A Sample Problem for
Variance Reduction in MCNP

Los Alamos
 NATIONAL LABORATORY

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

An Affirmative Action/Equal Opportunity Employer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof. The Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or guarantee its technical correctness.

LA-10363-MS

UC-32
Issued: October 1985

A Sample Problem for Variance Reduction in MCNP

Thomas E. Booth

A SAMPLE PROBLEM FOR VARIANCE REDUCTION IN MCNP

by

Thomas E. Booth

Abstract

The Los Alamos computer code Monte Carlo Neutron Photon (MCNP) has many useful variance reduction techniques to aid the Monte Carlo user. This report applies many of these techniques to a conceptually simple but computationally demanding neutron transport problem.

I. INTRODUCTION

This report is based on a series of four $50-\mathrm{min}$ variance reduction talks ("MCNP Variance Reduction Techniques," video reels \#12-15) given at the Magnetic Fusion Energy Conference on MCNP,* Los Alamos National Laboratory, October 1983. It is an overview of all variance reduction techniques in MCNP and not an in-depth consideration of any. In fact, the techniques are described only in the context of a single conceptually simple, but demanding, neutron transport problem, with only enough theory presented to describe the general flavor of the techniques. Detailed descriptions are in the MCNP manual. ${ }^{1}$
This report assumes a general familiarity with Monte Carlo transport vocabulary such as weight, roulette, score, bias, etc.

II. VARIANCE REDUCTION

Variance-reducing techniques in Monte Carlo calcuations can often reduce the computer time required to obtain results of sufficient precision. Note that precision
*Videotapes of the entire conference are available from Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830. The reader wishing to run the sample problem here should refer to the appendix beginning on page 67 for input file details modified since the conference and after the writing of this report.
is only one requirement for a good Monte Carlo calculation. Even a zero variance Monte Carlo calculation cannot accurately predict natural behavior if other sources of error are not minimized. Factors affecting accuracy were outlined by Art Forster, Los Alamos (Fig. 1).**

This paper demonstrates how variance reduction techniques can increase the efficiency of a Monte Carlo calculation. Two user choices affect that efficiency, the choice of tally and of random walk sampling. The tally choice (of for example, collision vs track length estimators) amounts to trying to obtain the best results from the random walks sampled. The chosen random walk sampling amounts to preferentially sampling "important" particles at the expense of "unimportant" particles.

A. Figure of Merit

The measure of efficiency for MCNP calculations is the figure of merit (FOM) defined as
$\mathrm{FOM}=\frac{1}{\sigma_{\mathrm{mr}}^{2} \mathrm{~T}}$,

[^0]1. CODE FACTORS

PHYSICS AND MODELS
DATA UNCERTAINTIES
CROSS-SECTION REPRESENTATION
ERRORS IN THE CODING
2. PROBLEM-MODELING FACTORS

SOURCE MODEL AND DATA
GEOMETRICAL CONFIGURATION
MATERIAL COMPOSITION
3. USER FACTORS

USER-SUPPLIED SUBROUTINE ERRORS
INPUT ERRORS
VARIANCE REDUCTION ABUSE
CHECKING THE OUTPUT
UNDERSTANDING THE PHYSICAL MEASUREMENT

Fig. 1. Factors affecting accuracy.
where $\sigma_{\mathrm{mr}}=$ relative standard deviation of the mean and $\mathrm{T}=$ computer time for the calculation (in minutes). The FOM should be roughly constant for a well-sampled problem because σ_{mr}^{2} is (on average) proportional to N^{-1} ($\mathrm{N}=$ number of histories) and T is (on average) proportional to N ; therefore, the product remains approximately constant.

B. General Comments

Although all variance reduction schemes have some unique features, a few general comments are worthwhile. Consider the problem of decreasing
$\sigma_{\mathrm{mr}}=\frac{\sigma}{\sqrt{ } \mathbf{N}} / \mu$,
(where $\sigma^{2}=$ history variance, $N=$ number of particles, and $\mu=$ mean) for fixed computer time T. To decrease σ_{mr}, we can try to decrease σ or increase N -that is, decrease the time per particle history-or both. Unfortunately, these two goals usually conflict because decreasing σ normally requires more time per history because better information is required and increasing N normally increases σ because there is less time per history to obtain information. However, the situation is not hopeless. It is often possible to decrease σ substantially
without decreasing N too much or increase N substantially without increasing σ too much so that
$\sigma_{\mathrm{mr}}=\frac{\sigma}{\mu \sqrt{\mathrm{N}}}$
decreases.
Many techniques described here attempt to decrease σ_{mr} by either producing or destroying particles. Some techniques do both. In general, (1) techniques that produce tracks work by decreasing σ (we hope much faster than N decreases), and (2) techniques that destroy tracks work by increasing N (we hope much faster than σ increases).

IIII. THE PROBLEM

The problem is illustrated in Fig. 3, but before discussing its Monte Carlo aspects, I must point out that the problem is atypical and not real. I invented the sample problem so most of the MCNP variance reduction techniques could be applied. Usually, a real problem will not need so many techniques. Futhermore, without understanding and caution, "variance-reducing" techniques often increase the variance.
Figure 2 is the input file for an analog MCNP calculation and Fig. 3 is a slice through the geometry at $\mathrm{z}=0$.

Fig. 2. Input file for an analog MCNP calculation.

Fig. 3. The problem.

The primary tally is the point detector tally (F5) at the top of Fig. 3, 200 cm from the axis of the cylinder (y-axis). A point isotropic neutron source is just barely inside the first cell (cell 2) at the bottom of Fig. 3. The source energy distribution is 25% at $2 \mathrm{MeV}, 50 \%$ at 14 MeV , and 25% uniformly distributed between 2 and 14 MeV . For this problem, the detectors will respond only to neutrons above 0.01 MeV .

A"perfect shield" immediately kills any neutrons leaving the cylinder (except from cell 21 to cell 22). Thus, to tally (F5), a neutron must

1. penetrate 180 cm of concrete (cells 2-19),
2. leave the concrete (cell 19) with a direction close enough to the cylinder axis that the neutron goes from the bottom of cell 20 (the cylindrical void) to the top and crosses into cell 21,
3. collide in cell 21 (because point detector contributions are made only from collision/source points), and
4. have energy above 0.01 MeV .

These events are unlikely because

1. 180 cm of $2.03-\mathrm{g} / \mathrm{cm}^{3}$ concrete is difficult to penetrate,
2. there is only a small solid angle up the "pipe" (cell 20),
3. not many collisions will occur in 10 cm of $0.0203-$ $\mathrm{g} / \mathrm{cm}^{3}$ concrete, and
4. particles lose energy penetrating the concrete.

Before approaching these four problems, knowledge about the the point detector technique can be applied to keep from wasting time; only collisions in cell 21 can contribute to the point detector. Collisions in cells 2-19 cannot contribute through the perfect shield, that is, zero importance region. Thus, the MCNP input is set (PD0 card, Fig. 2) so that the point detector ignores collisions not in cell 21 . If the point detector did not ignore collisions in cells $2-19$, the following would happen at each collision.

1. The probablity density for scattering toward the point detector would be calculated.
2. A point detector pseudoparticle would be created and pointed toward the point detector.
3. The pseudoparticle would be tracked and exponentially attenuated through the concrete.
4. The pseudoparticle would eventually enter the perfect shield (cell 1) and be killed because a straight line from any point in cells $2-19$ to the point detector would enter the perfect shield.
There is no point proceeding with these steps because the pseudoparticles from cells 2-19 are always killed; time is saved by ignoring point detector contributions from cells 2-19.

IV. ANALOG CALCULATION

Inspection of Fig. 4, which is derived from MCNP summary tables, shows that the analog calculation fails. Note that the tracks entering dwindle to zero as they try to penetrate the concrete (cells 2-19). This problem will be addressed in more detail later, but first note that the number weighted energy (NWE) is very low, especially in cells 12, 13, and 14. The NWE is simply the average energy, that is
$N W E=\frac{\int N(E) E d E}{\int N(E) d E}$,
where $E=$ energy and $N(E)=$ number density at energy E. This indicates that there are many neutrons below 0.01 MeV that the point detector will not respond to. There is no sense following particles too low in energy to contribute; therefore, MCNP kills neutrons when they fall below a user-supplied energy cutoff.

V. ENERGY AND TIME CUTOFFS

A. Energy Cutoff

The energy cutoff in MCNP is a single user-supplied problem-wide energy level. Particles are terminated when their energy falls below the energy cutoff. The energy cutoff terminates tracks and thus decreases the time per history. The energy cutoff should be used only when it is known that low-energy particles are either of zero importance or almost zero importance. A number of pitfalls exist.

1. Remember that low-energy particles can often produce high-energy particles (for example, fission or low-energy neutrons inducing high-energy photons). Thus, even if a detector is not sensitive to low-energy particles, the low-energy particles may be important to the tally.
2. The energy cutoff is the same throughout the entire problem. Often low-energy particles have zero importance in some regions and high importance in others.
3. The answer will be biased (low) if the energy cutoff is killing particles that might otherwise have contributed. Furthermore, as $\mathrm{N} \rightarrow \infty$ the apparent error will go to zero and therefore mislead the unwary. Serious consideration should be given to two techniques (discussed later), energy roulette and space-energy weight window, that are always unbiased.

CEL PROGR	PROBL	TRACKS ENTERING	POPULATION	COLLISIONS		NUMBER WEIGHTED ENERGY	$\begin{aligned} & \text { FLUX } \\ & \text { WEIGHTED } \\ & \text { ENERGY } \end{aligned}$	AVERAGE TRACK WEIGHT (RELATIVE)	$\begin{aligned} & \text { AVERAGE } \\ & \text { TRACK MFP } \\ & \text { (CM) } \end{aligned}$
2	2	4783	3931	13949	$3.5593 E+00$	2.4144E-03	4.7075E+00	$1.0000 E+00$	$5.8207 \mathrm{E}+00$
3	3	2176	931	15057	$3.8421 \mathrm{E}+00$	4.5943E-04	$1.9643 \mathrm{E}+00$	$1.0000 \mathrm{E}+00$	$3.9404 \mathrm{E}+00$
4	4	1563	593	12510	3.1921E+00	2.0566E-04	1.2067E+00	1. OOOOE + 00	$3.3058 \mathrm{E}+00$
5	5	939	362	7390	$1.8857 \mathrm{E}+00$	$1.4450 \mathrm{E}-\mathrm{O4}$	8.4454E-01	$1.0000 \mathrm{E}+00$	$3.0062 \mathrm{E}+00$
6	6	511	205	4213	1.0750E+00	9.3995E-05	5.6654E-01	$1.0000 E+00$	$2.7411 \mathrm{E}+00$
7	7	287	115	2219	5.6622E-01	1.0022E-04	$5.8205 E-01$	$1.0000 E+00$	2.7733E+00
8	8	170	63	1587	4.0495E-01	6.4696E-05	4.4866E-01	1. $0000 \mathrm{E}+00$	$2.5496 E+00$
9	9	87	40	961	2.4522E-01	6.2827E-05	$4.6476 \mathrm{E}-\mathrm{Ot}$	$1.0000 \mathrm{E}+00$	$2.6046 \mathrm{E}+00$
10	10	44	16	304	7.7571E-02	1.0691E-04	5. 1448E-01	1. OOOOE + 00	$3.0390 \mathrm{E}+00$
11	11	31	10	230	5.8688E-O2	6.2272E-05	2.4500E-O1	$1.0000 \mathrm{E}+00$	$2.4143 \mathrm{E}+00$
12	12	31	7	330	8.4205E-02	2.2207E-05	1.1767E-01	1. OOOOE + 00	$2.1161 \mathrm{E}+00$
13	13	18	6	218	5.5626E-02	1.99315-O6	6.51685-04	$1.00005+00$	1. $3151 \mathrm{E}+00$
14	14	4	2	17	4.3378E-03	3.7686E-06	7.9961E-04	$1.0000 E+00$	$2.0823 E+00$
15	15	0	0	0	0.	0.	0.	0.	0.
16	16	0	0	0	0.	0.	0.	0.	0.
17	17	0	0	0	0.	0.	0.	0.	0.
18	18	0	0	0	0.	0.	0.	0.	0.
19	19	0	0	0	0.	0.	0.	0.	0.
20	20	0	0	0	0.	0.	0.	0.	0.
21	21	0	0	0	0.	0.	0.	0.	0.
22	22	0	0	0	0.	0.	0.	0.	0.
	TAL	10644	6281	58985	$1.5051 E+01$				

ANALOG CALCULATION - NO VARIANCE REDUCTION TECHNIQUES

Fig. 4. Analog calculation.

B. Time Cutoff

The time cutoff in MCNP is a single user-supplied, problem-wide time value. Particles are terminated when their time exceeds the time cutoff. The time cutoff terminates tracks and thus decreases the computer time per history. The time cutoff should only be used in timedependent problems where the last time bin will be earlier than the cutoff.
The sample problem in this report is time-independent, so the time cutoff is not demonstrated here.

C. The Sample Problem with Energy Cutoff

Figure 5 gives the results of an MCNP calculation with a $0.01-\mathrm{MeV}$ energy cutoff. Note that the number weighted energy is about 1000 times higher, so the energy cutoff has changed the energy spectrum as expected. Furthermore, note that about four times as many histories were run in the same time although the total number of collisions is approximately constant.
Despite more histories, fewer tracks enter deep into the concrete cylinder. This may seem a little counterintuitive until one remembers that the energy cutoff kills the typical particle that has had many collisions and is below the energy cutoff, that is, the typical particle deep in the concrete. This decrease in the tracks entering is not alarming because we know that only tracks with energy less than 0.01 MeV were killed and they cannot tally.

The trouble with the calculation is that the large amount of concrete is preventing neutron travel from the source to the tally region. The solution is to preferentially push particles up the cylinder. Four techniques in MCNP can be used for penetration,

1. geometry splitting/Russian roulette,
2. exponential transorm,
3. forced collisions,* and
4. weight window.

VI. GEOMETRY SPLITTING AND RUSSIAN ROULETTE

Geometry splitting/Russian roulette is one of the oldest, most widely used variance reduction techniques. As with most biasing techniques, the objective is to spend more time sampling important (spatial) cells and less time sampling unimportant cells. The technique (Fig. 6) is to

1. divide the geometry into cells;
2. assign importances (I_{n}) to these cells; and
*There will not be an example using forced collisions for penetration problems because it is awkward to do in MCNP. In fact, an alteration to the weight cutoff game is often necessary.
3. when crossing from cell m to cell n , compute $v=I_{n} / I_{m}$. If
a. $v=1$, continue transport;
b. $v<1$, play Russian roulette,
c. $v>1$, split the particle into $v=I_{n} / I_{m}$ tracks.

A. Russian Roulette ($\mathbf{v}<\mathbf{1}$)

If $v<1$, the particle is entering a cell that we wish to sample less frequently, so the particle plays Russian roulette. That is,

1. with probability v, the particle survives and its weight is multiplied by v^{-1}, or
2. with probability $1-v$ the particle is killed.

In general, Russian roulette increases the history variance but decreases the time per history, allowing more histories to be run.

B. Splitting $(v>1)$

If $v>1$, the particle is entering a more important region and is split into " v " subparticles. If v is an integer, this is easy to do; otherwise v must be sampled. Consider $\mathrm{n}<\mathrm{v}<\mathrm{n}+1$, then

Probability	Split Weight	
$p(n)=n+1-v$	$w_{s}=w t / n$	sampled
$p(n+1)=v-n$	$w t_{s}=w t /(n+1)$	splitting

The sampled splitting scheme above conserves the total weight crossing the splitting surface, but the split weight varies, depending on whether n or $n+1$ particles are selected.

Actually, MCNP does not use the sampled splitting scheme. MCNP uses an expected value scheme:

Probability Split Weight

$p(n)=n+1-v$	$\mathrm{wt}_{\mathrm{s}}=w t / v$	expected value
$p(n+1)=v-n$	$w t_{s}=w t / v$	splitting

The MCNP scheme does not conserve weight crossing a splitting surface at each occurrence. That is, if n particles are sampled, the total weight entering is
$\mathrm{n} \cdot \frac{\mathrm{wt}}{\mathrm{v}}=\frac{\mathrm{n}}{\mathrm{v}} \cdot \mathrm{wt}<\mathrm{wt}$,
but if $\mathrm{n}+1$ particles are sampled, the total weight entering is
$(\mathrm{n}+1) \frac{\mathrm{wt}}{v}=\frac{\mathrm{n}+1}{v} \mathrm{wt}>\mathrm{wt}$.

However, the expected weight crossing the surface is wt:
$p(n) \cdot n \cdot \frac{w t}{v}+p(n+1) \cdot(n+1) \cdot \frac{w t}{v}=w t$.

NOTES:

1) N INCREASED FROM 3919 TO 13968
2) TRACKS STOP SOONER BECAUSE OF ENERGY CUTOFF 3) PARTICLES NOT GETTING TO TALI.Y REGIONS

Fig. 5. Energy cutoff of 0.01 MeV .

Fig. 6. Geometry splitting/Russian roulette technique.

The MCNP scheme has the advantage that all particles crossing the surface will have weight wt / v. Furthermore, if

1. geometry splitting/Russian roulette is the only nonanalog technique used and
2. all source particles start in a cell of importance I_{s} with weight w_{s}, then all particles in cell j will have weight
$\mathrm{w}_{\mathrm{s}} \cdot \frac{\mathrm{I}_{\mathrm{s}}}{\mathrm{I}_{\mathrm{j}}}$
regardless of the random walk taken to cell \mathbf{j}.
MCNP's geometry splitting/Russian roulette introduces no variance in particle weight within a cell. The variation in the number of tracks scoring rather than a variation in particle weight determines the history variance. Empirically, it has been shown that large variations in particle weights affect tallies deleteriously. Booth ${ }^{2}$ has shown theoretically that expected value splitting is superior to sampled splitting in highvariance situations.

C. Comments on Geometry Splitting/Russian Roulette

One other small facet deserves mention. MCNP never splits into a void although Russian roulette may be played entering a void. Splitting into a void accomplishes nothing except extra tracking because all the split particles must be tracked across the void and they
all make it to the next surface. The split should be done according to the importance ratio of the last nonvoid cell departed and the first nonvoid cell entered (integer splitting into a void wastes time, but it does not increase the history variance). In contrast, noninteger splitting into a void may increase the history variance and waste time.

Finally, splitting generally decreases the history variance but increases the time per history.

Note three more items:

1. Geometry splitting/Russian roulette works well only in problems without extreme angular dependence. In the extreme case, splitting/Russian roulette can be useless if no particles ever enter an important cell where the particles can be split.
2. Geometry splitting/Russian roulette will preserve weight variations. The technique is "dumb" in the sense that it never looks at the particle weight before deciding appropriate action. An example is geometry splitting/Russian roulette used with source biasing.
3. Geometry splitting/Russian roulette are turned on or off together.

