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A software tool called  mcnp_pstudy has been developed to automate the setup, execution, 
and collection of results from a series of MCNP5 Monte Carlo calculations. This tool 
provides a convenient means of performing parameter studies, total uncertainty analyses, 
parallel job execution on clusters, stochastic geometry modeling, and other types of 
calculations where a series of MCNP5 jobs must be performed with varying problem input 
specifications. 
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1. Introduction 

 
Monte Carlo codes are being used for a wide variety of applications today due to their accurate 

physical modeling and the speed of today’s computers. In most applications for design work, experiment 
analysis, and benchmark calculations, it is common to run many calculations, not just one, to examine 
the effects of design tolerances, experimental uncertainties, or variations in modeling features. We have 
developed a software tool for use with MCNP5 [1] to automate this process. The tool, mcnp_pstudy, is 
used to automate the operations of preparing a series of MCNP5 input files, running the calculations, 
and collecting the results. Using this tool, parameter studies, total uncertainty analyses, or repeated 
(possibly parallel) calculations with MCNP5 can be performed easily. Essentially no extra user setup 
time is required beyond that of preparing a single MCNP5 input file. 

 
2. Description of mcnp_pstudy 

 
mcnp_pstudy permits a user to create input for MCNP5 using symbolic parameters (or variables) 

which may be obtained from a list of specified values, from random sampling of standard probability 
densities, or from mathematical operations performed using other variables. In addition, constraints can 
be defined in terms of inequality relations involving the variables and mathematical operations. These 
variables are then used to create a series of MCNP5 input files. In doing so, the variables may be 
combined using an “outer product” approach, where all possible combinations of all variables are used, 
or an “inner product” approach, where only corresponding entries from each variable specification are 
used. After creating the MCNP5 input files, the series of calculations can be run on the user’s computer 
or submitted to a batch queuing system, and results from tally files can be collected after completion of 
the runs. The simplest application of mcnp_pstudy, varying just the random number seed for a series of 



repeated calculations, can be used for running a set of parallel jobs on a cluster or parallel computer.  
The sections below describe the separate functions of mcnp_pstudy. 
 
2.1 Parameter Definition 

 
Symbolic parameters are defined in the MCNP input file using MCNP comment lines which begin 

with the special character string “c  @@@  “. The parameters may be upper-, lower-, or mixed case 
character strings including numbers and underscores. The value of each parameter may be defined as a 
single value, a list of values, the result of sampling from standard statistical distributions, or as the result 
of arithmetic statements that may include previously defined parameters. The general forms permitted 
are: 

C  @@@ P1  =  value 
C  @@@ P2  =  value1  value2  …  valueN 
C  @@@ P3  =  normal  N   ave   dev 
C  @@@ P4  =  uniform  N    min   max 
C  @@@ P5  = (  arithmetic-statement  ) 
C  @@@ P6  =  repeat  N 

 
The particular values specified for forms P1 and P2 may be either numbers or character strings 

(without embedded blanks). For form P3, the keyword normal is followed by an integer number N 
denoting how many random samples to take from a normal (Gaussian) probability density with a mean 
of ave and standard deviation of dev. For form P4, N random samples are taken from a uniform density 
over the interval [min, max]. For form P5, standard arithmetic operators may be used (with ** used for 
exponentiation), along with ordinary functions such as sin, cos, log, log10, exp, int. In addition, the 
rand(X) function may be used to provide a random (real) number in the range (0,X), or (0,1) if X is 
omitted. The arithmetic expression may involve constants or previously-defined parameters. Parentheses 
may be used as needed, but the outmost parentheses are required. Form P6 can be used to force a 
calculation to be repeated N times. It is useful for repeating calculations when a single scalar variable is 
varied, such as the random number seed for a problem. Some examples of parameter definitions are: 

MCNP title line 
C 
C  @@@  RADIUS = 8.741 
C  @@@  U_DENSITY_STD =  18.74 
C  @@@  FACT  = normal 25  1.0  .05 
C  @@@  U_DEN = (  FACT * U_DENSITY_STD  ) 
 

2.2 Parameter Expansion and Evaluation 
 
After parsing the entire MCNP input file for parameter definitions, mcnp_pstudy determines how 

many “cases” (i.e., MCNP jobs) are required to be run and the values of the parameters to substitute for 
each case. The parameters may be combined in an “outer” fashion where all possible combinations of all 
parameters are used, or in an “inner” fashion where successive values of each parameter are grouped 
together. The options -outer or -inner may be specified on the command line or within the input file 
using the OPTIONS= directive described below. For example, with the parameter specification 

