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ANALYTIC SCORE DISTRIBUTIONS AND MOMENTS

FOR A SPATIALLY CONTINUOUS TRIDIRECTIONAL
MONTE CARLO TRANSPORT PROBLEM

by

Thomas E. Booth

ABSTRACT (U)

The interpretation of the statistical error estimates pro-
duced by Monte Carlo transport codes is still somewhat of
an art. Empirically, there are variance reduction techniques
whose error estimates are almost always reliable and there
are variance reduction techniques whose error estimates are
often unreliable. Unreliable error estimates usually result
from inadequate large score sampling from the score distri-
bution’s tail.

Statisticians believe that more accurate confldence inter-
val statements are possible if the general nature of the score
distribution can be characterized. This paper provides the
analytic score distribution for the exponential transform ap-
plied to a simple spatially continuons Monte Carlo transport

. problem.

I. INTRODUCTION

‘The Radiation Transport Group and the Statistics Group at the Los Alamos
" National Laboratory are involved in a collaborative research project whose motiva-
tion is to obtain better confidence intervals for Monte Carlo transport calculations.

1



The statisticians have repeatedly emphasized that the more information they had
about the general nature of the score distributions, the better they could make the
confidence intervals. The statisticians sought both empirical data from our Monte
Carlo computer code (MCNP?!) and exact theoretical results to guide them in their
atte.npt to pr vide better confidence intervels. Empirical results?® are described
=lsewhe:-* by the author’s collaborators, R. A. Forster of the Radiation Transport
. ‘Gronp and §. P. Pederson of the Statistics Group. This note describes some theo-
rrtical results desired 1+ the statisticians.

Modern Monte Carlo particle transport codes (e.g., MCNP) offer the user a
wide variety of variance rednciwu cchniques. These techniques change the score
~ distribution from the physical distribution. For example, if one counts the number
of physical neutrons penetrating a nonmultiplying shield, then for each incident
neutron either one neutron penetrates the <hield with probability p, or zero neutrons
penetrate with probability 1 — p. The natural vai'ance of this binomial process is
- p-p®. One may not know the value of p, but one knows the form of the score
- distribution. However, when variance reduction techniqu-s e used, the form of the
score distributicn usually is not known. This problem is signiﬁéant when confidence
" intervals are desired.

The error estimates in a Monte Carlo calculation are reliable only when suffi-
cient numbers of large scores have been samgled. In an analog calculation of the
penetration problem one knows how many large (i.e., score=1) scores have been
sampled. A statistical error estimate is relatively easy in this case because the
score distribution is known except for the exact value of the binomial parameter
 p. By contrast, very little theory exists concerning the form, or general behavior,
of the score distribution when variance reduction techniques are used. Standard
_ statistical estimates in Monte Carlo codes are based almost always only on the
sampled scores with little consideration given to the impact of the scores that were
not sampled.

This work is not intended to supply Monte Carlo practitioners with practical
~ suggestions for picking variance reduction parameters. The interested reader can
consult references 4 and 5 for this purpose. Tlie importance of this work lies in the

fact that statisticians now have an exact score distribution arising from a common

" Monte Carlo technique to test alternative ways of obtaining confidence intervals.

The exponential transform is an old and widely used variance reduction tech-
'nique. References 4 and 5 summarize much of the knowledge about the exponential
transform. Recently, an exponential transform technique was applied to a simple,
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diécrete, two-state traneport problem®-2 and the exact analytic score distribution
was obtained. Because the same mechanisms create weight fluctuations in the dis-
crete problem and a continuous problem, it was conjectured that the general nature
- of the score distribution would be similar for a continuous transp. rt problem. This
paper derives the exact analytic score distribution for a spatially continuous trans-
port problem with the exponential transform and shows that the forr. of the score
distribution is indeed very similiar in the discrete and continuous transform cases.
This paper proceeds by deriving the score moment equations for a simple three
~ direction spatially continuous slab penctration problem. The derivation of the score
. moment equations is not new and reference 5 provides a far more general derivation
than is provided here. In addition, reference 5 provides a good source of references
for the historical development and use of the moment equations. The equations
are rederived here for three reasons. First, the derivation is not difficult and there
is no more work involved than in simplifying the general equations to the simple
case herein. Second, the style of the derivation provides an introduction to the
derivation of the score distribution equations. Third. the present paper is easier to
read because it is self-contained and does not have to explain the terms required to
‘ treat more complicated problems before simplifying to the case herein.

I1. DESCRIPTION OF TEST PROBLEM

The test problem consists of a slab of thickness T, with a normally incident
source at the z = 0 surface of the: slab, and a tally that simply counts the weight
penetrating the z = T outside surface of the slab. The particles always move
- parallel, ahtipara]lel, or perpendicular to the z-axis; thus, there are only three
possible particle directions. '

III. DERIVATION OF THE SCORE MOMENT EQUATIONS

The physical state of a particle in this simple test problem is determined by its
z position and its direction either parallel, antiparallel, or perpendicular to the z-
axis. In addition, the particle will carry a statistical weight w. A few definitions
are required before deriving the score probability equations.



Definition 1. n(z,s,w)ds = the probability that a particle of weight w moving per-
pendicular to the # direction scores s in an interval ds about s.

Definition 2. ¢(z,s,w)ds = the probability that a particle of weight w moving in

| the +& direction scores s in an interval ds about s. |

Definition 3. y(z,s,w)ds = the probability that a particle of weight w moving in

the —z direction scores s in an interval ds about s. |

Definition {. o = total macroscopic cross section -

Definition 5. 0, = macroscopic scattering cross section. -

Definition 6. p = exponential transform parameter.

The exponential transform uses a fictitious total cross section otransform =
(1 — pp)o, where p is the direction cosine with respect to the x-axis. This po-
per allows # slightly more general treatment in that the fictitious total cross section
can be arbitrarily specified in three directions (u = {-1,0,1}). The cross sections

 for particles moving in the positive, perpendicular, and negative directions are

o4+ = fictitious total cross section in the + z direction (1)
og = fictitious total cross section in the direction perpendicular to & (1.1)
o_ = fictitious total cross section in the — Z direction (2)

" Let s be the distance the particle moves between events (cither collisions or surface

crossings). The exponential transform events are weighted by’:

true probability of event v (3)
sar. led probability of event :

Weyent =

The weight multiplication upon collision for a particle moving in the +% direction

,ise

oe~??

Wt = e (4)

* ‘The weight multiplication upon collision for a particle moving in the —# direction

is:

w. =25 o (5)



The weight multiplication upon collision for a particle ﬁerpendicular to the z

direction is:-

ce~7* .

(51) N

Wy = .
0 oge~ %

The weight multiplication upon crossing z = T is: -

e—d.

wr =

)

e—0+.

The scattering probabilities for forward, 90 degree, and backward scatterings are:

f = probability of no direction change upon scatter (6.1)
g = probability of scattering perpendicularly j (6.2)
b = probability of direction'revérsa.l upon scatter | , (6.3)

Using Eqgs. 1-6.3. the score probability equations with the exponential transform
can be derived. | ' '
Later in this paper, the score probabilify equations with the expohéntial trans-
form and survival biasing (implicit capture) will be desired. The derivations are
veryv similiar and need not be done twice. For the current case of analog capture

set,

v=1 : ’ (6.4)

(6.5)

SN

g=
The score probability equations are written and then explained below.

S ,
$(z. s, w)ds = [/ m,.e“"*“"’){g[fcﬁ(y,s,w.,.vw) + qn(y, 3, wyvw).

| . o
+ W)(y,s,w.,.vw)] + %J(s)}dy + e"’*(T"""&(a - wwr)]ds



n(z, s, w)ds = /o > o0e 0 { g3 4(z, 3, vw) + (f + b)n(z, 3, vw)

(8)
+ -g-qb(z,s, vw)] + %6(3)}dzds '
Wars,w)ds = | [ omeo-e0{g[boty,,0-v0) + gn(s,8,w-ow)
b
| 9

“+ fY(y, s, w_vw)] + %5(3)}@ + e"’"&(s)] ds

Eqs. 7-9 state that the probability that a particle of weight w at z will contribute
a score in ds about s is equal to the sum, over all possible next events, of the -
probability of each next event times the probability that the particle scores s in
ds subsequent to the sampling of that next event. The possible next events for a

particle moving in the +% direction ar=:

1. Collision at y with T > y > z, then survival at y, and then scattering in |
the +2 direction. ‘

2. Collision at y with T > y > z, then survival at y, and then scattering in
the —z direction. '

3. Collision at y with T > y > =z, then survival at y, and then scattering

. perpendicular to the z direction. |
4. Collision at y with T > y > z, then absorption at y.
5. Freeflight to z = T and penetration of the slab.