D. Cautions

Although splitting/Russian roulette is among the oldest, easiest to use, and most effective techniques in MCNP, it can be abused. Two common abuses are:

1. compensating for previous poor sampling by a very large importance ratio and doing the splitting "all at once."
2. using splitting/Russian roulette with other techniques (for example, exponential transform) without forethought to possible interference effects.

E. The Sample Problem with Geometry Splitting/Russian Roulette

Returning to the problem, recall

	Cell		Tracks Entering
Pource Cell	2	2	15416
	3	3	4445
	4	4	2197
	5	5	973
	6	6	467
	7	7	233
	8	8	110
	9	9	56
	10	10	40
	11	11	20
	12	12	8
	13	13	3
	14	14	0
	15	15	0
	16	16	0
	17	17	0
18	18	0	
	19	19	0
20	20	0	
	21	21	0
	22	22	0

Note that except for the source cell, the tracks entering are decreasing by about a factor of 2 in each subsequent

cell. Furthermore, because half the particles from cell 2 (the source cell) immediately exit the geometry from the isotropic source, the rough factor of 2 even holds for the source cell. Thus as a first rough guess, try importance ratios of $2: 1$ through the concrete; that is, factor of 2 splitting.
Figure 7 indicates that this splitting is much better than no splitting. Not only did particles finally penetrate the concrete (see Tally 1) but the "tracks entering" column is roughly constant within a factor of 2 . Slightly more splitting in cells 9-19 might improve the "tracks entering" just a little bit more. The splitting ratios were refined to be 2 in cells $2-8$ and 2.15 in cells $9-19$ in the next calculation.
Figure 8 summarizes the refined splitting. Immediately evident is that the FOM (Tally 1) unexpectedly decreased from 27 (Fig. 7) to 23 , so at first glance, the refined splitting appears worse. However, note that the refined splitting had the desired effect; the "tracks entering" numbers are flatter. Thus I think the refined splitting is better despite the lower FOM.

What justifies being so cavalier about FOMs? Remember that the FOM is only an estimate of the calculational efficiency. At relative-error estimates near 25%, these FOMs are not meaningful enough to take the 27-to- 23 FOM difference seriously. Furthermore, the FOM is only one of the many available pieces of summary information. At 25% error levels, it is much more important that the refined splitting appears to be sampling the geometry better.

F. Discussion of Results

The effect of refined splitting in this sample problem illustrates an important point about most variance reduction techniques; most of the improvement can usually be gained on the first try. Either one of these splitting/Russian roulette runs is several orders of magnitude better than the run without splitting. In fact, this
 NEXT RUN : INCREASE SPLITTING AT CELL 8 TO 2.15 UNTIL CELL 19

Fig. 7. Factor of 2 splitting from cells 2 to 19.

FACTOR OF 2 SPLITTING CELLS 2 - 8 FACTOR OF 2.15 SPLITTING 9 -19

TALLY FLUCTUATION CHARTS

Fig. 8. Refined splitting.
problem is so bad without splitting that it is hard to guess how much splitting/Russian roulette has improved the efficiency. Contrast this improvement to the (questionable) FOM difference of 27 (Fig. 7) to 23 (Fig. 8) between the factor of 2 splitting and the refined splitting. Usually one can do better with a variance reduction technique on the second try than on the first, but usually by not more than a factor of 2 .

Quickly reaching diminishing returns is characteristic of a competent user and a good variance reduction technique. Competent users can quickly learn good importances because there is a very broad near-optimal range. Because the optimum is broad, the statistics often mask which importance set is best when they are all in the vicinity of the optimum.
Now that a reasonably flat track distribution has been obtained, perhaps it is time to explain why one expects this to be near optimal. There are some plausible arguments, but the real reason is empirical; it has been observed in many similar problems (that is, essentially one-dimensional bulk penetration problems) that a flat track distribution is near optimal. The radius of the concrete cylinder is large enough (100 cm) that the cylinder appears much like a slab; very few particles cross its cylindrical surface at a given depth (y coordinate) compared to the particle population at that depth. Indeed, if the radius were infinite, the cylinder would be a slab and no particles would cross its cylindrical surface.
A plausible argument for flat track distribution can be made by considering an extremely thick slab and possible track distributions for two cases. For too little splitting, the track population will decrease roughly exponentially with increasing depth and no particles will ever penetrate the slab. For too much splitting, the importance ratios are too large; the track population will increase roughly exponentially and a particle history will never terminate. In both cases, albeit for different reasons, there are never any tallies. If neither an exponentially decreasing population nor an exponentially increasing population is advisable, the only choice is a flat distribution.

Of course, there are really many more choices than exponentially decreasing, flat, or exponentially increasing populations, but track populations usually behave in one of these ways because the importance ratios from one cell to the next are normally chosen (at least for a first guess) equal. The reason is that one cell in the interior is essentially equivalent to the next cell, so there is little basis to choose a different importance ratio from one cell to the next. However, the cells are not quite equivalent because they are different depths from the source, so the average energy (and mean free path) decreases with increasing depth. This is probably why it was necessary to increase the importance ratio from 2 to
2.15 in the deep parts of the sample problem. Note, however, that this is a small correction.

Returning to Fig. 8, note that the energy and mean free path decrease with increasing depth, as expected. Not also that the higher splitting has decreased the particles per minute.

VII. ENERGY SPLITTING/ROULETTE

Energy splitting/Russian roulette is very similar to geometry splitting/Russian roulette except energy splitting/roulette is done in the energy domain rather than in the spatial domain. Note two differences.

1. Unlike geometry splitting/roulette, the energy splitting/roulette uses actual splitting ratios as supplied in the input file rather than obtaining the ratios from importances.
2. It is possible to play energy splitting/roulette only on energy decreases if desired.
There are two cautions.
3. The weight cutoff game takes no account of what has occurred with energy splitting/roulette.
4. Energy splitting/roulette is played throughout the entire problem. Consider using a space-energy weight window if there is a substantial space variation in what energies are important.
One can expect an improvement in speed using energy roulette by recalling that the problem ran a factor of 4 faster with an energy cutoff of 0.01 MeV than without an energy cutoff. Low-energy particles get progressively less important as their energy drops, so it might help to play Russian roulette at several different energies as the energy drops. In the following run, a 50% survival game was played at $5 \mathrm{MeV}, 1 \mathrm{MeV}, 0.3 \mathrm{MeV}$, 0.1 MeV , and 0.03 MeV . The energies and the 50% survival probability were only guesses.
The energy roulette (splitting does not happen here because there is no upscatter) results are shown in Fig. 9. Note that there were substantially ($\sim 50 \%$) more tracks entering, approximately the same number of collisions, and three times as many particles run. The FOM looks better, but the mean (Tally 1) has increased from 5.0E-7 (Fig. 8) to 8.4E-7. This deserves note and caution, but not panic, because the error is 18%, so poor estimates in both tally and error can be expected. Despite the previous statement, the energy roulette looks successful in improving tallies 1 and 4.

VIII. IMPLICIT CAPTURE AND WEIGHT CUTOFF

A. Implicit Capture

Implicit capture, survival biasing, and absorption by weight reduction are synonymous. Implicit capture is a

Fig. 9. Using energy roulette
(50% survival at 510.30 .10 .03 MeV)
variance reduction technique applied in MCNP after the collision nuclide has been selected. Let
$\sigma_{\mathrm{ti}}=$ total microscopic cross section for nuclide i and
$\sigma_{\mathrm{ai}}=$ microscopic absorption cross section for nuclide i.

When implicit capture is used rather than sampling for absorption with probability $\sigma_{\mathrm{a} i} / \sigma_{\mathrm{t}}$, the particle always survives the collision and is followed with new weight
$\mathrm{wt} \cdot\left(1-\frac{\sigma_{\mathrm{ai}}}{\sigma_{\mathrm{ti}}}\right)$.
Two advantages of implicit capture are

1. a particle that has finally, against considerable odds, reached the tally region is not absorbed just before a tally is made, and
2. the history variance, in general, decreases when the surviving weight (that is, 0 or wt) is not sampled, but an expected surviving weight is used instead (but see weight cutoff discussion, Sec. VIII.B).

Two disadvantages are

1. implicit capture introduces fluctuation in particle weight and
2. increases the time per history (but see weight cutoff discussion, Sec. VIII.B).
Note that
3. Implicit capture is the default in MCNP (except for note 4).
4. Implicit capture is always turned on for neutrons unless the weight cutoff game is turned off.
5. Explicit (analog) capture is not allowed for the photon simple physics treatment (high energy).
6. Analog capture is allowed only in detailed photon physics.

B. Weight Cutoff

In weight cutoff, Russian roulette is played if a particle's weight drops below a user-specified weight cutoff. The particle is either killed or its weight is increased to a user-specified level. The weight cutoff was originally envisioned for use with geometry splitting/Russian roulette and implicit capture. Because of this,

1. the weight cutoffs in cell j depend not only on WC1 and WC2 (see Fig. 2) on the CUTN and CUTP cards, but also on the cell importances. This dependence is intended to adjust the weight cutoff values to make sense with geometry splitting/Russian roulette.
2. Implicit capture is always turned on (except in detailed photon physics) whenever a nonzero WC 1 is specified.
The weight cutoffs WC1 and WC2 are illustrated in Fig. 10. If a particle's weight falls below $R_{j} \cdot W C 2$, a
weight cutoff game is played; with probability $\mathrm{wt} /\left(\mathrm{WCl} \cdot \mathrm{R}_{\mathrm{j}}\right)$ the particle survives with new weight $\mathrm{WCl} \cdot \mathrm{R}_{\mathrm{j}}$; otherwise the particle is killed.

As mentioned earlier, the weight cutoff game was originally envisioned for use with geometry splitting and implicit capture. Consider what can happen without a weight cutoff. Suppose a particle is in the interior of a very large medium and there are no time nor energy cutoffs. The particle will go from collision to collision, losing a fraction of its weight at each collision. Without a weight cutoff, the particle's weight would eventually be too small to be representable in the computer, at which time an error would occur. If there are other loss mechanisms (for example, escape, time cutoff, or energy cutoff), the particle's weight will not decrease indefinitely, but the particle may take an unduly long time to terminate.

Weight cutoff's dependence on the importance ratio can be easily understood if one remembers that the weight cutoff game was originally designed to solve the low-weight problem sometimes produced by implicit capture. In a high-importance region, the weights are low by design, so it makes no sense to play the same weight cutoff game in high- and low-importance regions. In fact, as mentioned in a previous section, if splitting is the only nonanalog technique used, all particles in a given cell have the same weight, so no weight cutoff game would make sense. That is, if the particle weight is too small in a cell, the cell importance simply needs to be decreased. The weight cutoff is meant to indicate when a particle's weight is too low to be worth transporting.

In addition to the weight cutoff's dependence on cell importance, the weight cutoffs are automatically made relative to the minimum source weight if the source is a standard MCNP source and the weight cutoffs (WCl , WC 2) are prefixed by a negative sign.

1. Cautions

a. Many techniques in MCNP cause weight change; the weight cutoff was really designed with geometry splitting and implicit capture in mind. Care should be taken in the use of other techniques.
b. In most cases, if you specify a weight cutoff, you automatically get implicit capture.

2. Notes

a. Weight cutoff games are unlike time and energy cutoffs. In time and energy cutoffs, the random walk is always terminated when the threshold is crossed. Potential bias may result if the particle's importance was not zero. A weight cutoff (weight roulette would be a better name) does not bias the game because the weight is increased for those particles that survive.

Fig. 10. Weight cutoff mechanics.
b. By default, the weight cutoff game is turned off in a weight window cell.

C. Weight Cutoff and Implicit Capture Applied to the Sample Problem

Figure 11 shows the result of adding weight cutoff and implicit capture techniques in addition to the

1. energy cutoff,
2. refined geometry splitting/Russian roulette, and
3. energy roulette techniques.

Comparing Fig. 11 to Fig. 9, one can see that implicit capture and weight cutoff did apparently reduce the tally 1 error for the same number of particles. However, the number of particles run was down by a factor of 2 , resulting in a net decrease in the FOM. In general, if a nonanalog technique does not show a clear improvement, do not use it; thus for the next run, the implicit capture and weight cutoff will be turned off.

Tally 1 seems reasonably well optimized by

1. geometry splitting and roulette,
2. energy cutoff,
3. energy roulette (and splitting), and
4. analog capture.

Tally 4 is bad because very few tracks exit the concrete cylinder (cell 19) in the small solid angle subtended by cell 21 . Tally 5 is even worse, in fact nonexistent, because of the few particles that do reach cell 21 , none collide, so there are no point detector contributions.

Consider improving the worst tally (tally 5) first. Note from the summary charts that the free path in cell 21 is $\sim 1000 \mathrm{~cm}$ and the cell is 10 cm thick. Only a tiny fraction of the particles entering cell 21 will collide in an analog fashion. The forced collision technique in MCNP solves this problem by requiring each track entering a cell to collide.

IX. FORCED COLLISIONS

Forced collision is normally used to sample collisions in optically thin (fractional mean free path) cells where not enough collisions are being sampled. A track entering a forced collision cell is split into two tracks: uncollided and collided. That is, MCNP calculates the expected weight traversing the cell and assigns that weight to the uncollided track, and MCNP calculates the expected weight colliding in the cell and assigns that weight to the collided track (Fig. 12). The uncollided track is put on the cell boundary (the point intersected by the cell boundary and the track direction), and the collided track's collision site is sampled in the usual way except that the collision site must now be sampled from. a conditional probability, the condition being that a collision occurs at a distance $0<\mathrm{x}<\ell$.

A. Comments

1. Although the forced collision technique is normally used to obtain collisions in optically thin cells, it can also be used in optically thick cells to get the uncollided transmission.
2. The weight cutoff game is normally turned off in a forced collision cell (see MCNP Manual for exceptional cases ${ }^{1}$).
3. The forced collision technique decreases the history variance, but the time per history increases.
4. More than one collision can be forced in a cell.
5. ℓ of Fig. 12 is always the distance from the point at which the track is split into its collided and uncollided parts to the boundary. In Fig. 12, the split is done upon entrance to the cell, but the split can occur at an interior point as well (splits at interior

Fig. 12. Forced collision procedure.
points normally occur when more than one collision per entering track is forced).

B. Caution

Because weight cutoffs are turned off in forced collision cells, the number of tracks can get exceedingly large if there are several adjacent forced collision cells.

C. Forced Collisions Applied to the Sample Problem

Recall that the point detector tally (tally 5) was nonexistent because there were no collisions in cell 21 . Figure 13 shows the effects of forcing one collision in cell 21 in addition to energy cutoff, refined geometry splitting/Russian roulette, and energy roulette. Note that 44 tracks entered cell 21 and there were 44 collisions in cell 21. Also note that the point detector tally is now obtaining contributions. Thus, the forced collision has really helped the point detector tally. The trouble now is not the lack of collisions from tracks that enter cell 21, but rather the small number of particles that enter cell 21. Angle biasing in some form is required to preferentially scatter particles into cell 21.

X. DXTRAN

The DXTRAN technique and source angle biasing are currently the only angle-biasing techniques in MCNP. Unlike source angle biasing, DXTRAN biases the scattering directions as well as the source direction.

Before explaining the DXTRAN theory, I will first loosely describe what occurs. A typical problem in which DXTRAN might be employed is much like the sample problem; a small region (for example, cell 21) is being inadequately sampled because particles almost never scatter toward the small region. To ameliorate this situation, the user can specify a DXTRAN sphere (in the input file) that encloses the small region. Upon particle collision (or exiting the source) outside the sphere, the DXTRAN technique creates a special "DXTRAN particle" and deterministically scatters it toward the DXTRAN sphere and deterministically transports it, without collision, to the surface of the DXTRAN sphere (Fig. 14). The collision itself is otherwise treated normally, producing a non-DXTRAN particle that is sampled in the normal way, with no reduction in weight. However, the non-DXTRAN particle is killed if it tries to enter the DXTRAN sphere.

The subtlety about DXTRAN is how the extra weight created for the DXTRAN particles is balanced by the

1. A point on the DXTRAN sphere is sampled.
2. A particle is scattered towards the selected point.
3. The particle's weight is exponentially decreased by the optical path and adjusted for bias in the scattering angle.
4. The original particle is sampled in the normal way (with no reduction in weight).
5. If the original particle tries to enter the DXTRAN sphere, it is terminated.

Fig. 14. DXTRAN concept.
weight killed as non-DXTRAN particles cross the DXTRAN sphere. The non-DXTRAN particle is followed without any weight correction, so if the DXTRAN technique is to be unbiased, the extra weight put on the DXTRAN sphere by DXTRAN particles must somehow (on average) balance the weight of nonDXTRAN particles killed on the sphere.

A. DXTRAN Viewpoint \#1

One can view DXTRAN as a splitting process (much like the forced collision technique) wherein each particle is split upon departing a collision (or source point) into two distinct pieces:

1. the weight that does not enter the DXTRAN sphere on the next flight either because the particle is not pointed toward the DXTRAN sphere or because the particle collides before reaching the DXTRAN sphere, and
2. the weight that enters the DXTRAN sphere on the next flight.
Let w_{0} be the weight of the particle before exiting the collision, let p_{l} be the analog probability that the particle does not enter the DXTRAN sphere on its next flight, and let p_{2} be the analog probability that the particle does enter the DXTRAN sphere on its next flight. The particle must undergo one of these mutually exclusive events, thus $p_{1}+p_{2}=1$. The expected weight not entering the DXTRAN sphere is $w_{1}=w_{o} p_{1}$, and the expected weight entering the DXTRAN sphere is $w_{2}=$ $\mathrm{w}_{\mathrm{o}} \mathrm{p}_{2}$. Think of DXTRAN as deterministically splitting the original particle with weight w_{0} into two particles, a non-DXTRAN (particle 1) particle of weight w_{1} and a DXTRAN (particle 2) particle of weight w_{2}. Unfortunately, things are not quite that simple.

Recall that the non-DXTRAN particle is follwed with unreduced weight w_{0} rather than weight $w_{1}=w_{0} p_{1}$. The reason for this apparent discrepancy is that the nonDXTRAN particle (\#1) plays a Russian roulette game. Particle 1's weight is increased from w_{1} to w_{0} by playing a Russian roulette game with survival probability $\mathrm{p}_{1}=$ w_{1} / w_{0}. The reason for playing this Russian roulette game is simply that p_{1} is not known, so assigning weight $w_{1}=p_{1} w_{0}$ to particle 1 is impossible. However, it is possible to play the Russian roulette game without explicitly knowing p_{1}. It is not magic, just slightly subtle.

