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A NEW METHOD TO ASSESS
MONTE CARLO CONVERGENCE

R. A. Forster, T. E. Booth, And S. P. Pederson
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

The central limit theorem can be ~pplied to a Monte Carlo
solution if the following two requirements are satisfled: 1)
the random variable has a finite mean and a finite variance;
and 2) the number N of independent observations grows
large. When these are satisfled, a confldence interval based
on the normal distribution with a specified crverage prob-
ability can be forined. The first requirement is generally
satisfied by the knowledge of the type of Monte Carlo tally
being used. The Monte Carlo practitioner has only a limited
number of marginally quantiiable methods that use sampled
values to assess the fulfilment of the second requireiment;
e.g.. statistical error reduction proportional to 1/VN with
error magnitude guidelines. No consideration is given to
what has not yet been sampled.

A new method is presented here to assess the convergence
of Monte Carlo solutions by analyzing the shape of the emn-
pirical probability density function (PDF) of history scores,
f(r), where the vandow variable r is the score from one par-
ticle history and [“ fleylr 1. Since f(r) is seldomn knowa
explicitly, Monte Carlo particle random walks sample f(r)
implicitly, Unless there is a largest possible history score,
the empivieal /() must eventually decvease more steeply

than 170" for the second moment ([ 7 07 f(a)de) to exist. It



is postulated that if such decreasing behavior in the empiri-
cal f(.r) has not been observed, then N is not large enough to
satisfy the central limit theorem because f(.:r) has not been
completely sampled. Therefore, a larger \V is required before
a confidence interval should be formed.

The largest 1’s for an unbounded empirical history score
PDF have been fit to a generalized Pareto function, which
is a flexible two parameter distribution used to mode! rare

events given by
Pareto  f(r)=a"'(1+ l.'.r/u)_lwl/k

The two parameters ¢ and + are determined by a maximum
likelihood fit to the largest 5% of the r’s up to 200 values
using the downhill simplex mmethod. The estimated slope of

the largest history scores is then defined as
slope =14+ 1/k

A slope value greater than 3 should be observed in the empir-
ical unbounded f(r) to satisfy the 1/r? convergence criterion
discussed above.

Several test problems were run with a modified version
of MCNP that calculates f(r) and the Pareto estimate of
the slope for the user-defined tally fluctuation chart bin of
cach tally. One test problemm was to calculate the surface
neutron leakage flux above 12 MeV fromm an isotropic 14
MeV uneutron point source of unit strength at the center of
a 30 em thick concrete shell with an outer radius of 300 cin.
Point and ring detectors were deliberately used to estimate
the surface neutron leakage flux with highly ineflicient, long
tailed f()s. A result from this calculation for a point. detec-
tor appeared to be converged, but was a factor of 4 below
the correct result. The empirical f(r) clearly shows that
a confldence interval should not be formed for this result

beeause the estimated slope was only L4,



I. INTRODUCTION

Accurate confidence intervals can: only be created when the munber of Monte
Carlo histories N becomes large enough such that the conditions of the central
limit theorem (CLT) are met. The Monte Carlo user has a limited number of
marginal methods to assess the fulfillment of this condition, such as statistical error
reduction proportional to the l/ﬁ and crror magnitude rules of thumb,! third
moment estimators,” and fourth moment estimators such as the variance of the
variance.? A new method is deseribed in this paper that examines the probability
density function (PDF) distribution of history scores.

Little work appears to have been done in this arca. Score distribution histograms
have been generated? with an emphasis on determining if a small number of histories
account for a large fraction of the total result. Score distribution histograms can
also be used to ereate and study both analytic®® and empirical” PDFs for history
scores. These are useful in determining if the distribution has been sampled well
enough to expect a well converged solution. This paper focuses on initial studies
of Monte Carlo history score distributions from particle transport problems. The

test. caleulations have been performed using a moditied version of MCNP.!

