Vl)V~1P2(U/Vl)dvl

o *

= (2‘+%(N+ (1/2))/(r(n+N)B(H,K)r(l/2)) Un-l~(U) ‘C%n-$$+u)

= q(u) as given. Here we have used the value of KN(u) in F13C, and the

Legendre identity of F4D, with m = (n + N)/2 to identify the constant

with C
-1

= @-2r(q)@% It follows from C9 that q(u) is the

density for the product VIV2 under the density Pl(Vl)P2(V2)S so we ~Y

sample Pl(vl) for vl on (0$1), -d P2(v2) on (0,~) and set u = VIV2. But

for VI = 6
H-l(l -C)K-l dE/B(H,K), SO by1’2, we see that pl(vl) dvl = ~

1/2
C2 we may sample the latter for ~ on (0,1) and set V1 = G . The rule

follows. (Noted by Kales [24] forn=N+ 2.)

C74. q(v) =c-lvn-lh
~ -A2e-2v); (O,m), O<A~l,

Cn

n e {3/2,2,5/2,3, ...}. C = ~u(fhn)r(n)~where c#n) = xl
A2j-1,

1

(2j
I

- l)n ● (See F12.)

Rx. SetK.~nlk;$A2j-~2j -l)n~ro~u(A,n)l. 8
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-s.
.

.:..

“

Sample u
n-1 -u

e /r(u) for u on (0,~) by C45 or c64.

Setv =u/(2K- 1).
co

J.
-1 n-1

We can write q(v) in the form of C3, since q(v) = C v xl
A2j‘1

1

lx

m
. e-(2j-l)v = (A2j-1/(2j - l)nCu(A,n))((2j- l)nvn-le-(2j-l)v/r(n)).

1

Hence we may set K as in the rule, and sample the density pK(v)

= (2K - l)nvn-le-(2K-l)v/I’(n)for v on (O,@). But for v =u/(2K- 1),
n-le-u

one has pK(v) dv = u du/r(n), and the rule follows from C2.

m-l(l - ~ln-lC750 B(v) = V /B(m,n); (0,1).

b(z) = Z‘1/(1 + z)%(m,n); (0,=).

q(e) = 2 8in*1e cos2n-1(3/B(m,n);(O,T/2).

- wp)n-l/B(m,n); (0,1).c(w) = pw--l(l

m,n e {1/2,1,3/2,2, ...] in all.

‘-1e7/I’(n) for x,y on (0,-) by C45 and/orRX”
m-le-x/r(m) and YSample x

c64. Set v= x/(x+y), z = vI(1 - v) = x/y,

~ =@*

J. The densities b(z), q(e), C(w) are equivalent

substitutions. In virtue of C2, it therefore

v on (0,1). But under the transformationx =

Jacobian - u, and inverse u = x + y, v = xl(x

1/2,e = arcsin (v ,

to B(v) under the indicated

suffices to sample B(v) for

UV, y = u(1 - V), with

+ y), one sees that
. .

V-l(l ‘“V)n-l dv
B(m,n) s

so by C2, we may sample the first two densities for x and y, and set

v = x/(x + y) as in the rule.
. ..

Note 1. The same rule results from tsking b(z) as the basic density, and
-v

n-1
/

-v
. Vm-lnoting that, for pl(vl) = VI e 1 r(n)j p2(v2) z e 2/r(m), one has

co m

J Zm-1

f

-(l+Z)V1
as in C9, Vm+n-le dv~P1(VI)VIP2(ZVI) dvl =~ 1

0 0
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m-l
z l’(m+n) = Zm-l= /(1 +z)%(m,n) -q(z). ‘1’husq(z) iS the

I’(m)I’(n)(l+z)*

density for V2/Vl under the density pl(vl)p2(v2). Note that VI = Y, v2
.
--%

= X*
.

Note 2. For n = 1, see C15.

Note 3. For m = 1/2 or n = 1/2, q(e) involves cos e

Note 4. For m = 1/2 = n, set e = (n/2)r, v = sin2e,

use Rl to obtain v = ~~/S, z = (~2/~1)2.

Note 5. The same rule results from the equivalence

.
or sin e only.
z _ v/(1 - v), or

2g2n-le-E2& . 2~h-le-~2d~ 2p2(*)-le_92. 2 sin*le co82n-le d e
r(n) I’(m) - r(m + n) B(m,n)

under the polar transformation~ = P cos % n = P sin 8C We omit the

details.

Note 6. The transformationx = UV, y = u(1 - v) is frequently employed

in the sequel. See R27.

C76. q(x) = (x - a)rl(b - x)n-l/(b - a)ti-l B(m,n); (a,b), a < b, m,n > 0.

%“ %1. - v)n-lSample B(v) = v /B(m,n) for von (0,1) by C75 or RZ8. Set

x=a+(b-a)v.

J. For this (x,v) substitution, one has

(b - a)m-lvrl(b - a)n-l(l - v)n-~(b - a) dv
q(x) dx =

(b - a)*-lB(m,n)

= Vm-l(1 - V)n-l dv/B(m,n).

The rule then follows from C2. Note. See C145.

C770 p(x) = (b - a)&R-l(x - b)R/(x - a)QB(Q - R -1, R + 1); (b,-), b > a,

Q> R+l>O.

Rx. Definem=R+l, n=Q- R-1. Sampleb(z)=z ‘-1/(1 + z)%(m,n)

for z on (0,-) by C75 or R28. Set x= b+ (b -a)z.

J.
m-1

For this (x,z) substitution, one finds that p(x) dx = z dz/(1 +Z)*”

B(m,n), and the rule follows from C2.

c78. p(x) = l/B(m,m)(ex’2+ ea’2)ti; (-@,fo),m > 0.

% ‘1/(1 +z)%(m,m) for z on (0,=) byC75 orR28. Set x=hz.Sample z

.
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J. For x = !tnz,one has p(x) dx = em dx/(ex+ l)%(m,m) = z‘1 dz/

# (1 +z)%l(m,m) = b(z) on (0,~) as in C75, R28..
. Note. p(x) = sechh(x/2)/4%(m, m).

-3
C79. p(x) = p em ‘x’u/uB(m,n)(l + pem’u)ti; (-@,w), p,a,m,n > 0.

Rx. Sample b(z) = z‘1/(1 +z)%(m,n) for z on (O,-) by C75 orR28. Set

x= - u!tn(z/p).

J. For this (x,z) substitution,we find that p(x) dx = z“’-l(-dz)/(l+ z)*

● B(m,n), and the rule follows from C2.

Notel. See C148forthecaeep= u=l,m=N-k+l, n -k.

Note 20 For P = U- 1 ‘m= n, p(x) reduces to C120. For this, the rule

in C79 would set x = - 2n(2nrl/2nr2),whereas that in C120 sets x

= 2n(ro/(1 - rO)). Moral: Never use a general method for a simpler

special case.

m“U(l - pe=’u ‘-1c80. e(x) = p e ) /uB(m,n); (agnp,=), p,u,m,n, > 0.

RX” ‘1(1 - v)n-lSample B(v) = v /B(m,n) for von (0,1) by C75 orR28. Set

x= - u2n(v/p).

J. The function x = - u2n(v/p) decreases from x = ~ to x = u~np for v on

(0,1), and e(x) dx=vml(l -V)n-l(- dv)/B(m,n). The rule follows from

C2.

Notel. See C151forthecasep =u=l, m=N-k+l,n -k.

Note2. Forp=a=l=m=n, e(x)=em on (0,=)0

c81. p(x) = (1 - (x/a)2)n-l/aB(l/2,n); (-a,a), a,n> O.

Rx.
-1/2

Sample v (1 ‘v)n-1/B(l/2,n) for v on (0,1) by C75 or R28. Set 2

= avl/2, and x = f $?with probability 1/2.
J. Since p(x) is symmetric, we may sample 2p(9) for A on (O,a) and set x

1/2= f 2 ~ above, by c28. But for 2 = av , one has 2p(2) dfl

-1’2(1 - v)n-l-v dv/B(l/2,n) for v on (0,1), and the rule follows from

from C2.

. c82. b(z) = Z‘1/(1 + z)B(m,l - m); (0,-), O < m < 1.

RX” Sample b(z) as in C75 if m = 1/2, otherwise use R28.

J. Special case of b(z) = zm-1/(1 + z)* /B(m,n) withn = 1 -m, and

B(m,n) =B(m,l -m) =T(m)I’(1 -m) =n/sin~ (F4B).
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C83. q(x) =C-lx(x-a)rl(b -x)*-l; (a,b), O<a<b, m,n>O, C

()

e
=(b -a) m-l-n-lmb + na

● B(m$n).
M

m+n .

H

mb+na c-
Rx. Define Al = a ‘-1(1 - ~)n-l/B(m,n) for

m+n ● If roiA1~ s~le v
n-1v on (0,1) by C75 or R28. If rO >Al, sample Vm(l - v) /B(m+l,n) for -

v on (0,1) by C75 or R28. In either case, set x = a + (b - a)v.

J. FOrX~a+(b- a)v, we find that q(x) dx = {al(v) + a2(v)} dv where

al(v) = C-l(b - a)
m+n-lavm-l(l -vIn-l,

1

Al =
! [)

mb+na
al(v) dv = a m+n 9

0

‘-1(1 -v)n-l/B(m,n),al(v)/Al = v

a2(v) = C-l(b - a)*vm(l - V)n-l,

A2 = m(b - a)/(mb + na),

a2(v)/A2 = Vm(l - V) ‘-l/B(m + l,n).

The rule therefore follows from C2 and C3.

C84. p(x) = C-lXm-l(l - X)n-l/(x + a)h; (0,1), a,m,n >0,

C = B(m,n)/(1 + a)man. (See F5C.)

Rx* Sample zm-l/(l + z)* B(m$n) for z on (O,CO)by C75 or R28. Set x

= az/[1 +a(l + z)].

J. For x = y/(y + 1), which increases fromx = O to x = 1, y on (0,=), we

find that p(x) dx = C y‘1 ‘1 dy/[a+ (1 +a)y]*, while fory= az/

(1 + a), the latter becomes z‘ldz/(l +z)%(m,n). The rule then

follows from C2, since the iterate of the two transformationsx

= y/(Y+ 1) and y = az/(1 + a) is x = ZZ/[1 + a(l + z)], as in the ~le.

C85. q(x) = C-l(a + x)m-l(a - X)n-l; (-a,a), a,m,n >0, C = (2a)*-1

● B(m,n).

Rx. Sample Vm-l(l - V)n-l/B(m,n) forvon (0,1) by C75 orR28. Set x

= a(2v - 1).

J. x = a(2v - 1) increases fromx= -a to x=a for v on (0,1), and

q(x) dx = vml(l - V)n-l dv/B(m,n). The rule follows from C2.
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C86● p(x) =F(x) +X-2F(X-l); (0,1), F(z) density on (0,~).

%“ Sample F(z) for z on (O,-). If z~l, set x= z. m z > 1, set

x = 1/20

J. Under the rule, the probability of x on (x,x-t dx) in (0,1) is F(x) dx

+ F(z)(-dz), O < x < 1, 1 < z < =, where I/z = x. But this iS F(x) dx

‘2 dx) = p(x) dx, as required.+ F(x-l)(x

C87. p(x) = (xm-l + xn-l)/(1 +x)m%(m,n); (0,1), m,n > 0. (See F5.E.)

RX” Sample b(z) = z‘-1/(1 +z)%(m,n) for z on (O,*) by C750r R28.

Ifz~l, setx=z. Ifz>l,setx=l/z.

J. For the density b(z) = z‘-1/(1 +z)%(m,n) on (l,-), one has

‘-1/(1 +x)%(m,n), and the rule follows from C86.x-2b(x-1) = X

C88. l/m}tip(x) = 1/2 tiB(m,n){l + (X - e)/A ; (-=,-), e arbitrary, A,m,n1 1
> 00

,Rx. Sample b(z) = z‘1/(1 +z)%(m,n) for z on (O,-) by C750r R28. Set
;.Z m and w = k ~ with probability 1/2. Finally, set x = 0 + Aw.

J. For x = 0 + ~w, one finds that p(x) dx = dw/2mB(m,n){1 + IWll/m]

S s(w) dw on (~,=). Hence we may sample s(w) for w and se; x = 0 + Aw.

But s(w) is symmetric on (~,~) so by C28, we sample density 2s(~) for

G on (0,-), and set w = k ~, as in the rule. Since 2s(;) &

*I/m= &/mB(m,n){l + w } , we see that, for ; = Zm, we have 2s(;) c%

=2 ‘1 &/(1 +z)%(m,n). Hence we may sample the latter for z on

(0,~), and set ~ = zmo The rule follows.

N-z2
“i

C89. -N/2 e 1
P(vls .o.,v)-~

N ; ‘<v% <-, N& {1,2,3, ...}.

Rx. For even N = 2h, obtain the h pairs

(Vl ,V2), ● ● ● , (vzh-~,Vzh)

by sampling e-v
/
2 #/2 on (-oo,@)by C59 via C51, where (note) the samples

are produced in pairs. For odd N = 2h + 1, obtain also the additional

IX& (Vzh+l$vzh+z). In either case, set v = (Vl, .... VN). See also

R1l.
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1

J. Since p(v) = fi(:’yl/2), the rule follows from c6.

1

Note. The density for the value of the function

N 1/2

(z)
2

/
i= 2uN-leW2x = f(v) = ‘i r(N/2), as seen in C93 with b = 1/2.

1

C900 N/2p(sl)= r(N/2)/21r . (See F8)0

k“ Obtain vector v = (vl, .... VN) as in c89. Set $2= (01, ...~ ‘N)$

where

N
1/2

(~)

2
= v /u and u =

‘i i ‘i “
‘1

J. The rule determines a uniformly distributed direction 0 in N-space,

II
equivalently, a point on the unit sphere ~ = 1.

Note. Observe that in C51, C59, the source of the

2
of v are produced in pairs (V2i-1~V2i)~with V2i-1

- 2nSio This saves time in computing u.

RX”

J.

90

symmetric density.)

See also R3,5,6.

vi, these components

2
+ ‘2i = - Inri or

{1,2, ...}. (Radially

Q-
.

.

.

N/2
Sample the density q(u) =* UN-%(U) for the radius u on (0,00).

II
Sample the unit sphere S1 = 1 for S2= (01, ●.*, ~N) by C90 or R3,5,6.
Set vi =UfA)io

To see that the above q(u) is indeed the density for the value u of the

N
1/2

(~)

2 .
radius f(v) = ‘i under the density p(vl, .... VN), we note that m

1

q(u) may be written in the form q(u) =F(u)A(u), with the given F(u), and .



-@
.
.

.

~WN/2 N-l
A(u) = “mu = dV/du, where V(u) = ~ fidviisthe

101

N 1/2 1

x
2

‘i <u

1

VOIUUE of the full N-sphere of radius u, as in F8. Since for f(v)

N
1/2

(z )
2=
‘i ‘

we have F(f(v)) = p(V1$ ●... VN), it follows from c8, Note

1

3, that q(u) is the density for the radius u, as stated.

N-z 2
‘1

-N/2e 1 , use c89.Note. For p(vl, .... VN) ‘w

(N/2)-le-/2b/(2b)N/2 r(N/2)
C92. p(s) =s ; (0,~), b> O, N e {1,2, ...}.

Rx. Samplew(N’2)-1e7/r(N/2) forwg,$,y)~w C450r c64. Set s =2bw.