The Russian roulette game is played by sampling particle 1 normally and keeping it only if it does not enter (on its next flight) the DXTRAN sphere; that is, particle 1 survives (by definition of p_{1}) with probability p_{1}. Similarly, the Russian roulette game is lost if particle 1 enters (on its next flight) the DXTRAN sphere; that is, particle 1 loses the roulette with probability p_{2}. Now I restate this idea. With probability p_{1}, particle 1 has
weight w_{0} and does not enter the DXTRAN sphere and with probability p_{2}, the particle enters the DXTRAN sphere and is killed. Thus, the expected weight not entering the DXTRAN sphere is $w_{0} p_{1}+0 \cdot p_{2}=w_{1}$, as desired.

So far, this discussion has concentrated on the nonDXTRAN particle and ignored exactly what happens to the DXTRAN particle. The sampling of the DXTRAN particle will be discussed after a second viewpoint on the non-DXTRAN particle.

B. DXTRAN Viewpoint \#2

If you have understood the first viewpoint, you need not read this viewpoint. On the other hand, if the first viewpoint was not clear, perhaps this second one will be.

This second way of viewing DXTRAN does not see it as a splitting process but as an accounting process where weight is both created and destroyed on the surface of the DXTRAN sphere. In this view, DXTRAN estimates the weight that should go to the DXTRAN sphere upon collision and creates this weight on the sphere as DXTRAN particles. If the non-DXTRAN particle does not enter the sphere, its next flight will proceed exactly as it would have without DXTRAN, producing the same tally contributions and so forth. However, if the non-DXTRAN particle's next flight attempts to enter the sphere, the particle must be killed or there would be (on average) twice as much weight crossing the DXTRAN sphere as there should be, the weight crossing the sphere having already been accounted for by the DXTRAN particle.

C. The DXTRAN Particle

Although the DXTRAN particle does not confuse people nearly as much as the non-DXTRAN particle, the DXTRAN particle is nonetheless subtle.

The problem is how to sample the DXTRAN particle's location on the DXTRAN sphere. One cannot afford to calculate a cumulative distribition function to select the scattering direction θ indicated in Fig. 14. [The azimuthal angle is sampled uniformly in $(0,2 \pi)]$. This would essentially involve integrating the scattering probability density at each collision. Instead of sampling the true probability density, one samples an arbitrary density and adjusts the weight appropriately.

As indicated above, a point on the DXTRAN sphere can be selected from any density function because the weight of the DXTRAN particle is modified by
true density to select point p_{s}

[^1]

Fig. 15. Sampling the DXTRAN particle.

This is easy to do because the true scattering density function is immediately available even if its integral is not. MCNP arbitrarily uses the two-step density described below. In fact, the inner DXTRAN sphere has only to do with this arbitrary density and is not essential to the DXTRAN concept.

MCNP samples the inner cone uniformly in ($\eta_{I}, 1$), and the outer cone uniformly in ($\eta_{0}, \eta_{\mathrm{I}}$) (Fig. 15). However, the inner cone is sampled with five times the probability density that the outer is sampled. That is to say the inner cone is taken to be five times as important as the outer cone. Further mathematical details are given in the MCNP manual ${ }^{1}$ and will not be discussed here.

After the scattering angle has been chosen, the DXTRAN particle is deterministically transported to the DXTRAN sphere without collision and with weight attenuated by the exponential of the optical path.

D. Inside the DXTRAN Sphere

So far, only collisions outside the DXTRAN sphere have been discussed. At collisions inside the DXTRAN sphere, the DXTRAN game is not played* because first, the particle is already in the desired region and second, it is impossible to define the angular cone of Fig. 14.

E. Terminology - Real Particle, Pseudoparticle

In X-6 documentation, at least through the April 1981 MCNP Manual, ${ }^{1}$ the DXTRAN particle is called a

[^2]pseudoparticle and the non-DXTRAN particle is called the original or real particle. The terms "real particle" and "pseudoparticle" are potentially misleading. Both particles are equally real; both execute random walks, both carry nonzero weight, and both contribute to tallies. The only stage at which the DXTRAN particle should be considered "psuedo" or "not real" is during creation. A DXTRAN particle is created on the DXTRAN sphere, but creation involves determining what weight the DXTRAN particle should have upon creation. Part of this weight determination requires calculating the optical path between the collision site and the DXTRAN sphere. MCNP determines the optical path by tracking a pseudoparticle from the collision site to the DXTRAN sphere. This pseudoparticle is deterministically tracked to the DXTRAN sphere simply to determine the optical path; no distance to collision is sampled, no tallies are made, and no records of the pseudoparticle's passage are kept (for example, tracks entering). In contrast, once the DXTRAN particle is created at the sphere's surface, the particle is no longer a pseudoparticle; the particle has real weight, executes random walks, and contributes to tallies.

F. Comments

1. DXTRAN spheres have their own weight cutoffs.
2. The DD card (by default) stops extremely lowweighted tracks by roulette. See the manual ${ }^{1}$ for how this is accomplished.
3. Strongly consider producing DXTRAN particles only on some fraction of the number of collisions, as allowed by the DXCPN card.

G. CAVEATS

1. DXTRAN should be used carefully in optically thick problems. Do not rely on DXTRAN to do penetration.
2. If the source is user-supplied, some provision (SRCDX, page 263 of the MCNP manual ${ }^{1}$) must be made for obtaining the source contribution to particles on the DXTRAN sphere.
3. Extreme care must be taken when more than one DXTRAN sphere is in a problem. Cross-talk between spheres can result in extremely low weights and an explosion in particle tracks.
4. A different set of weight cutoffs is used inside the DXTRAN sphere.

H. DXTRAN Applied to the Sample Problem

Recall that there was a problem getting enough particles to scatter in the direction of cell 21 . To solve this
problem, a DXTRAN sphere was specified just large enough to surround cell 21 (Fig. 16). If a larger DXTRAN sphere were used, some DXTRAN particles would miss cell 21 and this would be less efficient. If a smaller DXTRAN sphere were used, it would be possible for a non-DXTRAN particle to enter cell 21 , resulting in an undesirable large weight fluctuation in cell 21 . Note also that the inner and outer DXTRAN spheres are coincident. This choice was made because specifying different spheres would introduce a five-toone weight variation even though all particles entering cell 21 are about equally important.

I. Discussion

Note from Fig. 17 that DXTRAN did have the desired effect; the tracks entering cell 21 have increased dramatically and the FOMs for tallies 4 and 5 have increased by a factor of 7. However, note that the particles-per-minute number has decreased by a factor of 4 ; this is reflected in a factor of 4 decrease in tally 1 's FOM. It would be wonderful if DXTRAN did not slow the problem down so much. Fortunately in some cases,' a little thinking and judicious use (described below) of the DXCPN card can alleviate this speed problem.

Recall the caveat about using DXTRAN carefully in optically thick problems, in particular, not to rely on DXTRAN to do the penetration. Geometry splitting has done well at penetration, so DXTRAN is needed mostly for the angle bias, as is desirable. However, at every collision, regardless of how many mean free paths the

Fig. 16. DXTRAN sphere. The inner and outer spheres are identical because specifying different spheres would just create weight fluctuation.
collision is from cell 21, a DXTRAN particle is produced. DXTRAN particles that are many free paths from the DXTRAN sphere will have their weights exponentially decreased by the optical path so that their weights are negligible by the time they are put on the DXTRAN sphere. MCNP automatically (unless turned off on the DD card) plays Russian roulette on the DXTRAN particles as their weight falls exponentially, because of transport, below some fraction of the average weight (on the DXTRAN sphere). This provides the user some protection against spending a lot of time following DXTRAN particles of inconsequential weight. However, there is a better solution for the sample problem.

Although the DD card will play roulette on DXTRAN particles as they are transported through media to the DXTRAN sphere, it still takes time to produce and follow the DXTRAN particles until they can be rouletted. It is much better not to produce so many DXTRAN particles in the first place. MCNP allows the user (on the DXCPN card) to specify, by cell, what fraction of the collisions will result in DXTRAN particles. Everything is treated the same except that if p is the probability of creating a DXTRAN particle, then when a DXTRAN particle is created, its weight is multiplied by p^{-1}, thus making the game unbiased. The destruction game is unaffected; regardless of whether the sampling produced a DXTRAN particle, the nonDXTRAN particle is killed if it tries to enter the DXTRAN sphere.

As usual, this new capability requires even more input parameters; that is, the entries on the DXCPN card. Before despairing unduly, note that the entries on the DXCPN card are not highly critical, and the user has already gained a lot of useful information in the geometry-splitting optimization.

Table I shows the DXCPN probabilities that I chose for the sample problem. Note three things from this table.

1. Near the top of the concrete cylinder (cells 18 and 19) every collision creates a DXTRAN particle ($\mathrm{p}=1$).
2. As the cells get progressively farther (cells 12-17) from the DXTRAN sphere, p gets progressively smaller by roughly a factor of 2 , chosen because the importance from cell to cell decreases by factors of about 2.
3. Not much thought was spent selecting p's for cells 2-11 because these cells contribute almost no weight to the DXTRAN sphere. Thus within reason, almost any values can be selected if they are small enough that not much time is spent following DXTRAN particles in cells 2-11. Note that even $p=0.001$ will not totally preclude creating DXTRAN particles because there are

2000-3000 collisions in each of cells $2-5$, where $p=$ 0.001 .

Before examining what happened when the DXCPN card was used, I would like to digress and use item 3 above as a specific example of a general principle. When biasing against random walks of presumed. low importance, always make sure that at least a few of these random walks are followed so that if the presumption is wrong, the statistics will so indicate by bouncing around. As an example, I fully believe that $\mathrm{p}=10^{-6}$ would be appropriate in cell 2 , but I chose $p=10^{-3}$. Had I chosen $\mathrm{p}=10^{-6}$, probably no DXTRAN particles would be produced from collisions in cell 2. Thus if these DXTRAN particles turn out to be a lot more important than anticipated, the tally may be missing a substantial contribution with no statistical indication that something is amiss. By choosing $\mathrm{p}=0.001$ in cells 2-5, I cause the MCNP to produce approximately ten DXTRAN particles by the 10,000 or so collisions in cells 2-5 (see Fig. 17). Following 10 DXTRAN particles is a very small time price to pay to be sure that they are not important. If the problem were to be run long enough that there would be 10^{7} collisions in cell 2 , then I would not hesitate to use $\mathrm{p}=10^{-6}$ because some DXTRAN particles would be produced.

J. Results of Using DXTRAN with the DXCPN card

The result of adding the DXCPN card is shown in Fig. 18. Note that all FOMs improved by better than a factor of 2 . The histories per minute increased from 1560 to 4395 when the DXCPN card was added, but 4395 is still slower than the 6858 without DXTRAN. The FOM for tally 1 , although almost three times as good as that without the DXCPN card, is nonetheless still less than the no DXTRAN FOM of 45 . This is an example of the general rule:

Increasing sampling in one region in general is at the expense of another region.
In the sample problem, we have decided to increase the sampling of cell 21 at the expense of cells 2-19. Overall, however, DXTRAN has clearly improved the calculation.

XI. TALLY CHOICE, POINT DETECTOR VERSUS RING DETECTOR

Recall from the introductory section on variance reduction that the FOM is affected by the tally choice as well as by the random walk sampling. So far, I have tinkered only with the random walk sampling; now, suppose I tinker with the tally.

Consider tally 5 , the point detector tally. Note that the sample problem is symmetric about the y-axis, so a ring

CONCLUSION: DXTRAN TECHNIQUE SUCCESSFUL FOR TALLY 4 AND TALLY 5 BUT TOO SLOW.

Fig. 17. DXTRAN sphere at about cell 21.

N

CELL		TRACKS ENTERING	POPULATION		COLLISIONS		NUMBER WEIGHTED ENERGY	FLUX WE IGHTED ENERGY	average TRACK WEIGHT （RELATIVE）	AVERAGE TRACK MFP （CM）	
2	2	11938	11744		13796	1．9875E＋00	1．9553E＋00	$5.8909 \mathrm{E}+00$	$1.3213 E+00$	6.8	E＋00
3	3	5292	4918		11952	$1.0727 \mathrm{E}+00$ 1．	1．1897E＋00	$4.0414 \mathrm{E}+00$	$1.6629 \mathrm{E}+00$	5.9	E +00
4	4	5010	4651		11384	5．7591E－01 8．	．6965E－01	$3.3229 E+00$	$1.9476 \mathrm{E}+00$	5.6	E＋ 00
5	5	4827	4469		10847	2．7700E－01 7.	7．9325E－01	$3.0387 \mathrm{E}+00$	$2.0971 \mathrm{E}+00$	5.5	E＋00
6	6	4414	4073		9805	1．2674E－01 7.	$7.8981 E-01$	$2.9908 \mathrm{E}+00$	2．1426E +00	5.6	E＋00
7	7	4177	3816		9507	6．2377E－02 7.	7．9364E－01	$2.8062 \mathrm{E}+00$	$2.2181 \mathrm{E}+00$	5.5	E＋00
8	8	4114	3780		9500	3．2883E－02 7.	7．5226E－01	$2.5813 \mathrm{E}+00$	$2.3164 \mathrm{E}+00$	5.4	E＋ 00
9	9	4114	3803		9158	1．5241E－02 7.	．2149E－01	$2.5273 \mathrm{E}+00$	$2.3520 E+00$	5.4	E＋ 00
10	10	4105	3833		9297	7．4165E－03 7.	．0749E－01	$2.4918 \mathrm{E}+00$	$2.3750 \mathrm{E}+00$	5.4	E +00
11	11	4112	3803		9202	3．2429E－03 7.	7．5649E－01	$2.4433 \mathrm{E}+00$	$2.3664 E+00$	5.4	E +00
12	12	4293	3948		9827	$1.7202 \mathrm{E}-036$.	．9620E－01	$2.3424 \mathrm{E}+00$	$2.4325 E+00$	5.3	E +00
13	13	4384	4040		9759	8．0545E－04 6．	． $5721 \mathrm{E}-01$	$2.2911 E+00$	$2.4785 \mathrm{E}+00$	5.3	E +00
14	14	4337	4017		9621	3．6893E－04 6.	．6088E－01	$2.2587 \mathrm{E}+00$	$2.4924 \mathrm{E}+00$	5.3	E＋OO
15	15	4312	3977		9935	1．7810E－04 6.	．6189E－01	2．1957E＋00	$2.5004 \mathrm{E}+00$	5.3	E＋00
16	16	4365	4059		10039	$7.9894 \mathrm{E}-057$.	．0947E－01	$2.1324 E+00$	$2.5102 \mathrm{E}+00$	5.3	E +00
17	17	4274	3982		9862	3．6959E－05 6.	．3603E－01	$2.0865 \mathrm{E}+00$	$2.5629 E+00$	5.2	E＋00
18	18	4248	3935		9946	$1.6748 \mathrm{E}-056$.	．6484E－01	$2.0783 \mathrm{E}+00$	$2.5527 \mathrm{E}+00$	5.3	E +00
19	19	3867	3749		8538	6．2137E－06 7.	．0403E－01	$2.2236 \mathrm{E}+00$	$2.4620 E+00$	5.4	E＋00
20	20	4927	18224		0	0.1	． $2396 \mathrm{E}+00$	$3.2943 \mathrm{E}+00$	$7.9810 \mathrm{E}-01$	1.0	＋123
21	21	15223	30451		15598	6．5663E－11 1.7	1．7785E＋00	$4.1554 \mathrm{E}+00$	9．1074E－04	7.	E＋O2
22	22	1283	1283		0	0． 7 ．	．0419E－01	$2.7866 \mathrm{E}+00$	3．6840E－05	1.	$+123$
TOTAL		107616	130555		197573	4．1643E＋00		SUBSTANTIALLY IMPROVED			
			TALLY 1			TALLY 4		F	TALLY 5		$\stackrel{7}{7}$
			MEAN		R FOM	MEAN	ERROR	FOM	MEAN	ERROR	FOM
		1000	9．91356E－07 ．	$.3667$	727	1．50695E－13	$3 . .3251$	34	1．06148E－16．	$.3673$	27
		2000	6．41539E－07 ．	． 2949	926	$1.06818 \mathrm{E}-13$	3.2461	38	6．85473E－17 ．	． 2928	27
		3000	5．70257E－07 ．	． 2393	327	1．02834E－13	3.1982	40	6．49562E－17 ．	． 2387	27
		4000	$6.76150 \mathrm{E}-\mathrm{O7}$ ．	． 1863	$3 \quad 32$	1．11525E－13	3.1622	43	6．79132E－17．	． 1910	31
		5000	6．76891E－07 ．	． 1679	932	1．13338E－13	3.1465	42	6．89970E－17．	． 1686	31
		6000	6．73265E－07 ．	． 1516	632	1． $14934 \mathrm{E}-13$	3．1312	43	6．74936E－17 ．	． 1510	33
		7000	6．89040E－07 ．	． 1378	834	1．14298E－13	3.1198	45	6．74760E－17．	． 1359	34
		8000	6．86656E－07 ．	． 1262	235	1．17711E－13	3.1095	46	$6.87251 \mathrm{E}-17$ ．	． 1245	36
		9000	7．04305E－07 ．	． 1167	736	1．18117E－13	3 ． 1023	47	6．97952E－17 ．	． 1161	36
		10000	7．25099E－07 ．	． 1093	36	1．22116E－13	3.0990	44	$7.09365 \mathrm{E}-17$ ．	． 1114	35
		11000	$7.00085 \mathrm{E}-07$ ．	． 1046	636	1．18453E－13	3.0948	45	6．88873E－17 ．	． 1060	36
		11427	7．32339E－07 ．	． 1049	934	1．22412E－13	3.0946	42	7．21438E－17 ．	． 1049	34
				办末示を	***菻*****	＊＊＊＊＊＊＊＊＊＊＊＊＊	＊＊＊＊女 女	15 LAST TIM	佂		
DUMP NO． 2 ON FILE RUNTPH					NPS	$=11427$	CTM $=$	2.60 PART／MIN $=4395$			
								NO DXTRAN $=6858$			
IMPPROVED OVER DXTRAN W／O DXCPN＝ 12								DXTRAN $w \%$ DXCPN $=1560$			
LESS THAN NO DXTRAN $=45$											
＂INCREASING SAMPLING IN ONE REGION GENERALLY											
IS AT THE EXPENSE OF ANOTHER REGION ${ }^{\text {／}}$											

Fig．18．DXTRAN with DXCPN card．

TABLE I. DXCPN Card Entries	
Cell	Probability
2	0.001
3	0.001
4	0.001
5	0.001
6	0.01
7	0.01
8	0.01
9	0.01
10	0.01
11	0.01
12	0.015
13	0.02
14	0.04
15	0.08
16	0.2
17	0.4
18	1
19	1
20	VOID, no collisions
21	INSIDE SPHERE, no DXTRAN
	game played
22	VOID, no collisions

detector can be used instead of a point detector. The ring detector estimates the average flux on a ring rather than the flux at a point, but because the sample problem is symmetric, these tallies (on average) will be the same. The ring detector gives lower variance estimates than the point detector, especially if, unlike the sample problem, the detectors are embedded in a scattering medium. On average, collisions are closer to a ring detector than to a point detector, so the ring detector better samples the close collisions that tend to trounce the point detector statistics. Particularly important in some problems, but not this sample problem, is that the ring detector has finite variance even in a scattering medium. The point detector does not.