C  @@@  A = 1  2 
C  @@@  B = 3  4  
C  @@@  C = 5 



specifying the outer product approach results in these case definitions: 
Case 1:  A=1,  B=3,  C=5 
Case 2:  A=2,  B=3,  C=5 
Case 3:  A=1,  B=4,  C=5 
Case 4:  A=2,  B=4,  C=5 

 
In this example, parameters A, B, and C have respectively 2, 2, and 1 entries defined, so that the total 
number of cases for the outer expansion is 2x2x1=4. In expanding the parameter definitions into sets of 
parameters for each case, parameters are varied in order of their definition in the MCNP input file. 
Parameters with only a single value are simply used as-is for each case. 
 

For the inner product approach, the total number of cases is the same as the length of the longest 
parameter list in the input. For parameters with a shorter list or single value, the last (or only) entry is 
repeated as needed to pad out the lists. For the example above, specifying the inner product approach 
would result in these 2 cases: 

Case 1:  A=1,  B=3,  C=6 
Case 2:  A=2,  B=4,  C=6 

 
When a parameter definition includes either random sampling or arithmetic (forms P3, P4, P5 

above), the parameter is expanded symbolically and then evaluated separately for each case. In this 
evaluation, previously defined parameters may be used, with their values taken for each specific case. 
For example, these parameter definitions 

C  @@@  A = 4.5 
C  @@@  B = normal 2  1.0 .05  
C  @@@  C = ( A * B ) 

would be expanded for the outer product approach as 
Case 1:   A=4.5,   B=N1,  C=4.5*N1 

 Case 2:   A=4.5,   B=N2,  C=4.5*N2 
where N1 and N2 are independent random samples from a N(1.0,.05) normal distribution. 
 
2.3 Constraints 

 
During the process of expanding and evaluating the case parameters, constraints on the parameters 

may be specified. The general form for specifying a constraint is 
C  @@@  CONSTRAINT = ( logical-expression ) 

where logical-expression is an expression which may include previously defined parameters, 
comparison operators (<, <=, >, >=, ==, !=), and logical operators (&&, ||). Parentheses may be used as 
needed, but the outermost parentheses are required. As many constraint statements as desired may be 
supplied. 
 

 After the parameters for a case are expanded and evaluated, all of the constraint expressions are 
evaluated. If any of the constraint expressions are false, then all the parameters for that case are rejected 
and then reevaluated. This process is repeated until the case parameters satisfy all constraints. The use of 
constraints permits modeling such conditions as a dimension which varies according to a normal 
distribution, but does not exceed some maximum value. 

 
 
 



2.4 Creation of Directories for Each Case 
 
After expansion of the parameter definitions into sets that define each case, subdirectories are 

created to hold the MCNP input and output files for each case. We have assumed that the user is running 
in a Unix environment or in the Cygwin environment for Windows PCs. The resulting directory 
structure has the form 

$JOBDIR/case001 
$JOBDIR/case002 

 … 
where $JOBDIR is a user-specified path (with a default of the current working directory) and case001, 
case002, etc., are subdirectory names. During the setup for each case, the case input file is placed in 
each of these subdirectories. For other needed files such as wwinp, xsdir, rssa, soft links are created in 
each of the subdirectories which point to the original files. Later during execution, the case output files 
are stored in these subdirectories. 
 
2.5 Parameter Substitution and Case Creation 

 
After expanding and substituting the parameters into cases, the MCNP input file is again parsed to 

perform parameter substitution and create a separate input file for each case. For each case, the input file 
lines beginning with “c  @@@” are discarded. Each line in the file is then examined to locate all 
occurrences of the defined parameters. The symbolic parameters are then replaced by their values for the 
case being prepared, and the resulting lines are written to a file named inp in the subdirectory for the 
case. Following these actions, each case subdirectory case001, case002, etc., will contain an MCNP 
input file named inp with parameter values unique to that case. 