J. For s= 2bw, one hasp(s) ds=w ‘e dw/I’(N/2),and the rule

follows from C2.

N

Note. p(s) is the density for the value of the function s =
z V;(- X2)
1

N

under the density rr /eW:’2b (2mb)1/2; - = <vi<=. (See C93.)

1

2b)N’2r(N/2); (0,00),b > 0, N c {1,2, ...}.C93.

RX” Sqle w(N/2)-leW/r(N/2) for won (0,=) by C450r C64. Set u

= (2bw)1/2.

J. For u = sl/2, one has q(u) du = p(s) de as in c92.

Wtec q(u) is the density for the value of the function u

N 1/2

(x)
2=

‘i (= x) under the density
fiew;’2fi2”b)1’2$ -<‘i< “e

1 1

For, we note that q(u) is the form F(u)A(u), where F(u)

N/2uN-l- eu2/2b/(2wb)N/2, and A(u) “ 2s /1’(N/2)= dV/du, for V(u)

91



C94.

%“
J.

C95.

- J fidvi,the volume of the full N-sphere of radius u, as

lo~

1
N

x

~ 1/2

‘i <u

1

N(z)~ 1/2
in F8. Moreover, for the function f(v) =

‘i , we see that

1

under the latter density.

‘(f(v))- j ‘-;2’/(2”’)1’2”Thus, by C8, the given q(u) is the

N

(z)

‘ 1/2
density for

‘1
1

%(u) =#/2p(N/2)-le*U/2b/( 2b)N/2r(N/2); (O,=), b>O, Ne{l$2$ ...}.

S=ple w(N/2)-l -e /r(N/2) for w on (O,@) by C45 or C64. Set v = 2b/N.

For v = s/N, one has q#) du = p(s) as in c92.

N

qo(p) is the demity for the function M =
(x y

2 N (= X2/N, meanNote.
‘i

1
N

square) under the density
n /e*i’2b (2~b)1/2, -- <Vi<=.

1

P,(P) = /
#/2pN-le-NP2/2b (~b)N/2~(N/2);(0,00),b >0, N & {1,2, .**}*

Rx. Sawle w(N/2)-l w
e /1’(N/2)for w on (O,@) by C45 or C64.

Set P = (2bw/N)l’2.

P“
1/2For P = (s/N) , one has pi(o) dp = p(s) de as in C92.

Note. pi(p) is the

k )N 1/2
pm v;/N s

1

density for the function

(x2/N)l/2 (root mean square) under the density

.
.
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(N+l)/2
C96. ql(t) = r((N+l)/2)/(N#’21’(N/2)(1 +(t2/N)) ; (-,=),

N e {1,2, ...}.

&l. SSmple~(N/2)-l we /1’(N/2)for won (0,-) by C45 or C64. Set P

/= (W/N)1i2. Sample ~u2 ml/2 for u on (--=,=)by C59 or Rho Set

t = alp.

J1. #/2pN-le-Np2/2b/(2b)N/2r(N/2) 011(0,=) of C95For the density PI(P) = 2

/‘2’2b(2rb)l’2 on (-@,@),and the density p2(a) = e one finds, as in C9,

w

! p1(p)pp2(tp) dp = ql(t) as given. (One makes the substitution z

o

= (N+t2)p2/2b.) Thus ql(t) is the density for t = u/P under the

density pl(p)p2(a), regardless of the value of b! The rule therefore

follows from C9, C95, C59, where we have used the value b = 1/2.

Note. ql(t) is the density

(Student’s t), where the

(~,-), independently of

~2. m-le-x
Sample x /1’(m)with

by C45 or c64 for x,y on
t = f ~ with probability

J2. Since ql(t) is symmetric

‘i
be

N 1/2

/(z )
for the value of t = u v:/N

1

/
-z2/2b (2wb)1/2 on

and a all have density e

For N = 1, use C98.
n-le-ym = 1/2 by C64, and y /r(n)l~th n = N/2

(0,-). Set z = x/y and ; = (Nz) . Set
1/2.

on (~,w), we may sample the density 2ql(~) for

t on (0,=), and set t = f ~ as in the rule (C28). But for Z = N1/221/2

-1/2 (N+l)/2 ‘one has 2ql(~) d; = r((N + 1)/2)2 dz#~2 r(NL2)(l +2)

-1/2
=2 dZ/(~ + Z)(wl)/2B(l/2,N/2) = Z-l dz/(~ + z)hB(m,n) here m

= 1/2, n = N/2. Thus we may sample the latter density for z on (0,=) and
1/2set ~ = (Nz) . But sampling for z by C75 gives z = x/y, where x and y

are found as in the rule.
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/(h-l m
C97. p(c) = c C* + (~ - go)z B(l/2,m - (1/2)); (-,=), c >0, Go

arbitrary, m e {1,3/2,2,5/2,...}.

RX” Define N = 2m-1 e {1,2,3, ...].
~~le “(N/2)-le-w,r(N,2) for “ ~n

/
2~1/2 for a on (-S*)(O,*) ty C45 or c64. Sample e-a

1/21
Set ~ = 20 + (ca/w .

J. With N as defined and c = Co + et/N1/2, one finds that

= ql(t) dt, where ql(t) is the density for Studentss t

ly C590r R11.

P(c) d~

in C96. There,

1/2 1/2
one sets t = a/p = a/(w/N) ,sowenowsetC=Co+(c/N )*

~aN1/2,wl/2
) = co + (ca/w

1/2
), as in the rule.

C98. q,(t) = l/w(l +t2); (~,=). (Cauchy density, case N = 1 of Student’s t,

%..
‘.

.

.

--\ .

Rxl.

J1.

%2.

J2.

C99.

C96.)

Set t =tan (m/2)(2ro - 1)0

t

By Cl, we set r. =
~

ql(t) dt = (1/m)(arctant + (m/2)) and solve for t.
e

Set t =y/x as in R20

The ratio y/x in R2 fs the tangent of an angle

(-U12,W12)*

Note. One can show using C9(q2) that Cauchy’s

e uniformly distributed on

density is the density for

the function t =v2/vl under the density pl(vl)p2(v2),where pi(vi)

2

=e
/

-vi ~2x)l/2, -<vi<-, i=l,2.

y(z) = l/llA[l+ ((z - 6)/A)z]; (,-,-), A > 0, 0 arbitrary.

I@. Set z =0 +A tan(2ro - l)(r/2).

J1. For z =e +At, one has p(z) dz =dt/m(l +t2) =ql(t) dt, where ql(t) is

Cauchy’s density c98. The rule follows from this and C2.

Q2. Set z = 0 + A(y/x), where y/x is obtained fromR2.
-
●

J2. See C98, J2. -

clooe S(W) = [1 + ((w2 +e2)/A2)]/~~[1 +2((w2 +e2)/~2) + ((w* -e*)/A*)*]; -

(%=), A > 0, e arbitrary.
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*-

.

!

u

%’

J.
Clolo

Sample p(z) for z on (a,m) as in C99. Set w = * z with probability

1/2.

The rule follows from C131, since s(w) = (1/2)(p(w) + p(=)).
h(~) = 2s(;); (O,OD);s(w) the density of C1OO on (~,=).

RX” Sample s(w) for w on (-=,~) as in C1OO. Set ; = w , i.e., G = z
II II

for z as obtained in C99.

J. The rule follows from C27.

C102. p(x) = (1/w) sechx; (-=,-).

%“
J.

C103.

&l.

J1.

%2.

J2.

Sety=- $n tan (nro/4), and x =* y with probability 1/2.

Since p(x) is symmetric, we may eample density 2P(Y) for Y on (09=), ~d

set x = k y as in the rule (C28). But for y = - 2nz, one has 2p(y) dy

= (4/~)e7 dy/(1 +e ‘*) = (4/m)(-dz)/(1 + Z2) with z on (0,1). By Cl,

z

we set r =o J
(4/T) dz/(1 +Z2) = (4/T) arctan z, and hence z -tan

o

(mro/4)o The rule follows.

2 1’2; (0,1).g(u) = 2/lr(l- u )

Set e = (m/2)r and u -sin 0.

For u -sin 6, one has q(u) du = (2/w) dt).
1/2

Note also that for u = v , -1/2(1 - #/2/one obtains q(u) du = v

B(l/2,1/2). Cf. C75, Note 4.

We R.1to obtain S = ~~ _ 1/2+~~ < 1, and set u =~2/S .

u is the sine of an angle e uniformly distributed on (O,m/2). As an

J arc sin u

example of C5, note that ~ (2/x) dO = (2/w) ~
f

dO

{sinO~}, o

2 1/2=2/lr(l-u)o

(Mw)/%(M/2,N/2); (0,=)$c104. q(F) = (M/N)M/2F(M/2)-1/(1 +(MF/N))

M,N e {1,2, ●.o]o

Rx. M-le-xDefine m =M/2, n =N/2. Sample x /r(m) and yn-lev/l’(n) for x,y

on (0,=) by c45 and/or c64. Set z =x/y and F = Nz/M.

J. For F = Nz/M, one finds q(F) dF -z m-1
dz/(1 +2)* B(m,n) on (O,OD)as in

C75, which sets z = x/y, as in the rule.
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Note. It follows from C9 that q(F) is the density for the value of F

= Y/X under the de~ity qN(x)qM(y), where qN(x) .%
- #/2x(N/2)-le-Nx/2b /(2b)N/2I’(N/2),and ~(y) = #/2y(M/2)-le+4y/2b,

.
.“

.

(2b)”/2I’(M/2)ss in C94. ThUS q(F) is the
-.

density of the function .
.

‘here all ‘l’”j ‘ave ‘emity

/
-z2/2b(Znb) 1/2
e on (-=,c9)(regardlessof the value of b.)

C105. p(E) = 2(M/N)”’%?%(l + (ME2/N))(MW)’2B(M/2~N/2); (0>00)~

M,Ne {1,2,3, ●oo}o

‘-lev/r(n) for x$y%*
~le%/r(m) and YDefine m =M/2, n = N/2. Sample x

1/2
on (0,~) by C45 and/or c64. Setz=x/y$F=Nz/M,and E-F .

J. For E = F1/2, one has p(E) dE = q(F) dF, the density for Snedecor’s F in

C104. The rule follows from C104 and C2.

Note. p(E) is the density for the value of

‘=(.$’’#I$’-vT’2(qu
the function

root mean squares), where all

have density e-~2/2b (2Wb)1/2
‘i’vj

on (~,-), regardlees of

‘1 ‘-le-Gy; (1,~), ~ > 0, n c {1s2s ●**}t ‘gC106. q(y) = Dg y = ~-(n

n-1

s=
c x

~v/v! (See F3C.)

o

1 k 1

Rx.
lx

Set K = min k;

I

~v/v!~roS& (O~K~n -1) andy=l

o

n-K

TI- g-lgn ri.

1

J. Under the substitution = 1 + (u/E), one has q(Y) @

m ~ (u + g)n-lea du = (n 1- l)!SE
(u + ~)n-le- du

E

b.

- l)!e*S&,

= P(U) du, SO by
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C2, we msy

write p(u)

n-1

sample p(u) for u on (O,*) and set y = 1 + (u/~)0 But we =Y

n-1

= (n -ll)!S. z
(n - 1)!

v!(n - 1 -V)! u
‘-l-vgvem

= E (cv/v!sE)(u‘_’’-lea/(n - v - l)!) in the form of C3. We may

o

therefore set K as in the rule and sample the density

u‘n*) -lew/(n - K - 1)! for u on (O,-) by C4S, i.e.~ set u

n-K

=-h H
r , and the rule follows.i

Note that n -K~l.

1

-1 n-le-@/n; ~C1070 ~(z) = (D nn) z n~=)~ E$n > OS n & {1~2~ •001~ DE defined aS

in c106. (See F3B.)

%s” Sample q(y) for y on (1,-) &y C106. Set z = ny.

J. ‘1 ‘-le-gy dy as in c106, and the ruleFor z =ny, one has a(z) dz ‘Dg Y

follows from C2.

c108. ~(z) =fi~lze=; (n,=), n > 0, fin=ew(l + n)-

Rxl. If ro(l + ~) > 1, set z =~ - gnrl. Otherwise set z = ~ - gnrlr2.

J1. This is the rule of C107 for the special case n = 2, E = n.

Note. The preceding method seems simpler and more direct than that of

Carey and Drijard [3], given below, and of course allows extension to the

more general case of C107.

RX20 (Carey-Drijard). One follows the steps:

1.

2.

3.

4.

5.
.
s 6.

J2. The

? a.

Set P = em, A ‘eW(l +n), B = 1/(1 +~).

Generate random numbers PI,P20

T-fpl~B, go to (4)o If PI >B, go to (5)c

Set rl =Apl, r2 ‘P2; go to (6)0

Set rl = P exp{(l + n)pl - 1}, r2 = p2P/rl; go to (6).

Set z = - 2nrlr2.

justification of this rule is based on the following remarks.

To sample the density ze‘/r(2) on its full range (0,=), one

generates random numbers rl,r2, and sets z = - 2nr1r2 as in C4S~ where
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(r1,r2) -y

square.

b. But for

(rl,r2) for

be thought of as a point uniformly distributed in the unit

the residual density on (n,-), one requires only such points

which Z = - 2nrlr2 > n, i.e., rlr2 < e-n s P. (One could of

course accept only those points (rl,r2) lying below the hyperbola

‘lr2 = P, but the efficiency would be poor for large ~.)

c. The above (non-rejection)device is valid, since the two transforma-

tions in steps (4), (5) both have Jacobian A = e“1(1 +n), independent of

PI,P2, and so transform the two rectangular areas of the full (P1,P2)

unit square determined by the line PI = B in a uniform way into the two

required areas of the (rl,r2) unit square; the first a rectangle of base

-ne -nand height 1, of area e , and the second lying directly below the

hyperbola rlr2 = e‘n, with base 1 - e-n and area ne-n.

.
.
u
.

.

C109. ~(v) = D v‘1 ‘-lAe-av/(l - A2e-2av); (l,=), a> O, O< A~l,

1

n-1

=
z

Ev/v! (See F16.)

o

co

RX”

J.

98

Compute partial sums
E

*2~-l(2j - I)me -2jas~ofs= (Zj-l)as where
1

SE is defined above. Set K = min{k; sk~ros}. Use c106, with E

=-(2K- l)a, to obtainy on (1,~). Set v -y.

co
-1 n-1One can write ~(v) = D v

x
e A2j-le-(2j-l)av=

x(
D-lA2j-lD

)
(2j-l)a

1

vn-le-(2j-l)aV ~●

‘ (2j-l)a . Since this sum is of the form in C3,

1 k I

p
set K = tin k;

A2j-lD

I
(2j-l)a~ r~ s ~d sale the density

1

n-le-(2K-lsavv
‘D(2K-l)a for v on (l,-) by C106, with ~ = (2K- I)a. Note

that the inequality involved in setting K is



k a

x
A2j-1(2j - l)aam(n - l)!e

-(2j-l)a
‘(2j-l)a L ‘O[Z

A2j-1(2j-l)m

11

● aa(n - 1)! e-(2j-~)aS(2j-l)aII, and the common

independent of j, has been deleted in the rule.

ExEL22..
RX* Set u = rl + r2.

factor aa(n - 1)! ea,

J. For the uniform densities pl(vl) 2 1 E p2(V2), Vi on (0,1), it is obvious

geometrically that

{

u2/2; (0,1)
P{vl +V2<U} =

1- (1/2)(2 -U)2; (1,2).