For the sample problem, I chose a ring of radius 200 cm about the y -axis such that the ring detector went through the point where the point detector had been. The results are shown in Fig. 19. Note that everything is about the same as with the point detector, except that the ring detector's FOM has increased from 34 (Fig. 18) to 41 . More difference would be seen if the detector were in, or close to, cell 21.

XII. BIASING THE SOURCE

No attempt has been made to bias the source although

1. source particles moving downward ($-\hat{y}$) are unimportant because they immediately escape, and
2. high-energy source particles (14 MeV) penetrate better than low-energy source particles (2 MeV) so are more important.
MCNP has two types of source direction bias that will be employed, followed by source energy bias.

A. Cone Bias

Cone biasing, a type of angular biasing, is illustrated in Fig. 20. A cone is specified that divides the angular domain into two pieces, one inside and one outside the cone. The user then specifies the fraction of particles to be started inside the cone and outside the cone. All particles started inside are of one weight; all particles started outside are of another (in the absence of other source biasing, for example, source energy biasing). One consequence of all particles inside the cone having one weight and all particles outside the cone having a different one is that there is weight discontinuity at the cone surface. This weight discontinuity should be considered before using heavy cone biasing. Exponential source biasing, discussed in Sec. XII-B, should be considered if the cone bias weight discontinuity is too large.

Figure 21 shows the effects of using cone biasing to send 99% of the particles in the $+\hat{y}$ half-space. Note that the FOMs are roughly the same as before cone biasing. Indeed, the only major difference is that the number of particles started has dropped by a factor of 2 , as might be expected because almost all of the time is spent following particles moving in the $+\hat{y}$ direction. No improvement occurred because the source sampling is very fast and it does not take long for source particles going in $-\hat{y}$ direction to die. Stated another way, both runs had about 6000 particles sampled in the $+\hat{y}$ direction, so both runs gave roughly the same results. The cone bias saved only a small amount of time not sampling the 6000 particles that would have gone in the $-\hat{y}$ direction.

B. Exponential Source Biasing

In addition to the cone bias just discussed, MCNP has a continuous angle bias called exponential source biasing because the sampled density is an exponential in the cosine of the angle with respect to a specified reference direction. That is, the probability density function for exponential source biasing is

$$
\mathrm{p}(\mu)=\mathrm{Ce}^{\mathrm{k} \mu} \quad(\mu=\cos \theta),
$$

where $\mathrm{k}=$ user-selected biasing parameter $0.01 \leq \mathrm{k}$ ≤ 3.5 and $\mathrm{C}=$ normalization constant $\mathrm{C}=\mathrm{k} /\left(\mathrm{e}^{\mathrm{k}}-\mathrm{e}^{-\mathrm{k}}\right)$.
Table II shows how the particle weight at some angles varies with k . Note that although the exponential angle biasing has no weight discontinuities, large weight fluctuations can be introduced by setting k too large. For

SPECIFY:

1. $\nu=\cos (\theta)$ FOR FAVORED CONE
2. FRACTION OF PARTICLES STARTED INSIDE CONE

COMMENTS:

1. ALL PARTICLES INSIDE CONE HAVE IDENTICAL WEIGHTS
 2. ALL PARTICLES OUTSIDE CONE HAVE IDENTICAL WEIGHTS

Fig. 20. Cone Bias.
example, with $\mathrm{k}=3.5$, the weight ratio between $\theta=0^{\circ}$ and $\theta=180^{\circ}$ is 1094 .

I chose the exponential biasing parameter $\mathrm{k}=2$ on the basis of Table II. Recall that any particle departing the source in the $-\hat{y}$ direction ($\theta>90^{\circ}$) will be killed immediately. Thus I confined my attention to the weight variation between $\theta=0^{\circ}$ and $\theta=90^{\circ}$. For $k=2$, there is a factor of about 8 fluctuation in weight between $\theta=0^{\circ}$ and 90°. Experience indicated that a source particle at $\theta=0^{\circ}$ might be eight times as imortant as a source particle at 90°. Maybe 8 was not a particularly good guess, but I would be highly surprised if the "right" ratio were not within a factor of 3 .

Figure 22 shows the effects of exponential source biasing. The FOM columns indicate no drastic change and probably a small degradation in calculational efficiency. Thus source angle biasing did not appear effective for the sample problem. However, a conference participant (John Hendricks) suggested that source angle biasing might have worked better with the weight window technique (Sec. XIII) than with the geometry splitting/Russian roulette technique used here. I shall have more to say about Hendricks' suggestion in Sec. XIV.

C. Source Alteration in the Sample Problem

The runs so far have been with an isotropic source with the following energy distribution:

1. 25% of the particles started at 2 MeV .
2. 25% of the particles uniformly distributed between 2 MeV and 14 MeV .
3. 50% of the particles at 14 MeV .

In preparing this report I had intended to use 50% at 2 MeV and 50% at 14 MeV , so source energy biasing could be tried on a simple case. After discovering the input error that arose from using the first energy distribution above rather than the second, I decided that if the source was going to change anyway, a more interesting source could be used instead of the second distribution. All subsequent runs have 95% at 2 MeV and 5% at 14 MeV , making it easy to demonstrate biasing in energy. Note that this spectrum is much softer than the one used before, so tallies will drop and the calculation will therefore be more difficult than before.

The first run with the new source uses all the successful variance reduction techniques (with identical parameters) used for the sample problem with the old source except energy roulette. Specifically, the first run with the new source uses
CELL
PROGR PROBL

2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	10
11	11
12	12
13	13
14	14
15	15
16	16
17	17
18	18
19	19
20	20
21	21
22	22

TRA
ENTER

POPULATION COLLISIONS

COLLISIONS	NUMBER
* WEIGHT	WEIGHTED
(PER HISTORY)	ENERGY

FLUX	AVERAGE	AVERAGE
WEIGHTED	TRACK WEIGHT	TRACK MFP
ENERGY	(RELATIVE)	(CM)

6605	6406	14695	$1.9658 \mathrm{E}+00$	$2.0739 \mathrm{E}+00$
5640	5220	12812	$1.1148 \mathrm{E}+00$	$1.1286 \mathrm{E}+\mathrm{OO}$
5330	4934	12290	$6.0646 \mathrm{E}-01$	$8.2161 \mathrm{E}-01$
5074	4718	11282	$2.6844 \mathrm{E}-01$	$7.9748 \mathrm{E}-01$
4681	4306	10143	$1.2446 \mathrm{E}-01$	$8.0250 \mathrm{E}-01$
4464	4090	10110	$6.6575 \mathrm{E}-02$	$7.3839 \mathrm{E}-01$
4115	3799	9267	$3.0420 \mathrm{E}-02$	$7.6131 \mathrm{E}-01$
4161	3858	9322	$1.4746 \mathrm{E}-02$	$7.1952 \mathrm{E}-01$
4302	3985	9585	$7.4080 \mathrm{E}-03$	$7.0524 \mathrm{E}-01$
4424	4105	10231	$3.5739 \mathrm{E}-03$	$6.7007 \mathrm{E}-01$
4498	4157	10257	$1.7292 \mathrm{E}-03$	$6.8539 \mathrm{E}-01$
4683	4329	10229	$8.0300 \mathrm{E}-04$	$6.7528 \mathrm{E}-01$
4671	4340	10751	$3.8336 \mathrm{E}-04$	$6.9439 \mathrm{E}-01$
4614	4271	10494	$1.7918 \mathrm{E}-04$	$6.6366 \mathrm{E}-01$
4721	4384	10802	$8.6520 \mathrm{E}-05$	$6.0949 \mathrm{E}-01$
4653	4309	11002	$3.9905 \mathrm{E}-05$	$6.1264 \mathrm{E}-01$
4359	4060	9952	$1.6436 \mathrm{E}-05$	$6.4482 \mathrm{E}-01$
3916	3823	8868	$6.4892 \mathrm{E}-06$	$6.8815 \mathrm{E}-01$
4486	16134	0	0.	$1.4905 \mathrm{E}+00$
13367	26736	13672	$6.7894 \mathrm{E}-11$	$1.5740 \mathrm{E}+00$
1063	1063	0	0.	$7.2051 \mathrm{E}-01$
103827				
	123027	205764	$4.2059 \mathrm{E}+00$	

$6.0195 E+00$	$6.6003 E-01$	$6.8857 E+00$
$3.9936 E+00$	$8.5805 E-01$	$5.9323 E+00$
$3.2831 E+00$	$1.0041 E+00$	$5.5831 E+00$
$3.1278 E+00$	$1.0501 E+00$	$5.6114 E+00$
$2.9926 E+00$	$1.0843 E+00$	$5.6203 E+00$
$2.7183 E+00$	$1.1594 E+00$	$5.4194 E+00$
$2.6942 E+00$	$1.1432 E+00$	$5.5398 E+00$
$2.5393 E+00$	$1.1895 E+00$	$5.4467 E+00$
$2.4389 E+00$	$1.2186 E+00$	$5.4138 E+00$
$2.3164 E+00$	$1.2352 E+00$	$5.3339 E+00$
$2.2800 E+00$	$1.2411 E+00$	$5.3575 E+00$
$2.2984 E+00$	$1.2314 E+00$	$5.4287 E+00$
$2.2499 E+00$	$1.2361 E+00$	$5.4183 E+00$
$2.1724 E+00$	$1.2611 E+00$	$5.3735 E+00$
$2.0604 E+00$	$1.3078 E+00$	$5.2351 E+00$
$1.9942 E+00$	$1.3234 E+00$	$5.2048 E+00$
$2.0619 E+00$	$1.2907 E+00$	$5.3094 E+00$
$2.1795 E+00$	$1.2469 E+00$	$5.4875 E+00$
$3.5288 E+00$	$3.9695 E-01$	$1.0000+123$
$3.9432 E+00$	$5.5103 E-04$	$7.2941 E+02$
$1.9923 E+00$	$1.8421 E-05$	$1.0000+123$

DUMP NO. 2 ON FILE RUNTPF
NPS $=$ - 6049
CTM $=2.60$

- AS EXPECTED, ABOUT HALF

CONCLUSION: NO IMROVEMENT BECAUSE DID NOT TAKE LONG FOR SOURCE PARTICLES GOING $\mathbb{I N}^{-\hat{y}} \mathrm{y}$ DIRECTION TO DIE.

Fig. 21. Cone biasing- 99% in $+\hat{y}$ half-space.

1. energy cutoff,
2. geometry splitting/Russian roulette (refined parameters),
3. forced collision in cell 21 ,
4. DXTRAN with DXCPN probabilities, and 5. ring detector.

Figure 23 shows the results of the first run. Note that, as expected, the tallies and FOMs have decreased substantially. The geometry splitting could probably be improved somewhat to keep the "tracks entering" roughly constant.

TABLE II. Exponential Biasing Parameter			
Cumulative			
k	Probability	Theta	Weight
.01	0	0	0.990
	0.25	60	0.995
	0.50	90	1.000
	0.75	120	1.005
	1.00	180	1.010
1	0	0	0.432
	0.25	42	0.552
	0.50	64	0.762
	0.75	93	1.230
	1.00	180	3.195
	0	0	$0.245^{\text {a }}$
	0.25	31	0.325
	0.50	48	0.482
	0.75	70	0.931
	1.00	180	13.40
3.5	0	0	0.143
	0.25	23	0.190
	0.50	37	0.285
	0.75	53	0.569
	1.00	180	156.5

${ }^{2} \mathrm{k}=2$ was chosen because the weight is approximately 2 at 90°, which is eight times the weight at 0°; this does not seem unreasonable.

Before worrying about optimizing the geometry splitting, I shall discuss the effect of source energy biasing because first, geometry splitting optimization has already been illustrated, and second, the source energy biasing will increase the energy spectrum of the tracks, making the average track penetrate better. Tracks with longer free paths will need less splitting to keep the tracks entering approximately constant. In short, the "tracks entering" column in Fig. 23 can be expected to improve because of source energy biasing.

D. Source Energy Bias

MCNP allows biasing the source in the energy domain as well as in the angular domain. In biasing, the SB card is used with the SI and SP cards. The SI card supplies energy ranges, the SP card supplies analog probabilities, and the SB card supplies the actual probabilities used to sample the energy ranges. Before attempting a long run, look at the source bias information in the MCNP output and check that the weight multiplier is not unreasonable. Figure 24 is an example of the source bias information from the run described next.

Recall that the natural source is 9.5% at 2 MeV and 5% at 14 MeV . It is a good guess (based on experience) that the $14-\mathrm{MeV}$ source neutrons are much more important than the $2-\mathrm{MeV}$ source neutrons; therefore, I biased the source to get 10% at 2 MeV and 90% at 14 MeV . The "weight multiplier" column in Fig. 24 shows that the ratio of weights is 171 ; that is, the source energy biasing assumes that $14-\mathrm{MeV}$ neutrons are 171 times as important as $2-\mathrm{MeV}$ neutrons. This seems too high until one considers that 180 cm of concrete must be penetrated. The $14-\mathrm{MeV}$ neutrons can probably penetrate 171 times better. In any case, thousands of neutrons are run, which means that there will be hundreds of $2-\mathrm{MeV}$ source neutrons. Thus the statistics can indicate whether 171 is much too large because $2-\mathrm{MeV}$ source neutrons are not precluded by the source biasing.

Figure 25 shows the results of the source energy biasing. All FOMs increased by a factor of 4 and, as predicted, the "tracks entering" column has improved substantially. Source energy biasing has definitely improved things, but could the same improvement be obtained using the energy splitting and roulette scheme that was successful earlier?

E. Energy Roulette (Without Source Energy Bias) Applied to the Sample Problem

Figure 26 shows the results of removing the source energy bias and inserting the energy roulette game:
50% survival crossing $5-\mathrm{MeV}, 1-\mathrm{MeV}, 0.3-\mathrm{MeV}$, $0.1-\mathrm{MeV}$ and $0.03-\mathrm{MeV}$ energy bounds.

The FOMs are a factor of 2 better than the reference case (Fig. 23) that had no biasing in the energy domain, but a factor of 2 worse than the source energy biasing. The "tracks entering" column is flat deep into the concrete cylinder but decreasing very fast at the source end. This decrease is probably because the $2-\mathrm{MeV}$ particles fail to survive the energy roulette game. Indeed, a look at the creation and loss ledger (Fig. 27) tends to confirm that energy roulette is killing a lot of tracks. The energy splitting and Russian roulette are the "ENERGY IMPORT" entries.

CE PROGR	PROBL	TRACKS ENTERING	POPULATION	COLLISIONS		NUMBER WEIGHTED ENERGY	FLUX WEIGHTED ENERGY	AVERAGE TRACK WEIGHT (RELATIVE)	AVERAGE TRACK MFP (CM)	NOTE: HAS
2	2	5914	5720	11445	$1.9890 \mathrm{E}+00$	2.2985E+00	6. 1297E+00	7.7324E-O1	$6.9710 \mathrm{E}+00$	DECREASED
3	3	5307	4923	11491	$1.0608 E+00$	$1.0972 \mathrm{E}+00$	3.9329E+00	8. $1038 \mathrm{E}-\mathrm{O} 1$	$5.8903 \mathrm{E}+00$	
4	4	5111	4763	11787	$5.9832 \mathrm{E}-01$	8.5958E-01	$3.2519 \mathrm{E}+00$	$8.8653 E-01$	$5.5618 \mathrm{E}+00$	
5	5	5180	4810	11538	2.7965E-01	7.2047E-Ot	2.9029E+00	9.1888E-01	$5.4167 \mathrm{E}+00$	
6	6	5015	4616	11211	1.3685E-01	$7.0215 \mathrm{E}-01$	$2.7985 \mathrm{E}+00$	9.3529E-01	$5.3996 \mathrm{E}+00$	
7	7	4695	4312	10524	6.2767E-02	$7.2576 \mathrm{E}-\mathrm{O1}$	2.7575E+00	9.1509E-01	$5.4285 E+00$	
8	8	4242	3945	9629	$2.9178 \mathrm{E}-02$	$7.1694 \mathrm{E}-01$	$2.6206 \mathrm{E}+00$	9.2397E-01	$5.3921 \mathrm{E}+00$	
9	9	4161	3854	9329	1.4144E-02	6.1629E-01	$2.4115 \mathrm{E}+00$	9.8567E-O1	$5.2563 \mathrm{E}+00$	
10	10	4285	3955	9734	6.4125E-03	6.9663E-01	2.4682E+00	9.3585E-01	$5.3448 \mathrm{E}+00$	
11	11	4384	4053	9845	3.0105E-03	6.9835E-01	2.3887E +00	9.2738E-01	$5.3195 \mathrm{E}+00$	
12	12	4273	3992	9556	1.3470E-03	$6.7214 \mathrm{E}-01$	2.3123E+00	9.2956E-01	$5.2919 \mathrm{E}+00$	
13	13	4117	3814	8807	5.9640E-04	6.1880E-01	2.3277E+00	9.3717E-01	$5.2995 E+00$	
14	14	4147	3828	9325	2.7289E-04	7.4179E-O1	$2.4115 E+00$	8.9202E-01	$5.4420 \mathrm{E}+00$	
15	15	4261	3980	9609	1.3223E-04	7.3805E-O1	2.3203E+00	$8.9575 E-01$	$5.3573 \mathrm{E}+00$	
16	16	4505	4207	9857	5.8674E-05	7.5736E-01	$2.4096 E+00$	8.7379E-01	$5.5164 \mathrm{E}+00$	
17	17	4715	4376	10409	2.7660E-05	7.9721E-01	$2.4079 \mathrm{E}+00$	$8.5441 \mathrm{E}-\mathrm{O1}$	$5.5688 \mathrm{E}+00$	
18	18	4973	4612	11199	1.4528E-05	7.1284E-01	2.2599E+00	9.0298E-01	$5.4450 E+00$	
19	19	4813	4667	10456	5.8531E-06	$7.3157 \mathrm{E}-\mathrm{O1}$	$2.3271 E+00$	8.8620E-01	$5.5518 \mathrm{E}+00$	
20	20	5247	17752	0	0.	$1.6527 \mathrm{E}+00$	$3.7587 E+00$	3.1599E-01	$1.0000+123$	
21	21	14447	28900	14780	5.7952E-11	$1.7306 \mathrm{E}+00$	$4.2168 E+00$	3.9238E-04	$7.2168 \mathrm{E}+02$	
22	22	1218	1218	0	0.	$2.9313 \mathrm{E}-\mathrm{O} 1$	$1.3919 \mathrm{E}+00$	2.3560E-O5	$1.0000+123$	
	tal	105010	126297	200531	4.1826E+OO					

IF Anything, the results are worse

Fig. 22. Exponential source biasing, $\mathrm{K}=2.0$.

