LA-UR-04-3467

ı

Approved for public release; distribution is unlimited.

Title:	Comparison of ENDF/B-VI and Preliminary ENDF/B-VII Results for the MCNP™ Criticality Validation Suite
Author(s):	Russell D. Mosteller
Submitted to:	2004 Annual Meeting of the American Nuclear Society June 13 - 17, 2004 Pittsburgh, PA

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports acadee freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication of a publication of the technical correctness.

Form 836 (8/00)

Comparison of ENDF/B-VI and Preliminary ENDF/B-VII Results for the MCNP Criticality Validation Suite

Russell D. Mosteller

Diagnostics Applications Group (X-5) Applied Physics Division Los Alamos National Laboratory

To Be Presented at the 2004 Annual Meeting of the American Nuclear Society Pittsburgh, PA June 13 - 17, 2004

An initial assessment of the reactivity impact of preliminary data proposed for ENDF/B-VII has been made using the MCNP criticality validation suite. Relative to ENDF/B-VI, the data changes primarily involve high-energy elastic and inelastic scattering in the uranium isotopes and ²³⁹Pu, as well as resonance parameters for ²³⁸U.

Three sets of calculations were performed for the MCNP Criticality Validation Suite using the MCNP5 Monte Carlo code. The first set employed nuclear data from ENDF/B-VI Release 8, the final release for ENDF/B-VI. The second set employed preliminary ENDF/B-VII data generated by group T-16 at Los Alamos National Laboratory for the uranium isotopes and for ²³⁹Pu but retained ENDF/B-VI data for all other nuclides. The third set was the same as the second except that a new set of ²³⁸U resonance parameters³ generated by researchers at Oak Ridge National Laboratory (ORNL) was used in combination with the T-16 evaluation.

The preliminary ENDF/B-VII data for the uranium isotopes and ²³⁹Pu produce improvements for most of the cases with fast spectra and for most of the thermal lattices and solutions. However, improvements still are needed in some areas, particularly for those cases with intermediate spectra.

MCNP is a trademark of the Regents of the University of California, Los Alamos National Laboratory

Comparison of ENDF/B-VI and Preliminary ENDF/B-VII Results for the MCNP Criticality Validation Suite

Russell D. Mosteller

Applied Physics Division Los Alamos National Laboratory mosteller@ lanl.gov

Presented at the 2004 Annual Meeting of the American Nuclear Society June 13 - 17, 2004 Pittsburgh, PA

The World's Greatest Science Protecting America

NNS[®]

OVERVIEW OF PRESENTATION

Succinct Description of MCNP Criticality Validation Suite

Characteristics of Preliminary Nuclear Data for ENDF/B-VI

Comparison of Results from MCNP5 Using Final ENDF/B-VI and Preliminary ENDF/B-VII Nuclear Data Libraries

Conclusions

The World's Greatest Science Protecting America

INCLASSIFIED

MCNP Criticality Validation Suite

Cases were selected to encompass a wide variety of

Fissile isotopes :		²³³ U, ²³⁵ U, and ²³⁹ Pu
Spectra :	:	Fast, intermediate, and thermal
Compositions :	:	Metals, oxides, and solutions
Configurations :	:	Bare and reflected spheres and cylinders, 2-D and 3-D lattices, and infinite homogeneous and heterogeneous regions

²³⁵U Cases were subdivided into HEU, IEU, AND LEU

Input specifications for all 31 cases are taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments

UNCLASSIFIED

CASES IN THE MCNP CRITICALITY VALIDATION SUITE

Spectrum	Fast			Intermed	The	rmal
Geometry	Bare	Heavy Reflector	Light Reflector	Any	Lattice of Fuel Pins	Solution
²³³ U	Jezebel-233	Flattop-23	U233-MF-05	Falstaff-1*	SB-21/2	ORNL-11
HEU	Godiva Tinkertoy-2	Flattop-25	Godiver	Zeus-2 UH_3	SB-5	ORNL-10
IEU	IEU-MF-03	BIG TEN	IEU-MF-04	Zebra-8H [†]	IEU-CT-02	STACY-36
LEU					B&W XI-2	LEU-ST-02
Pu	Jezebel Jezebel-240 Pu Buttons	Flattop-Pu THOR	Pu-MF-11	HISS/HPG [†]	PNL-33	PNL-2

* Extrapolated to critical

 † k_{∞} measurement

PURPOSE AND USE OF THE MCNP CRITICALITY VALIDATION SUITE

The MCNP Criticality Validation Suite was developed to assess the reactivity impact of future improvements to MCNP as well as changes to its associated nuclear data libraries

Suite is *not* an absolute indicator of the accuracy or reliability of a given nuclear data library, nor is it intended to be

Suite can provide a general indication of the overall performance of a nuclear data library

Suite can provide an early warning of unexpected or unintended consequences resulting from changes to nuclear data

The World's Greatest Science Protecting America

JNCLASSIFIED

PRELIMINARY NUCLEAR DATA FOR ENDF/B-VII

Final version of ENDF/B-VI (Release 8) was released in October 2001

Are future nuclear data libraries likely to produce improved results?