Hence ~ P{vl + v2 ~u} = s(u) as given, and the rule follows from C7.

Note. s(u) is the density for the sum of two random numbers.

(See Fig. C11O.).

‘2 s(u)

1

‘1 u
u 1 u o 1 2

Fig. C11O

[

4(x - a)/(c - a)2; (a,b)
Clll. t(x) =

4(C - x)/(c - a)2; (b,c), a < c, b E (a + c)/2.

Rx. Set x=a+ (1/2)(c -a)(rl +r2).

J. Under the transformation x= a + (1/2)(c - a)u, one has t(x) dx = s(u) du

as in C11O, and the rule follows from C2.

C112. t(x) = 1 - [xl; (-1,1).

Rx“ Set x = rl - r3.
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I

J. Special case of Clll, with a = -1, b = 0, c = 1, where one sets x

= -1 + (1/2)(2)(rl + r2) = -1 + rl + r2 = rl - (1 - r2) = rl - r30

IINote. 1 - x is the density for the difference of two random numbers.

{

al(x); (a,b)
C113. q(x) =

a2(x); (b~c)~ a < b < C.

b c

RX” Define Al =
i

al(x) dx, A2 =
f

a2(x) dx, where Al +A2 = 1. If r.

a b

<Al, sample density al(x)/Al forx on (a,b). If ro>Al, sample

a2(x)/A for x on (b~c).
2

J. This may be regarded as a special case of C3, where al(x), a2(x) are

taken to be zero outside of (a,b) and of (b$c) respectively.

h(x - a)/(b - a); (a,b)
cl14e t(x) =

h(c - x)/(c -b); (b,c), a<b < c, h= 2/(c -a).

% Define Al = (b -a)/(c -a).

+(b- a) max {r ,r }0
12

If r.

J. Following C113, we compute Al

c

‘or ‘o~A1’ ‘et ‘= a
> Al, setx=c- (C - b) max {rl,r2}.

b
= J al(x) dx = (b - a)/(c - a) and A2

a

n
= J a2(x) dx = (c - b)/(c - a). Hence al(x)/Al = 2(x - a)/(b - a)z and

b

a2(x)/A2 = 2(c - x)/(c - b)2. For x = a + (b - a)u, and x = c

- (c - b)u, respectively, one has al(x) dx/Al = 2U du, =d a2(x) dx/A2

= 2u(-du) on (0,1). By C15 (with b = 1, m = 2), we see that the density

2U on (0,1) may be sampled by setting u = max {rl,r2}. Hence the rule

follows from C113, C2, and c15. See also R18.

Note 1.
1/2

Using c16, we could replace max{rl,r2] above by r3 .

Note 2. c114 is the most general “triangular”density. For b

= (a+c)/2, the midpoint of (a,c), it reduces toCllO, 111, or 112.

{

Aaem; (~,0)
C115. q(x) =

Bbe-bx; (0,-), A,a,B,b > 0, A+B = 1.

.

.
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Rx. If rO~A, setx=

Following C113, we

o

[
ax

‘1= ‘e ‘-

a-l$nrlo If r. > A, set x = - b-lmrl.

find

en

A, f‘2 = ‘k
‘bx& -B,

o

ax;(-,0)al(x)/Al = ae a2(x)/A2 = be-bx; (0,=)0

For x = ~, al(x) dx/Al =aeay(-dy) on (O,CO). The rule therefore

follows from C113, C29, and C2.

Note. q(x) is continuous at x = O iff Aa =Bb.

C116. q(x) =ai(x); (Xi,Xi+l),i = 0,1,2, ● .. (Compositede~ity.)

‘i+l a

%“ Define Al =
{

ai(x) dx, where
E IAi=l. Set K=mln k;

‘i
o

k

‘ 1Ai~ro . Sample density aK(x)/~for x on (~,~+l).

o

J. Obvious application of C3, and generalization of C113.

I
aO(x) =px/a2; (O,a)

C1170 q(x) =

ai(x) = pq‘-1[(1 + ip)a -px]/a2; (ia,(i + l)a), i = 1,2, .OO

Rx.

J.
.
..

:

a,p,q>O, p+q=l.
1/2

Mfine A. =p/2. If ro~Ao, set x =arl . If r. >A o, aet K

k-1
=min{k; (p/2)[1 + (1 +q)(l +q + ... +q )1 ~ ro; k ~ 1}. (See Note

1/2
2.) Set x = (a/p){l +@ - [1 - (1 + q)prll }.

a

Following C116, we compute ~ =
f

so(x) dx =p/2, so(x)/Ao = 2x/a2, and

o

(i+l)a

fori~l, Ai=
1

ai(x) dx = pq‘-1(1 + q)/2, ai(x)/Ai

ia



c118.

x

= 2[(1 + ip)a - px]/a2(l + q). If rO~AO, we set rl =
~

aO(x) dx/AO e

o *
.

1/2 *
and find x = ar1 . If rO >Ao, we obtain K~ 1 as in C116, and set r1

-.

x

!

-
= aK(x) dx/~ Solving the latter by quadratic formula gives the x of

Ka

the above rule.

Note 1. The choice of sign in solving the quadratic referred to for x -

1’2} is in accordance with the fact= (a/p){(l i-Kp) - [1 - (1 + q)prll

that rl = O gives x = Ka, while rl = 1 gives x = (K + l)a, as required.

Note 2. For rO > AO, the rule demands that K be the least k~ 1 for

which (p/2)[1 + (1 +q)(l +q + ● ** +q ‘-1)] ~ roo (The rule given in

the second Sampler is wrong!) This may be simplified to the condition

qK~2(l - ro)/(l +q) < qK-l.
Note 3. q(x) is a continuous broken line, with corners at x = O, a, 2a,

●**, and values aO(0) = O, so(a) = al(a) = p/a, and for i ~ 2, ai-l(ia)

= ai(ia) = pqi-l/a. q(x) has maximumat x= a, and thereafter decreases

by a factor q at each step.

Note 4. Since the density ~(x)/~ is linear, the method of C12 may be

used instead of Cl, which involves a square root.

P(X) = C-l/(ex + b + es); (-w,~), -2< b <2, C = B-l(w/2

1/2
- arctan(b/2B)),where B = (1 - (b2/4)) .

% Set x= 2n{-(b/2) +B((b/2B) +tan(CBro))/(l - (b/2B)tan(CBrO))}.

J. For x = hy, one sees that p(x) dx = C‘1 dy/(y2 +~+ 1)

C-l dy/[(y+ (b/2))2 +B2] s q(y) dy on (0,=). By Cl, we set r.

Y

f -1 -1

{

+ (b/2)
q(y) dy = C B

b
arctan y B

1
- arctanz ‘ and solve for y -

0 .

-(b/2) + Btan{arctan(b/2B)+ CBrO]. Stnce tan(X ~ Y) = (tanx + tanY)/ -

(1 - tanx tanY), the rule follows.- :

C119. p(x) = C-l/(ex+em); (--,~), C = w/20
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.

%“ Set x = 2n tan((w/2)rO), or generate ;I,;o until S = ;; +~~~l,asin

Rl, and set x = 2n(~2/;l) = 2n;2 - gn;l.

J. Special case b = O of C118.

Note. An equivalent form of C119 is p(x) = (1/w) sech x.

C120. p(x) -c ‘1/(ex+2+em); (-,*); C = 1.

%“ Set x = @r. - M(l - ro)e

J. For x =$ny, we find p(x) dx =dy/(y2 + 2y + 1) =dy/(y + 1)2 s ~(Y) *

Y
on (0,=). By Cl, we set r. =

f
q(y) @ “y/(l +Y), @~wY

“o

= ro/(l - ro)o The rule follows.

Note. Other equivalent form are p(x) = l/(e
x/2 + e-x/2 2

)
= (1/4)se*2(x/2) =ex/(ex+ 1)2 =e=/(l +ea~~o

C121O p(x) =C-l/(ex+b+em); (~,~), b > 2, C =D Rn((b/2) + D), where D

= ((b2/4) - 1)1/20
Rx. Define a = (b/2) +D, d = (b/2) -D. Set x =2n(E - 1) ‘2n(s ‘dR),

2r02ns
where Ese .

J. For x = ~tly,
-1

one has p(x) dx = C dY/(Y2 +by + 1) -c-l dyl((y
w
.7

+ (b/2))2 - D2) = q(y) @ on (O,*). By Cl, we set r. =
f q(Y) W
o

S( +d)= (1/2CD)2nd(~+s), and obtainy = (E - 1)/(s - dE), wM&yj.el@ the

rule. Note here that sd = (b2/4) - D2 = 1, and CD = 2n((b/2) + D) = g-.

C122. q(y) =C-la/(b +2 cosh a(y -yO)); (~,00) a > 0, y. arbitrary, b > - 2.

RX” Sample p(x) for x on (~,=) by C118, 119, 120, or 121 (depending on the

value of b). Set y -yO + (x/a).

J. For y -yo+ (x/a), one has q(y) dy -C
-1

dx/(ex+b +e%) ‘p(x) dx as

in the cited references. The rule follows from c2.

C123. r(t) =C-la/t{(t/to)a+b+ (t/to)=}, (0,=), a,to> O, b >- 2.

RX. Sample p(x) for x on (-=,-) by C118, 119, 120, or 121 (depending on the
xla

value of b). Set t =toe .
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J.

C124.

For t = tOex/a, one has r(t) dt = C‘1 dx/(ex + b + e%) = p(x) dx as in

the cited references. The rule follmus from C2.

b

q(y) = r dx f(x,y); (c,d), f(x,y) density for a <x < b, c <y < d.

d

RX” Sample the marginal density p(x) =
f

f(x,y) dy for x on (a,b).

c

IFor this x, sample the Aependent piensity P(Y x) = f(x,y)/p(x) for Y

on (c,d).

J. This is the continuous-continuouscase of D24, where explanations are

given.

C125. q(y) = C ;(O,@), O<a<b, C=r 1/2(bl/2 - al/2)0

Rx. Sample n
-1/2e-11,*112

for ~ on (0,=) by C64. Set y = n1’2/[al’2
+ (bl/2 - al/2)rO].

2
J. For the density f(x,y) = C-leW on (a,b) X (0,=), one has the

b b

f
-1

f

2
y-marginal density dx f(x,y) -c dx e~ x = q(y) as given above.

a a
a

Following C124, we compute the x-marginal density p(x) =
J f(x,y) @

o
00

-1
f

2
1’2) where we have made the substi-e- dy=x

‘1/2,2(b1/2 - a ,
=C

o

tution y = n1’2/xl’2. Hence the2x-dependenty-density P(Y lx)

l/2)xl/2e-xy ,= f(x,y)/p(x) = (2/lr By C124, we may sample p(x) for x

(a,b), and, for this x, sample p(y x) for y on (O,*). For the first,
I

x

f
1/2 1/2set rO = p(x) d= by Cl, obtaining x = [a +(b -a 1’2)rO]2.

a

Moreover, for y = n1’2/xl’2,
-1/2e-11 1/2

one has P(YIX) = ~ dn/u . Hence
we sample n‘1’2e-n/xl’2 for n on (O,OD)by C64, and set y = n112,X112

= nl/2/[al/2 + (bl/2 - al/2)rO], as in the rule.
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C126. q(y) = 1
f

* ~Nea2/2e-(1/2) (xy/Nl’* - 6)2;--+
●

2(N-1)/2(WN)1’2r(N/2) ~
.

W“ (4,=), ~ arbitrary, N c {1,2,3, ...}..-
Saqle ~(N/2)-le-E/l.(N/2)for ~ on (O,ao)~ C450r c64.

%“ Set x

=(2~)1/20 Samplee_~lG/2 for n on (-=,~) ~ C59 or Rll, and set*1- mIn
y=(2 “~~ + 6)NL’L/xo

J. For the function f(x,y) above, of which q(y) is the y-marginal density,
Ce

[

1 xNe%2/2one finds p(x) = f(x,y) dy = z(N-1
“2(wN) 1’2r(N/2)

●~e_(l/2)(~- )2 dy. For the substitution =(~-6)~21/2,

00

21/2Nl/2

[

2
this integral becomes x

21/2Nl/2
e- dn = x . 2 . 1/2 . r(l/2)

~wle%2/2
21/2Nl/2wl/2 . &n~ p(x) =

=
x *(N/2)!lr(N,2) on (O,OD),and

P(YIX) = f(x,y)/p(x) = (1/(2mN)1’2)x . e-(1/2)(xy/N1’2 - 6)2 for y on

(~,~). Thus, we may sample p(x) for x on (0,=), and for this x, sample.
P(Y1X)for Y on (-=,~)o Now for g =xL/2 we have, for g on (0,~),

P(x) dx - #/2)-le* dG/I’(N/2),and for YI=

( )/

~ -6 21’2, one finds
N112

-

that

from

C127. q(y)

P(Ylx) @ = em&d~/nl/2, with ~ on (-=,~). Hence the mle follows

C2.
@

f

~ x(n-4)/2e-x/2H2 exp{-(Y - (pKx/H))2/2K2(l-
= P2)X}; (-,08),

o [2wK?(1 - p2)]1/2(2H2)(n-1)/21’((n- 1)/2)

. n G {5,6,7, ...]. H,K > 0,
Sawle g‘n-3)/2e*/r((n

II
P<lo

s
%“ - 1)/2) for tjon (0,=) @ c45 or C64. Set x

s /
2 1/2= 2H2~. Sample e-n w for n on (-,-) by C59 or R1l. Set y = (pKx)/H

1/2+~[2K2(1 ‘p2)x] .
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J. For the function f(x,y) above, of which q(y) iS the ~rgf~l deneity

ao

f /

(n-1)/2(n-3)/2e-x/2H2 ~2H2)
one finds p(x) = f(x,y) dy = X I’((n- 1)/2)

-w

-1/2
on (O,-), and p(ylx) =

x
● exp{-(y - (PKX/H))2/2K2(l

[2uK2(1 - P2)]l’2

.

- p2)x} for y on (~,~). But for x = 2H2~, one has p(x) dx
= ~(n-3)/2e-~0 d=,r((n - 1)/2) on (O,*), and fory= (PKx)/H

a

+Tl[2K% -p*)x] d@/21’2, one sees that p(ylx) @ = e-nz on (=,-)

The rule then follows from C2.

‘&)/ ; (O,-), O < a < b, C = 2n(b/a).C128. q(y) = C-l(e*y - e

Rx. Gdnerate r,rt and set y = - ($nr’)/aecr.

J.
-1 -xy

For the density f(x,y) = C e ,a<x<b, O<y<*, oneseesthatthe

b

y-marginal density is
f

* C-le= = C-l(e-ay - e-by)/y = q(y) = given.

a
a

Following C124, we find the x-marginal density to be p(x) =
![

C-l

o

1●e= dy=C ‘lX-l on (a,b), while p(ylx) = f(x,y)/p(x) = xe~ for y on

(o,a)e- Hence$ we sample p(x) for x on (a,b), setting x = ae as in c18,
-1

and for this x, sample p(ylx) for y on (O,-), setting y = - x hrt as in

C29. The rule follows. Note that the value of C is implied by the

b

equation 1 =
f

p(X) dx.

a

l/n l/n
c129. ‘ay - e-by yl’n; (O,=), O<a<b, n>O, n#l,C

l-n
= r(n + l)(b - J- )/(1 - n).

Ifn<l, setx=(a IQ + (bl- - al=)ro) l/(1-n)
Rx.