- The corresponding next event probakbilities are:

1. oy o+lv=2) g ¢
2. o e o+-2) g b,
3. o e o+(v-7) g q.
4. g.e?+lv-2) 1 _ g,
5

. e~o+(T-2)_

The probabilities that a score s in ds will subsequently occur after the above

events are:
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ATl o S

Ny, s, wyvw)ds

¥(y, 3, wpvw)ds
n(y, s, wyvw)ds

6(s)ds
&(s — wwr)ds

- Summing the above probabilities over all next events yields Eq. 7.

Similarly, the possible next events for a particle moving in the — direction are:

1.

Collision at y with z > y > 0, then survival at y, and then scattering in the
+z direction.

Collision at y with z > y > 0, then survival at y, and then scattering in the
—2 direction. |

Collision at y with z > y > 0, then su.rvxva.l at y, and then scattering
perpendicular to the # direction.

Collision at y with z > y > 0, then absorption at y.

Free-flight to z = 0.

The corresponding next event probabilities are:

v W

o_e~7~(==v} g.b.
o_e" o=V g f.
o_e~7-(z=v) g q.
og_e?-{=-v) 1 — g,

e 7%,

The probabilities that a score s in ds will subsequenfly occur for the above events

are:

ARl L o

Ny, s, w_vw)ds
¥(y, s, w_vw)ds
n(y, s, w-vw)ds
8(s)ds
6(s)ds

Summing the above probabilities over all next events yields Eq. 9.

Note that z will not change for a particle moving perpendicular to z. The particle
will collide at z and either be absorbed or scattered. Note that a forward or
backward scattering still leaves the particle traveling perpendicular to Z, and a 90



degree éc:;ttering puts the particle in the = directions with equal probabilities of
1. The possible next events for a particle moving perpendicular to Z are:

1. Collision at z, then survival, and then scattering perpendicular to the #
direction. '

2. Collision at z, then survival, and then scattering in the +% direction.

3. Collision at z, then survival, and then scattering in the —% direction.

4, Collision at z, then absorption.

The corresponding next event probabilities are:

1,9,(f+0b)
l,9,2
l,9,%

1’1 -9

ol

The probabilities that a score s in ds will subsequently occur for the above events
. are: |
1. n(z,s, wovw)ds
2. ¢(z,s,wovw)ds
3. ¢¥(z,s,wovw)ds
4. 6(s)ds

Because there are no weight-‘dependent gamée, a particle of weight w will have
.exactly the same random walk as a particle of unit weight and its tally will be w

. times as much. Expressed mathematically:

&z, s, w)ds = ¢(z,5,1)¢% = «5,%)4-;; (10)
s s . s. .8

¥(z,s8,w)ds = 1/:(::,-“-,, l)d-t; = f/:(z,;)d'—v- | (11)
s s . $.,8

71(3,3, w)ds = ﬂ(z,;,l)d; = ﬂ(z’ z)d"; (12)

where the last eq'ué.lity in the equations defines ¢(z,t),¥(z,t), and 7(z,t). Note that
#(z, 1), ¥(z,t), and n(z,?) are the probability densities for obtaining a score ¢ from a
- unit weight particle. Substituting Eqs. 10-12 into Eqs. 7-9 and letting t = { yields
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o= [ ose e Ll oy s an, oy + b, )

wyvw

(13)
+ %6(wt)}dy + e~ oHT-2)g5( ¢ —war)] wdt

w0t = [ a0 Lolyie Dy (rrbynta, L)+ Suge, L)1+ Z260) | dsoat (10

¥(z, t)dt = [ [ one=~ I lbo(u, =) + anv o) + S5, =)

w_ovw

(15)
+ %G(wt)}dy + e-°7=5(wt)] wdt
Recalling that
_ o
§(az) = =§(z) (16}
Egs. 13 and 15 become
ot = [ /Ta e+ L 1805, =) + gnly, =) + by —)]
’ A weo /9 wyv Twyv Twyv

(17)
+ %J(t)}dy + e+ T=2)g(1 - wT)] dt

et = [ 0o Lilote, ) 4 (1 4 bynte, £y Lot 1+ o) asat (17.1)

et = [ [Come e { L ooy, )k anta, =)+ futn =)
o | S (18)
+ %5(:)}@ + e-°-=6(¢)] dt

Define

L.(z)= / ¢(z,s)s'dq : (19) |



M. (z) = /r)(z,a)a'ds | (20)
N,(z)= /¢(z,a)a"da ' (21)

~ Note that with s = L

/——¢(y,—)t'dt / ¢(y,s)(wv.s)'d(wv.s) = (wv)" /¢(y, s)s"ds = (wv) L,.(y) .
(22)

[ aortwaprdt= [ —onty,s)(wvs) dwes) = (wo) () (23)
[wrmgpra= [ Lo awrdws = wrre 2

Multiplying Eqs. 17.1 and 18 by t" and integrating and using Eqs. 22-24 yields

L(z) = ["o e ow yg[bh ) + o)+ L]y @)

 My(z) = /oeo ,oe-aof{(vwo)r.g[% No(z)+ ( f+b)M.(z) + gL_,(z)]}dz (25.1)

Using Eq. 5.1

aoe—aoz

My(z) = Vgl No(2) + (f + Mo(2) + 11,(2)] /o " ageor {2 Y (252)

My(z) = Vg3 Ne(2) + (f + bM,(z) + gLr(znou'{,io}'[ao +ro-oo)!  (253)
Defining
G= v'gao{aio}'[ao +1r(0 - ao)]? (254)

- Eq. 25.3 becomes
10



My(2) = GIAM:{2) + (£ + M (a) + LL,(c) @)

Multiplying Eq. 17 by ', integrating, and using Eqs. 22-24 yields

@)= [ o0 ows Yo N (4) + M (s) + L, (3)]dy + 0T Dug (a)

Using Eqs. 4-6, note that the three equations above are independent of o..,0y,
and o_ for r = 1. Thus the mean score is the same as the analog case for any choices
of 04,09, and o_; thus the method is unbiased.
~ Substituting Eqs. 1,2,4,5, and 6 into Eqs. 25 and 27 yields

Lo(z) = /o ) U-e"’""”’(;a:)'e"‘°""‘5"”"gv' [be(y) +qM,(y) + fLr(y)] dy (28)

. T |
N.(z) =‘~;/ ope~%+ (v—:)(i)re—(a-u)(v-z)rgvr [fNr(!I) +qM,(y) + er(y)] dy )
T 29

+ e~ % (T—z)e—a+ (T-z)r

Rearranging the two equations above yields

o I%,(x):_(%‘)"“ gou" /oze_(,,-a-(r_x))(z-v)[bjy,(y)+qM,(y)+ fL,(y)]dy (30)

o T '
| Nr(z)=(07:)"“9av' / e“‘"“’*""”""”[fN'(y)+qu(y)+6Lr(y)]dy

(31)

+ e—(oT—o4 (r— 1)}(T =)

IMultiplying Eq. 30 by efer-o-(r-1))r and Eq. 31 by e—(or-0+(r-1))= yjelds

Le(a)elrm-o-tr-e = (Z2)Hggur [ elor-e-te-Mu[oN, (4 g3, (3) + L, (3)] dy (32)
o B

11



. T
Ny (z)emlor=ostrmiz = (Z2)=r¥gyr / e or-o+ =0 [N, (y) + gM,(y) + BL.(v)| dy

e (or—o4(r-1))T

(33)
‘Diﬁ'erentiating Egs. 32 and 33 yields
| | Li(z)el®=o=t=0)= 4 (or — g_(r — 1))L,(z)el"~o-C=1)=
= ( ga: )"+ ggyT eler—o-(r=1)= _ (34)
x [BN.(2) + aMo(2) + fLo(2)]
N:(z)e-(ar-o,(r—x))z —(or - o4(r = 1)) N'(z)e—(or-u(r—l))z
= —( % ) ggyrem(or-o4ir=1)z (35)

x [fN.(2) + aMo(2) + bLe(2)]