II. THE HISTORY SCORE PROBABILITY DENSITY FUNCTION
far)

A lustory score posted to atally bin by MCNP can be thought of as having been
snmnpled from an nnderlying and generally unknown history score PDEF f(.r), where
the rimdom variable @ is the score from one complete particle history to a tadly bin.
The history score can be either positive or negative, The quantity f(r)da is the
probability of selecting o hisiory score hetween o and v+ dre for the tally bin, Fach
tally bin will have its own f(r).

Fhie most genern] form for expressing f(2) mathematieally

i) fir) >_:p,h(.r £ (1)

where fo(re) s the continnons part and Y pdCre ) vepresents the ddlerent diserere
cotnporents oceurring abory with probalality po An () could he composed of
cither or hotin parts of the distribution. A history seove of zevo s included in f(r)

as the diserete component 8¢ 0}, By the definition of a PDI,



/°° flx)dz =1 . (2)

The mean or expected value < x > of the history scores is the first moment of

the history scores distribution; namely,

<r>= /°° zf(z)dr . (3)

— 00
The nt* central moment of r is defined to be
(s o]
th

n'* central moment:/ Hei(z— <z >)"ds . (4)

—00
The variance o2 of the population of z’s is defined to be the second central ir.oment

of r, which is equal to

ol =<t > <> (5)

where the expected value of the second moment < x? >= f:; r?f(x)de. The
sqnare root of the variance is called the standard deviation o and is a measure of
the dispersion in the values of x.

Since f(.r} is seldom explicitly known, Monte Carlo samples the history score

PDF implicitly using particte random walks. The true mean < x > is estimated by

X=Y r/N | (6)

where r, i3 the (" history score to n tally bin. The estimated mean X is the sum
of all oi the history scores normed by the number of histories run; i.c., X is the
nvernge score per history for each tally bin.

The stundard devintion a is estimated by S where S is given by (and dropping

the ¢ subseript from the Y. and assuming N is much greater than one)

S = \/72: .rf/N - (Z r )N (7)

The estitnaved standard devintion of the meay is

Sy S/IVN . (8)

This implies that 5% should deerense ns the inverse of the square voot of N os long,

as the estimate of . 8, doea not chinnge ninrkedly during the ealeulation.



For each tally bin, MCNP prints the estimaced mnean (Eqn. (6)) and the estimated

relative error RE, where the RE is

RE = S¢/X (9)

=\[sz/(z::r,)3—1/N . (10)

This quantity is convenient because the estimnated statistical uncertainty in the

result is given as a fraction of the result.

III. THE CENTRAL LIMIT THEOREM AND f(zx)

The CLT states that the estimated mean will appear to be sainpled from a normal
distribution with a KNOWN standard deviation o /v N when N approaches infinity.
In practice, o is NOT known and must be approximated by the estimated standard
deviation S. The major difticulty in applying the CLT correctly to a Monte Carlo
result to formi a confidence interval is knowing when N is large enough.

How can this be assessed? Several marginally quantifiable methods were men-
tioned in the introduction. A new method described in this paper involves exam-
ining the behavior of f(r) for large history scores to attempt to assess if f(r)
appenrs to have been “completely” sampled.  If “complete” sampling has oc-
curred, the largest values of the sampled r's should have either nearly reached
the upper limit (if sueli a imit exists) or should deercase faster than 1/&% so that
< x? >= [_‘,;U 2 fle)dr exists (@ is assumed to be known in the CLT). Otherwise,
N is assumed not to have approached infinity in the sense of the CLT. This is
the basis of the proposed use of the empirical f(r) to assess Monte Carlo tally
CONVergence.

The argutnent should be made that since § must Le ngood estimnte of o, the
expected value of the fourth history score moment < ot s [ 08 f(a)dar should
exist. In the paper, we will nssine that only the second moment needs to exist so
that the f(r) convergence eriterion will be relaxed somewhat. Novertheless, this

assumption should not be forgotten.