.
,ifn>l, setx e

= (al= - (al- - bl-)ro)l/(la) . (Note that the formulas for x are

identical.) Sample n‘-lem/I’(n) for n on (O,*) by c45, C64, or R27. Set

y = (n/x)n.
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l/n
J. The density f(x,y) = C-leW , a <x< b, O<y<-, has y-marginal

given. Following c124, we find p(x)

m

f

l/n
= C-le-

1
dy = I’(n+ l)/Cxn on (a,b), so P(Y X) = f(x,y)/p(x)

o

I/n
. Xne-xy / I’(n+ 1) on (0,~). Moreover, one sees that p(x)
= (1 - n)x(l=)-l/(bl= - ala), ~d for y = (n/x)n, one h8S P(Ylx) @

tl-le~
‘n dq/l?(n),and the rule follows from C16, 21, 2. Note that 1

b

J

-n+l -n+l
= p(x) dx=C-ll’(n+l). b ~~~ determines C.

a

Y
C130. q(y) =

J
dx f(x,y); (a,b), f(x,y) density for x,y on region R bounded by

Rx.

J.

lines x -a, y = b, x -y. (a < b). See Fig. C130.

b

Define p(x) =
1

f(x,y) dy for each x on (a,b). Sample density p(x)

x

for x on (a,b).
I

For this x, sample density P(Y x) ‘f(x,y)/p(x),

x <y < b, for y on (x,b).

This is an obvious modification of c124.

Note. For (a$b) I=(-=,-), R is the region alwve the line y = x.

Y
I

0 a b x
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c131. S(W) = (1/2)(g(w) + g(-w)), (~,@), g(z) density on (a, oo).

RX” Sample g(z) for z on (~,~). Set w = * z with probability 1/2.

J. According to the rule the probability of w on (w,w+ dw) is

(1/2)g(w) dw + (1/2)g(-w) dw.
*

C132. s(w) = (p/2)eP’/2{Q(w - p)e-pw+ 4(- - p)epw}; (~,a), P > 0, ~(y)

J= (1/2=)1/2 y e-2/2 dx.

l/2E‘~2/~1/2 for ~ on (~,~) by C59 or R.11.RX” Sample e setz=2

- p-lhr, and w = * z with probability 1/2.

P2/2@(z - P)e-pzJ. By C131, it suffices to sample the density g(z) = pe

z on (~,-), and set w = i z as stated. But forz=p+y, one has

g(z) dz = pe-p2’2Q(y)e-py dy ~ q(y) @, so we may ssmple q(y) for y

Y
(~,~) and set z = p +y. We nuw write q(y) explicitly as q(y) =

[

for

on

dx

density f(x,y) =

the line y = x.

= q(y) on (~,~)
a

=
f

f(x,y) dy =

x

● pe
-p2/2e32/2e-Py,(2T111’,

and follow C130, i.e., we consider the

pe-P212e-x2/2e-PY/(2X)1/2 for all points (x$y) above

Y
The y-margtnal density of f(x,y) is then

~
dx f(x,y)

as above. Moreover, the x-marginal density is p(x)

e-P2/2e-x2/2e-Px,<2*11/2= e-(x+P)2/2 (21t)1/2on (~,~).

I -P(y-x)Hence, p(y x) = f(x,y)/p(x) = Pe forx<y<=e By C130, we may

I
sample p(x) for x on (~,oD), and for this x, sample P(Y x) for y > x.

-621’2E, we have p(x) d~l= eNow for x = -p+’ d@12, with g on (~,=)

as & C59, R1l. Finally, for y = x + p
I

n, we find that P(Y x) dy

=e ‘n dn, with rIon (0,-), as in C29, with the rule q = - hr. Collect-

ing these results,wesetz=p+y= p+(X+p-lII)=p+ (-p+z 1’20
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s

+ ,-in - # -c2/# ~
E - p-lkr, *ere & is obtained on (+,*) from e

C59 or R1l. The rule follows.

e(u/tb)2/2 -y

(

u%
C133. t(u) = z, ~e++Q -~-–

)1 ; (-,@), a,

Y

1#1>0, c arbitrary, Q(y) = (1/2w)1’2
[

e32/2 dx.

Rx. Sample s(w) for won (-,oD) as inc132, with p s 6/$. Set u =C +UW.

J. The rule follows from C2, since for the substitution u = G + UW, one has

t(u) du = s(w) dw as in C132.

Y
-1 ~

C134. q(y) =C e
f

x‘-1 dxl(y - X)n; (O,*), O < n < 1, C = r(n)I’(1- n)

o

= n/sin nw. (See F4B.)

%“ ‘-le%/I’(n) and n(l-)-leq/r(l - n) for x and ~ on (0,=) bySample x

C640r R27. Set y =x+n.

J.
-1 ~ n-1

For the density f(x,y) =C e x /(y - x)non the first quadrant above

Y

the line y = x, one has the y-marginal density
J

dx f(x,y) ‘q(y) m

o

given. Following C130, we compute the X_marginal density p(x)

a co a

f

-1 n-1
f(x,y) dy -c x

J
e-Y -1 n-1

J
~-ne-(ti ) dn= dy/(y-x)n -C X

x -x o

-C-lxn-le-xr(l -n) -Xn-l -x
e /r(n), and the x-dependent y-density P(YIx)
-(Y-x),r(l= f(x$y)/p(x) = (y - x)-e -n). By C130, we may sample p(x)

for x, as in the rule, and for this x, sample p(ylx) for y > x. But

fory=x+n, one has p(ylx) dy =naea dn/1’(1- ~) on (0,=), and the

rule follows from C20

b

C135. q(y) =J dx f(x,y); (a,b), f(x,y) density on region R bounded bg lines
v

x=b, y=asY = x(a < b!). See Fig. C135.
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x

%“

J.

Define x-marginal density p(x) =
f

f(x,y) dy, for each x on (a,b).

a s

Sample p(x) for x on (a,b).
,

For this x, sample the x-dependent y-density :

P(ylx) = f(x,y)/p(x) for y on (a,x).
-- .

Obvious variant of C130.

Note. For a = O, the region R is that bounded by the x-axis, the

vertical x = b, and the line y = x.

Y

a

o a b x

Fig. C135.

b

C136. q(y) =
f

dx t(x)/tl; (O,b), t(x) density on (O,b) with first moment tl

b
-
f

xt(x) dx.

o

RX” Sample the density p(x) = xt(x)/tl for x on (O,b). Set y = xrO.

J. l!hisis a corollary of C135 (with a = O). For the region R bounded by

the x-axis, the vertical x = b, and the line y = x, the density f(x,y)

s t(x)/t, has y-marginal density q(y) as given, x-marginal density P(X)
A

x
=
f

f(x,y) dy = (t(x)/tl)

o

P(YIX) = f(x,y)/p(x) = l/x
= ~(x)/tl for x on (O~b)~

x

1 dy = xt(x)/tl, and x-dependent y-density

o

(independentof y!) Thus we sample P(X)

I
and for this x, sample p(y x) = l/x for y on

.
&
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.

(o,x).

and the

Note 1.

Y

But for the latter, Cl sets r. =
J

dy/x = y/x, giving y = xro,

o
rule follows.

To sample the “tail-end” density

b

q(y) =
J

dx t(x)/tl

Y

of a density t(x) on (O,b), it suffices to be able to sample its “first

moment” density p(x) = xt(x)/tl on (O,b).

Note 2. The “tail-end” density of t(x), which is really its (upper)

distribution function normed by tl, is not to be confused with its

“residual” density t(x)/Ta on a fixed terminal interval (a,b), where

b

Ta =
J

t(x) dx, examples of which are given in C106, 107, 108.

a

C137. q(y) =
f

n+l n-le-Bx
dxB X /1’(n+ 1); (O,-), B, n >0.

w

R~. Sample gne-g/I’(n+ 1) for & on (O,@) by C45, c64, or R27. Set y

= ro(~/B).

Jo
n n-1 -Bx

This is an application of c136 to the density t(x) = B x e /r(n) on

(O,-), with first moment
co m

‘1 = 1
Bn#e-Bx dx/I’(n)=

f
(Bx)ne-Bx d(Bx)/BI’(n)

o 0

a

= I’(n+ 1)/BI’(n)= n/B. For,
J

t(x) dx/tl

Y
w

f
= (B/n) Bnxn-le-BX dx/I’(n)= q(y) as given.

Y

Following C136, we find that p(x) dx = xt(x) dx/tl = B*lxne-Bx dx/1’(n

n -Bx
+ 1) = (Bx) e d(Bx)/I’(n+ 1) = ~ne-5 dE/r(n + 1), for x = ~/B. The

rule follows from C136.
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n-1

c138. q(y) = (B/n)e
-By

z (By)v/v!; (O,CO),B > 0, n e {1,2, ...}.

o

n+l

%“ n
Set y = -(rO/B) tn ri.

1

J. This is the special case of C137 for n integral. For, using F3A, we see

co co

that q(y) =
1

n+l n-1 -Bx
dxB x e /l’(n+ 1) = (B/n)

f
n-1 -Bx

d (Bx)(Bx) e /r(n)

Y Y
a n-1

= (B/n)
f d~ ~‘-le-&/(n - 1)! = (B/n) eay

z
(By)’’/v!=q(y) as above.

By o

The rule therefore follows from C137, since sampling ~ne*/n! by C45

n+l

ngives & =-~n ri.

1

C139. q(y) = (m + l)(bm - ym)/mbtil; (O,b), m,b >0.

Rx. Sample (m + l)xm/btil for xon (O,b) by C150r c16. Set y =xro.

J.
m-1 m

The rule is an application of c136 to the density t(x) =mx /b on

b b

(O,b), with tl =
1

xt(x) dx =mb/(m + 1). In fact,
J

dx t(x)/tl

o Y

b

f
= ((m + I)/b*l) xml dx = ((m + l)/fitil)(bm- ym) = q(y) aS given.

Y

Moreover, p(x) =xt(x)/tl = (m + l)xm/b*l. The rule then follows from

C136.
m+l

Note. Direct sampling by Cl leads to the equation y - (m + l)bmy
~’1

= 00
‘o

.
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b

C140. q(y) =
J

dxp(x) fx(y); (c,d), p(x)

y-density on (c,d) for each value of

density on (a,b), fx(y) continuous

parameter x on (a,b).

Rx. Sample p(x) for x on (a,b). For this x, sample density fx(y) for y on

(c,d).

Jo The function f(x,y) s p(x)fx(y) is a density for x,y, since

bd

Jf
f(x,y) dx dy = ;dx p(X) ;fx(y) dy =~dx p(X) = 1.

ac a c a

d

Moreover, the ~rginal density of this f(x,y) is
i

f(x,y) *

c

d
=
f I

p(x)fx(y) dy -p(x) itself, and P(Y x) = f(x,y)/p(x) =fx(y).

c

Hence, C140 may be regarded as a corollary of c124.

1

C141. q(y) = (m/(2nb)1/2) ~ dx xm-(3/2)e_y2/2bx; (~,-), m,b >0.
0

.
a

‘1 for x on (0,1) by C15 or C16.Rx. Sample the density p(x) -mx SampleQ

/4 wl’2 for v on (-=,=) @ c59 or ml. Set y =v(2bx) .the density ew 1/2
9

J. m-l,~e-y’/2bxWe define f(x$y) = (mx /(2mbx)1’2)forO<x<l, -=<y

< =. This is of the form p(x)fx(y) as in C140, sowe sample p(x) for x

on (0,1), and for this x, sample f (y) for y on (-=,*). But for y
x

= v(2bx)1/2,
2

1/2one has fx(y) dy = e- dv/m on (-=,=), and the rule

follows from C140 and C2.

C142. q(y) = {(1 + ay)eay - (1 + by)e-by}/y2(b - a); (0,=), O < a < b.

RX” Set y = -2nr2/[a + (b -a)rl].

Jo For the uniform density p(x) = l/(b - a) on (a,b), and the x-dependent

y-density fx(y) = xem on (O,@), defined for each x on (a,b), we find
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b b w

that
! f

dx p(x)fx(y) = (b - a)-l dx xe= =
J

(b - a)-lY-2 - ~e-~ ~~

a a ay

= q(Y) as given. Hence, following C140, we sample p(x) = l/(b - a) for x

=a+ (b- a)rl~ as in Cll, and for this x, sample fx(y) = xe7 for y

= - x-12nr2, by C29. The rule follows.

Note. q(y) > 0, since f(z) ~ (1 + z)e-z is decreasing In fact, f’(z)
—%
-e - (1 +z)e-z =-ze ‘z < 0. q(y) > 0 also follows from the integra-

b
-1

tion q(y) = (b - a)
J

dx xem.

a

C1430 q(x) = (X)p(x)[l -P(X)IN+; (a,b), P(x) demity on (a,b), P(x)

x
-
f

P(X) dx; k & {1, .... N}.

a

%“ Sample p(x) independentlyN times for Xl, ●**, %“ Order these xi as

q~x~ 5: ~he de~s~~ f~~t x = “

x’ < x’ < ..0 <

J. ~, the k-th largest component of the vector

(xl, .... ~), the Xi bei~ independent, each ~th densitY P(x)● Fors

x

the corresponding distribution function Q(x) =
f

q(x) dx = P{ ‘lf<x}is

a

the probability that at least k of the xi are ~x. Hence Q(x)

()
-Nk

(1)
kP (X)[l -P(x)]N-k+ k;

Pk+l
(x)[1

N-k-1 +

()

N
- P(x)] ● *9

()

‘N-1
. PN-l

(x)[1 - P(x)] + ~ PN(x), and one fin& that q(x) = Q*(x)

()
“ :kp

k-1
(X)p(x)[1 - P(x)lN-k. (The derivative sum telescopes, leaving

only the first term.)

Note. In densities of this form, the above rule is feasible for

moderate N, and may compare favorably with more direct methods.

C144. A. q(x) = NP(x)[l - P(x)]N-l; (a,b),

B. q(x) = NPN-l(X)P(X); (a,b),

c. cl(x)= ((2M + l)!/M!M!)p(x)[P(x)(l - P(x))]”; (a,b).

114



Rx.

J.

In A,B,C, p(x) is a

Sample p(x) for xl,

x

density on (a,b), and P(x) =
{

p(X) dx.

a

.... ~, where N=2M+lincase C. For A, setx

= min{xi}; for B, set x = max{xi}; for C, where N = 2M + 1 is odd, order

the x
1’

●... Xm+l - ‘i~””O~xAlandsetx - ~1 (the tiddle xi).

One sees from C143 that the above densities are respectively those for

the least (k = 1), the greatest (k = N), and for N = m + 1, the ~ddle

(k =M+ 1) component in size in the sequence of xl.

C145. q(x) =k
k-l(b _ xlN-k/(b - a)N; (a,b), k e {1, .... N}.

~1. Generate il, .... rN. Order as r;~... ~r~. Set x-a+ (b -a)r~.

J1.

Rx.

J2.

For the u~form density p(x) = l/(b - a) on (a,b), one has P(x)

x
=
J

p(x) dx = (x - a)/(b - a), and 1 - P(x) = (b - x)/(b - a). Substi-

a

tution in C143 gives the above q(x). Hence we should sample p(x) for xl

= a + (b - a)rl$ .... ~ = a + (b - a)rN, where the order of the x~ is

that of the corresponding ri. The rule follows.