" Multiplying Eqs. 34 and 35 by e~(or=0-(r=1))z and e(0r-o+{r-1))= regpectively yields

L)+ (o7 = o-(r = D)E@) = (5) "+ ogu [pe(z) + aMo(2) + [L@)]  (36)

Ni(@) - (o7 = 04(r = DINo(z) = ~(Z2)"+log0" [fNo(z) + aMr(z) + bLe(a)]  (37)

. Rearranging Eq. 26 and defining D by

_¢_ G
b= 21-G(f+b) : (37.1)
yields
_ - ’
M,(z) = ';(Nr(z) + L.(z)) (38)

‘Substituting Eq. 38 into Eqs. 36 and 37 yields
12



Li(z)+(or—o_(r—1))L(z) = (%—-)"“agv' [bN,(z)-Q-D(N,.(z)-!-L,(z))+fL,(z)] (39)

N;(z) = (o1 — 04 (r — 1))Ny(2) = —(zc;t)_'ﬂo!l”' [fN,(z) + D(N:(z) + Lr(2)) + er(z)]
| (40)
| Rearranging yields

L@+ [(or-0-(r-1)~(Z) 7 ogu (D+1)| L(2) = (Z2) " ogv [b4D] Ni(2) (41)

N)(2) + |22+ agu' (£ + D) - (or - o4 (r = )] Nilz)

| (42)
= (G ogv’ [D + 8] Lo(z)
‘i)eﬁniﬁg |
as [(G2)"0gv(f + D) - (o - 047 - 1)] (43)
B = —(%)_'“ayv' [D + b] | | | .(44)
1= [(or - o_(r - 1)) - ()" Hogv' (D + )] (45)
¢=(Z)"ogy [b + D] | (46)
and inserting into Eqs. 41 and 42 yields
Ly(2) + 7L.(2) = eNy(2) (4a7) |
N(z) + al,(z) = ﬂL}(z) - (48)

This is a system of first order linear differential equations so one tries a solution
of the form’:

13



N.(z) = ae"* + be"*

Lo(z) = ce"® + de"*
A pa;ticle at z = 0 moving backwards always scores 0 thus, -
L.(0)=0.
" Applying this boundary condition yields d = —c so that

| Ly(z) = c(e"* — %)
Substituting Eqs. 49 and 52 into Eqs. 47 and 48 yields

arye"F + brae™* + aae™ + bae* = fic(e"* ~ €73%)

rice — crae™® 4 yc(eNT — €"7) = eae™* + be™*

* Collecting coefficients of the exponentials in Eqs. 53 and 54 yields

a(r1 +0) = fe
b(r2 + @) = —Bec
o(n+1)=ca

—e(rz47) = ¢b

Solving Eqs. 55 and 57 together and Eqs. 56 and 58 together yields

4@+ nn+(er-F=0

13+ (@+1)r2+(ar-Be)=0
14

- (49)

(50)
(51)
(52)

(53)

(54)

(55)
(56)
(57)

(58)

(59)

(60)



Egs. 59 and 60 are the same, so take

rx--[ ~(a+7)-V(e+1)?-4(ay- ﬂe)] [(a+7) Via- ‘7)2+4ﬂc] (61)

ra= -[ ~(@+71)+ Ve +7P —4(ay - ﬂc)] =3[+ + Va—7F B (62)

A particleat z=T moving in the +% direction always scores exactly 1, so that

N,(T)=1

From Eqs. 57 and 58‘

 Using Eqgs. 49 (at z = T),63, and 64 yields

—p1r 1 1+7 r;T+6ergT
r2+7

| Solving for b yields

b= [er:T - merﬂ‘] -1

-T2+

Substituting Eqs. 66 and 64 into Eq. 49 yields

N,(z) = [erzT ™+ nt+7v nT]'l[ :: I :enz

r2+7

Multiplying the numerator and denominator of Eq. 67 by r; + 7 yields

No(2) = [~(r1 + )™ + (2 + 7)™ [~ + 1T + €T 4 9)]

(63)

(64)

(65)

(66)

- (67)

(68)

Note from Eq. 68 that the r** moment becomes infinite when the denominator

vanishes; that is, when

1 . [nt+7
rz—rn'"[rzMr

(69)

15



- Consider the case when r; and r; are complex. Note that the imaginary parts of
' 71 and r; are the same magnitudes but opposite signs; thus define z and y by

mii-iy ' (70)
raz4iy ()
| Addxttona‘ﬂy define 6 and p by,

r+y=pe ¥ _ (72),
ra+7 = pe’ | L

3 Substitf.ﬁting into Eq. 69 yields
o ,'_21!,')"[,):;':0] - (74)
| T = ;%_h[c-;u] o | | N (75)

‘Recalling that (for integer m) i(¢+2™) = o,

T.= %[mr - arcum[?: 7]] (76)

Note that for complex roots that there is always a positive solution for 7. for
some m. For practical purpases, the smallest positive T, is the one of interest. A
: computer'program to calculate critical thickness is given in Appendix A together
“with a specific exampie. ' '

" Rewriting the numerator of Eq. 68 using Eqs. 70 and 71 yields

—(r1 + 7)€ + (r2 4+ 7)™ = ~(z — iy + V)"V 4 (2 4 iy + 7)elz+v)e (77)

= e”.{(.z«r-‘y)e'."z —(2+7)e"V" 4iy(eV + e~ ")) = 2ie**{(z+7)sin(yz) +W’(9?)} (78)
16 |



Note that the denominator of Eq. 68 is the same as the numerator evaluated at -
z =T, thus

No(z) = [e={(z +7)sin(yz) + yeos(y2)}] [T {(z + 7)ein(yT) + yeos(yT)}| o (9)

A computer program that calculates the moments from Eq. 79 and estimates the
moments via Monte Carlo transport is given in Appendix B together with a specific

examp:e.

IV. DERIVATION OF SCORE DISTRIBUTION EQUATIONS

The moment equations of the previous section allow determination of the critical
thickness for a slab with given 0,0,,04,00, and o_, but the actual score distributicn
is also interesting. The special case for which:

o4 =‘ a(l - p) | (79.1)
Og=0 (79.2)
o_ =o(l+p) (79.3)

will now be considered because it is the tridirectional analog of the oldest exponen-
tial transform variation in MCNP.

It will be shown that the score distribution (for the choices Eqs. 79.1-79.3) is a
discrete distribution, determined only by the number of collisions the particle has
while moving in the forward direction and the number of collisions the particle has
while moving in the backward direction. Most of the theory for this comes directly
from the MCNP manual (ref. 1, p. 144), and is paraphrased in the next paragraph.

~ Consider the penetration of a nonmultiplying slab whose nuclear cross sections
are constants, independent of space and energy. Let the desired tally be a simple
count of the number of neutrons penetrating the slab per incident source neutron.
Consider artificially changing the total cross section from o to o’ = o(1 — pu) where
p is the cosine with respect to the slab penefration direction and p is the transform

parameter. The weight multiplication upon collision is
17



(80)

where s is the sampled distance traveled by the particle for the current sampling. If
tLe particle does not collide because it reaches a geometric surface before collision,
then the weight multiplication is '

w, = e” ¥ (81)

Suppose for a given penetrating particle thet there are k flights, m that collide and
k — m that do not collide. (Note that there may be many geometric surfaces in the

slab for such things as iallying even though the slab is homogeneous, thus there
may be many collisionless flights.) The penetrating weight is:

e Pouisi

H 1 - pp;

=1

H e~PIBI2; (82)

j=m+1

-~ However, note that the particle’s penetration of a slab of thickness T means that

.
Swma=T (83)
=1 :

and hence

w, = e T T](1 - pi)™ | - (84)

=1

Note that the only variation in w, is because of the (1 — pu;)~! factors that arise
from collisions. Every particle that penetrates has the same exponential factor
e ?T regardless of how it penetrates the slab. Thus the variation in weight is due
to the number and type of collisions; that is, how many collisions of positive g and
how many of negative pu. | |

'Now consider a problem with only three possible directions; that is u; = {-1,0,1}.
Using Eqs. 79.1-79.3 in Eq. 84 to obta.m the penetrating weight, and hence the
scores, yields

8mn = (1 —p)"™(1 4 p) e PTymin | (85)
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where m s the number of collisions in the forward direction and n is the number
of collisions in the backward direction. This is a discrete score distribution and
all that is now lacking are the probabilities of having m collisions in the forward
- direction and n collisions in the backward direction. Define

Definition 7. ¢ma(z) = the probability that a particle moving in the forward direc-
tion will penetrate the slab after making ezactly m collisions while
moving in the forward direction and ezactly n collisions while moving

. in the backward direction.