IV. ANALYTIC STUDY OF f(x) FOR TWO-STATE MONTE CARLO
PROBLEMS

This project was divided into two parts: 1) derive and examine analytic Monte
Carlo score distributions both to assess their general nature and to nse for statis-
tical confidence interval studies; and 2) create and examine empirical history score
PDFs for real transport problems to assess their usefulness in predicting Monte
Carlo convergence. For the first part, the tally distribution of history scores has
been examined analytically>* for both an analog two-state splitting and exponen-
tial transform problem. This work provides the theoretical foundation for statistical
studies on relevant analytic functions to increase understanding of confidence in-
terval coverage rates for Monte Carlo calculations.

It was found that the splitting problem history score PDF decreases geometri-
cally as the score increases by a constant increment (this is equivalent to a negative
exponential behavior for a continuous score PDF). The history score PDF for the
exponential transform problem decreases geometrically with geometrically increas-
ing r. Therefore, the splitting problemn produces a linearly decreasing PDF for the
history score on a linear-log plot of the score probability versus score. The expo-
nential transform problem generates a lincarly decreasing score behavior (with high
scorc negative exponential roll off) on a log-log plot of the score probability versus
score plot. In general, the exponential transform problem is the more difficult to
sanple beeause of the larger impact of the low probability high scores.

The analytic shapes were compared with comparable problems caleulated with a
modified version of MCNP. These shapes of the analytic and empirical f(r)s were

in excellent agreement.’

V. PROPOSED USE FOR THE EMPIRICAL f(x)

In general, there has been very little discussion about the underlying or empirieal
f(&) for Monte Carlo transport problems.™ A new capability has been added 1o
MONP to allow inspection nnd analysis of the empirieal () for the tally fluctuation
chart bin of each tally. This should be important for assessing if there ave any
unexpected unsamnpled regions in the empirieal history scove PDEF f(r).

The most important proposed wse for the empivieal () is to attempt Lo deter
mine if N has appronched iiinity in the sease of the CUT so that valid confidenee

intervals may be formed, The application of the CET to Monte Cialo results to form



a valid confidence interval requires the cxistence of the first two momeuts of f(.r).
Tle history score PDF is assumed to have these properties for all of our current
estimators and variance reduction techniques. (Point detectors with no constant
flux neighborhoods in scattering materials and the exponential transform with a
“large” [problem dependent] stretching parameter and no weight window are two
known exceptions.)

It is assumed that the underlying f(z) satisfies the CLT requirements. There-
fore, so should the empirical f(x). Unless there is a largest possible history score,
the empirical f(z) must eventually decrease more steeply than r=* for the second
moiment (ff:o 2 f(r)dz) to exist. It is postulated” that if such decreasing behavior
in the empirical f(r) with no upper bound has not been observed, then NV is not
large enough to satisfy the CLT because f(z) has not been completely sampled.
Therefore, a larger NV is required before a confidence interval can be formed. It is iin-
portant to note that this convergence criterion is NOT affected by any correlations
that may exist between the estimated mean and the estimated RE. In principle,
this should make this f(z) diagnostic robust in assessing “complete” sampling.

As mentioned in Section 3, the arguinent could be made that the fourth mo-
ment of f(r) shouid exist so that the estimate of S% in Eqn. (8) is valid for use
in the CLT in the place if #/v/N. This would increase the decreasing behavior
3

5

requirement to r” so that fr_’ooo.n"f(.r)(iw exists. We have elected to use the ™
requirement because it is less stringent, but will still detect the many important
cases of incomplete sampling. This loosened f(ir) eriterion for couvergence could
be modified in the future as experience with the method inereases.

Both the analytic and empit” .l history score distributions suggest that large
score fill-in and one or more extrapolation schemes for the high score tail of the
history score PDF could provide a meamngful estimate of scores not yet sampled
to help assess the impact of unsanpled history scores on the mean and confidence

interval. This has not yet been considered.