Definem=k,n=N -k + 1, and sample the density (x -a)
m-1

. (b - x)n-l/(b - a)ti-l B(m,n) for x on (a,b) as in c76.

This Is qniobvlous alternative.oxN k-1
C146. q(x) -k ~ (1 - X)N+; (0,1), k e {1, .... N].

%
J1.

Rx.

J2.

Generate rl, .... rN. Order as ri ~

Case a = O, b = 1 of c145.

Definem=k, n=N-k+ 1. Sample

x on (0,1) by C75.

An obvious alternative.

● *9 ~ r~. Set x = r~.

density XW1(l - x)n-l/B(m,n) for

Note 1. The method of %1 provides a useful test for the randomness of

machine generated “random numbers.”

Note 2. For k = N, the rule %1 samples q(x) = Nx‘-1 for xon (0,1) by

setting x = max{r1’ ●*., ~1. The direct method of Cl would set x

= r~/N. See c15,16.

C147. q(x) =k
()
~ e% exp(-kem)[l

{ 1
- exp(-ea)]N-k; (~,=), k s 1, .... N .



%

J.

C148.

Generate rl, .... rN. Order as

For the density p(x) = exp(-x -

x

=
f

p(x) dx = exp(-e%. (Let

ri < ..o ~r~o set x = -2n(-2nr~)0

em) on (~,oD) of C43, one has P(x)
F.

.
<

x = -hg.) Substitution in C143 gives .

the above q(x). To sample p(x), we set x = -2n(-2nr) as in C43. Since

the function - 2n(-2nr) Is increasing, the rule follows.

Note. For k = N, q(x) dx = Nez exp(-Ne%) dx = Ne‘n(-d~) = e-v(-d~)

under the substitutions x = -$nn, n = c/N. By C2 and C29, we could set

x = -~n(-N-lflnr)0

() o

q(x)=k~e ‘(N-k+l)x/(l + ea)W1; (~,00), k e {1, .... N}.

Rxl. Generate rl, .... rN. Order as r~~... ~r~ Set x

= 2n(r~/(1 - r:)).

J1. For the density p(x) = e~/(1 +e-)2 on (-@,@) of C120, one has P(x)

x

=
[

p(x) dx = 1/(1 +e%). Substitution in C143 gives the above q(x).

The rule then follows from C120, since the function 2n(r/(1 - r))
-1

= 2n(l/(r - 1)) is increasing.

RX2. Define m = N - k + 1, n =k, p = u = 1. Sample e-/(l +e=)%(m,n)

for x as in C79.

J2. An obvious alternative.

kN()[k (1/2) + (1/m)arctan
C149. q(x) -

@#)]k-1[(1/2) - (l/w)arctan(-)]N-~

Rx.

J.

(~,=), ~ >0, 0 arbitrary, k G {1, .... N}.

Sample the density p(x) of C99 for xl, .... ~. Order as x; ~ ...

.
x m

For p(x) = l/mA[l + ((x - 9)/A)2] in C99$ one has P(x) =
~

p(x) dx .
a

= (1/2) + (l/n) arctan ((x - 9)/A). Substitution in C143 gives the above

q(x). The rule follows from C143.
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Note. If Rxl of c99 is used, one may generate rl~ ●**, rN, order as

-t r; ~ ... ~ r& and set x = 6 + A tan(2rt - l)(w/2).k
f .

.
abxb-le-axb(N-k+l) ~

b-k-1
-* C150. q(x) -k - e-ax ; (O,@), a,b > 0,

t-
k s {1, .... N}.

.-
%“ Cenerate rl, .... rN. Order as r; ~ r; ~ ... ~ r; (Sic!). Set x

= exp[b‘lgn(-a-lhm~)].

J. For the Weibull density p(x) =

x

I

b
P(x) = P(X) dx = 1 - e-m ,

0

abxb-le-axb on (0,=) in C38, one has

and substitution in C143 gives the above

q(x). The rule follows from C38, since the function x

= exp[b-12n(-a-l!?nr)]is decreasing, with

r* > ... > rt > ... > r!1- - k- - N

corresponding to x’ < ..* <l– -$~”””~%”

C151. q(x) -k
k-le-(N-k+l)x

; (O,@), k e {1, .... N}.

Rx1. Cenerate rl, .... rN. Order as ri~... ~r&. Set x= - ~nr~.
J1. Case a = b = 1 of C150.

%2. Define m = N - k+l, n=k, p=a=l. Sample the density e(x) for x

on (0,=) by C80.

J2.

C152. q(x) -k ‘-l[xn-le%/r(n) ][1 - rx(n)]N-k; (0,-), * > 0, rx(n)

x

f
n-1e-x~ x dx/I’(n),k e {1, .... N}.

o

%“ Sample density p(x) = xn-lem/l’’(n)N times for xl, .... ~ on (O,*) iy

C45, c64, orR27. Order ss xi < ... <
-%* Set x=%.

‘A

. J. Since p(x) has the distribution function P(x)
●

x
=
f

‘-le-x dx/r(n)x

o

= rx(n) as defined, substitution in C143 gives the above q(x), and the

rule follows from C143.
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x

Note. J
n-le-x

For an integer n = 1,2,3, .... one has r=(n) = x dx/(n J-

0 .

co n-l

J
n-le-x

-1)! =1- x dx/(n - 1)! =1 -ea
z

xv/v! from F3A.

x o

C153. q(x) -k
m(N-k+l)[l

- (6/x)mlk-1, (8,-), m~6 > 0$

Rx.

J.

k e {1, .... N}.
m --1

Sample the density U$ x for 5’ ●... ~on (6$@) ~C200r C21.

Order as x~~... ~x& Set x ‘~.

For

x
m -m-1

the density p(x) “@ x , one has P(x) =
I

P(x) dx = 1- (13/x)m,

and

6

substitution in C143 gives the above q(x). The rule therefore

follows from C143.
l/m

Note. If the formula x ‘t3/r of C21 is used to sample P(x)~ 0~ ~Y
l/m

generate rl, ..O$ rN$ order - r; ~a.. zr& and set x = f3/(r~) ●

C1540 p(t) - (X/2W)l/2t-3/2exp{-A(t - U)2/2112t};(o,@), A,ll> 0.

Rx. Define $ = A/2B, and sample q(x) for x as in R25. Set t =IIX.

J. For t =ux, and # =A/211, one sees that p(t) dt -q(x) dx, where q(x) is

Waldts density in R25.

c155. p(t) = (d/(2mB)1’2)t-3’2 exp{-(d -vt)2/26t}; (0,00),B,d,v> 00

(Brownian mtion. )

RX” Sample p(t) for t es in C154, with the para=ter values A = d2/6~w

= d/v.

Jo Waler this identification of parameters, C155 is a case of C154.
-1 m-1 n-1

C156. f(x,y) -C X F(x + y); Region: {(x,y); x,y > 0, x+y <a), a

a

fixed, O < a~~, m,n > 0, C =A ● B(m,n), where A E
./’

Uluhl-l
F(u) duo .

0 &

Rx.
-1 mill-l

Sample density A u ‘1(1F(u) for u on (O$a). Sample density v
.
a

- v)‘-l/B(m,n) forvon (0,1) by C75 orR28. Set x ‘UV, Y =u(l ‘v)-

J. Since the Jacobian of the preceding transformation is -, one has
-1 m-in-l

f(x,y) dxdy -A U
m-l(l _ V)n-l dv on (O,a)F(u) du B-l(m,n)v
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.
.

L-

.

X (0,1), and the rule follows from C2.

Note 1. The inverse of the transformation,u = x + y, v =

shows that the (x,y) region is mapped into the rectangular

Xl(x + y),

(u,v) region

(O,a) X (0,1), downward diagonals going into upward verticals.

Note 2. For the function F(z) = e= and a = -, see C75.

‘1 ‘lyn-l/(l - x - y)n, Region: {(x,Y), X,Y >0, x + Y s 11,C1570 f(x,y) = c x

m > 0, 0 < n < 1, C =n/m sin nn.

Rx. Sample u*-1(1 - U)(l-n)-l/B(m+n, 1

for U,V on (0,1) by C75 or R28. Set x

J. Case a= 1, F(z) = 1/(1 -z)n of C156.

1

Note. A =
J
o

c= AB(m,n) =

Jn+I1-1(1 - U)- du = B(m

- n), and VW1(l - v)n-l/B(m,n)

= Uv, y = U(l - v).

+n,l -n),

r(m+n)I’(1 -n) r(m)r(n)
l’(m+ 1) “ I’(m+n) = r(n)r(l - n)/m = m/m sin nr.

See F4B.

(-1 -Q12R2, ~= ‘1 -MlC158. p(xl,x2) = (2ralu2R) e
‘1 61

Rx.

J.

L)-‘2 -1122
+

; ‘1’X2 on (-,=), a a > OS VISV2 arbitrary~
‘2 1’ 2

II
P<1O

21 ~12 for y,9Yq onSample ev w (e,-) by C59 or R1l. Set
AL

‘1/2
‘1 =111+2 G1(RYI + PY2)S

1/2
‘2 =1.12+2 ~2Y2*
Under the preceding transformation,

(
- Y;

P(xI,x2) dxl dx2 = (2mulu2R)-le

with Jacobian

)
+ y;

(2u102R)

R2=l-p2,

2a,fJOR,one finds that

2 2
= *-1/2e-yl dyl ● m-1/2=72 dY2, and the rule follows from c2.

-le+j/2R2, ~ = X2 2 R2C159. P(xI,x2) = (2nR) 1 - 2PX1X2 ‘X2’ ‘1’X2 ‘n ‘-’m)’

-l-pz, lpl<l.

‘/2(Ry1 +Py2)9 ‘2
k“ Set xl = 2 = 2~12y2.

J. Case VI = W2 = O, al = U2 = 1 of C158.
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C160. p(Xl,
-1 -Q.... xn) =C e ,Q=

z ‘iaijxj; ‘j ‘n ‘-’=)’ j - 1’ .Oe, n,

nxn matrix A = [a ] symmetric, positive definite.ij

%“ /
2 1/2Construct nxn matrix S such that S*AS = I. (See Note.) Sample ev T

independently n times for Yls ●**, yn on (~,~) by C59 or R1l. Define

xl, .... x_ by the linear transformation
A

x.

u

.

1‘1●● =s
●

xn

-.
Y1

●

b;n
ID.

= SY8

J. In column vector notation, we have the transformationX = SY, and hence

T T TT T T
Q = XAX = (SY) A(SY) = Y (S AS)Y = Y H = Y Y, lee., Q =

z ‘iaijxj

‘>~fi. The Jacobian of thetraneformation being det S, we see that

P(xls ●**, Xn) dxl ...
‘=rl ‘w -(Z<) ● Idet ‘1

—n

-L‘y;

● dyl ● 0. dyn, =w-n/Se (/
-Y; l/2\

dyl ● ** dyn= e dyl n

(;id’’*’K)-eretilIdetsl‘Ua’znecessari’yo
follows from C2.

Note. The matrix S may be obtained by the Gram-Schmidt

Without going into its machinery, we remark here that it is a definite

algorithm for constructing, from any n linearly Independent vectors, an

equivalent set (spanning the same space) which are orthonormal with

respect to an arbitrary given inner product. If we define in En the

inner product (X,Y) = XTAY, then the Gram-Schmidt algorithm, applied to

the linearly independent “l-spot” vectors 6
1’

●**, ~n$ produces a set of

120

) ● **
The rule then

process [17].



vectors S1, .... Sn which are orthonormalwith respect to this inner

product (X,Y), and we need only define the matrix S as S = [Sl, .... Snl

with the vectors S1 as its columns. For then S = [Sl, .... Sn] =1 ●

[sl, .... Snl = [61, .... 6n][Sl, .... Snl, and hence ~ij = (Si,sj)

T
matrix form, I = S ASS

C161. P(a’,a); Compton scattering, Klein-Nishina cross section.

%’ The following is a complete procedure for obtaining, froman arbitrary

incident photon energy a = E(MeV)/.5ll ~ .002, the value of the scattered

a

photon energy

tion

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E’ = .511 at MeV, where at = ax, and the resulting deflec-

= cos e = 1 + (l/a) - (l/at)o Set a. = 2020

2a

a~ao+(5), a<a +(11).o

T=l-~2

GI =N+ (T/2)

Generate r,rt

Glrf <N+ (9), GlrQ ~N+ (10).

x = exp(-Nr), EXIT.
1/2x=(l-rT) , EXIT.

B = lla

$ =$(a). See TABLE.

‘o -t+(l-E)$

M=hx
o

Kl=l-x
o

K2 = l/x.

K3=l- 28(1 + 6)
F. =Kl{(l/2)(1 +xo) +62(~ +K2) - MK3}

G= 2a(l+a)~2+@+NK3
Jo =Fo/G

Generate r.
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I

22. r < JO + (23), r ~ JO + (29).

23. R = r/J
o F

24. fO =XO+K2 + 62(1 -K2)(n -K2) .
u

25. A. =-Fe/2 w-.

26. B. =Fo+ (Fo/fo) - 3K10 .

27. Co= Ao - (FO/fo)+ 2KI
.

28. x = 1 + R{AO + R(BO + ~o)}, E~T

29. A. - (M+ N)/(1 -Jo)

30. x = X. exp{-Ao(r - JO)}, EXIT

TABLE I

.002~a < .962 $ = ●25 IIe =.0211

.962~a < 1.642 $ -*2O IIe =.0218

1.642~u < 2.002 4J- ●17 IIe =.0218

2o002~a < 10 $ -*15
II
c = .0213

10~a<52 $ -*25 II
c = .0177

52~a<202 $ -*25 II
e = .0194

II
The tabulated c is the maximum relative error in x on the corresponding

range.

J. The rule is based on an accurate fit for the inverse of the Klein-Nishina

distribution. For details see [11,16,14]. This is cited in [15] and is

an improvement on the method used in the earlier version [10].
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R-INDEX

Rejection Techniques

RI.

R2.

R3.

R4.

R5.

R6 ●

R7.

R8.

R9.

R1O.

R1l.

R120

R13.

R14.

R15.

R16.

R17.

R18.

R19.

cos 9, sin 6, tan 8 ;

p(e) - 2/r; (o,T/2) ●

cos 8, sin e, tan 0 ;

p(e) = l/lr;(-/2,ll/2) ●

cos 1#1,sin $ ;

p($) - l/21r;(o,2m) ●

(az _y2)l/2 .

$2= (~~,~2,03) ●

u).~ = (u~$ ●.O$ N

pl(x){p2(h(x)) -p2((g(x))} .

e3*/2 ; (o,@) .

e-Y2n;(-,03) ●

-v2
e ; (0,=) ●

-X2; (-m,@) .e

1/2
e‘az SiIlh(bz) ●

pl(x)h(x) .

(b -a)-lp(x)/~ .

F-if(x)

K- B COS2$ .

K- S2(Q cos 2$ +U sin 2$) .

{
h(x- a)/(b - a)
h(c - X)/(C - b) .

22sin x/x .

Uniform direction, quadrant 1.

Uniform direction, quadrants I, IV.

Uniform direction in plane, point on
unit circle.

Sampling torus, uniform in volume.

Uniform direction in 3-space, point on
unit sphere.

Uniform direct on in N-space, point on
unit sphere

It
$2=1.

Density x distribution.

Half normal.

Normal.

Half Gaussian.

Gaussian.

Fission energy spectrum, Watt
spectrum

Density x bounded function.

Uniform x bounded density.

Uniform x bounded function.