Fig. 24. SI, SP, and SB cards in source energy bias.

Fig. 26. No energy source bias; energy roulette used.

RUN TERMINATED 19 SECONDS BEFDRE JOB TIME LIMIT.
SAMPLE PROBLEM FOR MFE TALKS S O9/19/83 $11: 13: 02$

$\begin{array}{lrr}\text { PREDICTED AVG OF SRC FUNCTION ZERO } & 2.6000 E+00 \\ \text { TRACKS PER NEUTRON STARTED } & 2.0209 E+00 \\ \text { COLLISIONS PER NEUTRON STARTED } & 6.2437 E+00 \\ \text { TOTAL COLLISIONS } & 415052 \\ \text { NET MULTIPLICATION } & 1.0004 E+00 & .0001\end{array}$
4.66 MINUTES
4.61 MINUTES
1.4420E+O4
$371584=1325600 B$ 4653934
3305404155025121 B
7246405510430155 B

AND LOSS (FOR ACCOUNT ING ONLY)	
LARGE NUMBER LOST	
TO ENERGY ROULETTE	TRACKS
ESCAPE	62929
SCATTERING	0
CAPTURE	2514
ENERGY CUTOFF	5590
TIME CUTOFF	0
WEIGHT CUTOFF	0
WEIGHT WINDOW	0
CELL IMPORTANCE	14468
ENERGY IMPORT.	48832
DXTRAN	5
EXP. TRANSFORM	0
DEAD FISSION	0
TOTAL	134338

AVERAGE LIFETIME, SHAKES
ESCAPE
5.2613E-01
6.7963E-O1

CAPTURE
CAPTURE OR ESCAPE $5.7963 E-O 1$

ANY TERMINATION $2.5120 \mathrm{E}+\mathrm{OO}$

\quadWEIGHT (PER SOURCE	ENERGY
$7.6327 E-O 1$	$1.6367 E+00$
0.	$8.6664 E-01$
$8.6574 E-03$	$9.5842 E-O 2$
$2.3566 E-01$	$1.2582 E-03$
0.	0.
0.	0.
0.	0.
$1.1712 E-01$	$1.0112 E-01$
$4.5701 E-01$	$1.4924 E-01$
$7.8099 E-10$	$8.0133 E-10$
0.	0.
0.	0.
$1.5817 E+00$	$2.8508 E+00$

| COMPUTER TIME SO FAR IN THIS RUN | 4.66 MINUTES |
| :--- | :--- | :---: |
| COMPUTER TIME IN MCRUN (4CO) | 4.61 MINUTES |
| SOURCE PARTICLES PER MINUTE | $4.4420 E+O 4$ |
| FIELD LENGTH | $371584=1325600 B$ |
| RANDOM NUMBERS GENERATED | 4653934 |
| LAST STARTING RANDOM NUMBER | $3305404155025121 B$ |
| NEXT STARTING RANDOM NUMBER | $7246405510430155 B$ |

CUTOFFS	
TCO	$1.0000+123$
ECO	$1.0000 E-02$
WC1	0.
WC2	0.

TOTAL NEUTRONS BANKED	61820
PER SOURCE PARTICLE	$9.2997 E-01$
TOTAL PHOTONS BANKED	0
PER SOURCE PARTICLE	0.

PER SOURCE PARTICLE O.
MAXIMUM NUMBER EVER IN BANK 44
BANK OVERFLOWS TO DISK O

F. Source Energy Biasing and Energy Roulette Applied to the Sample Problem

Both source energy biasing and energy roulette individually improved the FOMs. The natural temptation at this point is to try both techniques and hope for improvement. Before trying both techniques, a suspicious person might wonder whether two energy biasing techniques would be too much of a good thing. Would the calculation be overbiased? Fortunately, for reasons explained below, the techniques work well together.

Figure 28 gives the results of using both source energy biasing and energy roulette. First, note that the "tracks entering" column looks very nice. Second, note that the FOMs are

1. a factor of 4 better than energy roulette alone,
2. a factor of 2 better than source energy bias alone, and
3. a factor of 8 better than with neither energy roulette nor source energy bias.
Hindsight, aided by elementary arithmetic ($4 \cdot 2=8$) indicates that the two techniques operate essentially independently. Although both are energy biasing, they are biasing different things. Source energy biasing is applied only at the source and supplies the right initial spectrum; thereafter it does nothing to keep the right spectrum after collisions. In contrast, the energy roulette technique does nothing to alter the effects of the initial spectrum. That is, if $\mathrm{N}_{1}, 14-\mathrm{MeV}$ source tracks produce a track distribution $n_{1}(\vec{r}, \vec{v}, t)$, biasing the source to instead produce $\mathrm{N}_{2} 14-\mathrm{MeV}$ source tracks will produce a track distribution $n_{2}(\vec{r}, \vec{v}, t)=\left(N_{2} / N_{1}\right) n_{1}(\vec{r}, \vec{v}, t)$. The energy roulette game takes no account of the source energy biasing. Synergism can be viewed as follows: the source energy bias produces good initial track distribution on which the energy roulette works to produce a good subsequent track distribution. However, if the initial track distribution is not good, the subsequent track distribution cannot be good because the energy roulette game is independent of the initial track distribution and therefore cannot "correct" it. Energy splitting/Russian roulette thus contrasts with the next energy-biasing technique considered, the space-energydependent weight window. The weight window, if set properly, will correct poor track distributions and if set poorly, will destroy good track distributions.

XIII. THE WEIGHT WINDOW TECHNIQUE

The weight window (Fig. 29) is a space-energy-dependent splitting and Russian roulette technique. For each space-energy phase-space cell, the user supplies a lower weight bound and an upper weight bound. These weight bounds define a window of acceptable weights. If a particle is below the lower weight bound, Russian
roulette is played and the particle's weight is either increased to be within the window, or the particle is terminated. If a particle is above the upper weight bound, the particle is split so that all the split particles are within the window. No action is taken for particles within the window.

Figure 30 is a more detailed picture of the weight window. Three important weights define the weight window in a space-energy cell,

1. W_{L}, the lower weight bound,
2. W_{S}, the survival weight for particles playing roulette, and
3. W_{U}, the upper weight bound.

The user specifies (WFN cards) W_{L} for each spaceenergy cell, and W_{S} and W_{U} are calculated using two problem-wide constants, C_{S} and C_{U} (WDWN card), as $\mathrm{W}_{\mathrm{S}}=\mathrm{C}_{\mathrm{S}} \mathrm{W}_{\mathrm{L}}$ and $\mathrm{W}_{\mathrm{U}}=\mathrm{C}_{\mathrm{U}} \mathrm{W}_{\mathrm{L}}$. Thus all cells have an upper weight bound C_{U} times the lower weight bound and a survival weight C_{S} times the lower weight bound.

A. Weight Window Compared to Geometry Splitting

Although both weight window and geometry splitting employ splitting and Russian roulette, there are some important differences:

1. the weight window is space-energy dependent, whereas geometry splitting is only space dependent;
2. the weight window discriminates on particle weight before deciding appropriate action, whereas geometry splitting is done regardless of particle weight;
3. the weight window works with absolute weight bounds, whereas geometry splitting is done on the ratio of the importances across a surface;
4. the weight window can be applied at surfaces, collision sites, or both, whereas geometry splitting is applied only at surfaces; and
5. the weight window can control weight fluctuations introduced by other biasing techniques by requiring all particles in a cell to have weight $\mathrm{W}_{\mathrm{L}}<\mathrm{W}$ $<W_{U}$, whereas the geometry splitting will preserve any weight fluctuations because it is weight independent.

B. Special Weight Window Features Described in MCNP Manual ${ }^{1}$

1. There is a maximum split/roulette feature that limits the amount of splitting/rouletting that can occur at any particular weight window game.
2. The window is always adjusted to be at least a factor of 2 wide, that is $W_{U} / W_{L} \geq 2$.
3. A spatial weight window (only one energy range) may be specified inversely proportional to

Fig. 29. The weight window. Tracks entering a phase-space cell with weight above the window's upper bound are split into several tracks within the window. Those with weights below the window play Russian Roulette. Therefore, particles passing through the window have weights within the window bounds.
previously optimized cell importances from the geometry-splitting technique.

C. Specifying the Weight Windows for the Sample Problem

The weight window parameters should be such that the weight windows are inversely proportional to the space-energy importance. Thus one must either guess what the importance function looks like or use information from experience. The geometry-splitting optimization has already provided a spatial importance function that can be used (see item 3 in Sec. XIII.B) to obtain a space-only weight window. If the cell importances were not available, one could either pick window parameters that flattened the track distribution (in the same iterative procedure used for geometry splitting) or one could use the weight window generator described later.
The weight windows are chosen according to available cell importances (except for cells 20-22).

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{L}}=0.5 / \text { cell importances } \\
& \mathrm{W}_{\mathrm{S}}=3.0 \cdot \mathrm{~W}_{\mathrm{L}} \\
& \mathrm{~W}_{\mathrm{U}}=5.0 \cdot \mathrm{~W}_{\mathrm{L}}
\end{aligned}
$$

lower weight bound survival weight upper weight bound

Furthermore (see item 1 in Sec. XIII.B), no particle (in any given game) will be split more than five for one, nor rouletted harsher than one in five. The weight window game was turned off in cells 20-22 because that part of the problem is too angle dependent for the weight window to be effective. The weight window was applied both at collisions and surface crossings.

D. Spatial Weight Window Results

The source energy bias and energy roulette were removed for this run. The following techniques were used:

1 energy cutoff,
2. forced collision in cell 21,
3. DXTRAN with DXCPN probabilities,

Fig. 30. Detail of the weight window.

CELL		TRACKS ENTERING	POPULATION	COLLISIONS	COLLISIONS * WEIGHT (PER HISTORY)	NUMBER WEIGHTED ENERGY	flux WEIGHTED ENERGY	AVERAGE TRACK WEIGHT (RELATIVE)	average TRACK MFP (CM)
PROGR	PROBL								
				122223	$2.5784 \mathrm{E}+00$	8.0176E-01	$1.6607 \mathrm{E}+00$	9.9061E-01	$5.0620 E+00$
2	2	52284	1	+ 65628	1.2195E+00	4.1592E-O1	$1.0881 \mathrm{E}+00$	8.8647E-01	4.1249E+00
3	3	15527	10937 9759	55801	4.8096E-01	3. $3695 \mathrm{E}-01$	9.6786E-01	$4.1114 \mathrm{E}-01$	$3.9027 E+00$
4	4	9275	9759	55801	1.6131E-O1	3.1896E-O1	$1.0225 E+00$	1.5173E-01	$3.9083 \mathrm{E}+00$
5	5	6744	9174	32120	5.1613E-02	3.2700E-01	1. $1480 \mathrm{E}+00$	7.5598E-O2	$4.0113 \mathrm{E}+00$
6	6	5230	5994	32120 21736	1.7265E-02	3.4312E-01	$1.2971 \mathrm{E}+00$	$3.7451 \mathrm{E}-02$	4. $1350 \mathrm{E}+00$
7	7	3561	4108	21736 14601	5.7387E-03	4.1889E-O1	$1.5625 \mathrm{E}+00$	$1.8594 \mathrm{E}-\mathrm{O} 2$	4. $4885 \mathrm{E}+00$
8	8	2478	2807	14601	5.7387E-03 $2.1335 E-03$	4.7275E-01	1.7415E+00	9.3591E-03	$4.6580 \mathrm{E}+00$
9	9	1833	2096	10746	2.1533E-O4	5.4895E-01	$2.0562 \mathrm{E}+00$	4.5771E-03	$5.0049 \mathrm{E}+00$
10	10	1441	1596	7522	8.4523E-04	5.6917E-01	$2.0650 E+00$	2.1716E-O3	$5.1335 \mathrm{E}+00$
11	11	1362	1446	7522 6771	3.4185E-O4	6. 1261 E - $\dot{\text { O }} 1$	$2.1111 \mathrm{E}+00$	1.1042E-03	$5.2412 \mathrm{E}+00$
12	12	1233	1258	6771	$1.5712 \mathrm{E}-04$ $6.8100 \mathrm{O}-05$	6. $2743 \mathrm{E}-\mathrm{Oi}$	$2.0964 E+00$	5.2149E-04	$5.2389 \mathrm{E}+00$
13	13	1183	1250	6324	6.8100E-05	5.8460E-O1	$2.0346 \mathrm{E}+00$	1.9258E-04	5. $1695 \mathrm{E}+00$
14	14	1033	1347	6934	$2.8037 E-05$ $1.1938 \mathrm{E}-05$		2. $1922 \mathrm{E}+00$	9.5655E-05	5. $3455 \mathrm{E}+00$
15	15	1095	1218	5960	1.1938E-05	6.4650E-01	2. $1985 \mathrm{E}+00$	4.6191E-05	$5.3729 \mathrm{E}+00$
16	16	1046	1161	5564	5.3848E-06	6.7465E-01	2. $2742 \mathrm{E}+00$	2.3142E-05	$5.4961 \mathrm{E}+00$
17	17	1005	1060	5159	$2.4907 \mathrm{E}-06$ $1.3226 \mathrm{E}-06$	7.2900E-01	$2.2244 \mathrm{E}+00$	1.0671E-05	$5.4990 E+00$
18	18	1174	1204	6139	$1.3226 E-06$ $5.7313 \mathrm{E}-07$	7.2447E-01	$2.2032 \mathrm{E}+00$	4.5460E-06	$5.5027 \mathrm{E}+00$
19	19	681	1330	5902	5.7313E-07	1.2647E+00	$3.3709 \mathrm{E}+00$	4.8959E-07	1.0000+123
20	20	3186	10629	-	\%. $6930 \mathrm{E}-12$	1.6975E+00	4.0827E+00	$5.6635 \mathrm{E}-10$	$7.4286 \mathrm{E}+\mathrm{O} 2$
21	21	10006	20013	10379	5.693OE-12	4.6992E-O1	6.1713E-O1	$1.0980 \mathrm{E}-10$	$1.0000+123$
22	22	946	946	\bigcirc	0				
TOTAL		122323	136480	448104	$4.5183 E+00$				

FOM 3 HERE AND 4 FOR SPLITTING DIRECTLY, BUT STATISTICS ARE BAD

Fig. 31. Window (space only) from importances.
4. ring detector, and
5. spatial weight window from refined cell importances.
Figure 31 shows the spatial weight window results. Comparison with Fig. 23 shows that the FOM (tally 1) is 3 for the weight window versus 4 for geometry splitting, but the statistics are bad on both runs. The main point is that a spatial weight window and geometry splitting give comparable results. In fact, in most cases where the statistics are good enough to judge, a spatial window is marginally superior to geometry splitting.

XIV. THE WEIGHT WINDOW GENERATOR

The weight window generator semiautomatically obtains optimized weight windows. The generator can be very useful for experienced Monte Carlo users; it is not recommended for novices. Weight window generator details are described in the September 16, 1982, X-6 memo, titled "Use of the Weight Window Generator."

A. Comments

1. The generator requires considerable user understanding and and intervention to work effectively.
2. The generator is scheduled to become a standard MCNP feature, but is currently only a standard (maintained) patch to MCNP.
3. Running MCNP with the generator typically costs an extra $20-50 \%$ of the required time for running MCNP without the generator.
4. Tracking is not affected by the generator; that is, every particle executes a random walk identical to its random walk when the generator is not used.

B. Importance Generator Theory

The importance of a particle at a point P in phasespace is equal to the expected score a unit weight particle will generate. Imagine dividing the phase-space into a number of phase-space "cells" or regions. The importance of a cell can then be defined as the expected score generated by a unit weight particle after entering the cell. Thus with a little bookkeeping, the cell's importance can be estimated as

$$
\begin{aligned}
& \text { Importance } \\
& \text { (expected } \\
& \text { score) }
\end{aligned}=\frac{\begin{array}{c}
\text { total score because of particles } \\
\text { (and their progeny) entering the cell }
\end{array}}{\text { total weight entering the cell }} .
$$

Consider the example of Fig. 32, which represents a generic phase-space geometry of four cells. In this example, the capture probability at each collision is 0.5 , and capture is treated implicitly by weight reduction in conjunction with a weight cutoff. Particles are born in cell 1 and are scored as they leave the slab from cell 4. The S values are used to determine the splitting and Russian roulette games played at boundary crossings between the four phase-space cells. In practice, these S values are usually the user's best initial guess at an importance function. Each particle trajectory is consecutively numbered. Table III shows the importance estimation process for the three particle histories of Fig. 32. Note also that this importance estimation works regardless of the variance reduction techniques used during the calculation (tracks that reenter the same phase-space cell should not be counted twice as weight entering).

C. Setting the Weight Window from the Estimated Importances

Although the generator and weight window concepts are independent, they are complementary. One cannot

TABLE III. Importance Estimation Process for Particle Histories in Fig. 32.

Row	Description	Cell 1	Cell 2	Cell 3	Cell 4
Weight					
1	Trajectories entering	1, 8, 13	3, 4, 9, 10	14, 15	6,17
2	Weight entering associated with above trajectories	1, 1, 1	$0.25,0.25,0.5,0.5$	0.5, 0.5	0.5, 0.5
3	Total weight entering	3	1.5	1	1
Score					
4	Trajectories entering that resulted in score	7,17	7	17	7,17
5	Scores associated with above trajectories	0.25, 0.5	0.25	0.5	0.25, 0.5
6	Total score	0.75	0.25	0.5	0.75
Estimate					
7	Estimated importance Row 6/Row 3	0.25	0.167	0.5	0.75

Fig. 32. Generic Monte Carlo problem of four cells with three particle histories, illustrating how importances can be estimated.
insist that every history contribute the same score (a zero variance solution), but by using a window inversely proportional to the importance, one can insist that the mean score from any track in the problem be roughly constant. In other words, the window is chosen so that the track weight times the mean score (for unit track weight) is approximately constant. Under these conditions, the variance is caused mostly by the variation in the number of contributing tracks rather than by the variation in track score.

Thus far, two weight window properties remain unspecified, the constant of inverse proportionality and the width of the window. Empirically, it has been observed that an upper weight bound five times the lower weight bound works well, but the results are reasonably insensitive to this choice anyway. The constant of inverse proportionality is chosen so that the lower weight bound in some reference cell is chosen appropriately. For example, in the problem described here, the constant was chosen so that the lower weight bound in the source cell was 0.5 . The source particles were of unit
weight, so they all started within the ($0.5-2.5$) window. In most instances the constant should be chosen this way so the source particles start within the window.

D. Spatial Generator Results

Figure 33 is the same run as Fig. 31 except that the generator is turned on. Note that the runs track perfectly and the generator has slowed the calculation by 4%. Typically, the generator will slow the calculation by $20-50 \%$, but of course the generator can be turned off when a good weight window has been generated. Thus no time penalty need be paid for the final run to grind the statistics down.