Definstion 8. nna(z) = the probability that a particle moving in the perpendicular
direction will penetrate the slab after making ezactly m collisions
while moving in the forward direction and ezactly n collisions while
moving in the backward direct.on.

Definition 9. ¢mn(z) = the probability that a particle moving in the backward di-

' rection will penetrate the slab after making ezactly m collisions while
moving in the forward direction and ezactly n collisions while moving

in the backward direction.

Followxng the earlier procedure, the equations for ¢mn(z), 7mn(z), and w,,.,.(z) are
" written and then explained below. :

T
ton(@) = [ o1& 0| £ 10(0) + Pm-1n(9) + Bmora()dy 21 (86)

Tn(2) = 9 30ma(2) + Thma(2) + (f + D)ma(2)] (87)

U (@) = [ 0-e g [bmp1(4) + Pmns9) + fmami@]dy 021 (89)

 Equation 86 states that the probability that a particle makes exactly m > 1 collisions
in the forward direction and exactly n > 0 collisions in the backward direction is
equal to the probability of each next 'event, times the probability (subsequent to
that next event) that the correct number of collisions occur in the two directions.
The possible next events for a particle moving in the +% direction are:
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4.
5.

Collision at y with T > y > z, then survival at y, and then scattering in the
+% direction.

Collision at y with T > y > z, then survival at y, and then scattering in the
- direction.

Collision at y with T > y > z, then survival at y, and then scattering in the
direction perpendicular to z. '

Collision at y with T > y > z, then absorption at y.

Free-flight to z = T and penetration of the slab.

The corresponding next event probabilities are:

1
2. o4
3.
4
5

. ope”t w=2)9.f.

e~ % (v-2) ’g’b.

a+e—0+(v—r),g,q.

. opeo+l=n) 1 _ g,
. e~ o+ (T-2)

The probabilities (subsequent to each of the above events) that the sum of the
collisions for a penetreting particle will be m,n are:

1
2
3
4
5

. ¢m—l,n(y)

¢m—l.n(y)
'Im—l,n(y)

.0
.0

The probability in 4 is zero because an absorbed particle cannot penetrate; the
probability in 5 is zero because a free-flight leads to m = 0 and Eq. 86 requires at
least one collision. Summing the above probabilities over all next events yields Eq.

86.

The possible next events for a particle moving perpendicular to i are

1.
2.
3.

4.

Collision at z, then survival, and then scattering in the +# direction.
Collision at z, then survival, and then scattering in the —z direction.
Collision at z, then survival, and then scattering in the direction perpendicular

to z.

- Collision at z, then absorption at z.

‘The corresponding next event probabilities are:

00



1,9,3.
L,9,%.
1,9,.f +b.
,1-—-g.

Ll A

 The probabilities (subsequent to each of the above events) that ihe sum of the
collisions for a penetrating particle will be m,n are:

1. dmn(2)
‘ 27 '/’mn(z)
3. Bmn(z)
4. 0

Summing the above probabilities over all next events yields Eq. 87.
The possible next events for a particle moving in the —z direction are:

1. Collision at y with z > y > 0, then survival at y, and then scattering in the +z
direction. N

2. Collision at y with z > y > 0, then survival at y, and then scattering in the -z
direction. '

3. Collision at y with z > y > 0, then survival at y, and then scattering perpen-

- dicular to the z. .
4. Collision at y with z > y > 0, then absorption at y.
5. Freeflight to z = 0.

The corresponding next event probabilities are:

o_e~7-(==y) ,g,b;g
. a_e~ ==V g f.
o_e-(==¥) g q.

o.e~-(z- 1 — g.

IR SR

e o-%,

The probabilities (subsequent to each of the above events) that the sum of the
collisions for a penetrating particle will be m,n are:
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[y

; ¢m.n—l(y) '
. Yma-1(y)

3. tma1(y)
.0

4
5. 0

(2

Note thaf the probabilities in 4 and 5 are 0 because a particle cannot penetrate
(z = T) if it is absorbed nor if it crosses z = 0. Summing the above probabilities
over all next events yields Ea. 88.

Rearranging Eq. 87 and defining

Q=9¢"1~(f+b)g]” (89)
yieldg' |
=9 ‘
fimn(Z) = 5 [mn + Pmn] (90)

Substituting Eq. 90 into Eqs. 86 and 88 yields

] | |
ton(@) = [ o101+ Dom1a0) + 6+ DWmra)dy m21 (o)

bnl@)= [ oo g[6+ Dns) 4 (1 + Dbmacr(w]dy  n21 (02)

Rewrite Eqgs. 91 and 92 in terms of the distance from the z = T boundary. That

is, let

8=T-2 (93)
an(’) = ¢mn(zj (94)
an(’) = Ymn(T) (95)

Additioxially, let

22



k=2t | (96)

2
M= (97)
r=T-y : - (98)
a=2/+Q | (99)

f=24+0Q O (100)

Changing variables from z and y to s and r yields

Fon(s) = Ke=o%* | /o * o [(a Froin(r) + pg,,,_,-,,(r_)] dr (101)
bm,(s) = Me-* /‘ ' e""'[(ﬂFm,'._l(r)+apmn_1(r)]dr . (102)

Note that |
Bmo(s) =0 for  m2>0 (103)

because a particle moving in the backward direction that does not have at least one
collision while moving backward cannot penetrate the slab. Also, note that

Fon(s)=0 for n>0 (104)l

because a particle moving forward cannot have any collisions moving backward if
there are no collisioas while moving forward. Finally, a collisionless free-flight that
penetrates the slab occurs with probability

Foo(z) = e77+* (105)

After evaluating the solutions for small m,n it appears that good guesses for B,
and Fpy are:
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n—1

Fran(s) = e7o+* Zam,.,s’ +€°" Y bmnjs

=0 j=0

n—1 .

Bpn(s) = €e™** Zcmnr"’ + e’ denr”
j=0 y=0

From integral tables for positive integers n

/ e*dr = w“ Z( l)n-{»k (az)k

Substituting Eqs. 106 and 107 into Egs. 101 and 102 yields

m=1

Frn(8) = Ke'”*'/ [a{e 74T E - l.nJ'J +e-" Zb -1 .m"’}
0

1=0 : =0
m~1 n-l
+ ﬁ{e-a" Z Cm-—-1 n)rJ + =" de 1 n;r,}] dr
=0
Defining
O = 0+ 4+ o_

n-1

Fnn(s) = Ke™o%* / le Z G-t nit + €77 Y b ngr’
&

J=0
m-1 ) "-1
+ 8 E Cm-1,0j" + e "R L dm- n;"’] dr
i=0 j=0
. m~1 . )-H s
Fm"(g’) Kc +.[Z(aam— 1,nj + ﬂcﬂl l.'lJ)J + l lo

+ Z(abm- L,nj + ﬂdm- .nJ)L‘ e’."'idr]

=0

Let i = j + 1 in the first sum and use Eq. 108 on the integral
24

(106)

(107)

(108)

(169)

(109.1)

(110)

(111)



an(’) Ke™+* [E(aam—l,n.t-l + fem- -1,n, |—l)

=1

j=0

= Te?
+ Z(abﬂl—l,ﬂJ + ﬂdm—l,vu){( e)]+l Z( I)J'H‘ (a.r)k

n-1

an(-’) = Ke 7+ [Z(aam—l nd~-1+ ﬂcm—l n.i-l)_‘ + Z(abm —1nj + ﬂdm l.n))

i=1 j=0
{(:o),;, E( 1):+k '(,_,)k + [%}]mj!}]

Noting that

the double sum term may be rewritten and Eq. 113 becomes

Fnn(s) = Ke™%* ) (atm_1n,i-1 + Bem—1,n,i-1 )8?
i=1 ’

n-1n-1

a-aZS‘(ab 1 +ﬂdm— '"’xa.)k-g-l( l),;+k.7 k

=0 y=k

n-1

+ Keo4" Y (b0 + Blmrag)( =) !