Polarlzed Compton Scattering.

Polarized Compton Scattering.

General triangular.

Quasi-periodic.
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R20.

R21.

R22.

R23.

R24.

R25.

R26.

R27.

R28.

R29.

R30.

RI.

z ajPj(x)hj(x) .

~n-l/(A-le” + 1) .

112,(eY-n
Y +1).

1/2xn-le-G(x2+l) .

/(

1/2
-1 a(x2+l)‘-1 A ex

)
+10

-3/2
x exp{-$(x - 1)2/x} .

(1 -R2)(T-1)/2/(1 +pz

- 2PR)T/2 .

m-le-xx ,m>O.

~m-l(l-v)n-l ,

zm-l/(l+z)* ,

~in2m-16 cos2n-1 O;m,n>Oo

ZZm-le-zz,m>Oo General Gauss type.

P(at/a,8) . Polarized Klein-Nishina.

Rejection Techniques

Note. In all cases, the process is iterated until the stated condition

for acceptance is satisfied.

cos e, sin e, tan 8, for p(e) = Z/m; (O,n/2).

Sum of products, Butcher.
,+

NR non-degenerate electron gas energy. e
~--

Fermi-Dirac.
.
-

R extreme non-degenerate electron gas . I

momentum, Maxwell-Juttner.

R non-degenerate electron gas
momentum.

Weld. [22, v.2; p. 138]

Leipnik, circular correlation.

[22, v.3; p. 240]

General I’-type. [22, V03; p. 39]

General B-type. [22, V03; p. 39]

AA

-r/rg21
J. The accepted points (~l,~z) constitute a

first quadrant which is uniform in area.

therefore uniform on (O,T/2).

sampling of the unit disk in the

The angles e so determined are
.
@

Note. In this and other such cases, there is always the alternative of .
sampling the angle uniformly (one random number) and computing the values 4

of the desired functions. Machine times should be compared.
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R2e cos O, sin 6, tan O for p(e) = l/W; (-r/2,n/2).

Rx. IfS=x2+y2~l,where x=rl,y
1/2

= 2r2 - 1, 8et cos O = x/S ,
~n 1/2

sin 6 = y/S , tan e = y/x (x # o).
.
-- J. See RIJ.

. R3. Cos $, sin $ for p($) = l/2n; (0,2m).
9 9 * *

%1.

J1.

RX2.

J2.

RX3.

J3.

Ifs=x’+y’ <1, where x= 2rl - 1, y = r2, set cos r#I= (XA -.yA)/S,

sin $ = 2xY/S* (von Neumann.)
1/2

For accepted (x,y), cos e = x/S , sin e = y/S
1/2

are functions of an

angle e uniform on (O,n). Hence $ = 2e is uniform on (0,21r),and cos 1#1
2 2

= cos 2e = cos e - sin e = (X2 - y2)/S, sin $ = sin 2e = 2 sin e cos e

= 2xy/s. (No square roots required.)

Use R1 to obtain cos e, sin e for e uniformon (O,n/2). For cos $,

sin $, change sign of each independentlywith probability 1/2.

Obvious.

IfS=x2+y2~l,where x=2r1- 1, y = 2r2
1/2

- 1, set cos $ = x/S ,

1/2
sin e = Y/s .

See RIJ.

Note. Q = (COS $, sin $) is a uniform direction in E2.

R4. p(y) = (2/aa2)(a2 - y2)1’2; (-a,a), a > 00

Rx. If(2rl - 1)2 + (2r2 - 1)2< 1, set y = a(2r2 - 1).

J. 2 1/2 dnFor y = an, one has p(y) dy = (2/T)(l - n ) ~ q(~) dn, sowe may

sample q(n) for ~ on (-1,1) and set y = an. Since the accepted points

(~,~), ~ = 2rl - 1, n= 2r2 - 1 sample the unit disk uniformly in area,

they have the density function f(~,n) = l/n, with nmarginal density
(&l/2

2
f d5/r = (2/T)(l - ~2)1’2 = q(~) as defined, and the rule

o

follows●

Note. The above density p(y) arises naturally in the problem of

a toroidal solid (anchor ring) uniformly in volume. Suppose the

sampling

latter

generated by revolving about the y-axis a circular area of radius a, with

center at (b,O) b > a, on the x-axis. Our object is to sample the

circular area for points (x,y) in such a way that they produce by rota-

tion points (~,U,C)$
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C=xcos+

n-y

J=xsin$ r~

($ uniform on (0,2w)) which are uniform in volume within the ring. The ‘%

volume of the toroidal ring up to height y is given by
.
.

Y

v(y) =
{

2
W(X2 - X:) dy

2 1/2
where xl= b-(a2 -y) , X2 = b+ (a2 -

Y

= 4ub
J

~a2 -y211/2 dy, the total voluem

2 1/2
y) . Thus v(y)

being V(a) = 4wb

-a

a
●

❆

~a2 - Y2, 1/2 dy = 2K2a2b. The probability distribution function

-a

Y
for y is therefore P(y) =V(y)/V(a) = (2/wa2)

f

~a2 -y2)l/2 dy, with

-a

density p(y)
2 1/2

= dP/dy = (2/xa2)(a2- y ) , as in R4. For a value of y,

drawn from this density as in the rule, the correspondingvalue of x

should be uniformly distributed in area in the annulus generated by the

points (Xl,y) and (x2,y), I.e., we should set

2 2
‘3 = (x - x;)/(x: - xl),

and solve for x. (See C12, Note.) Using the above values of X1,X2 the

result is

2 1/2(2r3- 1)31/2,x={b2+a2-y2+2b(a2 -y)

where y is obtained from the rule.

R5. Q - (W1,U2,03),
3uniform direction in E , point uniform in area on the

sphere IQI = (~ + ~ + ~)1/2 = 1.
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S1..
--.

.

I ~2.

J2.

.
?

R6.

Obtain cos $, sin $ for $ uniform on (0,2w), as in R3. Set cos 8 = 2r3

-1, sin e = +(1 - COS2 e)1/2, and fl= (sin e cos $, sin e sin $, cos ~).

For spherical coordinates, p(e,$) de d$ = sin e de d#/4n = pi(e) de

“ P2($) d$, where PI(6) de - (1/2) sin e de = ‘(1/2) d(cos e)

= -(1/2) dw; ‘1 ~v~ 1, P2($) d+ = d$/2m, O<* ~2u, where B and $ are

uniform. The rule follows from C6, c2.

Obtain S, cos $, sin $ fromR3, %3. Set cos O = 2S - 1, sin 9
2 1/2

= + (1 - cos e) , and $2as in Rxl. (random number r3 avoided.)
The accepted points (x,y) in R.3,%3 sample the unit disk, uniformly

in area, having density dx dy/w. The equivalent P,e density is P @

de/m, with marginal p-density 2p dp. Under the latter density the

&

function S = P2 has density d/dS
f

2P dp = d/dS
{ 2P dp = (1/2) S-1/2

o2>s o
. _—

. 2s112 = 1.

Hence, S is itself distributed uniformly on (0,1) and may be used in

place of r3 in %1 above.

Q = (Ul, ●**9 MN) uniform direction in EN, uniformly distributed point on

unit N-sphere
II
S2=l.

%“ Ifs= v:+..e +v~~ 1, where v = 2r 1/2- 1, set Ui = vi/S .

J. Accepted points (VI, . . . . vN) areiunifo~y distributed in volume in the

unit N-sphere, and (u~$ ●**, UN) is the projection of (Vi, .... UN) on

the unit

Note 1.

provides

Note 2.

F8), E =

N-sphere surface. ‘“
..

FOr N = 2, this h the method of R3, ~3C For N = 3, it

an alternative to R5.

Unfortunately, acceptance is poor for large N. In fact, (see

/2 N1’(N/2)+ O, the ratio becoming less than 1/2v(l)/2N=mN’2 ‘-1

for N > 3. See C90 for an alternative.

N E

1 1
2 lr/4
3 u/6

4 Ir2/32

5 m2/60
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I

R7. p(X) =A-1pl(x){P2(h(x)) - p2(g(x))}; (a,b), PI(x) density for x on

(a,b), P2(Y) de-fty foryon (c,d), p2(Y)

< h(x) ~ de

~. Sample PI(x) for xon (a,b), and p2(y) for

8(x) ~y~h(x).

f

b

J. Since PI(X) dxP2(Y) & =

{g(x)~~(x)}
j
a

● pi(x) b {p2(h(x)) ‘p2(g(x))} ‘A, A is

and hence p(x) dx is the probability of an

+ dx)o

Note. In this and other rejection methods

y on (c,d). Accept xif

h(x) b

@ dx J @) dy =J
g(x) a

the probability of acceptance,

accepted x lying on (x,x

based on it, we call the

probability A of acceptance the “efficiency”of the method. Its value is

irrelevant for the actual sampling rule.m

R80 p(x) = (2/r)’/2em4/2; {~,oo)e

RX. Set x=- !tnrl,y = -2nr20 Accept xif (x - l)2~2y.

J. Special case of R7, with a = c’= O, b=d=~,pl (x) =ea, P2(y) =ev,

P2(y) = 1 - ew, g(x) = (x - 1)2/2, h(x) =~. (C29 is used to sample for

x and y.) Specifically,we have

{[
lfze= 1 - ~ -e-(x-l)*/2(2e/m)l’2pl(x){P2(h(x)) - P2(g(x))} = (*e/w)

1}

= ~2e,*11/2e-xe-(x2-2x+l)/2

= (2/n)eaz’2 = p(x) as given.

Note. Efficiency = (m/2e)1/2 = .76.

R9. q(Y) = e72i 2*)1J2; (-,m).

%“ Sample p(x) for xon (0,=) by R8. Set y = * x wit~ probability 1/2.

J. Spec5al case of C28. See also c60. b
2

R1O. S(VI) ’28 -“1 #/2;
/ (O,*).

.-

.

#
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*
.

--

.

-

RX”
1/2

Sample p(x) for x on (0,~) by R8. Set VI = x/2 .

J. For the given substitution one has S(VI) dvl = p(x) dx as in R8. (See

also C51.)

R1l. t(x) = ez 112; (40,00)0

%“ Sample S(vl) for VI on (O,-) by RIO. Set x = * VI with probability

1/2.

J. Special case of C28. (See also C59.)

R12. ~(z) = C-le*zsinh(bz)l/2; (0,~), a,b >0, C = eb/4a(bm)1/2/2a3/2 (F23).

%“ Define K= 1 + (b/8a), L = a-l{K+ (iC2- 1)1’2},M= aL - 1. Set x

= - ‘nrl’ y = - 2nr2. Accept x if (y - M(x + l))2~bLx. For accepted

x, set z = Lx. (After Kales [25].)

J. The rule follows from C2, C29, and R7. In fact, for z = Lx, with

arbitrary L > I/a, and M 5 aL - 1 > 0, we have

{
~(z) dz = C-lL dx e-*(1/2) e(bLx)l/2 - e-(b&2

‘l(L/2) ~ e-(M+l)x
[
e(bLx)1’2 )

-c -(bLx)12
-e 1

{

)1
‘1 ~h72) dx e=e+dx+l)e(bLx)1’2 _ e-(bLx) ‘2-c

{(

1/2 1
= C-l(~M/2) dxen ~ -e-[M(x+l)+(bLx) ]

(

)
-[M(x+l)-(bLx)l/2]-l-e )}= A-l{e% dx}{p2(h(x)) - p2(g(x)))

as in R7, where
,

A-l =C-l(LeM/2)9p,(x) =e%on (O,*), pm(y) ‘eaon (0,~), Pa(y)

-Y-l-e,

The condition for

Note. The choice

- (bLx)l/2~ O on

~ ~2 (bL)1’2
M ~ + 1 ~ O for ~ > 0. Since the parabola f(g) opens up,

& L L-

andO~g(x)5M(x+l)- (bLx)1’2

M(x+ 1) + (bLx)l’2 < -.

acceptance of x: g(x) ~y <h(x) gives the above rule.

of values for K, L, M insure that g(x) = M(x + 1)

((),=)0 1/2
For, with ~ = x , this is equivalent to f(g)
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with vertex at 50 = (bL)l’2/2M > 0, we see that f(g) ~ O iff its dfs-

criminant (bL/M2) - 4~0. ForM= aL - 1, we find (bL/M2) - 4 = O when

1/2aL=(K+(K2-1) ), withK= l+(b/8a). The choice of the (+) sign

in the solution of the quadratic for SL makes aL > 1, as required.

R13. p(x) = A-lpl(x)h(x); (a,b), PI(x) density on (a,b), O~h(x) il.

RX* Sample PI(x) for x on (a,b). Accept x if ro~h(x).

J. Special case of R7, with c= O, d = 1, p2(y) = 1

w
J

9

f

@ ‘y, g(x) s O, P2(h(x)) -P2(0) =

o

b b

Note 1. 1 =
I

p(x) dx =
f

A-lpl(x)h(x)

a a

As 1 is a formal consequence.

h(x).

on (0,1), P2(y)

Efficiency A.

b

dx~A
-1

J
-1

Pi(x) * ‘A , SO

a

,.

Note 2. The method is useful in Klein-Nishina (incoherent)and Thomson

(coherent) scattering modified by form factors. Due to the nature of the

latter, efficiency considerationsmake it expedient to use the Klein-

Nishina density for PI(x) and the form factor for h(x) in incoherent

scattering, whereas in coherent scattering, pi(x) is based on the form

factor, and h(x) on the Thomson cross section. For further details, see

[5; Part II].

Note 3. If a given density p(x) on (a,b) is of form p(x) = s(x)t(x),

b

where s(x), t(x) > 0, S =
J

s(x) dx is positive and finite, and t(x) is

a

bounded on (a,b) with O~t(x) ~~, one can always write

p(x) = (S~)(s(x)/S)(t(x)/~)in the form of R13. (Efficiency l/S~)*

Note 4. If p(x) is a given density on (a,b), and one wishes to sample it

by R13, using a particular density pi(x), one can always write

r(x):’(x))

&
p(x) = (M)(pl(x)) in the form of R13, provided M = max

(a,b)
P(x)/pi(x) is finite. See R14, 15, 16, 17 for pi(x) uniform. e
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Note 5. Analysis of the assignments to (x,x + dx) according to the

required number of trials shows that the total probability of such an

assignment is PI(x) dxh(x){l + (1 - A) + (1 - A)2+ ...}

‘pI(X) dxh(x)(l/A) = p(X) dx, where A is the chance of assignment to

some interval, and 1 - A the chance of assignment to no interval.
—v-1

total chance of assignment on the v-th trial is (1 - A) A, with

A+ (1 -A)A+ (1 -A)2A+ ... =A(l/A) = 1. The expected number

a

The

sum

of

X v-1
trials for assignment is V(l - A) A = l/A, the inverse efficiency.

1

Note here that, with x= 1 -A, 1 +2x+3x2 +4x3 + ... “$-(1+X+X2

+X3+X4+...)= +(1 -X)-l= (1 -X)-z.

R14. P(X) = A-l(b - a)-l(p(x)/~); (a,b), ~ = ~fi, p(x), A = l/(b - a);

efficiency.

RX* Accept x = a + rO(b - a) if rl ~ p(x)/~0

J. Special case of R13, with stipulated PI(x) = (b - a)-1 uniform, and

h(x) ‘p(X)/~~ 1.

b

R15. P(x) =F-if(x); F =
f

f(x) d%

a

Rx. Accept x = a + rO(b - a) if rl ~ f(x)/M, where M = max f(x).
(a,b)

b

J. One can write p(x) = A-l(b - a)-l(f(x)/M), where A =
J

(b - a)-if(x)

a

“ dx/M=F/(b -a)M, (b -a)-l is the stipulated uniform density, and

f(x)/M~ 1. The rule follows from R13.

