
Los Alamos
NATIONAL LABORATORY

LA-UR-

Approved for public release;

distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.

Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government

retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.

Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the

auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to

publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

02-3783

STATIONARITY DIAGNOSTICS USING SHANNON
ENTROPY IN MONTE CARLO CRITICALITY
CALCULATIONS I:  F TEST

Taro Ueki  &  Forrest B. Brown

American Nuclear Society 2002 Winter Meeting,
November 17-21, 2002, Washington, DC



 1

Stationarity Diagnostics Using Shannon Entropy in Monte Carlo 
Criticality Calculation I: F test 

 
Taro Ueki  & Forrest B. Brown 

 
Diagnostics Applications Group, Applied Physics Division 
Los Alamos National Laboratory, Los Alamos, NM 87545 

<ueki@lanl.gov> 
 

 
I. Introduction 
 
In Monte Carlo (MC) criticality calculations, the source distribution is presumed to 
converge and settle into stationarity before the tallying of k-effective eigenvalue (Keff) 
and other quantities of interest begins. To ensure that tallied quantities are generated by 
particles sampled from the stationary source, MC criticality code users have to specify 
the number of inactive cycles to discard before tallies begin. Recently, the stationarity 
detection of a Keff series was discussed based on Brownian bridge [1]. However, a 
quantity more representative of the state of source distribution than Keff, i.e., the mere 
integral of source distribution, is desired for stationarity diagnostic purposes. As a step 
toward that end, this article proposes the two-sample F test [2] of the Shannon entropy 
[3,4] of source distribution.  
 
II. Example Problem  � Keff of the world � 
 
The problem analyzed by Shannon entropy is a one energy group version of the Keff-of-
the-world problem [5]: The system consists of a 7×7×7 array of identical cubes with the 
side length of 6 cm and macroscopic cross sections of 10.31997t cm−Σ = , 

10.09916a cm−Σ =  and 10.22711f cmν −Σ = , placed at a pitch of 24 cm. The surfaces of 
the neighboring cubes are faced parallel to each other. The space between the cubes has 
macroscopic cross sections of 10.05t cm−Σ = , 10.001a cm−Σ =  and 10f cmν −Σ = . The 
space up to 9 cm away from the outermost surfaces of the cubes has the same non-fissile 
cross sections. Keff of this system is computed to be 0.87609 +− 0.00028. When the 
center cube is replaced by acube with macroscopic cross sections of 10.56158t cm−Σ = , 

10.17404a cm−Σ =  and 10.3986f cmν −Σ = (Keff=1.00785 +− 0.00029 as a bare, isolated 
unit), the system becomes supercritical and its Keff rises to 1.04527 +− 0.00002. This 
supercritical problem, which is also analogous to the problem of a supercritical Pu sphere 
in fissile store [6], is analyzed throughout this article. The confidence interval of the 
sample mean of Keff�s is shown in Fig. 1. Tallying at the early stages of active cycles is 
observed to be affecting confidence interval estimation when the number of inactive 
cycles is insufficient. Fig. 2 shows the autocorrelation coefficient estimated for the 
various combinations of the number of histories per cycle with the numbers of inactive 
and active cycles. It is observed that autocorrelation estimation is significantly affected 
by the insufficient number of inactive cycles. This implies that confidence interval 
estimation from a single replica becomes unreliable under the presence of tallied 
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quantities from nonstationarity. The purpose of stationarity diagnostics is the automatic 
detection of non-stationary contamination.   
 
III. Posterior Diagnostics of Shannon Entropy  
 
Shannon entropy [4] of the source distribution is defined to be 

 
1

ln( ),
B

i i
i

H S S
=

= −∑  (1) 

where i�s stand for spatial bin numbers, B for the total number of spatial bins, Si�s source 
distribution normalized to unity, ln natural logarithm and 0 ln(0) =0. H is a measure of the 
randomness in Si�s associated with a particular spatial binning in the sense that H attains 
its maximum value ln(B) when Si =1/B for all i�s and its minimum value 0 when Si =1 for 
i and Sj =0 for all j ≠i.  
 