Figure 34 shows the generated spatial weight window inserted in the input file for the next run. Many windows will be displayed, so I will explain how to interpret the WFN card entries, lines 67-72. Line 67 indicates that the first (and here the only) neutron weight window has an upper energy range of 100 MeV . If there were more

Fig. 34. Input for generating space-energy window.
energy ranges, the upper energy bound for the $\mathrm{i}^{\text {th }}$ window would be the lower energy bound for the $\mathrm{i}+1^{\text {st }}$ window. The lower energy bound for the first window is always zero. Lines 68 to 72 are the lower weight bounds for cells 1 to 23 and read, in order, from left to right and top to bottom. For example, the lower weight bound in cell 15 is $3.5905 \mathrm{E}-06$. A zero lower weight bound turns off the weight window and a -1 indicates a zero importance region where the particle is terminated upon entering.

Earlier, I cautioned that user intervention is required. This intervention can be seen in the WFN1 entries (Fig. 34) for cells 20-22 where I turned off the weight window game by entering zeros because I did not want to use the window in this highly angle-dependent part of the problem. The window behaved smoothly, falling off roughly by factors of 2 ; thus the weight window needed no further intervention.

E. Generating a Space-Energy Weight Window

As mentioned earlier, the spatial weight window of Fig. 34 looks reasonable and is probably about as good as it will get. Furthermore, experience has proved biasing in the energy domain to be quite important. Therefore, the generator was employed, using the input shown in Fig. 34, to generate a space-energy window. The energy ranges chosen were

0	-	1	MeV
1	-	2.01	MeV
2.01	-	4	MeV
4	-7	MeV	
7	-10	MeV	
10	-100	MeV	

The choices were based mostly on experience and not on detailed analysis nor on inspiration. In particular, note that factors of 2 pervade the Monte Carlo choices. Note (line 79) that DXTRAN has been turned off while a space-energy window is generated (C indicates a comment card). This is perfectly reasonable because the space-energy window will be used to penetrate the concrete and will therefore be optimized for tally 1 ; DXTRAN is used to improve tallies 4 and 5 but not tally 1.

Figure 35 summarizes the run that used the spatial window of Fig. 34 to produce a space-energy window (Fig. 36). Note that removing DXTRAN allowed many more particles to be run.

F. Discussion of the Generated Space-Energy Window

The space-energy window produced is shown in Fig. 36. Wherever a zero entry appears, it means that the
generator was unable to estimate importance for that space-energy cell because no particle ever left these space-energy cells and contributed to tally 1 . Note that the zero entries are usually far from the tally surface and low in energy, indicating that low-energy particles far from the tally surface have a hard time tallying, as expected. If a zero is left as an entry, then no weight window game will be played, an undesirable situation; thus the user must supply nonzero weight windows.
Figure 37 shows how I adjusted the weight windows. An adjusted window entry is indicated by three trailing zeros in the entry. The window was adjusted according to two general patterns observed from Fig. 36. If $W_{i j}$ is the lower weight bound in energy region i and spatial cell j , then these two general patterns can be expressed as $W_{i j}<W_{i-m, j}$ and $W_{i j}<W_{i, j, n}$, where m and n are positive integers. Thus Fig. 37 was obtained by interpolation and extrapolation from Fig. 36.

G. Results Using the Space-Energy Weight Window

The space-energy window of Fig. 37 was inserted in the input file; Fig. 38 shows the results. Tally 1 has improved nicely from an FOM of 6 to 43 . However, note in the middle of Fig. 38 that the source particles are not starting within the window, indicating that the source should be biased so that the source particles start in the weight window.

The window (in source cell 2) for $2-\mathrm{MeV}$ particles is 9 to 45 , (recall that the upper bound is 5 times the lower bound) (Fig. 37), whereas the window for $14-\mathrm{MeV}$ particles is .05 to .25 . Recall (Fig. 36) that previous source energy biasing gave source weights of 9.5 and 0.055 at 2 MeV and 14 MeV , respectively. From this lucky coincidence we already know the proper source biasing. Without this coincidence, one could experiment with different source energy biasing until the last column of Fig. 36 indicated source weights within the window.

H. Results Using Space-Energy Window and Source Energy Bias

Figure 39 shows the effect of starting the source particles within the window; the FOM for tally 1 improves from 43 (Fig. 38) to 75 . The only peculiar thing in Fig. 39 is the sudden rise and fall in the "tracks entering" and "population" columns around cells 6 and 7. A reexamination (see Fig. 37) of the adjusted space-energy window reveals that the window for cell 6 in the sixth energy range looks wrong; it does not fit the general pattern. This entry was altered from $3.4489 \mathrm{E}-04$ to 2.2000E-3. Also, the window for cell 16 in the second energy range was altered from $4.5208 \mathrm{E}-6$ to $1.0000 \mathrm{E}-5$. Although cell 16's window was not responsible for the

Fig. 35. Spatial window with no DXTRAN.

Fig. 36. Space-energy weight window produced.

Fig. 37. Adjusted (by hand) space-energy weight window. Look for three zeros as indication of hand adjustment.

Fig. 38. Space-energy window.

peculiarity, 10^{-5} just looked more reasonable because in energy range 2 , the windows were decreasing by factors of 4 . Figure 40 shows the corrected window.

Figure 41 shows the results of correcting the bad window. The "tracks entering" and "population" columns look much better. Perversely, the FOM decreases, but the decrease is not statistically significant and the corrected window was used for subsequent runs.

I. Exponential Source Angle Biasing and the Weight Window

Recall that exponential source angle biasing did not improve the FOMs for the problem. As with most biasing techniques, competing factors affect calculation. Exponential source angle biasing preferentially samples source neutrons moving close to the $+\hat{y}$ direction. Thus source neutrons that are more likely to score are sampled more often. However, the biasing also introduces a weight fluctuation that the geometry splitting/Russian roulette technique preserves. Probably the negative ef-
fects of this weight fluctuation cancelled the benefit of sampling more important source neutrons more often.

A conference participant (John Hendricks, Los Alamos) suggested that the exponential source angle biasing might have worked if it had been tried with the weight window technique rather than with geometry splitting/Russian roulette. He said that the weight window would probably alleviate the weight fluctuation problem; thus the exponential source angle biasing, in conjunction with the weight window, probably would im-. prove the FOMs.

I agree with his assessment and include it here, without proof, as a good example of analyzing the interaction of different variance reduction techniques. However, the source angle biasing should not be expected to yield the same dramatic improvement in FOM as the source energy bias because the particles that tally will typically have many collisions and will quickly forget their source angle. In other words, after a few collisions, a preferred source particle will be essentially identical (except possibly its weight) to an unpreferred

Fig. 40. Adjusted (by hand) space-energy weight window.

Fig. 41. Bad window corrected.
source particle. In contrast, a $14-\mathrm{MeV}$ source particle will typically have higher energy in every part of the problem than a $2-\mathrm{MeV}$ source particle would have. Thus the benefit of source energy biasing is felt throughout the entire problem, but the source angle biasing will be felt only within a few free paths of the source. Most of the sample problem is more than a few free paths from the source, so I would be surprised to see more than a 10% FOM improvement with any type of source angle bias.

XV. THE EXPONENTIAL TRANSFORM

The exponential transform in MCNP stretches distances between collisions in the forward direction and shrinks them in the backward direction by modifying the total macroscopic cross section by

$$
\begin{gathered}
\sigma_{\text {modified }}=\sigma_{\text {true }}(1-\mathrm{p} \mu) \\
\mu \stackrel{=1 \rightarrow \text { forward direction, },}{ }
\end{gathered}
$$

where μ is the cosine of the angle with respect to a reference direction (currently only $+\hat{y}$ in MCNP) and p is the user input exponential transform parameter ($0 \leq \mathrm{p} \leq 1$) with
$\mathrm{p}=0 \quad$ no bias
$\mathrm{p}=1 \quad$ complete bias.
Many claims for the exponential transform exist in the Monte Carlo literature, but they are usually based on analysis of one-dimensional problems and often on onedimensional monoenergetic problems. In practice at Los Alamos, the exponential transform is considered a dangerous biasing technique unless accompanied by weight control (for example, the weight window in MCNP), In fact, so many MCNP users had problems obtaining reliable mean and variance estimates with the exponential transform (when used without the weight window) that the technique was sometimes referred to as the "dial an answer technique."

Los Alamos experience indicates that the weight window eliminates the "dial an answer" phenomenon and that the exponential transform can be effective when used with a weight window. The exponential transform both with and without a weight window will be demonstrated on the sample problem.

A. Comments

1. MCNP gives a warning message if the exponential transform is used and a weight window is not.
2. The exponential transform is not recommended for novices.
3. The exponential transfrom works best in highly absorbing media and very poorly in highly scattering media.
4. Empirically, $\mathrm{p}=0.7$ seems to work well for shielding calculations on fission or fusion spectrums with shielding materials like concrete or earth.
5. There is a standard (maintained) patch to allow the reference direction to be arbitrary, not just $+\hat{y}$ as currently implemented.

B. The Sample Problem with the Exponential Transform

An exponential transform (with $p=0.7$) was added to the input file that produced Fig. 42. That is, the following techniques were used in the next run:

1. energy cutoff,
2. forced collision in cell 21,
3. ring detector,
4. space-energy weight window,
5. source energy biasing, and
6. exponential transform ($\mathrm{p}=0.7$)

Figure 42 shows the results of using the exponential transform with a space-energy window; the FOM improved from 72 to 126 . Results from running the same problem without the space-energy window are shown in Fig. 43. Note that the errors are much worse, and moreover, are not decreasing monotonically with increasing histories. Admittedly, the error levels are too high to make them reliable; however, one can certainly except less jumpy statistics. For instance, compare tally 1 with tally 4 of the previous table. Note that even though the initial errors are high for tally 4, they are decreasing monotonically. Jumps in the relative errors indicate a few large weight particles trouncing the tally and thus indicate poor sampling. I have seen such relative error jumps frequently at the 10% level and occasionally at the 5% level. The higher the transform parameter is and the more collisions that are undergone per particle, the worse these jumps become. The weight window splits particles before their weights can become excessive enough to trounce the tallies.

Concerning tally 1 of Fig. 43, note that at 80,000 histories, the stated results are $2.75 \mathrm{E}-8 \pm 30.6 \%$, yet Fig. 42 indicates that the true mean is close to $4.85 \mathrm{E}-8$. A quick calculation gives
$\begin{array}{ll}\text { standard deviation }=.306 \cdot 2.75 \mathrm{E}-8 & =8.41 \mathrm{E}-9 \\ \text { "true" }- \text { estimate }=4.85 \mathrm{E}-8-2.75 \mathrm{E}-8 & =2.1 \mathrm{E}-8 \\ \text { standard deviations } & =\frac{2.1 \mathrm{E}-8}{8.41 \mathrm{E}-9}=2.5 \\ \text { from the true mean } & =1.76,\end{array}$
which indicates just how unreliable error estimates can be when the sampling is poor.

CEL PROGR	L	TRACKS ENTERING	POPULATION	COLLISIONS	$\begin{gathered} \text { COLLISIONS } \\ * \text { WEIGHT } \\ \text { (PER HISTORY) } \end{gathered}$	NUMBER WE I GHTED ENERGY	FLUX WEIGHTED ENERGY	AVERAGE TRACK WEIGHT (RELATIVE)	AVERAGE TRACK MFP (CM)
2	2	82381	82065	53810	$2.6281 \mathrm{E}+00$	8.2171E-01	$1.7031 \mathrm{E}+00$	$1.6858 \mathrm{E}+00$	$7.9556 \mathrm{E}+\mathrm{OO}$
3	3	19981	23648	25074	$1.1835 \mathrm{E}+00$	$4.3859 \mathrm{E}-01$	1. $1523 \mathrm{E}+00$	$1.3032 E+00$	$7.2574 \mathrm{E}+00$
4	4	16444	18607	18914	$5.0508 \mathrm{E}-01$	$3.0316 \mathrm{E}-01$	$9.4543 \mathrm{E}-01$	6.6849E-01	$6.6648 \mathrm{E}+00$
5	5	13541	15386	15706	1.4711 E -01	3.1359E-01	$1.0435 E+00$	$2.5234 \mathrm{E}-01$	$6.8687 \mathrm{E}+00$
6	6	11461	13496	14039	$4.0306 \mathrm{E}-\mathrm{O} 2$	$3.3080 \mathrm{E}-01$	$1.2151 \mathrm{E}+00$	$8.5035 \mathrm{E}-02$	$7.2066 \mathrm{E}+00$
7	7	10417	13454	13729	$1.6137 \mathrm{E}-02$	$3.3603 \mathrm{E}-\mathrm{O} 1$	$1.3958 \mathrm{E}+00$	3. $1007 \mathrm{E}-02$	$7.5390 \mathrm{E}+00$
8	8	10189	13378	13591	$4.8696 \mathrm{E}-\mathrm{O} 3$	$3.9568 \mathrm{E}-01$	$1.6342 \mathrm{E}+00$	$1.0773 \mathrm{E}-02$	8. $1615 \mathrm{E}+00$
9	9	10250	14088	14822	$1.6739 \mathrm{E}-03$	5.2252E-01	$1.9818 \mathrm{E}+00$	3.5829E-03	$8.7372 \mathrm{E}+00$
10	10	10659	13949	14231	5.8934E-04	$6.1559 \mathrm{E}-01$	$2.3504 \mathrm{E}+00$	1.3240E-03	$9.4099 \mathrm{E}+00$
11	11	10642	13602	14796	2.1034E-04	$7.5516 \mathrm{E}-01$	$2.6706 \mathrm{E}+00$	5.2503E-04.	$1.0151 \mathrm{E}+01$
12	12	10527	14024	15551	9.9072E-05	8.1054E-01	$2.6844 \mathrm{E}+00$	$2.3439 \mathrm{E}-\mathrm{O} 4$	$1.0440 E+01$
13	13	10986	14644	17538	5.0323E-05	7.6932E-01	$2.4881 \mathrm{E}+00$	1.0879E-04	$1.0112 \mathrm{E}+\mathrm{O} 1$
14	14	11539	15409	19466	2.5835E-05	$6.5316 \mathrm{E}-01$	$2.2961 E+00$	5.0285E-05	$9.7571 \mathrm{E}+00$
15	15	12046	15625	21329	1.2003E-05	6.4574E-01	$2.2270 \mathrm{E}+00$	$2.3125 \mathrm{E}-05$	$9.6251 E+00$
16	16	12356	15632	23077	5.2759E-06	6.8950E-01	$2.3015 \mathrm{E}+00$	$1.0010 \mathrm{E}-05$	$9.9596 E+00$
17	17	12553	16094	28198	2.6284E-06	$6.7305 \mathrm{E}-01$	2.1726E+00	$4.5005 \mathrm{E}-06$	$9.6617 \mathrm{E}+00$
18	18	13192	16913	32669	1.1979E-06	6.2959E-01	2.1103E+00	1.9486E-06	$9.6765 \mathrm{E}+\mathrm{OO}$
19	19	11444	16369	31267	4.7481E-07	$6.5745 \mathrm{E}-01$	2. $1606 \mathrm{E}+00$	8.5094E-07	$1.0147 \mathrm{E}+01$
20	20	11122	11101	0	0.	1.2966E+00	$3.4708 \mathrm{E}+00$	3.2605E-07	$1.0000+123$
21	21	97	194	100	$5.4336 E-12$	2. $1163 \mathrm{E}+00$	$4.2544 \mathrm{E}+\mathrm{OO}$	9.7467E-08	$7.7796 \mathrm{E}+02$
22	22	11	11	0	O.	$3.8622 \mathrm{E}+00$	$4.0376 \mathrm{E}+00$	3.1275E-09	$1.0000+123$
	TAL	301838	357689	387907	$4.5278 \mathrm{E}+00$				

NOTE IMPROVEMENT

Fig. 42. Exponential transform added to window and source energy biasing.

Fig. 43. Same as previous run, but with weight window removed.

XVI. THE GRAND FINALE-TURNING DXTRAN BACK ON

Recall that DXTRAN was turned off while the spaceenergy window and the exponential transform optimized the penetration. Figure 44 shows the results of turning DXTRAN back on. This "best" run uses

1. energy cutoff,
2. forced collision in cell 21,
3. ring detector,
4. space-energy weight window,
5. source energy biasing,
6. exponential transform ($p=0.7$), and
7. DXTRAN with DXCPN card.

As observed previously, DXTRAN vastly improves tallies 4 and 5 at some expense to tally 1 .

XVII. CORRELATED SAMPLING AND PERTURBATION CAPABILITY

A standard MCNP perturbation patch allows up to three slightly different Monte Carlo problems to be run simultaneously. The perturbation calculation estimates the difference in tallies between similar Monte Carlo problems and it estimates the standard tallies.*

Another way of estimating perturbations is correlated sampling in MCNP that allows tally differences to be estimated between two different runs by correlating their random number sequences. The $\mathrm{i}^{\text {th }}$ particle in run \#2 is started with the same random number that starts the $\mathrm{i}^{\text {th }}$ particle in run \#1. Because the $\mathrm{i}^{\text {th }}$ particle in run \#1 might use k_{1} random numbers, and the $\mathrm{i}^{\text {th }}$ particle in run $\# 2$ might use $k_{2} \neq k_{1}$, random numbers, the $\mathrm{i}+1^{\text {st }}$ particle does not start with the next random number in the sequence after the $i^{\text {th }}$ particle terminates. Instead, the $\mathrm{i}+1^{\text {st }}$ particle starts with the $\mathrm{J}^{\text {th }}$ random number beyond the starting random number for the $i^{\text {th }}$ random number. In other words, there is a random number jump of J random numbers between the start of particle i and the start of particle $i+1$. Thus the $i^{\text {ih }}$ particle in runs $\# 1$ and \#2 will both be starting at the (i-1) $\cdot \mathrm{J}$ position in the random number sequence. J , of course, should be large enough so that both k_{1} and k_{2} are less than J for all particle histories. This correlation of random number sequences is depicted in Table IV.
*For further information, refer to video reel \#24, "Various MCNP Patches, Column Input, Exponential Transform, Importance Generator, Perturbation," by Robert G. Schrandt, from MCNP Workshop, Los Alamos National Laboratory, October 4-7, 1983. Available from Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830 .

The correlated sampling problem is identical to the sample problem except that the density in cell 21 (Fig. 3) has been changed. The two correlated problems have

1. density in cell $21=2.03 \mathrm{E}-4$ and
2. density in cell 21 increased by 1% to 2.0503E-4. Figure 45 summarizes the two problems, each run for 20,000 histories. Everything is identical between the two summary charts up to cell 21 because all particles have exactly the same random walk until they enter that cell. Furthermore, a particle entering cell 21 , where the random walks diverge, will probably never scatter back toward cell 19. Presumably, if enough particles were run, backscatter from cell 21 would cause very small differences in cells 1-19.