Note 1. A lower bound on the efficiency A may be obtained as follows.

Let m = min f(x), M = max f(x) (~ above). men
(a,b) (a,b)

b b
A = (b -a)-l f (f(x)/M) dx ~ (b - a)-l

J
[(f(x) - m)/(M - m)] dx.

a a
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And of course, AL (b - a)-l(m/M) = m/(b - a)M.

Note 2. The value of F is irrelevant both in the rule and the lower

bound estimate of A.

R16. p($) =F-lf(~), f($) -K-B COS2~ (0,2w), K>B > 0.

Rxl. Accept $ = 2rro if rl ~f($)/K.

J1. Special case of R15.

Note 1. Sincem=min f($) =K- B, andM= max f($) = K, one may use

R15, Note,

AL (1/2w)

%2. Obtain cos

to show that efficiency

2X

f
(1 - c0S2#) d$ = 1/2.

o

$ from R3, and accept if next r ~ f($)/K.

J2. This is just a way of avoiding computation of cos $.

Note 2. The density p(~) occurs in polarized Compton scattering [10,15],

where $ itself is not required.

R170 P($) = F-lf(~); f(~) = K - S2(Q cos 24 + U sin 2+); (0,2w), K > H

~ s2(Q2 +#)1120
T@. Accept $ = 2rro if rl~f($)/(K+H).

J1. We write f($) = K- S2(Q2 +U )2 1’2{[QI(Q2 +

2 1’2] sin 2$}+U) = K - H (COS 2$0 COS 2$ +

($ ‘O.)}, where 2$0 is uniquely defined on

cos 2$0= Q/(Q2+U) 2 1/2, sin 2$0 = U/(Q2+

Cos + [U/(Q2

sin 2$0 sin 2$) = K - H COS{2

(0,2a) by the relations

2 1/2
u) . Hence m=min f(~)

=K-H, M=max f($) =K+H, S0 p($) =A-1(1/2ti)(f($)/M),withA

= F/2TM. The rule follows from the latter and R15, while we find from

the Note in R15 that the efficiency

2U 2W

Al (1/2n)
f

[(f($) - m)/(M - m)] d+ = (1/4n)
!

(1 - cos(21#l

o 0

- 2$.)) do = (1/4u)(2u - O) = 1/2.

&2* Obtain cos $, sin # from R3, compute cos 241= COS2$ - sin2$, sin ~

= 2 sin $ cos $. Accept $ if next r~f($)/(K+H).

.
..
.
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S2. This is only a way of avoiding computation of cos 2$, sin 2$ from angle

2+ = 4mo.

Note. The density p($) occurs in polarized Compton scattering [10,15],

where # itself is not required.

{

h(x -a)/(b -a); (a,b)
R18. t(x) = a<b<c,h=2/(c-a).

h(c - X)/(C - b); (b,c),

RX” One follows the steps:

1. Generate next two random numbers r,rg.

2. Setx=a+(c-a)ro

3. Accept xif x~band r’ S(X -a)/(b -a), or if x >b and r’

~ (c - x)/(c - b). Otherwise return to (l).

J. The rule may be regarded as a special case of R13, if we write t(x)

= 2(C - a)-l(t(x)/h), the efficiency being obviously 1/2. See also C1140

R19. p(x) = (2/w) sin2x/x2; (0,=). (See F22.)

1

%“ Define Al =
[

p(x) dx (= .57), A2 = 1 -Al. One follows the

o

10 If r~Al go to (2). Otherwise go to (3).

Sample density (2/rAl)(l/l)(sin2x/x2)s E~lpl(x)hl(x) for2.

byR13, i.e., set x -r’, and accept x if r“~sin2x/x2.

iterate (2).

3. Sample density (2/xA2)(l/x2)(sin2x)~ E~1p2(x)h2(x) for x
9

steps:

x on (0,1)

Otherwise

on (1,=)

byR13, i.e., set x = l/rt, and accept x ff r“<sin’x. Otherwise

iterate (3).

J. The rule results from C113, since we may regard p(x) as the composite

function

I(2/m)(l/1)(sin2x/x2); (O,1)
p(x) =

(2/m)(l/x2)(sin2x);(1,-),

as in C113. Note that hi(x) = sin2x/x2gl on (0,1), and h2(x) = sin2x

x

~ 1 on (1,-). !Chesettings of x result from Cl, with rt =
f

dx, x =rl,

o
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a

and rt =
f

dx/x2, x = l/r*.

x

J

R200 p(x) =
x~ ajpj(x)h j(x);‘a’b)’ aj

> 0, pj(x) density on (a,b), O

~hj(x) ~ 1 for x on (a,b).

b

%1 ● (J finite or infinite.) Define A~ = f a ,p+@h46d*O

Set

1.

2*

J1. The

K=++WOI* ‘en:
Sample density pK(x) for x on (a,b).

Accept xif next r~~(x). Otherwise return to (1).

rule is an obvious consequence of C3 and R13, since we may write

J J J.

p(x) =z E~aj(x)= ~ z ‘la )(P (x))(hj(x))}.
‘j(aj(x)’Aj) = ~ ‘j{(Aj j j

Note 1. The probability of sampling the j-th density aj(x)/Aj is A
j’

while the efficiency of sampling this density is ~/aj. Hence

Jz Aj(Aj/aj) Is the average efficiency of the rule.
‘owever’ aj’Aj ‘s

1

the expected number of trials for acceptance in sampling density a /A S
jj

J J

so
z z a is the average of the expected number of trials
~ ‘j(aj’A$ = ~ j

(finite or infinite. See Note 3.).

J

~20 (J finite.) Define u =
x~ aj“ ‘en:

.
--
.
.

1. Generate next two random numbers r,rt.
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2. ISet K = tin k;

3. Sample density

4. Accept x if r’

k

oa>ra.
j-

1

pK(x) for x on (a~b).

~ hK(x). Otherwise return to (l).

J

S2. The total probability of accepting x on (x,x + dx) is
x (aj/a)pfl(x) dx

1

● h (x), the total ch!anceof acceptance for all x being the integral 1/6.
j

Hence the relative probability of an accepted x lying on (x,x +dx) is

p

J

II
(aj/u)pj(x) dx c hj(x)’ (1/6)

1

‘P(X) dx, as required.

efficiency of the rule is l/u, c being the expected number

acceptance.

Note 2. If pj(x), j = 1,2, ... are arbitrary densities on

m

The overall

of trials for

(a,b), then

p(x) =z (l/j) c Pj(x) ● (6/m2j) is a density on (a,b) of the form in
*

‘Os‘or‘Ch $t =5‘l/j) does‘ot Converge*
1

Note 3. As in Note 3 of fi3, any density of the form p(x)

=x s (x)t (x) may be written in the form p(x) =
jj z ‘Sj‘j)

● (sj(x)/S )(t (x)/~j) of R20, subject to the obvious conditions.
-Ijn ~j

R21. p(v) -c, v - /(A-lev+ 1); (0,-), O < A~l, n e {3/2,2,5/2,3, ...}.

m

Cl = Ca(A,n)I’(n),where ~a(A,n) =
z

(-1)j+lAj,jno (see F1l.)
1

Rx. Sample q(v) for v on (0,=) by C74. Accept v if rl ~Aew.

J.
-1 n-1 -v

The rule follows from R13, since we may write p(v) SCl v Ae /(1

-lvn-l -v
+ Ae-”) = (C;lC){C Ae /(1 - A2e-2v)}(l - Ae-v) =A-l{q(v)]h(v),
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where A = C~C
-1

‘1 ‘-lAe-v/(1 - A2e-2v) is= Ca(ASn)/Cu(ASn)Sq(~) = C v

density in C74, and h(v) = 1 - Ae- ~ 1. Using R13, we accept v from

in case rO ~ 1 - Ae-v, ‘v~l-rO ~equivalently Ae =r~

R22. p(y) =C-ly1’2/(ey-n+ l); (0,-), - -<n <so.

the

C74

l/2e7/r(3/2) for y on (O.-) byRx. Case I. ~ < ~ ~ 5/2. Sample density y .

c64. Accept y if r~ 1/(1 +env).

S1. We write

p(y) = (C-11’(3/2)en)(yl’2e7/I’(3/2))(1+e’lv)-l,

which is of the form inR13, with A= C/I’(3/2)eq,the efficiency,

1’2e7/l?(3/2),a density on (0,=), and h(y) = 1/(1 +enW) < 1,PI(Y) -y

the acceptance factor. The efficiency in Case I is never less than 30%,

and drops below 50% only for a short range of n values around n = 2.

n-.

%“ Case II. 5/2 < n~50. Define Al =
f

P(Y) dy, A2 = 1 -Al. H rl

o

112/n3/2 for y = nro~Al, sample density (3/2)y 2/3
on (O,n); accept y

with probability (e-” + I)/(ey-n+ 1)0 E ‘1 ‘Al’ sample the residual

I’-density ye7/(n + l)e-n for y on (~,-) by C108; accept y with proba-

bility h/y
1/2

(1 +env), whereh= min y1’2(1 + e’lv)e
n<y<~

JII. We regard p(y) as a composite function

I

al(y); (O,n)

p(y) =
a2(y); (n$=)

n
as in C113, with Al =

J
p(y) dy. We may then sample al(y)/Al for y on

o

(O,n) with probabilityAl, and a2(y)/A2 for y on (n,=) with probability
A2wl- A1. Both densities ai(y)/Ai may be written in the form of R13

and sampled accordingly. Specifically,we write .
?

3/2(e-~+ 1)-1H(3/2)Y‘1 ‘1(2/3)n l/2,n3/2){(e‘n + l)/(e~nal(y)/Al = {Al C

-1
+ 1)}, and ~(y)/A2 = {~lC-l(n + l)h }{ye7/rn}{h/yl’2(1 + enw)},
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*.-,
.
●

.

where 1’
1/2= (~ + l)e-n, and h = min y (1 +ena). In Case 11, the

n n<y<-

efficiency on (O,n) always exceeds 1/2, while on (~,=) it drops very

slowly from 89% at n = 3 to 71% at n = 50. How far the method can be

extended above n = 50 we do not know.

Note 1. In practice, C is a given physical constant determined @y the

electron density and temperature, and the degeneracy parameter n = n(C)

is determined so that

w

f
I(n) = y

1/2
dy/(e‘-’1+ 1) = c.

o

The function I(n) is well tabulated (see references in [6]), so that, in

a given physical case, the values of C and n are known.

Note 2. Details of the method, Including tables of norming constants C,

A,, efficiencies, and minima h, as functions of n, are given in [6].
a

1/2
-1 n-le-~(x2+l)R23. F(X) = Eg X ; (O,@), F>O, n= 2,3,4, .... EE

= (r(d2)/r(l/2) )(2/t)(n-1)’2Kn+1(~). (See F14.)

7-

Rx.
-1 n-le-~y fSample q(y) = Dg Y or y on (1,~)

(n/2)-l
prob;~lity (1 - (1/y2)) ,n~20

-1) ●

by C106. Accept ywith

For accepted y, set x = (Y2

Under the transformation x = (y2 - 1)1’2, one has;(x) dx =E~ly(y2J.

- l)(n/2)-le-5y @ = (Dg/EC)(yn-le-gydy/DG)(l - (1/#)fl’2)-’. Hence

byC2, we can sample the latter fory on (1,*), and set x= (y2- 1)1’2.

But this is of the form (A-l)(pl(y) dy)(h(y)) as in R13, and the”rule

follows from C106.

Note 1. The efficiency is A = Et/Dg. For n = 2, acceptance is certain,

andD -E
cc

is easily verified using F3C and F13C.

Note 2. For n = 3, ~(x) is the Maxwell-Juttner relativistic momentum

density [8].
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R24. ~(x) =A-lxn-1/(A-lea(x2+l) +l); (O,@), a>O,O< A~l,n

* - *(n-1)/2 l’(n/2) 0 ~_l)j+lAjK
x

(n-1)/2= 2,3,4, ●*,, n+l (ja)/(ja) .r(l/2)
1

a

(See F15.)
.

RX” Sample ~(v) for v on (l,-) by C109. Accept v with probability (1

- Ae-av)(1 - (1/v2))‘n’2)-1. For accepted V, 2 1/2setx=(v -1) .

J. Under the preceding transformation,one has

6(X) dx =A-1V(V2 - l)(n/2)-1 dv/(A-leav + 1)

-1 , Vn-l dv-A A-leav + ~ (1 - (1/v2))(n/2)-l

-1 n-lk-av dv
.Av (l - ~l,v2))(n/2)-l

1 + Ae-av

(){

-D Vn-l

}

Ae-av dv [(1
x - A2e-2av) - Ae“’)(1 - (1/v2))(@-1],

D(1

n ~ 2, which is of the standard form in R13, the density in braces being

the~(v) of C109. The rule follows from C2, R13, and C109.

R25 ●
q(x) = ($/~)1/2x-3/2e%(x-1)2/x; (o,=), $> oe

n

RX” Sample e‘z/rl/2 for z on (~,~) by C59 orR1l. Accept z if r~(l/2)

● (1 - 2/(22 + 4+)1’2). $eeNote 1.) For accepted z, set x= [(z2
+ 4+)1/* +z]/[(z2+4@ -z].

J. The function z = ($/x)l/2(x - 1) increasek from - = to = as x increases

from O to =. Moreover, dz = $1’2(x + 1) dx/2x3’2. Hence q(x) dx.
-1 *‘ ln)(x+l) ●=2(e- /u To evaluate (x + 1)-1 in terms of z, we

proceed indirectly thus: From Z* = $(x - 1)2/x follows 22 +4$

-+[(x- 1)2/x + 4] = +(x + 1)2/x. Hence

l/2(x
- 1), and (Z2 1/2z = (+/x) + 4$) = ($/x)l’2(x + 1).

>
r

By dfvision, we have (x - 1)/(x+l) =2/(22+4$)
1/2

, whence l/(x+ 1)

= (1/2)[1 - (x - 1)/(x + 1)] = (1/2)[1 - 2/(22 + 4$)1’2]. Therefore, we
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.
,.*.

2
1/2may write q(x) dx = 2(e= /r )(1/2)(1 - 2/(22 + ~) 1’2) dz s p(z) & on

(-oD,~). By C2, we may sample the latter p(z) for z on (-00,00)and set x

= x(z). Solution of the preceding equation

.
l/(x+l) = (1/2)[1 -2/(22+4$)1’21

0

for x gives the formula x = x(z) of the rule. But p(z) is of the form

p(z) =A-lpl(z)h(z) in R13, where A = 1/2, the efficiency, PI(z)

-e ‘z2/ml/2 is a de~ity on (~,~), ~d h(z) = (1/2)(1 - 2/(22 + 4#)

satisfies O < h (z) < 1.

Hence, by R13, we sample Pi(z) for z on (~,oD), and accept z with

probability h(z), es in the rule.