3=0.

Collecting coefficients of s%~7+* yields

n-1

j+1
@nno = K Z(abm -1nj + ﬂdm—l.nj)[ ]’
}=0
VC;ollectinlg coefficients of sie=o+* yields

K ‘ o
Gmnj = ']T(aa"!-l,n.j-l + pcm-l.ﬂoj"l) 1 S J S m

| (112)

(113)

(114)

(115)

(116)

(117)
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Collecting coefficients of s*e’-* yields

n-1

bk = K 3 (@bt ng + Bldm—1,05)(02)F 731 (- 1)“*’ 0<k<n-1  (118)
y=k _

- For the backward equation, substitute Eqs. 106 and 107 into Eq. 102

' T - n=2
Bmn(s) = Me""'/ e " [ =04t Zﬂam.n—l,)"’ +e%-" Zﬂb -1,

s =0 j=0

(119)
. m n-2
+e Y aempor gt + €Ty ad,,.,,._ur"] dr n2>1
Jj=0 ‘ Jj=0
| n~2 .
Bmn(s) = Me®- ./ [ TOer Zpam.n—l.ﬂ'" + Zﬂb .n-l.)
(120) -
n-2
4 e7oT Eac,,. ,._wr’ + zad ,,._L,r’] dr n>1
J=0 j=0
mn(s) Me’-* [E(ﬂamm-lq + acm.n-l.))/ -%',Jdr
y=0
(121)
n-2
+ Z(ﬂbm.n-l.; + ad,,.,,._u) / r’dr] n>1
J=0
. Now using Eq. 108
B o3 k r=T
mn(-’) Me Zo(ﬂ“mm-la +°cm.n—l.:){ ),-n Z(ao") }'m
y=
' (122)

+ ,iz(ﬂbm.n—lg + adm,n-lq){ ;,_:ll }:;T] n2>1
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mn(‘) Me®-* [Z(ﬂam,n-lg + acm.n-l.))

=0
ey e=0°T ] ! '
{(a y 2 2(0.)" - oy Z_;)(o.)"-’-c-!-T“ } (123)
nl j+1 j4+1
+ Z(ﬂbﬂl n-14 + adn n—l.’){ L ;:- 1 }] n>1

=0
Letting i = j + 1 in the last sum, noting that o. = 04 + o_, and noting that

2)I NS (120

J=0k=0 k=0j=k

yields

an(c‘l) = Me'0+lkEoZ;(ﬂ%'"_lJ + acm,,._l_j)(a.)“'j lk' k
—i J=

- Meo-*e T Z E(ﬂam n-1j + acm n—lg)(ao)k-"_l J Tk

k=0 j=k
(125)
499 n-2 TJ+1 .
- Z(pbm,n—lq + adn, n-l,J)
j=0
n-1 ,
- Me - Z(ﬂbm.n—l,i—l +ady q-y .—1)— n2>1
i=1
( ) Me®-* e k r=T
mu S € z;(ﬁam,n-lg + ac,, n-l.)){ (0 )’+, Z(U.T) K }'_.
j=
| : (126)
n- 41 | =T
+ Z(ﬂbm n-1,i + adm,n-l.)){ . } ] n>1
=0 r=s
qulectihg' terms of s"e”+" yields
m 4t '
Cmnk = M Z(ﬂam,n-l.j + acm,u-l,j)(oc)k-J_l% 0<k<m (127) ‘

j=k
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Collecting terms of e’-* yields

n—-2

dmno = M E(ﬂb mn=-14 + adp, n-l.;)— - Me™*T LZ(ﬂ“m.n- 1,j
=0 k=0 j=k (128)

+ atmpr )i LT

Collecting terms of s'e”-* yields
M .
dpni = ""i-(ﬂbm.n-l.i-l + advu.n4l,i-l) 1<t<n-1 (129)

These recurrence relations may be solved recursively to obtain the exact score
distribution. Although closed form solutions have been obtained for some cases,
the author has been unable to obtain a general closed form solution.
~ One simple case can be obtained by induction. Assume that

Fo(8) = (Ka)™e~o+* (130)
then using Eqs. 101 and 103

’ m
Fm+1,o(s) = (Ka)""“e""'/ e¢+,f_7e_’+rdr
(1] m.

(131)

—049

s om +1

::However, note that Eq. 130 is true for m = 0, thus by induction it is true for all
. m > 0. Thus by Eqs. 106 and 130

K m
@moj = %6,,,,- form2>0 (132)

V. EXPONENTIAL TRANSFORM WITH IMPLICIT CAPTURE

The exponential transform can be used with implicit capture. The implicit cap-
ture technique splits the colliding particle into its absorbed and surviving compo-
nents. That is, if the capture probability is ¢, then a colliding particle of weight w

28



has weight cw absorbed at the collision and weight (1 ~ ¢)w that survives and con-

tinues its transport. For the case of exponential transform with implicit capture,
the definitions of v and g are changed from their definitions in Eqs. 6.4 and 6.5 to:

Os
v= = | (133)
g= 1, . (134)

That is, v is the weight change due to the capture game, and g is the probability
the particle survives the collision. For implicit capture, the particle continues its
random walk with probability ¢ = 1, and there is a w-ight change so that v = &.
In addition, Eq. 85 includes the effect of implicit captures on the scoring weight
through the v™*" term. A computer program that recursively solves for amnj, -
bmnjs Emnj, and dmy; is given in Appendix C. Additionally, therein lies a specific
comparison of the theoretical score probability function F,, with an empirical score
probability function estimated by a Monte Carlo transport calculation.

VI. CONCLUSION

This report provides analytic score distributions and moments for an interesting
set of spatially continuous exponential transform problems. These analytic score
distributions are intended to aid in the quest for better Monte Carlo confidence
statements. Proposed new confidence interval estimation procedures can use the
known score distributions as test cases. | V
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APPENDIX A

The following FORTRAN program with f = .25, b = .25, and ¢ = .5 com-
puted the critical thicknesses (for finite second moment using Eq. 76) shown in
Table I (see p. 46). Table I shows the critical thickness dependence on transform pa-
rameter p and scattering cross section o,. A negative entry for a particular trans-
form pa&ameter p and scattering cross section o, means that the critical thick-
ness is infinite. That is, the second moment is finite for all thicknesses. The re-
sults are for analog capture.
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program series(tty,input=tsy,outputstty,out,teped=out)
dimension tcrit(100,100)
cemputes critical thickmness for finite variance and exponential transtorm
sigztotal cross section
sigs=scattering cross section
pcexponential transform parameter
faprobability of forward scattering (mo direction change)
bzprobability of backward scattering
qQ=prodability of 90 degres scattering
write(s,s) enter £,b,q>?’
read(s,*)?,b,q
sig=1
do 800 i=1,9
sige=.1sji
do 700 j=1,40
p=-02¢j
za=(sige/(1-p))o(2+ sigaeqe+2/ 2¢sig) / (i-sigee(2+b)/sig) )
1 -sige(i+p)
zb=(~eigs/(1-p))o( b+ sigeeqes2/(2¢sig) / (1-sigs*(2+b)/sig) )
zg=sig*(1-p) | | |
1 -(sigs/(1+p))e(L+ siycqnzl(éo-ig) / (1-sigse(2+b)/sig) )
ze=(sigs/(1+4p))s( b+ sigeesqee2/(2¢sig) / (1-sigse(2+b)/sig) )
m=abs( (za-zg)ese¢2+49zbeze )
rz2=.6%( -(za+zg)+riesqre(za) )+zg
z2irt2=.5¢sqrt(za)
zrrt2=.6+( -(za+zg) )+zg
zth=atan(zirt2/zrrt2)
write(4,+)’za,zb,zg,ze=’,za,zb,zg,ze
write(4,) ’zm,zirt2,zrrt2,zths’ ,zn,zirt2,2rrt2,2th
zr1=.6+( -(za+zg) )
zr2=.6¢( -(zatzg) )
d=(za-zg)e*2+4ezbeze
if(d.1t.0)go to 661
zri=zri-.5*sqrt(d)
zr2=zr2+.6%sqre(d)
ztcsalog( (zriszg)/(zr2+2g) )/(zr2-zx1)
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write(4,+) 'sigs,p,real ztc ’,1,j,8igs,p,2tc