Figure 46 shows FOM tables for the two problems. Note that the means differ by about 1% and that this difference appears to be statistically insignificant because of the 9% errors in the means. However, these charts can be used to obtain batch statistics on 20 batches of 1000 . That is to say, the numbers can be postprocessed to figure out the tally for each batch of 1000 particles and then the difference in tally for each batch of 1000 particles can be computed. Error estimates in the tally difference can then be made on the basis of the 20 tally differences. Figure 47 shows the 20 means for each problem and the mean and relative error of the difference. Note that with correlated sampling, a 1% difference has been found to within 8% despite a 9% error in each of the problems.

XVIII. PHOTONS

The sample problem described here is a neutron-only problem. Regarding the variance reduction techniques in MCNP, whatever can be done for neutrons can be done for photons. Only the neutron-induced gamma problem needs special consideration. The difficulty arises in setting reasonable parameters (PWT card) to decide when a photon should be produced at a neutron collision. These parameters specify, on a cell-by-cell basis, the minimum weight for producing a photon. This weight should be inversely proportional to the cells' photon importance. One either has to make a guess or obtain an adjoint solution, such as provided by the weight window generator. In fact, if a photon weight window is used, these (PWT) parameters should be chosen as the lower weight bounds for the most important particles (typically the highest-energy window).

XIX. FUTURE PLANS

Goals for the future are

1. more automatic biasing (learning techniques),

Random Numbers for Run \#1 * indicates the random number was actually used) Random N (* indicates was	Random Numbers for Run \#2 (* indicates the random number was actually used)
0.14784 * first particle starts here	0.14784 *
0.29376 *	0.29376 *
0.21632 *	0.21632 *
0.78048	0.78048 *
0.14336	0.14336 *
0.10304	0.10304
0.66592	0.66592
0.38144 * second particle starts here	0.38144 *
0.52416 *	0.52416 *
0.22912 *	0.22912 *
0.03968	0.03968
0.15776	0.15776
0.14464	0.14464
0.25248	0.25248
0.46272 * third particle starts here	0.46272 *
0.75904 *	0.75904

2. weight window and generator in more arbitrary phase space,
3. several random number generators (tallies should not affect random walks, and mode 1 neutrons should track mode 0 neutrons), and
4. more perturbation capability.

XX. CONCLUSION

The Los Alamos Monte Carlo neutron/photon particle transport code, MCNP, contains many effective variance reduction capabilities. However, these tech-
niques must be used judiciously and their effects must be monitored using the summary information provided by a Monte Carlo run. This paper has illustrated most of the MCNP variance reduction techniques on a conceptually simple, yet computationally demanding, neutron transport problem. These illustrations should help novice users better understand the capabilities of MCNP techniques more concretely than presented in the MCNP manual, which I hope this report will complement. Whereas the MCNP manual must be complete and general, this report makes no attempt to be either. Use this report to get a flavor for MCNP and the manual to set up problems.

SPACE-ENERGY WEIGHT WINDOW

SOURCE-ENERGY BIAS	ENERGY CUTOFF
FORCED COLLISION	RING DETECTOR

EXPONENTIAL TRANSFORM

| CELL | TRACKS
 ENTERING | POPULATION | COLLISIONS | COLLISIONS
 FREIGHT |
| ---: | ---: | ---: | ---: | ---: | ---: |
| PROGR PROBL | | | | |

T AVERAGE
TRACK WEIG
(RELATIVE)

AVERAGE
TRACK MFP (CM) $3.9682 \mathrm{E}-01 \quad 1.1223 \mathrm{E}+00$ $4.0449 \mathrm{E}-01 \quad 1.2012 \mathrm{E}+00$ $3.2130 \mathrm{E}-01$ $\begin{array}{ll}\text { 4. 1320E-01 } & 1.4311 E+00 \\ 5.1356 E-01 & 1.7967 E+00\end{array}$ $\begin{array}{ll}5.1356 \mathrm{E}-01 & 1.7967 \mathrm{E}+00 \\ 6.0602 \mathrm{E}-01 & 2.2127 \mathrm{E}+00\end{array}$ $\begin{array}{ll}5.062 \mathrm{E}-01 & 2.2127 \mathrm{E}+\mathrm{OO} \\ 5.9781 \mathrm{E}-01 & 2.0800 \mathrm{E}+\mathrm{OO}\end{array}$ $\begin{array}{ll}5.978 \mathrm{E}-01 & 2.0800 E+00 \\ 5.7577 \mathrm{E}-01 & 1.9760 \mathrm{E}+\mathrm{O}\end{array}$ $1.9760 \mathrm{E}+00$
$1.82+1 \mathrm{E}+00$ 4.8943E-01
$5.5921 \mathrm{E}-\mathrm{O}$ 6.5921E-01 $2.0523 E+00$
$2.1495 \mathrm{E}+00$ $\begin{array}{ll}6.1099 E-01 & 2.1495 E+\infty \\ 6.9159 E-01\end{array}$ $6.9159 E-01 \quad 2.2692 E+00$ $6.9604 \mathrm{E}-01 \quad 2.3093 \mathrm{E}+00$ $2.3162 \mathrm{E}+00$
2.00 $2.2434 E+00$
$2.2434 \mathrm{E}+00$ $\begin{array}{ll}6.9389 E-01 & 2.2434 E+00 \\ 1.2146 \mathrm{E}+00 & 3.2985 \mathrm{E}+00\end{array}$ $\begin{array}{ll}1.2146 \mathrm{E}+00 & 3.2985 \mathrm{E}+00 \\ 1.8146 \mathrm{E}+00 & 4.3974 \mathrm{E}+00\end{array}$
$9.8733 E-01$
$1.7168 \mathrm{E}+00$
$1.2707 \mathrm{E}+00$ $4.9750 \mathrm{E}+00$ 4. $9750 \mathrm{E}-\mathrm{O}$ $1.9474 \mathrm{E}-\mathrm{O}$
$6.9772 \mathrm{E}-\mathrm{O}$ 6.9772E-O2
$2.9334 \mathrm{E}-\mathrm{O}$ 2. $9334 \mathrm{E}-\mathrm{O}$ $9.9026 \mathrm{E}-03$
$3.2265 \mathrm{E}-03$ 3. $2265 \mathrm{E}-03$ $1.6019 \mathrm{E}-03$
$7.7078 \mathrm{E}-04$ $3.5954 \mathrm{E}-\mathrm{O}$ $3.5954 E-O 4$
$1.3282 E-04$ 5.4545E-O5 1. $2.4545 \mathrm{E}-05$
$2.2980 \mathrm{E}-05$ 1.0162E-05 $4.3319 \mathrm{E}-06$ $1.9051 E-06$
$8.4349 E-07$ 8. 4349E-07 $1.0146 E-07$
$1.4958 E-10$ 7.9758E-12
$7.9987 E+00$ 7. $1343 E+00$ $.5345 E+00$ 7. $4841 \mathrm{E}+00$ $7.9168 \mathrm{E}+00$ $7.7015 E+00$
$8.4482 \mathrm{E}+00$ 8. $4105 \mathrm{E}+00$ 8. $4933 \mathrm{E}+00$ $8.9933 E+00$
$8.8303 E+00$ 8. $4750 \mathrm{E}+00$ 9. $1027 \mathrm{E}+00$ $9.3185 E+00$ $9.5956 \mathrm{E}+00$ $9.7832 E+O O$ $9.8582 E+00$ -. $7979 E+00$
$1.0230 \mathrm{E}+01$
$7.5167 \mathrm{E}+02$
$1.0000+123$

	tally 1			TALLY 4			TALLY 5		
NPS	MEAN	ERROR	FOM	MEAN	ERROR	FOM	MEAN	ERROR	FOM
4000	4.84254E-08	. 1712	77	1.01029E-14	. 1610	87	5.54516E-18	. 1694	79
8000	$5.09067 \mathrm{E}-08$. 1317	70	9.44709E-15	. 1240	79	5.62934E-18	. 1371	65
12000	$5.48174 \mathrm{E}-08$. 1067	71	1.03463E-14	. 1023	77	5.80554E-18	. 1064	71
16000	5.15928E-08	. 0941	73	9.69119E-15	. 0905	79	5.41515E-18	. 0943	72
20000	5.15698E-08	. 0856	72	9.36512E-15	. 0826	77	$5.346+9 \mathrm{E}-18$. 0858	71
24000	$4.99339 \mathrm{E}-08$. 0787	73	8.87587E-15	. 0768	77	5. 14850E-18	. 0802	70
28000	$4.83468 \mathrm{E}-08$. 0728	74	8.40354E-15	. 0716	77	4.90214E-18	. 0747	70
32000	$4.72914 \mathrm{E}-\mathrm{OB}$. 0677	76	8.29573E-15	. 0673	77	4.79002E-18	. 0698	71
36000	$4.72683 \mathrm{E}-08$. 0633	77	8.47937E-15	. 0655	72	4.85927E-18	. 0651	73
40000	$4.68660 \mathrm{E}-08$. 0603	77	8.29090E-15	. 0620	73	4.79463E-18	. 0621	73
44000	$4.66976 \mathrm{E}-08$. 0582	76	8.27052E-15	. 0597	72	$4.77221 \mathrm{E}-18$. 0596	72
48000	4.74397E-08	. 0549	77	8.45769E-15	. 0573	71	4.85959E-18	. 0566	73
51909	4.74217E-08	. 0529	77	8.46207E-15	. 0551	71	4.86481E-18	. 0542	73

Fig. 44. DXTRAN turned on.

	CEL PRDGR	PROBL	TRACKS ENTERING	POPULATION	COLLISIONS	COLLISIONS * WEIGHT (PER HISTORY)	NUMBER WEIGHTED ENERGY	FLUX WEIGHTED ENERGY	AVERAGE TRACK WEIGHT (RELATIVE)	AVERAGE TRACK MFP (CM)
	2	2	20310	20245	13230	$2.9038 \mathrm{E}+00$	7.8576E-01	$1.6392 \mathrm{E}+00$	$1.8336 \mathrm{E}+00$	7.7302E+00
	2	2 3	4854	5773	6121	$1.2068 \mathrm{E}+00$	3.2962E-01	1. $1022 \mathrm{E}+00$	$1.2787 \mathrm{E}+00$	7. $1288 \mathrm{E}+00$
	4	4	3983	4493	4395	$2.0630 \mathrm{E}-01$	5.6021E-01	$1.4968 \mathrm{E}+00$	$3.9232 \mathrm{E}-01$	8.9520E +00
	5	5	3241	3709	3566	9.5539E-02	$3.8258 E-01$	$1.3786 \mathrm{E}+00$	1.7657E-01	$7.9343 E+00$
	6	6	2762	3309	3316	$2.8814 \mathrm{E}-\mathrm{O2}$	4.3184E-01	$1.5712 \mathrm{E}+00$	6.4595E-02	$8.1847 \mathrm{E}+00$ $8.0382 \mathrm{E}+00$
	7	7	2532	3204	3194	1.3999E-02	$5.5666 \mathrm{E}-01$	$1.5506 \mathrm{E}+00$	2.7739E-O2	$8.0382 E+00$ $8.0029 E+00$
\pm	8	8	2463	3233	3286	5. $1721 \mathrm{E}-03$ $1.1440 \mathrm{E}-03$	3.6626E-O1	2.3990E+00	2.9081E-03	$8.0029 E+00$ $9.9393 \mathrm{E}+00$
山	9	9	2447 2596	3364 3356	3416 3506	$1.1440 \mathrm{E}-03$ $8.1792 \mathrm{E}-04$	$7.7182 \mathrm{E}-01$ $5.8220 \mathrm{E}-01$	$2.3990 E+00$ $1.9761 E+00$	1.7170E-03	$8.7167 \mathrm{E}+00$
\bigcirc	11	11	2628	3430	3916	5.1950E-04	4.6087E-01	$1.6235 \mathrm{E}+00$	$1.0072 \mathrm{E}-03$	$8.1114 \mathrm{E}+00$
0	12	12	2668	3595	4368	2.4198E-04	4. 1003E-01	$1.4915 \mathrm{E}+00$	4.6929E-04	$7.7865 \mathrm{E}+00$
II	13	13	2789	3740	4692	7.7618E-05	4.8312E-01	$1.8747 E+00$	1.4560E-04	$8.9391 E+00$
	14	14	2911	3895	5208	3.2070E-05	$5.3047 \mathrm{E}-01$	$2.0756 \mathrm{E}+00$	5.6759E-05	9. $1714 \mathrm{E}+00$
Q	15	15	3017	4004	5647	1.2871E-05	$5.9777 \mathrm{E}-01$	$2.2049 \mathrm{E}+00$	2.3315E-05	$9.5372 \mathrm{E}+00$ $9.8171 \mathrm{E}+00$
	16	16	3154	4178	6746	5.7756E-06	6.8805E-01	$2.3307 E+00$	9.4765E-06	$9.8171 E+00$ $9.8955 E+00$
	17	17	3339	4116	6794	2.4249E-06	6.7461E-01	2.2537 E+0	4.3121E-06	$9.8955 E+00$ $9.6692 E+00$
	18	18	3318	4277	8139	1.1850E-06	$6.7566 \mathrm{E}-01$	2.1622E+00	8.3146E-07	$9.6692 E+00$ $1.0292 E+01$
	19	19	2847	4074	7528	4.5173E-07	$6.7608 \mathrm{E}-01$	$2.2620 \mathrm{E}+00$	$8.3146 \mathrm{E}-07$	$1.0292 E+01$ $4.0000+123$
	20	20	6112	16583	0	0.	1.2958E+00	$3.4588 \mathrm{E}+00$	1.0138E-07	$4.0000+123$ $7.6105 E+04$
	21	21	13803	27610	13805	$\rightarrow 4.7205 \mathrm{E}-14$	1.8236E+00	$4.4833 E+00$	1.5149E-10	$7.6105 E+04$ $1.0000+123$
	22	22	1348	1348	0	0.	$3.4188 \mathrm{E}+00$	$7.1054 \mathrm{E}+00$	$2.4142 \mathrm{E}-12$	$1.0000+123$
		tal	93122	131536	110873	$4.4633 \mathrm{E}+00$				
						DID THE	AME THING	UNTIL ENTE	NG THE PER	JRBED
						REGION	CAUSE THE	RANDOM N	BERS WERE	HE SAME
	CEL PROGR	PROBL	TRACKS ENTERING	POPULATION	COLLISIONS		NUMBER WEIGHTED ENERGY	flux WEIGHTED ENERGY	average TRACK WEIGHT (RELATIVE)	AVERAGE TRACK MFP (CM)
				20245	13230	2.9038E+00	7.8576E-01	$1.6392 \mathrm{E}+00$	$1.8336 \mathrm{E}+\infty$	$7.7302 \mathrm{E}+00$
	2	2	4854	5773	6121	$1.2068 \mathrm{E}+00$	3.2962E-01	1.1022E+00	1.2787E+00	$7.1288 \mathrm{E}+00$
	4	4	3983	4493	4395	2.0630E-01	5.6021E-01	$1.4968 \mathrm{E}+00$	3.9232E-01	$8.9520 \mathrm{E}+00$
	5	5	3241	3709	3565	9.5539E-02	3.8258E-01	$1.3786 \mathrm{E}+00$	1.7657E-01	$7.9343 \mathrm{E}+00$
	6	6	2762	3309	3316	$2.8814 \mathrm{E}-\mathrm{O2}$	4.3184E-01	$1.5712 \mathrm{E}+00$	6.4595E-02	8.1847E +00
	7	7	2532	3204	3194	$1.3999 E-02$	5.5666E-01	$1.5506 \mathrm{E}+00$	2.7739E-02	$8.0382 \mathrm{E}+00$
	8	8	2463	3233	3286	5.1721E-03	3.6626E-01	$1.5002 \mathrm{E}+00$	1.2042E-02	$8.0029 \mathrm{E}+00$
\$	9	9	2447	3364	3416	1.1440E-O3	7.7182E-01	$2.3990 \mathrm{E}+\mathrm{O}^{\text {2 }}$	$2.9081 E-03$	$9.9393 \mathrm{E}+00$
山	10	10	2596	3356	3506	8.1792E-04	5.8220E-01	$1.9761 E+00$	1.7170E-03	$8.7167 \mathrm{E}+00$
0	11	11	2628	3430	3916	5.1950E-O4	$4.6087 \mathrm{E}-01$	$1.6235 E+00$	1.0072E-03	8. $1114 \mathrm{E}+00$
O	12	12	2668	3595	4368	2.4198E-04	4.1003E-01	$1.8747 \mathrm{E}+00$	1.4560E-04	$8.9391 E+00$
0	13	13	2789	3740	4692	$7.7618 \mathrm{E}-05$	$4.8312 \mathrm{E}-01$	$1.8747 \mathrm{E}+00$		$8.9391 E+00$ $9.1714 \mathrm{E}+00$
O.	14	14	2911	3895	5208	3.2070E-05	5.3047E-01	$2.0756 \mathrm{E}+00$	5.6759E-05 $2.3315 E-05$	9.1714E+00
N	15	15	3017	4004	5647	1.2871E-05	$5.9777 \mathrm{E}-01$	2.2049E+00	2.3315E-06	$9.5372 \mathrm{E}+00$
1	16	16	3154	4178	6746	5.7756E-06	$6.8805 \mathrm{E}-01$	$2.3307 E+00$	9.4765E-06	$9.8171 E+00$ $9.8965 E+00$
Q	17	17	3339	4116	6794	$2.4249 \mathrm{E}-06$	6.7461E-O1	2.2597E+00	4.3412 $1.9121 \mathrm{E}-06$	$9.8965 E+00$ $9.6692 E+00$
	18	18	3318	4277	8139	1.1850E-06	$6.7566 \mathrm{E}-01$	2.1622E+00	-. $31412 \mathrm{E}-07$	$9.6692 E+001$ $1.02925+01$
	19	19	2847	4074	7528	4.5173E-07	$6.7608 \mathrm{E}-01$	2.2620E+00	1.0138E-07	$1.0292 E+01$ $1.0000+123$
	20	20	6112	16583	0	0.	$1.2958 \mathrm{E}+00$	3.4588E+00	1.5149E-10	$1.0000+123$ $7.535+04$
	21	21	13803	27610	13805	$4.7677 \mathrm{E}-14$			2.4147 E -12	$1.0000+123$
	22	22	1348	1340	\bigcirc	O.		7.1042E+00		
		TAL	93122	131536	110873	4.4633E+00				

Fig. 45. Correlated sampling example.

FIG. 46. PROCESS FOR OBTAINING BATCH STATISTICS.

Fig. 46. Process for obtaining batch statistics.

Fig. 47. Means for standard density and perturbed density problems.