Note 1. The acceptance conditionr~(l/2)(1 - 2/(22+4$)1’2) msY be

interpreted thus:

1. If z~O, accept z iff r~ 1/2 and (1 - 2r)2~z2/(z2+4$).

2. If z < 0, accept z iff (1 - 2r)2~z2/(z2 +4$).

Note 2. For testing purposes, we have included below an evaluation of

the Wald distribution function

x

Q(x) =
f

q(~) d~ in terms of the well tabulated normal distribution,

o

Y

Q(Y) = (1/2#’2
[

e_2/2 dn. For convenience we work with

z

~
G(z) = (1/n)l’2 e-C2 dC = @(21/2Z)e

From (J) above, with z = ($/x)1’2(X - 1), we obtain

x z

z
1/2

f
1/21e-C2 d~, For a fixed Z-H(z), where H(z) = (l/r) [c/(c2+ 4+)

-w
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SO, the substitution n = - (G2 + 4$)
1/2 441

in H(z) gives H(z) = - e G(-(z2

+ 4$)
1/2

). Since the integrand of ~~:) is an odd function, weknow H(-z)

= H(z), so H(z) = - e4$G(-(z2+ 441) ) for~z on (~,=). Hence for

allxon (0,~), we have Q(x) = G(z) +e4@G(-(z2 +44)
1/2

). From (J) we
l/2(x

- 1), and $2+4$)
1/2 -

recall that z = (~/x) = (+/x)1’2(X+ 1),
l/2(x

so that Q(x) = G(($/x) - 1)) +e G(-(1#1/x)1’2(X+ 1)) =o((24/x)l’2*

(x - 1)) +eWO(-(2$/x)
1/2

(x + 1)). See [22, v.2; p. 141.]
_R2)@-1)/2/(1 +p2-R26. q(R) =(1 2PR)T@l/2,(T+ 1)/2); (-1,1), o < P

< 1, Te {1,2,3, ...}.

%1. ‘-1(1 -v)n-l/B(n,n) for von (0,1) withn= (T+ 1)/2Sample B(v) = v

by C75. Accept vwith probability h(v) = (1 - p)T/((l +p)2- 4Pv)T/20

For accepted v, set R = 2V - 1.

31. ForR=2v-l, oneks

q(R) ~=2TB((T+ 1)/2, (T+ 1)/2) . V(T-1)/2(1 -V)(T - 1)/2dv
B(l/2,(T+l)/2)(1 -p)T B((T+ 1)/2,(T+ 1)/2)

8 (1 -p)T ~ (1 ‘p)-B(V) dv “ h(v),
((1 + P)2 - 4pv)T/2

and the rule follows from R13 and C2.

2TB((T+l)/2,(T+l)/2) - 2Tr2((T+l)/2) .Note 1. r((T + 2)/2)
B(l/2,(T + 1)/2) r(T + 1) r(l/2)r((T+ 1)/2)

=lbyF4Hwithm=(T +1)/2.

Note 2. min (l +p)2-4pv=(l+p)2 -4p =(1- P)2.
VE(O,l)

%2. Sample b(z) = z‘-1/(1 + z)%(m,n) for z on (O,@), by C75, with m

= (T + 1)/2, n = 1/2. Accept z with probability (1 + p)T/[(l +P)2+ (1
_ p)2zlT/2

~ h(z). For accepted z, set R = (z - 1)/(z + 1).

J2. For the latter substitution one finds

2T z(T-1)/2 ~z
q(R) dR =

(l+P)T”(l+Z) ‘W2)’2B((T+ 1)/2,1/2)

(1 + P)T
●

()

. l+pq

[(1 + P)2 + (1 - p)2zlT/2 - 2
● b(z) dz ● h(z),

and the rule follows from R13 and C2.
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Note 3.

4
Note 4..

tin (1 + p)2 + (1 - p)2z = (1 + P)2.
2s(0,=)

The rules are only practi~ for small T, their respective ef-

i ()l+PTficiencies being (1 - P)T and ~ . For p~ 1/3 use &l, for P

> 1/3, use~2. The efficiencies are then both minimal for P = 1/3,

* where (2/3)T is the commn efficiency.

R27. p(x) = xmle% /1’(m);(0,=), m >0, m ~ {1/2,1,3/2,2, ...}.

%1. Let m

= 1/2

~ 1.

for u

= H + R, where H e {0,1/2,1,3/2, ...}. and O < R < 1/2. Define n

-R,O<n<l/2. Set s = r~/m, t = r~/n, and iterate until s + t

For accepted s,t, set v = s/(s + t). Sample u‘-1’2em/I’(H + 1/2)

on (O,*) by c45 or c64. Set x = UV. (J&@.)

J1. The rule results from the following remarks:

A. Under the transformation x = UV, y = u(1 - v), with Jacobian -u, and

inverse u = x +y, v = x/(x + y), one finds that

on (0,-) X (0,1). (see fig. 1.) Hence m C2, we may sample the latter

two

m+

for

B.

S,t

E=

=

densities and set x = UV. The first is possible by C45 or C64, since
n -H+ 1/2 & {1/2,1,3/2,2, ...}. It remains to sample the second

v on (0,1).

For the density f(s,t) = msm-lntn-l on (0,1) X (0,1), we find for

the probability of acceptance

1 1-s 1

f
P{s+t<l]= ms

f
‘-1 ds ntn-1

J
dt=m sm-1(1 - S)n ds

o 0 0
mB(m,n + 1) =ml’(m)I’(n+ 1)/r(m +n + 1) = r(m + l)r(n + 1)/r(m+n

a

+ 1).

Hence the accepted pairs (s,t) have the conditional density function
-1 m-lntn-l

g(s,t) = E-lf(s,t) =E m for s,t > 0, s + t< 1. Under g(s,t),

the density for the value of the function v ~ s/(s + t) is found to be

B(v) = Vm-l(l - v)n-l/B(m,n) on (0,1). (See Note 1.) Hence we may

sample g(s,t) for s,t ly rejection technique, and set v = s/(s + t) for

accepted s,t, as in the rule.



Y

x
o

t

u

o v
—

1

t

\

—

\

v

1 1

Fig. 1.

u

Fig. 2.

Fig. 3.

—s

Fig. R27.

o

v

\

/

u

F //
\ —s

142

0 s



I
L““4
-

.4-
I

●

1: I
!

Note 1. The density B(v) for v = s/(s + t) may be verified by either of

the following two methods.

(i). The points (s,t) of the unit square for which s + t ~ 1 and S/(S

+ t) < v are those below the line t = 1 - s, and above the line t = s(1

-v)/v, which intersect at s = v. (Fig. 2.) Note that s/(s + t) ~ v Is

equivalent to (s + t)/s ~ I/v, or t ~ s(1 - v)/v. Hence

f

v 1-s
d

g(s,t) ds dt -E
-1 d

G J
‘1 ds

J
~tn-1

z= dt

{s/(s+t)~v} o s(la)/v

v

I~-l * mm-l
ds{(l ‘S)n ‘Sn(l ‘V)n/Vn}

o

{
‘-1(1 - V)n - ~ V=(l - v)nvti/(m + n)E-lm v

}

{
E-lm vm-l(1 - v)n - * Vm(l - v)n/(m +n)

}

{ [

~1(1 - V)n - ~vm(l - V)n-l~-lm v~l(l - V)n - ~
m+n 11

E-lmvml(l - Vln-l ~
{

-v -*(I-V)+% m+n \
E-lmvm-l(l _ V)n-l ~ m

{
-—
m+n }

I’(m+n+l) m-l{l - V)n-l
S’(m+l)l’(n +l)”m+nv t

The ~thod of F1 may also be used.

(ii). Under the transformation s = S, t = S(1 - v)/v, with Jacobiann
-w?’, and inverse S = e, v = s/(s + t), transforming the

with s > 0, t > 0, s +t~ 1 into the (S,v) region with O

Iv < 1 (Fig. 3), one finds

(s,t) region

<s<1,s

E-%nSti-lg(s,t) d8 dt = E-lmnS*lsn-l(l - v)n-lv-@)sv-2
. V-(n+l)(l - V)n-l

dsdv=

dsdv~ h(S,v) ds dv, with marginal v-density

v

f
h(S,v) dS = E-lmn(m+n) v‘1 ‘1(1 - V)n-l = Vml(l - v)n-l/B(m,n)

I

1

I

I

!

o
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= B(v). Hence B(v) is the density of v = s/(s + t) under the density

~2.

J2.

&3e

J3.

g(s, t).
Define H,R,n as in %1. If Hz

(0,=) as in~l (i.e., with H =

for &t on (0,=) by C45 or C64.

The density of the function x =

R-le-~/r(R) for g On1/2, sample ~

O, m=R.) Sample (g9)H-le-g’/r(H)

Setx=~+5t. (J~hnk.)

~ + ~’ under the density
e

R+H-le-x R+H-le-x m-le-x

= “k ● B(R,H) =ti=’x~= p(x), as inR27. Hence the

rule follows from C9.

Note 2. The probability E = I’(m+ l)r’(n+ 1)/r(m +n + 1) of acceptance

of s,t in %1 becomes small for large m, but is high for O < m = R <

1/2. Thus, %2 is indicated for large m.

Let m=H+R, where He {0,1/2,1,3/2, ...} and O<R< 1/2. tie fol-

lows the steps:

1. H r~e/(e~,;), go to (2). Otherwise go to (3).

2. Set ~ = (r?) . Accept E if r“ ~e -c and go to (4). Otherwise

return to (l).

3. Set ~= 1 - hr’. Accept 5 if J?nr”~ (R - 1) 2n% and go to (4).

Otherwise return to (l).

4* If H = O, set x = ~ (accepted) and exit with x. If H ~ 1/2, sample
~g,)H-le-~’/r(H) for g’ on (O,*) by C45 or c64. Exit withx = 5

+G’. (Ahrens.)

One can write q(g) = 5‘-le-g/I’(R)as q(~) = A-1pl(G)h(5), in the form of ~
R13, where A = eI’(R+ 1)/(e +R), and pl(~), h(~~ are both composite &

functions, namely
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I
~gR-l /(e + R); (0,1)

PI(G) =
eRe+/(e +R); (1,=),

o 0 1

= ((eR)/e + R)(l/R + l/e) = 1, and

I-~;(0,1)e
ME) =

E‘-l; (1,=),

where O < h (g) ~ 1.

The rule samples q(~) for g on (0,-) by R13. The density PI(C) is

1

sampled by C113, with Al =
f PI(E) d~ ‘e/(e+R), A2 =R/(e+R). In

o
step (2), the setting of & uses C16. In (3), we use Cl to set rt

m

J -E l-g= e.e d~-e , obtaining E = 1 - ~nrt. IfH=O,R-m, q(~)

E
m-1 -g

-E e /r(m) and we exit with x = ~ in step (4). If H~ 1/2, we sample I

(~’)

H-le-t‘/r(H) for ~t and set x= & +5’ as explained inJ2.

Note 3. The efficiency in %3 is

A= eI’(R+ 1)/(e +R) 2.74.

1

RX4. Letm=H+RaeinRx3.
f

~R-le-~
Precompute Al = dE/r(R),

o
A2_~-Al. (See [27].) tie then foll~ the steps:

10 m rgAl, go to (2). Otherwise go to (3).

2. Set ~ = (r’)
1/R -c. Accept g if r“ se . Otherwise, iterate (2).

3. Set g = 1 -hr’. Accept E if 2nr” ~(R - l)gng. Otherwise, iterate

<
(3).

4. For accepted 5 from (2) or (3),

i (Cashwell.)

J4. The only difference from RX3 lies in

r(R), which we now write in the form

proceed as in step (4) of %3.

R-leX,the sampling of q(~) = G
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q(u =
Al[(AIR1’(R))-l(RgR-l)(e-g)];(0,1)

A2[(A2er(R))-l(ee-~)(gR-l)J; (1,-),

where we use c113 directly on q(~), regarded as a composite function, and

sample al(G)/Al with probability 1+, and a2(E)/A2 with probability ~.

The latter two densities are each of the form inR13, and the rule

follows.

Note 4. The average of the number of trials for acceptance is

A,/AIRI’(R)+An/AmeI’(R) = (e+R)/er(R+ 1) = l/AwhereA is the

e;filiency of ~3~

R28. B(V) = Vm-l(l - v)n-l/B(m,n);

b(z) = Zm-l/(1 + z)%(m,n);

(0,1),

(0,-),

q(e) = 2 sinti-% COS2Q-1e/B(m,n); (O,m/2), m,n not both in the set

{1/2,1,3/2,2,●ee}e

%“ ‘-lem/I’(m) and yn-1e7Sample x /1’(n)for X,Y ml~;,~) by C45, C64, or

R27. Set v = x/(x+y), z = x/y, e = arc sin v .

J. The rule follows from C75 J.

R29. t(z) = 22 (m); (0,=), m > 0, m \ {1/2,1,3/2,2, ...}.

RX” Sample p(x) = x-le%/r(m) for x on ((),=)by R270 set z = xl/2e

J. For z = $12 OQe has t(z) & = p(X) dx. The rule follows from C2.

R30. p(a’/a,e); polarized Compton scattering.

Rx. A method for sampling the Klein-Nish.inacross section for polarized

photons is given in [10,15]. This involves C161 and R16, 17, q.v. The

fit now used for C161 (cf. [11,16,14])is an improvement on that in [101,

and is cited in the later expanded version [15].
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APPENDIX

(Some Tricks of the Trade)
6

? Since the straightforward-thod (Dl, Cl) of sampling is seldom practical,

. it may be of some interest to collect here a few of the more ingenious devices

employed above.
i

1. By far the most frequently exploited procedure is the change of

variable (C2). This is by no means a triviality, especially in the

case of several variables, where is is the basis for sampling many

Important densities, in particular the r and B densities (C75, R27,

R28) with their host of special cases, and the many-variable normal

density (c160).

2. If a given density can be recogn.lzedas that for the value of some

function under a second density which can be sampled, the task is easy

(D5, D7, C5, C7). Indeed, this leads, via the geometric result of c8,

to the sampling of a whole hierarchy of basic densities (cf. C29,

Note). A second consequence is the special case in which the sum,

product, or quotient of two variables plays the role of the function

referred to (C9). This also has sow remarkable applications (C31,

C32, C75, Note 1, C73).

3. A given density q(y) can sometimes be identified as the marginal

y-density of a two-variable density f(x,y), for which the other

marginal density p(x), and the x-dependent y-density p(ylx), can both

be sampled (D24, D33, C124). Sampling q(y) can then be effected.

Numerous

C135 are

sampling

(C136).

examples are given in the text. The variations in C130 and

noteworthy. The latter leads to a remarkable method for

the “tail-end” density by way of its “first moment” density .

4. A density which is a sum of positive terms may sometimes be sampled by

sampling the densities defined by its normed terms (C3, C17, C35).

The sampling of an interpolated density, a problem frequently

occurring in practice, may be neatly accomplished by C3.
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5. The device of C1O may always be used for sampling a linear density

(C12) and sometimes for quadratic densities (C13), thus obviating the

inversion of cubic distributions.

6. As a consequence of C12, it appears that the density p(v) = 2V on

(0,1) may be sampled by settingv =max {rl,r2} instead of the

standard v = rl/2. Generalization to the case v = rlln , withv

=max{r 1’ ●**, rn} is provided by C15, and by C144, which also

reveals the significance of v = min {rIs ●*O, m], in place of v

-(1 - r)l/N.

=1

7. The method of sampling the unit N-sphere (C90) is indispensable for

large N, and follows by a long chain of derivations from those in (2)

above.

8. When all else fails, the rejection techniques may prove adequate.

That most frequently used is given in R13, of which R20 is one of many

consequences.

.
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