terit(i, j)sztc .
~go to 700

‘561 continue
€ complex roots

it(zth.le.0)ztc=(~2th)/(.6osqrt(zm))
12(zth.gt.0)ztcs(3. 141892653689793-2th)/( . Seaqre(zm))
write(4,) 'sigs,p,complex ztc ’,1i,3,8igs,p,2tc

 terit(4,j)=zee

- T00 continue

32

-800 continue
write(4,2000)
2000 format(ihi)
do 900 j=1,49 ,
write(4,1000) (tcrit(i,j),1=1,9)
1000 format(1p9e14.5)
900 continue '
. end



APPENDIX B

The following FORTRAN progfam with malog capture computed the first four
score moments for the problem described in Table II (see p. 47). The theoretical
moments come from Eq. 79 and the sample moments come from the program
run with 10 million samples. Note that the higher moments are more difficult to
estimate correctly, and thus the fourth moment is still not adequately estimated
even with 10 million samples. (This program also provides Monte Carlo estimates
- of the actual score probability distribution Fpn,.)

program series(tty,input=tty,output=tty,outsc,taped=outmc)
common/teb/rm(500) ,theoryn(100),2mn(0:100,0:100)
¢ computes all tri-directional scattering analytic and empirical moments
¢ sig=totxl cross section
c sigs=scattering cross section
‘¢ t=slab thickness . .
¢ f=prodbability of forward lclttoting (no direction change)
¢ b=probability of backward scattering
¢ q=probability of 90 degree scattering
write(s,*) ’enter p temporarilys’
read(s,s)p
write(s,s) ’enter O for analog 1 for implicit capture’
read(e,e)impl
wvrite(s,*) ’enter sig,sigs,t=7’
read(+,*)sig,sigs,t
write(s,s) ’enter sigforvard=’
read(s,*)sigp
write(s,*) enter sighackward=’
read(s,s)sigm
write(s,*) ’enter sigperpendicular=’
sead(e,*)sigd
write(s,*) ’enter £,b,q=7’
~ read(e,*)f,b,q
write(s,¢) ’enter number of moments to compute=7’
read(s,*)mon
do 11 ir=1,mom
g=sigs/sig
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vzl
it(iipl.oq.o)go'co 543
&=
vzgigs/sig

- 543 continue

' dee=(gevesireqes2)/(2s(1-gevesire(24b))):

zasgesigeveeire (1-p)es(-irs1)e(2+dee)-sige(14(ir-1)ep)
2ba~(1-p)ss(-ir+1)egegigevesirs(bedes)
zg=sige(1-(ir-1)ep)-(gesigevesire(i+p)es(-ir+1))s(2+dee)
ze=(1+4p)#s(-ir+1)egeaigevesire(brdes)

cccccceccecceccecee new equations ccceccceec
gee=vesiregesigOe(sig/sig0)esir/(sigo+ire(sig-sigod))
dee=.5¢0qee2sgee/(1-gees(2+d))
write(e,®) ’za=’,2~ :
zaz(uigp/lig)oo(-1:41)0-13030vttirt(tOdod)-(oigtir-nigft(ir-t))
write(s,s) ’zaz=’,za
write(s,s) ’zb=",2b
zb=-(sigp/sig)e*(-ixr+1)esigvgevesirs(tides)
write(s,s) 'zb=’,zb
write(s,s) 'zg=’,2g
zg=sigeir-signe(ir-1)-(sigm/sig)se(~-ir+1)esigegevesire(tedee)
write(s,s) '2g=’,2g
write(s,*) ’ze=’,z0
ze=(sigmn/sig)es(-ir+1)esigegevesirs(bidee;
write(s,s) 'ze=’,ze '

. ecceececcccecccecccce end new equations ccccce

zm=abs( (za-zg)es2+4ezboeze )

zirt2=.5esqrt(za)

zrrt2=.5¢( -(za+zg) )+zg

zth=atan(zirt2/zrrt2)
c write(4,?)’za,zb,zg,ze=’,za,zb,zg,ze
c write(4,¢) ’zm,zirt2,zxrrt2,2the’ . zm,zirt2, zrrt2,2th

zxr1=.6¢( -(za+zg) )
2x2=.69( -(2;025) )
d=(za-zg)ee2+4¢zbeze
i2(d.1le.0)go to 561



real roots

zriszri-.6esqrt(d)

2r2=2r2+.5%sqrt(d)

ztcsalog( abs((zri+zg)/(zx2+zg)) )/(zr2-zrf)
write(4,s)’sigs,sigp,sigld,sign,real ztc '’

1 ,1,j,sige,sigp,sig0,sigm,ztc
raun=-(zri+zg)vexp(zriex)+(zr2+zg)sexp(zr2ex)

| rden=-(zri+zg)sexp(zrist)+(zx2+zg)vexp(zr2est)

561

rn0=rnum/rden
'rito(s.t)ir.'thobroticll moment=’ ,rn0
theoryn(ixr)=rn0

go to 700

continue

€ complex roots

700
11

if(zth.le.0)ztc=(-zth)/(.5%sqrt(zm))
if(zth.gt.0)ztc=(3.141602653689793-zth)/(.E*sqrt(zm))
vrite(4,#+)’sigs,sigp,sig0,sign,complex ztc *

1 ,sigs,sigp,sig0,sigm,ztc

y=.6%sqrt(zm)

x=0

rnum=exp(zrisx)e( (zri+zg)esin(yex)+yscos(y*x) )
rden=exp(zrist)e( (zri+zg)*sin(yst)+yscos(yst) )
rn0=rnum/rden o
write(4,+)ir, ’theoretical moment=’,rn0
theorym(ir)=rn0

continue

continue .

srite(s,*)’enter number of particles (in thousands)=?7’
read(#*,s)nppk

npp=1000snppk

do 12 ir=1,mom

- m(ir)=0.

12

continue

do 804 n1000=1,1000

do 808 nps=1,nppk

mu=1
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z=0
ns0
n=0
wai
814 continue
¢ distance to collision
x0=x
if(mu.eq.0)sigtict=8igd
if(mu.eq.~1)sigtict=signm
if(mu.eq.1)sigtict=sigp
s=-alog(rant(})/sigtict
xsximues
ift(x.gt.t)go to 810
if(x.1t.0)go to 803
v=wesigsexp(-siges)/(sigticteexp(-sigtictes))
¢ reduce weight if implicit capture
if(impl.eq.0)go to 877
=wegigs/sig
go to 878
877 continue
~ ¢ check for absorption‘
it(ran2().gt.sigs/sig)go to 803
876 continue '
| ¥n=rant()
if(mu.eq.0)go to 900
. if(mu.eq.1)go to 910
¢ mu=-{
n=n+1
- if(n.gt.100)stop 14
if(rn.1t.2)go to 814
mu=0
if(zn.1t.24q)go to 814
mu=1 ,
g0 to 814
900 continue