A statistical test will be designed for H�s evaluated at active cycles. To this end, m 
and n cycles are selected at equal cycle intervals from the first and second halves of 
active cycles, respectively. Let the m samples from the first half be 1 ( -1) /(2 ) ,i i M mX H +=  

1, ,i m= …  and the n samples from the second half -( -1) /(2 ) ,j M j M nY H=  1, ,j n= … where M 
is the number of active cycles. Normality (gaussian) and independence are assumed for 
these Xi�s and Yj�s. The following theorem in two-sample problems is the basis of 
stationarity diagnostics using Shannon entropy: 
 
Theorem. Let 1, , ( , )m UU U N µ σ… ∼  and 1, , ( , )n WW W N µ σ… ∼ , and let U�s and 
W�s be independent. The distribution function of the ratio of the sample variances is 

1, 1m nF − − , the F distribution with m-1 and n-1 degrees of freedom, i.e., 2 2
1, 1/U W m nv v F − −∼  

where  
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The theorem can easily be checked by 2 2

1( 1) /U mm v σ χ −− ∼ , 2 2
1( 1) /W nn v σ χ −− ∼  

and 2 2
1, 1 1 1/( 1) / /( 1)m n m nF m nχ χ− − − −   − −   ∼  where 2χ  denotes the chi square distribution 

with degree of freedom being its subscript [2]. When the X�s are contaminated by 
nonstationarity, the fitting of them to normal distribution will yield large variance. This 
speculation leads to the following two-sample F test: 
 
F test. Assume 1, , ( , )m X XX X N µ σ… ∼  and 1, , ( , )n Y YY Y N µ σ… ∼ . Let the null 
hypothesis be � X Yσ σ= � and alternative hypothesis � X Yσ σ> �. Reject the null 
hypothesis at the α level significance if 2 2 1

1 , 1, 1 1, 1/ (1 )X Y m n m nv v F Fα α−
− − − − −≥ = − .  2 2/X Yv v  is 

called the F statistic. 
 

The F test was applied to the supercritical problem in Sec. II by setting m=n=10. 
Here, m was chosen to be equal to n because the F test in analysis of variance, which is 
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similar to the F test above, is relatively insensitive to violations of independence and 
normality assumptions, but only when the sample sizes are equal [7]. One spatial bin was 
assigned to each cube. Fig. 3 shows the F statistic for various numbers of inactive cycles 
and seven different initial random number seeds that were chosen so as to avoid the 
overlapping of the striding of the random number generator. The F statistic is observed to 
be rapidly decreasing toward its stationary level.  
 
IV. Summary and future work 
 
It has been shown that the application of the two-sample F test to the Shannon entropy of 
the source distribution would be an effective stationarity diagnostic. The numerical 
results show the power of rejecting the null hypothesis when the null hypothesis is false. 
However, the F test is merely a test for checking the equality of variances, which is a 
prerequisite for the two-sample t test for checking the equality of means. [2] Thus, the t 
test should be investigated. Future work will include the exploration of the violation of 
independence assumption using randomization test techniques. 
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Figure 1: Expected 68% confidence interval of the Keff mean over active cycles 
 (Keff values at markers and standard deviation computed from 500 replicas)   

Flat initial sources

 
 
 

0

0.1

0.2

0.3

0.4

0.5

15 20 25 30 35 40 45 50 55 60 65

number of inactive cycles

co
rr

el
at

io
n 

co
ef

fic
ie

nt

square markers from 200 active cycles per replica with 5000 histories per cycle (100 replicas)
triangular markers from 1000 active cycles per replica with 20000 histories per cycle (20 replica)
x markers from 2000 active cycles per replica with 40000 histories per cycle (20 replica)

Figure 2: Autocorrelation coefficient of active cycle Keff's 
(averaged over replicas, error bars showing 68% confidence interval)
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Figure 3: F statistic of Shannon entropy
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