VI. CREATION OF f(x) IN MCNP

We wanted the erention of empirieal jye)s in MUONP to automatieally cover nearly
all tally Huctuation chart bin tallies that n user might reasonably be expeeted to
make. We finally settled on using o logarithmically spaced history score grid for
fr) beeause the tail helinvior i assumed to be of the form 1/ 0 3 (nnless an

upper bound for the history scores exists), This wonld produee aa equal bin width



histogram of a straight line for f(r) on a log-log plot that decreases n decades in
f(z) per decade increase in r.

We used 10 bins per r decade and covered the unnormalized tally range from
10739 to 10%°. The term “unnormalized” indicates that normalizations that are not
performed until the end of the problem, such as cell volume or surface area, are
not included in f(r). The user can multiply this range using MCNP input when
the range is not sufficient. We keep track of both history score number and history
score in the r grid to examine the cumulative 2umber and score distributions. We
ure a linear fit to the logarithmically spaced z grid of the form a + - In(z) to find
the grid location without a time-consuminug search.

With this z grid in place, the average empirical f(Z;) between z; and z;4; is
defined to be

f(T7) = (number of history scores in it score bin)/(N(**t! - 2')) (11)

where z't! = 1.2589z'. The quantity 1.2589 is 16°! and comes from 10 equally
spaced log bins per decade. The calculated f(T;)s are available on printed plots in
the output or using the new tally graphics commands. Any history scores that are
outside the x grid are counted as either above or below to provide this information
to the user.

Negative history scores are a possibility for some churge deposition tallies. The
default procedure lumnps any negative history score into the one bin below the lowest
history score in the built-in grid. If desired, a f(—z) can be created for negative

scores. Positive history scores will then be lumped into the highest bin in this case.

VII. PARETO FIT TO THE LARGEST ITISTORY SCORES

We estimate the slope nin 1/0™ of the largest history tallies ¢ to determine if and
wheu they decrense faster than 1/, This requires saving and sorting the largest
history tallies at various points during the caleulation. We use the “heapsort”
sorting algorithm beeause it is rensonably fast and robust.®

We used the generalized Pareto function”

Parcto f(r) - a 1 Fk.r/u)_l_"/k (12)

to ht the largest o's. This funcetion fits & munber of extieme vadue distributions

including /0", negative exponeatial (& 0), and constant. (k - 1), We developed

b



a large history tally tail fitting technique nsing the “simplex™ algorithm.® which
tinds the vilues of a and & that best fit the largest history scores by maximum
likelihood estimation. Other algorithms, such as those using the derivative of the
Parcto. conld be used for increased speed, but the simplex method appears to be
more robust and not that time cousuming for this MCNP application.

The number of largest history scove values to use for the fit is a variable that was
investigated. We settled on a maximum of 201 points because this would provide
about 10% precision® on the slope estimator at n = 3. The precision increases for
smaller values of n and vice versa. The number of vilues actually used in the fit
is the lesser of 5% of the nonzero history scores or 201. The minimum number of
values used for a Pareto fit is 25 with at least two “different” values, which requires
at least 500 nonzero history scores with the 5% criterion. "We were careful about
the implementation to be sure the technique would multitask and be reasonably
efficient.

From the Pareto fit, we defined the slope of f(ryy,g.) to be

slope=1+1/F . (13)

A slope value of zero is defined to indicate that not enough f( £,y ) tail information
exists for a slope estimate. ‘The slope is not allowed to exceed a value of 10 (defined
to be a “perfect score”), which would indicate an essentialiy negative exponential
decrease. If the 100 largest history scores all have values with a spread of less than
1%, an upper limit 1s assumed to have been reached and the slope is set to 10, The
slope should he greater than 3 to satisfy the second moment existence requirement.