¢ mu=0
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it(rn.1t.2+b)go to 814
¢ scatter right or left with aqual probability
‘ zu=-1
if(ran?().gt.0.5)mu=1
go to 8i4
810 continue
¢ mu=i
asm+l
if(m.gt.100)stop 13
it{rn.1t.t)go to 814
me=0
if(rn.1t.24q)go to 814
mu=-~1
go to 814
810 continue
c penetrate the slad at x=t
 s=t-x0
fan(m,n)=fen(m,n)+1
wv=weexp(-sige*s)/exp(-sigtictes)
do 612 ir=1,mom '
ra(ir)=rm(ir)+uesir
612 continue
803 continue
804 continue
do 712 ir=1,mom
ru(ir)=rm(ir)/npp
vrite(4,1000)ir, m(ir),theorya(ir)
write(*,1000)ir,ru(ir),theorym(ir)
1000 format(i6,’-th moment=’,1pe13.8,’ theoretical moment=',e13.8)
712 continue |
sd=sqrt ((rm(2)-m(1)#*+2)/npp)
| write(4,s) 'mean, standard deviation=’,rm(1),sd
" write(s,*) ’mean, standard deviation=’,rm(1),sd
do 988 1=0,20 '
do 985 n=0,20
t-m(n.n)=tln(n,n)/npp
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986
o86

continue

continue

do 98€ m=0,20

write(4,3000)(m, (fan(s,n),n=0,8))
format(ib, 1poei4.6) |

continus

end



APPENDIX C

The following FORTRAN program with analog capture computed the theoretical
score distribution for the problem indicated in Table III (see p. 48) using Eqs. 116,

117, 118, 127, 128, 129, and 106. (Fmma(s) is evaluated at s = T'.) The sample score -

probabilities come from the same 10 million sample run of the program referred to

in Appendix B.

20

543

program coef(tty,input=tty,output=tty,out,tape4cout)
common/teb/a(-1:20,~1:20,-1:20),b(-1:20,-1:20,-1:20),
1c(-1:20,-1:20,-1:20),d(-1:20,-1:20,-1:20) ,2act(0:30),2(0:20,0:20)

fact(0)=1
do 20 i=1,20
frct(i)=ietact(i-1)

“urite(s,¢)’enter 0 for analog 1 for implicit capture’

read(*,s)impl

write(e,*) ’enter sig,sigs,p,t=?’
read(*,*)sig,sigs,p,t
vrite(s,s) ’entor £,b,q=7"’
‘read(#,*)forw,back,zr80
g=sigs/sig

vai

if(impl.eq.0)go to 6543

&=1 |
v=sigs/sig

continue
q=(g*r80++2)/(1-(forv+back)eg)
al=2eforvweq

be=2sback+q

sigp=siges(1-p)

sigm=sige*(1+p)

rk=gesigp/2.

m=gesign/2
write(s,*) ’rk,xm, rkern=’ ,xk,In,xkoTR
do 100 ==0,20

do 100 n=0,20

do 100 j=0,20
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a({m,n,j)=1.70123

- b(m,n,j)=1.7e123

100

21
22

62

72

c(m,n,j)=1.7e123

d(m,n,j)=1.70123

continune

do 22 i=0,20

do 21 §=0,20

(0,1,3)=0

b(0,1,5)=0

c(i1,0,3j)=0

d(1,0,3)=0

b(1,0,3)=0

continue

continue

do 72 »=0,20

do 62 j=O,m

a(m,0,j)=0

continue

a(m,0,x)=rkeencalesn/fact(n)

continue

a(1,0,1)=xk

d(0,1,0)=(-rm/(2¢sig) ) sexp(-2¢siy*t)

a(1,1,0)=( (rkerm)/(2¢sig)*+2 )sexp(-2¢siget)
c(0,1,0)=rm/(2¢sig)

a(1,1,1)=(rkerm)/(2¢sig)

b(1,1,0)=-( (rkerm)/(2¢sig)¢+2 )sexp(-2¢siget)
c(1,1,0)=(rkerm)/(2¢sig)es2
c(1,1,1)=(rkexm)/(2¢8ig) ‘
d(1,1,0)=-( (rkerm)/(2¢sig)se2 )eexp(-2esigst)s(1+42¢sigec)
a(2,1,0)=((2¢xkerken)/(2¢s1g)*+3)sexp(-20sigst)*(1+siget)
a(2,1,1)=((rkerkem)/(2%8ig)++2) s (1+exp(-20sigst))
b(2,1,0)=-((2*xkerken)/(208ig)*++3)sexp(-2¢siget)*(1+siget)
a(2,0,2)=rkes2/2

do 900 ir=1,10000000

m=21srant()

. az21srant()



ja=21erant()
. ¢ choose formula to try to apply at random
irform=1+rant()+6
go to(3111,112,113,114,115,116)irform
.111 continue
¢ try to compute a(m,n,0)
n=max(1,m)
' n=max(1,n)
itz(abs(a(m,n,0)).1t.1.650)go to 900
sum=0
do 300 j=0,n-1
iz(abs(b(m-1,n,j)).gt.1.660)go to 800
it(lﬁl(d(l—i.n.j)).gt.l.oso)go to 900
sum=sun+(alsb(m-1,n,j)+besd(m-1,n,j))e(-1)es(j+1)
| 1 s(2ssig)es(-(j+1))etact(j) '
300 continue
it(abs(sum).gt.1.e60)go to 9800
a(m,n,0)=xk*sum
c write(s,s)’m,n,a(m,n,0)=’,n,n,a(n,n,0)
go to 900 '
112 continune
c try to compute a(a,n,j)
- jomax(1,33)
j=min(j,m)
if(abs(a(m,n,j)).1t.1.e60)go to 900
do 410 j=1,m
.if(abs(a(m-1,n,j-1)).gt.1.e50)go to 900
if(abs(c(m-1,n,j-1)).gt.1.e50)go to 900 |
a(m,n,j)=(rk/j)*(alea(n-1,n,j-1) +bevc(n-1,n,3~1))
c vrite(s,*)’'n,n,j,a(m,n,j)=’ .m,n0,j,a(s,n,j)
410 continue
go to 800
. 113 continue
‘¢ try to colpnfo b(m,n,j3)
o=max(1,n)