 
2.6 Running or Submitting All Cases 

 
After the subdirectories and input files have been created for each of the cases, mcnp_pstudy can 

either run the MCNP jobs for each case on the current host computer in sequential order, or submit the 
jobs to a batch queuing system for a cluster or parallel computer. We have assumed that the batch 
queuing system is LSF with the bsub command, but it should be simple to convert to other batch 
systems. Options for the batch queuing system and for the individual MCNP5 jobs can be supplied to 
mcnp_pstudy, either via the command line or embedded in the MCNP input file on lines beginning with 
“c  @@@  OPTIONS = “. 

 
2.7 Collecting and Combining Results  

 
After all of the MCNP5 jobs for each case have completed, mcnp_pstudy can be used to collect tally 

results from each case and average the results together (if appropriate). A related utility, merge_mctal, 
can also be used to merge the tally results from individual mctal files into a single combined file. 

 
When mcnp_pstudy is used to perform repeated calculations of a problem, results from the repeated 

calculations can be combined using a batch-statistics approach. That is, for each tally quantity X, the 
series of results from the repeated calculations, {Xk, k=1,M}, where M is the number of repeated 
calculations, can be computed as: 
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For normal Monte Carlo calculations, where the input parameters (i.e., problem specifications) are 

fixed, the statistical uncertainty in the results decreases as 1 N , where N is the number of histories run 
in the problem. For example, to reduce the standard deviation in problem results by a factor of 10, the 
total number of histories must be increased by a factor of 100. For calculations performed using 
mcnp_pstudy, this same scaling behavior applies only when mcnp_pstudy is used to repeat a calculation 
without varying any of the problem input parameters (with the notable exception of the starting random 
number seed, which should be changed for each repetition of a problem). The total number of histories 
in a series of repeated calculations is N*M, where N is the number of histories in each single calculation 
and M is the number of repetitions. Running 100 separate calculations (each with a unique random 
number seed) will reduce the standard deviation by a factor of 10. Running an infinite number of 
histories or repeated calculations will reduce the standard deviation in computed results to zero.  

 
However, when mcnp_pstudy is used to vary the problem parameters by sampling from a statistical 

distribution, such as using a normal distribution to statistically sample material densities or cell 
dimensions, the statistical uncertainty computed using Eq. (1) will not decrease as   1 N  when more 
histories or jobs are run. The variance in a tallied result can be decomposed into 2 components – a 
variance due to the random sampling which occurs during each particle history in the Monte Carlo, and 
a variance caused by the variation in problem input parameters or initial conditions: 
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As the number of histories N increases, 

 
σ

X ,MC
 will decrease as 1 N  and approach zero as infinite 

histories are run. However, the variance due to random sampling of the initial conditions will remain 
constant, independent of the number of histories run in the problem,  σX ,IC = constant. 

 
3. Applications 
 

Some of the principal applications of mcnp_pstudy are: 
 
1. Parameter studies 
 

For example, if the minimum, average, and maximum values are specified for several 
dimensions in a problem, then mcnp_pstudy can create and run a series of MCNP5 calculations 
with all combinations of the dimensions. Any items in the normal MCNP5 input file can be 
varied in this way, including cross-section library identifiers for nuclides in the problem, material 
properties, and geometric information. A series of cases with varying control rod positions or 



boron concentrations could be used for determining critical rod height or critical boron 
concentrations. 

 
2. Determining the effect of uncertainties in material densities or geometric dimensions 
 

In modeling experiments or benchmarks, some problem parameters frequently have 
uncertainties. In using mcnp_pstudy, these parameters can be declared as variables to be sampled 
from standard probability densities, such as a normal or uniform density. A series of runs can be 
constructed and executed, with the results collected, followed by calculation of the average and 
standard deviation of tallied quantities. The reported standard deviations would take into account 
the effects of the uncertainties in the input quantities, in addition to the normal statistical 
uncertainties from the individual Monte Carlo runs. Thus, this tool could be used for direct 
quantification of the total uncertainty in a series of calculations. 

 
3. Parallel processing using a “parallel jobs” paradigm 

 
     Rather than running a single long calculation using parallel processing to reduce the run time, 
mcnp_pstudy can be used to set up and submit many separate jobs to a cluster. The jobs can 
execute concurrently (if there are sufficient available nodes in the cluster), and then mcnp_pstudy 
can be used to collect and combine the results. This type of parallelism, i.e. parallel jobs, can be 
very effective in utilizing Linux clusters, since execution of the jobs can begin as soon as any 
resources become available; there is no reservation and waiting time for a large number of nodes 
to be free. If many nodes are free, all of the jobs can execute concurrently. If only a few nodes 
are free, some jobs can execute immediately and others will follow as resources become 
available. Job parallelism can provide effective load-balancing on a cluster and help reduce 
scheduling difficulties typical of single parallel jobs using large numbers of processors.  