SUMMARY PROBLEM \#1

Page This Report	Techniques	Particles Time Part/Min	F1 σ_{mr} FOM	F4 σ_{mr} FOM	F5 $\sigma_{\text {mr }}$ FOM	Comments
6	Analog	$\begin{aligned} & 3919 \\ & 0.61 \mathrm{~min} \\ & 6425 \end{aligned}$	0	0	0	No particles get past cell 14 (Point detector contributions only from cell 21).
8	Energy Cutoff .01 MeV	$\begin{aligned} & 13968 \\ & 0.60 \mathrm{~min} \\ & 23280 \end{aligned}$	0	0	0	Assumes particles below . 01 MeV do not contribute; No particles beyond cell 13.
11	Geometry Splitting (factor of 2 , cells 2-19) Energy Cutoff	$\begin{aligned} & 2118 \\ & 0.60 \mathrm{~min} \\ & 3530 \end{aligned}$	$\begin{aligned} & 5.87 \mathrm{E}-7 \\ & 0.24 \\ & 27 \end{aligned}$	0	0	Particles now penetrating concrete; use "tracks entering" to refine importances.
12	Refined Splitting Energy Cutoff	$\begin{aligned} & 1520 \\ & 0.58 \mathrm{~min} \\ & 2620 \end{aligned}$	$\begin{aligned} & 5.03 \mathrm{E}-7 \\ & 0.27 \\ & 23 \end{aligned}$	$\begin{aligned} & 7.21 \mathrm{E}-14 \\ & 1.00 \\ & 1 \end{aligned}$	0	Keep refined splitting on "tracks entering" information.
14	Energy Roulette Refined Splitting Energy Cutoff	$\begin{aligned} & 4699 \\ & 0.61 \mathrm{~min} \\ & 7703 \end{aligned}$	$\begin{aligned} & 8.38 \mathrm{E}-7 \\ & 0.18 \\ & 50 \end{aligned}$	$\begin{aligned} & 1.92 \mathrm{E}-13 \\ & 0.64 \\ & 4 \end{aligned}$	0	Factor of 2 gained by energy roulette.
17	Weight Cutoff/ Implicit Capture Energy Roulette Refined Splitting Energy Cutoff	$\begin{aligned} & 2099 \\ & 0.61 \mathrm{~min} \\ & 3441 \end{aligned}$	$\begin{aligned} & 5.62 \mathrm{E}-7 \\ & 0.19 \\ & 37 \end{aligned}$	$\begin{aligned} & 5.59 \mathrm{E}-14 \\ & 0.73 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Implicit capture and weight cutoff did reduce the history variance, but time per history increased too much. Thus analog capture better.
19	Forced Collision Energy Roulette Refined Splitting Energy Cutoff	$\begin{aligned} & 31617 \\ & 4.61 \mathrm{~min} \\ & 6858 \end{aligned}$	$\begin{aligned} & 5.59 \mathrm{E}-7 \\ & 0.068 \\ & 45 \end{aligned}$	$\begin{aligned} & 7.53 \mathrm{E}-14 \\ & 0.27 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.61 \mathrm{E}-17 \\ & 0.29 \\ & 2 \end{aligned}$	Forced collision allows the point detector (F5) to get tallies. Material too thin.
25	DXTRAN Forced Collision Energy Roulette Refined Splitting Energy Cutoff	$\begin{aligned} & 2231 \\ & 1.43 \mathrm{~min} \\ & 1560 \end{aligned}$	$\begin{aligned} & 7.35 \mathrm{E}-7 \\ & 0.23 \\ & 12 \end{aligned}$	$\begin{aligned} & 1.24 \mathrm{E}-13 \\ & 0.21 \\ & 15 \end{aligned}$	$\begin{aligned} & 7.62 \mathrm{E}-17 \\ & 0.22 \\ & 14 \end{aligned}$	DXTRAN successful for tallies 4 and 5 , but too slow; angle biasing definitely helps, work on speed.
26	DXCPN and DXTRAN Forced Collision Energy roulette Refined Splitting Energy Cutoff	$\begin{aligned} & 11427 \\ & 2.60 \mathrm{~min} \\ & 4395 \end{aligned}$	$\begin{aligned} & 7.32 \mathrm{E}-7 \\ & 0.10 \\ & 34 \end{aligned}$	$\begin{aligned} & 1.22 \mathrm{E}-13 \\ & 0.095 \\ & 42 \end{aligned}$	$\begin{aligned} & 7.21 \mathrm{E}-17 \\ & 0.10 \\ & 34 \end{aligned}$	DXCPN solves speed problem, Note F1 tally $4395 / 1560 \simeq 34 / 12=\mathrm{FOM}$ ratio.

		PROBLEM \#1 (continued)				
Page This Report	Techniques	Particles Time Part/Min	F1 σ_{mr} FOM	F4 σ_{mr} FOM	F5 σ_{mr} FOM	Comments
27	Ring Detector Energy Roulette DXTRAN/DXCPN Forced Collision Refined Splitting Energy Cutoff	11755 2.60 min 4521	$\begin{aligned} & \hline 6.54 \mathrm{E}-7 \\ & 0.10 \\ & 38 \end{aligned}$	$\begin{aligned} & 1.16 \mathrm{E}-13 \\ & 0.093 \\ & 44 \end{aligned}$	$\begin{aligned} & 6.78 \mathrm{E}-17 \\ & 0.096 \\ & 41 \end{aligned}$	Ring detector looks marginally better.
30	Cone Biasing Ring Detector DXTRAN/DXCPN Forced Collision Refined Splitting Energy Cutoff Energy Roulette	$\begin{aligned} & 6049 \\ & 2.60 \mathrm{~min} \end{aligned}$ 2327	$\begin{aligned} & 6.82 \mathrm{E}-7 \\ & 0.11 \\ & 32 \end{aligned}$	$\begin{aligned} & 1.22 \mathrm{E}-13 \\ & 0.092 \\ & 45 \end{aligned}$	$\begin{aligned} & 7.37 \mathrm{E}-17 \\ & 0.097 \\ & 40 \end{aligned}$	Cone bias has little effect because $-\hat{y}$ source particles die quickly. Remove cone bias below.
32	Exponential Bias Ring Detector DXTRAN/DXCPN Forced Collision Refined Splitting Energy Roulette Energy Cutoff	$\begin{aligned} & 5404 \\ & 2.59 \mathrm{~min} \end{aligned}$ 2086	$\begin{aligned} & 6.79 \mathrm{E}-7 \\ & 0.11 \\ & 33 \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{E}-13 \\ & 0.098 \\ & 39 \end{aligned}$	$\begin{aligned} & 6.43 \mathrm{E}-17 \\ & 0.10 \\ & 35 \end{aligned}$	Exponential source bias looks marginally detrimental.

SUMMARY PROBLEM \#2 New Source 95% at 2 MeV and 5% at 14 MeV						
Page This Report	Techniques	Particles Time Part/Min	F1 σ_{mx} FOM	F4 σ_{mr} FOM	$\begin{aligned} & \text { F5 } \\ & \sigma_{\mathrm{mr}} \\ & \text { FOM } \end{aligned}$	Comments
33	Splitting (same) Energy Cutoff, Ring Detector/Forced Collision/DXTRAN/ DXCPN (subsequent runs use above techniques unless specified otherwise)	$\begin{aligned} & 33092 \\ & 4.60 \mathrm{~min} \\ & 7194 \end{aligned}$	$\begin{aligned} & 4.43 \mathrm{E}-8 \\ & 0.23 \\ & 4 \end{aligned}$	$\begin{aligned} & 7.57 \mathrm{E}-15 \\ & 0.22 \\ & 4 \end{aligned}$	$\begin{aligned} & 4.35 \mathrm{E}-18 \\ & 0.21 \\ & 4 \end{aligned}$	Problem much harder because source spectrum much softer. Factor 15 less transmission.
35	Source Energy Bias	$\begin{aligned} & 6306 \\ & 4.63 \text { min } \\ & 1362 \end{aligned}$	$\begin{aligned} & 4.90 \mathrm{E}-8 \\ & 0.11 \\ & 16 \end{aligned}$	$\begin{aligned} & 8.61 \mathrm{E}-15 \\ & 0.11 \\ & 17 \end{aligned}$	$\begin{aligned} & 5.10 \mathrm{E}-18 \\ & 0.11 \\ & 17 \end{aligned}$	Factor of four improvement by E bias.
36	No source energy bias, energy roulette	$\begin{aligned} & 66475 \\ & 4.61 \mathrm{~min} \\ & 14420 \end{aligned}$	$\begin{aligned} & 6.22 \mathrm{E}-8 \\ & 0.15 \\ & 9 \end{aligned}$	$\begin{aligned} & 9.80 \mathrm{E}-15 \\ & 0.14 \\ & 10 \end{aligned}$	$\begin{aligned} & 5.94 \mathrm{E}-18 \\ & 0.15 \\ & 9 \end{aligned}$	Worse than source energy bias, better than no energy discrimination.
39	Source Energy Bias Energy Roulette	$\begin{aligned} & 16957 \\ & 4.61 \mathrm{~min} \\ & 3678 \end{aligned}$	$\begin{aligned} & 5.04 \mathrm{E}-8 \\ & 0.080 \\ & 33 \end{aligned}$	$\begin{aligned} & 8.81 \mathrm{E}-15 \\ & 0.76 \\ & 37 \end{aligned}$	$\begin{aligned} & 5.14 \mathrm{E}-18 \\ & 0.076 \\ & 38 \end{aligned}$	Good idea to use both in this problem.
42	Turn off splitting and use importances as weight window	$\begin{aligned} & 46770 \\ & 4.60 \mathrm{~min} \\ & 10167 \end{aligned}$	$\begin{aligned} & 5.87 \mathrm{E}-8 \\ & 0.27 \\ & 3 \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{E}-14 \\ & 0.24 \\ & 3 \end{aligned}$	$\begin{aligned} & 5.82 \mathrm{E}-18 \\ & 0.23 \\ & 3 \\ & \hline \end{aligned}$	Within statistics, about the same as splitting.

Subsequent Runs Use Weight Window Unless Otherwise Specified						
Page This Report	Techniques	Particles Time Part/Min	F1 $\sigma_{\text {mr }}$ FOM	F4 σ_{mar} FOM	F5 $\sigma_{\text {mr }}$ FOM	Comments
45	Window from importance generator on (spatial)	$\begin{aligned} & 46770 \\ & 4.79 \mathrm{~min} \\ & 9764 \end{aligned}$	$\begin{aligned} & \text { 5.87E-8 } \\ & 0.27 \\ & 2 \end{aligned}$	$\begin{aligned} & 1.05 \mathrm{E}-8 \\ & 0.24 \\ & 3 \end{aligned}$	$\begin{aligned} & 5.82 \mathrm{E}-18 \\ & 0.23 \\ & 3 \end{aligned}$	Note this run and previous run tracked; only difference is a 4% reduction in speed.
48	Use generated space window, turn DXTRAN off, space-energy generator on	$\begin{aligned} & 28144 \\ & 4.63 \\ & 6079 \end{aligned}$	$\begin{aligned} & 3.66 \mathrm{E}-8 \\ & 0.19 \\ & 6 \end{aligned}$	$\begin{aligned} & 5.08 \mathrm{E}-15 \\ & 0.66 \\ & 0 \end{aligned}$	$\begin{aligned} & 1.96 \mathrm{E}-18 \\ & 0.76 \\ & 0 \end{aligned}$	DXTRAN turned off while window is being optimized for penetration.
50	Space-energy window generated above; DXTRAN off	$\begin{aligned} & 79266 \\ & 4.61 \min \\ & 17194 \end{aligned}$	$\begin{aligned} & 4.48 \mathrm{E}-8 \\ & 0.070 \\ & 43 \end{aligned}$	$\begin{aligned} & 8.24 \mathrm{E}-15 \\ & 0.23 \\ & 4 \end{aligned}$	$\begin{aligned} & 4.24 \mathrm{E}-18 \\ & 0.26 \\ & 4 \end{aligned}$	Space-energy window gives dramatic improvement.
51	Source energy bias so that particles start within space-energy window	$\begin{aligned} & 71167 \\ & 4.61 \mathrm{~min} \\ & 15438 \end{aligned}$	$\begin{aligned} & 4.92 \mathrm{E}-8 \\ & 0.054 \\ & 75 \end{aligned}$	$\begin{aligned} & 8.48 \mathrm{E}-15 \\ & 0.29 \\ & 2 \end{aligned}$	$\begin{aligned} & 9.20 \mathrm{E}-18 \\ & 0.51 \\ & 0 \end{aligned}$	Note good improvement with source energy bias.
53	Same as above, except correct bad window	$\begin{aligned} & 74051 \\ & 4.60 \mathrm{~min} \\ & 16098 \end{aligned}$	$\begin{aligned} & 5.09 \mathrm{E}-8 \\ & 0.55 \\ & 72 \end{aligned}$	$\begin{aligned} & 8.61 \mathrm{E}-15 \\ & 0.28 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.20 \mathrm{E}-18 \\ & 0.31 \\ & 2 \end{aligned}$	Murphy's Law.
55	Exponential transform, space-energy window, sourceenergy bias	$\begin{aligned} & 81021 \\ & 4.60 \mathrm{~min} \\ & 17613 \end{aligned}$	$\begin{aligned} & 4.85 \mathrm{E}-8 \\ & 0.041 \\ & 126 \end{aligned}$	$\begin{aligned} & 1.06 \mathrm{E}-14 \\ & 0.15 \\ & 9 \end{aligned}$	$\begin{aligned} & 4.62 \mathrm{E}-18 \\ & 0.16 \\ & 8 \end{aligned}$	Exponential transform works well with weight window.
56	Same as above, except remove window	$\begin{aligned} & 90897 \\ & 4.60 \mathrm{~min} \\ & 19760 \end{aligned}$	$\begin{aligned} & 4.05 \mathrm{E}-8 \\ & 0.35 \\ & 1 \end{aligned}$	$\begin{aligned} & 1.90 \mathrm{E}-16 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 8.59 \mathrm{E}-20 \\ & 1 \\ & 0 \end{aligned}$	Exponential transform requires window.
59	GRAND FINALE Turn DXTRAN back on	$\begin{aligned} & 51909 \\ & 4.60 \mathrm{~min} \\ & 11285 \end{aligned}$	$\begin{aligned} & 4.74 \mathrm{E}-8 \\ & 0.053 \\ & 77 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.46 \mathrm{E}-15 \\ & 0.055 \\ & 71 \end{aligned}$	$\begin{aligned} & 4.86 \mathrm{E}-18 \\ & 0.054 \\ & 73 \end{aligned}$	

REFERENCES

1. Los Alamos Monte Carlo Group, "MCNP—A General Monte Carlo Code for Neutron and Photon Transport," Los Alamos National Laboratory report LA-7396-M (Rev.) (April 1981).
2. Thomas E. Booth, "Monte Carlo Variance Comparison for Expected Value Versus Sampled Splitting," Nuclear Science and Engineering 89, 305-309 (1985).

APPENDIX

Input File Differences for MCNP Version 3A

The calculations described in this report were done with MCNP version 2D, and some of the input file specifications have been changed in version 3A. This appendix was added to aid the reader who wants to run the sample problem on MCNP3A.

The source specification (cards SRC1, SI, and SP of Fig. 2) will have to be altered substantially. In addition, the reader should be aware of the following changes:

1. Particle Types:

MCNP3A will recognize two particle types with the following mnemonics:

$$
\begin{aligned}
& \mathrm{N}=\text { neutron } \\
& \mathrm{P}=\text { photon }
\end{aligned}
$$

2. Data Cards:

The particle type of each data card will be the first data entry and no longer appear as part of the data card name. This means that the following data cards are renamed:

New Name	Old Name(s)	Description
IMP	IN,IP	importance
CUT	CUTN,CUTP	time, energy, weight cutoffs
PHYS	ERGN,ERGP	energy physics cutoffs
WWN	WFN,WFP	weight window bounds
WWE	WFN, WFP	weight window energies
WWGE	WGEN,WGEP	weight window generator energies
WWP	WDWN, WDWP	weight window game parameters
ESPLT	NSPLT,PSPLT	energy splitting/roulette
EXT	EXTYN,EXTYP	exponential transform
DXT	DXN,DXP	DXTRAN sphere specification
FCL	FCN,FCP	forced collisions
DXC	DXCPN,DXCPP	DXTRAN cell contributions

The new root entry will appear in columns $1-5$; the N or P data type will be the first entry beyond column 5. If the first data entry is not an N or P, there will be a fatal error. Note that only one particle type may be specified. If the particle type is inconsistent with the problem mode, there will be a warning error. A warning rather than a fatal error will be issued so that a coupled neutron/photon run may be switched to a neutron-only run without removing all the photon data cards. In MCNP3A the old data cards will be accepted with a warning that they will be obsolete in MCNP3B.

3. MODE Card:

The MODE card will specify the problem particle types. Examples:

MODE N	(old mode 0)
MODE N P	(old mode 1)
MODE P N	(old mode 1)
MODE P	(old mode 2)

If both N and P are specified, the order does not matter for MCNP3A and the two entries must be separated by at least one space. The space is required so that future versions of the code can have particle types with more than one character mnemonics.

The old MODE card will be accepted with a warning that it will have different entries in MCNP3B.

4. Tally Particle Types:

Whether a tally is a neutron or photon tally is specified by an N or P as the first entry on the tally Fn card regardless of the tally number. For MCNP3A, if the N or P is missing then a warning will be issued and the particle type will be assumed from the tally number as in previous versions. Examples:

F4	P c1 c2 c3	photon flux tally
F15	N x y z ro	neutron detector tally
F7	c1 c2 c3	neutron heating tally:
		warning issued.

The neutron and photon heating tallies may be added together by having both an N and a P as the first and second data entries. The N and P may be in any order, i.e., P and N , and they must be separated by a space. The F6 and F16 tally types are the only tally types that may be added in this way. A corresponding FMn card for the combined tally causes
a fatal error if it contains anything more than constants. Examples of proper usage:

F6 P N c1 c2 c3
FM6 Cl
F36 $\quad \mathrm{N} \mathrm{P} \mathrm{cl} \mathrm{c2} \mathrm{c3} \mathrm{c4}$
FM36 (C1) (C2) (C3) (C4) (C5)

This report has been reproduced directly from the best available copy.

It is available to DOE and DOE contractors from the Office of Scientific and Technical Information,
P.O. Box 62,

Oak Ridge, TN 37831
Prices are available from
(615) 576-8401.

It is available to the public from the
National Technical Information Service,
US Department of Commerce,
5285 Port Royal Rd.
Springfield, VA 22161.

[^0]: **Video reel \#11, "Relative Errors, Figure of Merit" from MCNP Workshop, Los Alamos National Laboratory, October 4-7, 1983. Available from Radiation Shielding Information Center, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

[^1]: density sampled to select p_{s}

[^2]: *If there are several DXTRAN spheres and the collision occurs in sphere i, then DXTRAN will be played for all spheres except sphere i.