m=max(1,m)
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j3=min(j3,n-1)
if(abs(b{m,n,33)).1t.1.e60)go to 900
k=j3
suns0
do 430 j=k,n~1
if(abs(b(m-1,n,j)).gt.1.060)go to 900
i2(aba(d(m-1,n,3)).gt.1.650)go to 900
sum=sum+(aleb(a-1,n,j)+besd(m-1,n,3j))*(2¢sig)ees(k-3-1)¢(~1)*s(j+k)
1 +fact(j)/tact(k)
430 continue
b(m,n,k)=rkesum
c write(s,¢)’s,n,k,b(x,n,k)=’ ,u,n,k,b(n,n,k)
go to 800
114 continue
¢ try to compute c(m,n,j3)
j3=min(j3,m)
n=max(1,n)
k=j3
if(abs(c(m,n,j3)).1t.1.e50)go to 900
sua=0
do 460 j=k.m
if(abs(c(m,n,k)).1t.1.e60)go to 900
it(abs(a(m,n-1,j)).gt.1.¢50)go to 900
it(abs(c(m,n-1,5)).gt.1.060)go to 900
sun=sun+(beea(m,n-1,j)+alec(m,n-1,j))*(2¢sig)ss(k-j-1)
1 sfact(j)/tact(k)
460 continue
c(®,n,X)=raesum
c write(s,*)’n,n,X,c(n,n,k)=’,u,0,k,c(u,n k)
go to 900
116 continue
¢ try to compute dA(m,n,0)
~ n=max(n,1)
sumi=0
-~ if(abs(d(m,n,0)).1t.1.e50)go to 900
if(n.eq.1)go to 514
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- do 610 3§=0,n-2
iz(abs(b(m,n-1,j)).gt.1.e50)go to 900
if(abs(d(m,n-1,j)).gt.1.650)go to 900
sumi=sumi+(besb(m,n~1,j)+alsd(m,n-1,3j))stes(j+1)/(j+1)
510 continue
514 continue
sum2=0
do 540 k=0,m
do 530 jak,m
~it(abs(a(m,n-1,j)).gt.1.0E0)go to 800
if(abs(c(m,n-1,j)).gt.1.¢60)go to 900
sum2=sum2+(besa(m,n-1,j) +alecin,n~-1,§))s(2¢sig) o+ (k-j-1)
1 e(fact(j)/2act(k))stssk
530 continue
540 continue
d(m,n,0)=ressumi-rmeexp(-2¢sigst)ssun2
c write(*,+)’n,n,d(n,n,0)=’,n,n,d(n,n,0)
go to 800
116 continue
¢ try to compute d(m,n,i)
i=j3
n=max(1,n)
i=min(i,n~1)
‘i=max(i,1)
i2(i.ge.n)go to 900
if(abs(d(m,n,i)).1t.1.e50)go to 900
it(abe(b(m,n-1,i-1)).gt.1.¢50)go to 900
if(abs(df«,n-1,i-1)).gt.1.e60)go to 900 .
d(m,n,i)=-(xm/i)¢(besb(m,n-1,i-1)+aled(m,n-1,i-1))
c write(e,¢)’ir=’ ir
c write(e¢,*)’m,n,i,d(m,n,i)=’ ,m,n,i,d(m,n,i)
900 coatinue :
2210=2¢(rkerkerm/(2¢98ig)+¢3)sexp(-29siget)*(1+siget)
c write(e,¢)’b(1,1,0),d4(1,1,0)=",b(1,1,0),4(1,1,0)
©  write(s,s)’a210,a(2,1,0)=’,a210,a(2,1,0)
a211=(rkerkern/(2¢sig)¢¢2)s(1+exp(-2¢sigst))
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c write(s,¢)’a211,a(2,1,1)=?,a211,a(2,1,1)
a212=(rkorkern/(2¢sig))
c write(s,e)’a212,a(2,1,2)=",a212,a(2,1,2)
b210=~(2erkerkerm/(Iosig)oe3)sexp(-20siget)s(1+siget)
c write(,*)’b210,b(2,1,0)=’,b210,b(2,1,0)
write(4,2000)
- 2000 format(’ = =n j’,
1’ a(m,n,j) b(m,n,3) c(m,n,j) d(m,n,j)’)
do 930 ==0,7
do 920 n=0,7
do 910 §=0,7
¢ if(abs(a(m,n,j)).gt.1.e60)a(n,n,§)=0
c if(abs(b(m,n,j)).gt.1.e60)b(m,n,j)=0
¢ if(abs(c(m,n,§)).gt.1.e60)c(m,n,§)=0
¢ if(abs(d(m,n,j)).gt.1.e50)d(m,n,]j)=0
- ift(a(m,n,j).eq.0 .and. b(l,n,j).iq.o
t .and. c(m,n,j).eq.0 .and. d(m,n,j).eq.0)go to 910
const=1 |
a(m,n,j)=a(m,n,j)*const
b(m,n,j)=b(m,n, j)*const
c(m,n,j)=c(m,n,j)econst
d(m,n,j)=d(m,n,j)econst
write(4,1000)m,n,j,a(n,n,j),b(n,n,j),c(n,n,j),d(n,n,j)
910 continue
920 continue
930 continue
1000 forma:(3i3,1p5e14.6)
~ do 970 ==0,20
do 960 n=0,20
sump=0 ’
sumn=0
do 940 j=0O,m
sump=sump+a(m,n,j)stes]
940 continue
if(n.eq.0)go to 952
do 950 §=0,n-1



960
052

960
970

3000
976
980

3001
- 984

summ=sums+b(nm,n, j)otes]

continue

continue

£(a,n)=exp(-sigpet) *sunprexp(sigmot) ssumm
2(m,n)=2act (m)efact(n)*f(m,n)/ (:ﬁomtntm)
continue

continue

do 980 m==0,20

do 975 n=0,20 .
smn=(1-p)*¢(-m)s(1+p)se(-n)eoxp(-posigst)
write(4,3000)m,n,san,2(n,n)
format(2i5,1p7e14.6)

continue

continue

do 981 m=0,5

write(e,3001)s, (2(n,n),n0,5)
format(i5,1p7e14.6)

continue

end
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=3.90847R+00
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-3.898235+00
-3.579735¢00
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=4.01907E900
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FUNCTION OF SCATTERING PROBABILITY AND
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=3.91008£+00
=2.610128+00
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=3.003768+00
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=3.00437R«00
=3.00297R+00
=3.001438¢00
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=2.590038+00
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~2.6$T9728+00
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~3.872088400
-3.549878+00
=2.667308+00
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=2.683648+00
=2.662168900
=2.8831328¢00
=2.501208000
~2.562028+00
=2.684108+00
=2. 587061420
~2.57T3628+00
~2.583008000
=2.58683800
~3.614583400
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-2.601538¢00
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6.208798400
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3.015388+00
$.433898000
9.374615-01
4.001128-01

Oge.7
=3.437328¢00
=3.437158400
=3.438888400
=2. 435468400
=2.4394X+00
=2. 438X +00
=2.434508400
=3.633748+00
~3.430008+00
=3.4317R+00
~2.430638400
=2.420418000
=3.428118¢00
=3.420748200
=3.475308+00
=3.423828400
=3.422208¢00
=2.420M98+00
=2.41923ReCO
=3.417N1E+00
=3.410288400
=3. 614008400
=3.413848¢00
=2.41257T800
=3.431758000
=2.411258400
=3.411108000
~3.411008900
=2.4127T2800
=2.414738+00
=2.417968400
=2.422908400
-3.42003500
=2.43TT0R400
=3.¢40818400

0....
=2. 281008400
-2.200008+00
-3 .280888¢+00
~2.20415+00
-2.200008+00
=2. ITP4E+00
=2.779148+00
-3.27T8808+00
=2.277888+00
=2.277328e00
«2.276815+00
-2.ITS8TR+00
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EXPONENTIAL TRANSFORM PARAMETER
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TABLE 11

COMPARISON OF THE FIRST FOUR SAMPLE MOMENTS
VERSUS THE THEORETICAL MOMENTS

sanple 1-st moment= 1.67i871E-02 theoretical momeant= 1.669347E-02
sample 2-nd moment= 3.260687E-03 theoretical moment= 3.262548E-03
sanple 3-xd moment= 1,.446749E-03 theoretical moments 1,.506766E-03
sample 4-th moment= 1,942878E-03 theoxretical moment= 4, 377704E-03

Problem: O=1 O=.6 O4=.5 Oge1.0 O_=1.5 T = 5.0
10 Million Samples
Isotropic Scattering: f=.26, b=.25, q= = .5
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TABLE III

COMPARISON OF THEORETICAL VERSUS

=0
.208600E-02
. 420208E-02
.126434E-03
.896436E-04
.03087T9E-04

@ = O N W ®

.590656E~-06

n=0
8.232220E-02
3.423430E-02
7.111200E-03
1.005300E-03
1.027000E-04
9.800000E-06

Problem:

SAMPLE SCORE PROBABILITIES (F..,)

Theoretical Score Probabilities Py,

n=1
0.000000E+00
3.847754E-03
1.745749E-03
3.985871E-04
6.111302E-05
7.085730E-06

n=2
0.0000002+00
4.275661E-04
3.162212E~04
1.048659E-04
2.197593E-05
3.369252E-06

n=3
0.000000E+00
4.678280E-056
5.012644E-05
2.253313E-056
6.163942E-06
1.194472E-06

n=4
0.000000E+00
6.021469E-06
7.321306E-06
4.27T1736E-06
1.470503E-06
3.525779E-07

Sample Score Probabilities (10 million samples)

n=1
0.000000E+00
3.832400E-03
1.729300E-03
3.902000E-04
6.020000E-06
6.100000E-06

Analog Capture O=1 0,=.5 O.=.5 Op=1.0 O_=1.5

n=2
0.000000E+00
4.392000E-04
3.177000E-04
1.067000E~-04
2.230000E-05
4.100000E-06

n=3
0.000000E+00
4.320000E-06
4.980000E-05
2.450000E-05
7.300000E-06
1. 100000E~-06

n=4
0.000000E+00
4.000000E-06
6.800000E-06
4.900000%-06
1.500000E-06
6 .000000E-07

n=b
0.000000E+00
5.263604E-07
1.005919E-06 .
7.405441E-07
3.136604E-07
9.0979492-08

n=H
0.000000E+00
6.000000E-07
1.300000E-06
1.000000E~-06
.000000E-07

L]

0.000000E+00

T=56.0