 
4. Simulation of stochastic geometry 

 
     There has been much recent interest in analyzing pebble bed reactors and other advanced 
reactor concepts where small fuel particles are located randomly. Such stochastic geometries can 
be created using mcnp_pstudy, with a separate stochastic realization for each case in a series of 
MCNP jobs. Collecting the results from a series of these cases would yield results which include 
the effects of the stochastic variations in geometry, giving larger, more realistic uncertainties on 
computed results. 

 
4. Results 
 

A simplified model of the Godiva bare-sphere critical experiment is used to provide simple examples 
of the application of mcnp_pstudy. Note that the uncertainties on physical quantities used herein are 
contrived, used for illustrative purposes only, and do not reflect the known uncertainties in the actual 
experiment.  Figure (1) shows the original MCNP5 input file for the problem (gdv) and a modified input 
file (gdv-A) which directs mcnp_pstudy to generate a random odd integer starting seed for the MCNP5 
random number sequence for each case. Using mcnp_pstudy and MCNP5 on a Linux cluster, 50 cases 
were run for gdv-A (with a different random seed for each case) in the same amount of time as the 
single calculation for problem gdv. The speedup due to job-parallel processing was 50X for this trial. In 



gdv 
1  -18.74  -1   imp:n=1 
2     0     1   imp:n=0 

  
1     so 8.741 

  
kcode 10000  1.0  15  115 
ksrc  0 0 0 
m1    92235 -94.73   92238 -5.27 
prdmp 0 0 1 1 0 

gdv-A 
C @@@  RNSEED = ( 2*int(rand(1000000))+1 ) 
C @@@  xxx    = REPEAT 50 
1  -18.74  -1   imp:n=1 
2     0     1   imp:n=0 

  
1     so 8.741 

  
kcode 10000  1.0  15  115 
ksrc  0 0 0 
m1    92235 -94.73   92238 -5.27 
prdmp 0 0 1 1 0 
rand  seed=RNSEED 

Figure 1. (left) MCNP input for simple Godiva calculation, (right) MCNP input for 
mcnp_study, choosing a new (odd) random seed for each case 

gdv-E 
c vary fuel radius - normal, 5%sd 
c vary fuel density- normal, 5%sd 
c 
c @@@ OPTIONS = -jobdir GDV_E 
c @@@ OPTIONS = -inner 
c 
c @@@ DFACT = normal 50  1.0 .05 
c @@@ UDEN = ( DFACT * 18.74 ) 
c 
c @@@ UFACT = normal 25  1.0 .05 
c @@@ URAD  = ( UFACT * 8.741 ) 
c 
1    1  -UDEN   -1   imp:n=1 
2    0           1   imp:n=0 

  
1    so  URAD 

  
kcode 10000  1.0  15  115 
ksrc  0. 0. 0. 
m1    92235 -94.73   92238 -5.27 
prdmp 0 0 1 1 0 
 

gdv-D 
c vary fuel density - normal, 5%sd, 
c adjust the radius to keep constant mass 
c 
c @@@ OPTIONS = -jobdir GDV_D 
c 
c @@@ FACT= normal 50  1.0 .05 
c @@@ UDEN= ( 18.74*FACT ) 
c @@@ URAD= ( 8.741*(18.74/UDEN)**.333333 )
c 
1     1  -UDEN   -1   imp:n=1 
2     0           1   imp:n=0 
  
1     so  URAD 
  
kcode 10000  1.0  15  115 
ksrc  0. 0. 0. 
m1    92235 –94.73   92238 –5.27 
prdmp 0 0 1 1 0 

Figure 2. (left) mcnp_pstudy input for varying the fuel density randomly while adjusting radius for constant mass, 
 (right) mcnp_pstudy input for varying fuel density and mass independently 

other tests, speedups ranged from roughly 5X-50X, depending on how busy the Linux cluster was at the 
time of job submittal. The 0.054% uncertainty in Keff for the 1M-history gdv problem was reduced to 
0.009% for the 50M-history series of gdv-A cases.  