[

Then, f(ar) will appear to be “completely” sampled and hence N will appear to be

large enough to satisfy the CLT.

VIII. MCNP TEST PROBLEM RESULTS AND ANALYSIS

Several test problems were run with amodified version of MCNP that cal-ulates
the empicieal f(r) and the Pareto estimaie of the slope for the user-defined tally
Muetuation eliat bin of cach tally, One test problem®? was to caleulate the surface
newtron leakage flnx avove 12 MeV from an isotropie 14 MeV neatron point souree
of unit strenpth ot the center of @ 30 em thick conerere shell with an outer ridius
of 390 en. Pomt and ring detectors! were deliberately used to estimate the surface

nentron leakape Hux with highly ineflicient, loug tailed fr)s.



I were implicit capture with weight

The variance reduction metheds employed
cutoff, low-score peint detector Russian roulette, and a 0.5 mean free path (4 cin)
neighborhood around the detoctors to produce large, but finite. higher momeuts.
Other tallies or variance reduc:ion metheds could be used to make this calculation
much more efficient, but that was not the object of this calculation.

One point detector result at 14,000 histories <vas 1.41x107% n/cm?/sec with an cs-
timated relative erc r of 0.041. The estimated Sy was decreasing as approxiniately
1/ V'N for the last half of the problem. Using the currently accepted rules-of-thuinb
for a valid Monte Carlo result, the confidence interval formed from this tally could
easily be accepted by even a careful Monte Carlo practitioner.

The correct detector result, obtained from a 50 million history ring detector tally,
is 5.68x107% n/cm?/sec with an estimated relative error of 0.0054 and a slope of
4.9. (The ring detector result for 14,000 histories was 4.60x10~% n/cm?/sec with
an estimatcd relative error of 0.17 and a slope of 2.1.) The apparently converged
14,000 liistory peint detector result is a factor of four below the correct result!

The new convergence criterion proposed here provides compeiling evidence that
an N of 14,000 is not large enough and a confidence interval should NOT be formed.
The large r slepe is a very shallow 1.4 (i.e., 1/c!4), which could not continue
indefinitely because the mean would not exist. This is a clear indicator that the
unbounded f(r) has not yet been completely sampled.

Figure 1 compares the empirical point detector f(r)s for 14,000 and 200 million
histories. The 14,000 history f(r) clearly has unsampled regions in the tail, which
indicate incomplete f(zx) sampling. For the point detector, over seven decades
of r have been sampled by 200 million histories compated to only three decades
for 14,000 histories. The largest &'s occur from the extremely difficult to sample
histories that have mltiple small energy loss collisions close to the detector. The
200 millior history point detector result is 5.44%107% n/em?/sec with an estimated
relative crror of 0.036 and an estimated slope of 2.4, The point detector f(r)
slope is inereasing, but still does not yet appear completely sampled. The more
compaet empirical ring f(r) for H0 million histories, shown in Fig. 1, appears to

be completely sampled beeanse of the large slope.

10)
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Figure 1. Empirical point detector f(c)s for 14,000 and 200 million
ncutron histories and the empirical ring detector f(.r) for 50

million neutron histories versus the history score r.

IX. CONCLUDING REMARKS

The proposed f(r) convergence criteria should provide new insight into the qual-
ity of a Monte Carlo result. The empirieal f{r) is available for the first time for
user to examine. The Pareto it for the slope is hoped to be a useful new dingnostic
for predieting the importance of large scores that have not yet been sampled. The
pathological example discussed nhove was ensily ideatified as a result for which a
confidence interval should NOT be formed.

This new eapability has been incorporated into the latest version of MOND,
Additional experienee with this dingnostic is required to deternine its effectivencss
in assessing the felfilliment of the central imit theorem requirenients for Monte

Carlo solutions [t s emphasized that even an apparently well sampled f(r) may



have an important, but improbable, portion that has not yet produced a large

history score. CAVEAT EMPTOR.
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