 
Figure (2) shows the modified input for the Godiva problem where the fuel density and radius are 

varied. For problem gdv-D, the fuel density is sampled from a normal distribution with a 5% standard 
deviation about the nominal density, and the radius is adjusted to preserve the total mass of uranium in 



the problem. For problem gdv-E, the fuel radius and density are sampled independently, each from a 
normal distribution with a standard deviation of 5% about the nominal values. 

 
Table (1) gives the results for the problems illustrated in Figures (1) and (2), as well as for other 

problems where only the density or only the radius was varied. It can be seen from Problem A that the 
Monte Carlo uncertainty is small (.0001) and that nearly all of the uncertainties for Problems B-F are 
due to the statistical sampling for the input parameter values. As noted above, the uncertainties for 
Problems B-F should not change significantly as more cases are run for each problem. It is interesting to 
note that the uncertainty for Problem E is significantly smaller that for problem F. In Problem F, both 
the radius and density are sampled independently; in Problem E only the density is sampled and then the 
radius is calculated. The correlation between the radius and density serves to reduce the effect of input 
parameter variation over that of Problem F where 2 independent samples are taken. Also note that the 
variance for Problem F is approximately equal to the sum of the variances for Problems B and C, as 
would be expected. 
 

Table 1. Results from varying parameters in the Godiva problem 

Problem Description K-effective σK-eff 

base Base case, discard 15 initial cycles, retain 100 cycles with 
10K histories/cycle, 1M total histories 0.9970 0.0005 

A Repeat the base problem 50 times, 50M total histories 0.9972 0.0001 

B Vary the fuel density only:  sample from a normal 
distribution with 5% std.dev, 50M total histories 0.9961 0.0061 

C Vary the fuel radius only:  sample from a normal 
distribution with 5% std.dev, 50M total histories 1.0057 0.0051 

D Vary the enrichment only, sample from a normal 
distribution with 5% std.dev, 50M total histories 0.9890 0.0027 

E 
Sample the fuel density from a normal distribution with 
5% std.dev, and adjust the fuel radius to keep constant fuel 
mass, 50M total histories 

0.9966 0.0042 

F 
Sample the fuel density from a normal distribution with 
5% std.dev, and independently sample the radius from a 
normal distribution with 5% std.dev, 50M total histories 

1.0073 0.0076 

 
 
Several other examples of applying mcnp_pstudy to practical problems illustrate its use in both 
parameter studies and uncertainty analysis: 
 
• One of these is that of a 55 gallon drum undergoing a non-destructive assay via gamma 

spectroscopy.  By filling the drum with essentially paint can sized items in a hexagonal array (21 
close fitting cans total), mcnp_pstudy is used to determine what uncertainties can be expected in the 
assay result as a function of uncertainties in the individual units (paint cans) density, isotopic mix 
and chemical mix distribution while maintaining a fixed total drum mass and activity.  This is done 
by first perturbing all variables (waste density, elemental distribution and unit activity) on a “can by 
can” basis under the given constraints by normal deviates of 1%, 5%, 10% and 50%.  The actual 
sensitivity of these total propagated errors are then further understood by the same perturbations but 



to only one of the three variables at a time.  Finally, the analyses with all three variables perturbed 
simultaneously are evaluated as a function of source energy by replacing the source energy 
distribution by discrete photon energies at standard values.  The waste matrix and isotopic 
distribution used as the base case here were taken from that of an average Remote Handled (RH) 
Transuranic (TRU) waste detailed elsewhere [2]. 
 

• The second example takes the same base case drum already described and calculates, for a close 
fitting external shield, the required thickness to reduce the surface dose rate to 0.5 mrem/hr.   
 

• The third example considers the results of using the base case drum to conduct a “dose to Curie” 
conversion as would be the case if acceptable knowledge of waste material were being validated 
based on a single dose rate measurement of the package.  This is a method being proposed for 
meeting waste acceptance criteria for RH TRU waste. 

 
5. Conclusions 
 

A software tool called  mcnp_pstudy has been developed to automate the setup, execution, and 
collection of results from a series of MCNP5 Monte Carlo calculations. This tool provides a convenient 
means of performing parameter studies, total uncertainty analyses, parallel job execution on clusters, 
stochastic geometry modeling, and other types of calculations where a series of MCNP5 jobs must be 
performed with varying problem input specifications. The mcnp_pstudy software is available at no 
charge to all MCNP users.  
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