Preliminary changes to ²³³U, ²³⁵U, ²³⁸U, and ²³⁹Pu for ENDF/B-VII offer encouragement

Data changes primarily involve high-energy elastic and inelastic scattering in the uranium isotopes and ²³⁹Pu (LANL group T-16), as well as resonance parameters for ²³⁸U (ORNL)

UNCLASSIFIED

MCNP5 CALCULATIONS FOR CRITICALITY VALIDATION SUITE

Each calculation employed 550 generations with 10,000 neutrons per generation (SB-5 and Zebra-8H employed 350 generations)

Results from first 50 generations were excluded from the statistics

Results therefore are based on 5,000,000 active histories for each case (3,000,000 for SB-5 and Zebra-8H)

The World's Greatest Science Protecting America

NIS

JNCLASSIFIED

RESULTS FOR ²³³U BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	
Jezebel-233	1.0000 ± 0.0010	0.9984 ± 0.0003	0.9931 ± 0.0003	
Flattop-23	1.0000 ± 0.0014	0.9988 ± 0.0003	1.0003 ± 0.0003	
U233-MF-05	1.0000 ± 0.0030	0.9964 ± 0.0003	0.9976 ± 0.0003	
Falstaff-1	1.0000 ± 0.0083	0.9876 ± 0.0005	0.9894 ± 0.0005	
SB-21/2	1.0000 ± 0.0024	0.9946 ± 0.0005	0.9967 ± 0.0005	
ORNL-11	1.0006 ± 0.0029	1.0002 ± 0.0002	0.9968 ± 0.0002	

 $|\Delta \mathbf{k}| \leq \sigma$

 $\sigma < |\Delta \mathbf{k}| \le 2\sigma$

 k_{eff} for Jezebel-233 improves dramatically, and reactivity swing from Jezebel-233 to Flattop-23 is eliminated

 k_{eff} for ORNL-11 improves substantially, although results deteriorate for U233-MF-05 and SB-21/2

RESULTS FOR HEU BENCHMARKS

· · · · · · · ·	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	
Godiva	1.0000 ± 0.0010	0.9992 ± 0.0003	0.9962 ± 0.0003	
Tinkertoy-2	1.0000 ± 0.0038	1.0001 ± 0.0003	0.9972 ± 0.0003	
Flattop-25	1.0000 ± 0.0030	1.0025 ± 0.0003	1.0024 ± 0.0003	
Godiver	0.9985 ± 0.0011	0.9978 ± 0.0004	0.9948 ± 0.0003	
UH ₃	1.0000 ± 0.0047	0.9926 ± 0.0003	0.9914 ± 0.0003	
Zeus-2	0.9997 ± 0.0008	0.9948 ± 0.0003	0.9942 ± 0.0003	
SB-5	1.0015 ± 0.0028	0.9943 ± 0.0005	0.9963 ± 0.0005	
ORNL-10	1.0015 ± 0.0026	0.9994 ± 0.0002	0.9992 ± 0.0002	

 $k_{\mbox{\tiny eff}}$ improves substantially for Godiva and Godiver but deteriorates for SB-5

Reactivity swing from Godiva to Flattop-25 is reduced significantly

The World's Greatest Science Protecting America

UNCLASSIFIED

RESULTS FOR IEU BENCHMARKS

	Benchmark	Calculated k _{eff}	
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI
IEU-MF-03	1.0000 ± 0.0017	1.0026 ± 0.0003	0.9987 ± 0.0003
BIG TEN	0.9948 ± 0.0013	0.9950 ± 0.0003	1.0071 ± 0.0002
IEU-MF-04	1.0000 ± 0.0030	1.0077 ± 0.0003	1.0038 ± 0.0003
Zebra-8H	1.0300 ± 0.0025	1.0190 ± 0.0002	1.0405 ± 0.0002
IEU-CT-02	1.0017 ± 0.0044	1.0005 ± 0.0003	1.0007 ± 0.0003
STACY-36	0.9988 ± 0.0013	0.9983 ± 0.0003	0.9988 ± 0.0003

k_{eff} improves dramatically for BIG TEN

 $k_{\mbox{\scriptsize eff}}$ is worse for IEU-MF-03 and IEU-MF-04 and drops substantially for Zebra-8H

For IEU-CT-02 and STACY-36, changes to ²³⁸U resonance parameters offset reactivity effects of scattering changes for uranium isotopes

RESULTS FOR LEU BENCHMARKS

	Benchmark	Calculated k _{eff}	
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI
B&W XI-2	1.0007 ± 0.0012	0.9997 ± 0.0003	0.9968 ± 0.0003
LEU-ST-02	1.0024 ± 0.0037	0.9957 ± 0.0003	0.9957 ± 0.0003

k_{eff} improves substantially for B&W XI-2, which eliminates need for *ad hoc* adjustment to ²³⁸U resonance integral (used in many nuclear data libraries since early 1970s)

For LEU-ST-02, changes to ²³⁸U resonance parameters offset reactivity effects of scattering changes for uranium isotopes

RESULTS FOR PU BENCHMARKS

	Benchmark	Calculated k _{eff}		
Case	k _{eff}	ENDF/B-VII	ENDF/B-VI	
Jezebel	1.0000 ± 0.0020	1.0004 ± 0.0003	0.9975 ± 0.0003	
Jezebel-240	1.0000 ± 0.0020	1.0001 ± 0.0003	0.9979 ± 0.0003	
Pu Buttons	1.0000 ± 0.0030	0.9986 ± 0.0003	0.9962 ± 0.0003	
Flattop-Pu	1.0000 ± 0.0030	1.0006 ± 0.0003	1.0019 ± 0.0003	
THOR	1.0000 ± 0.0006	1.0081 ± 0.0003	1.0062 ± 0.0003	
Pu-MF-11	1.0000 ± 0.0010	0.9986 ± 0.0003	0.9970 ± 0.0003	
HISS/HPG	1.0000 ± 0.0110	1.0111 ± 0.0003	1.0105 ± 0.0003	
PNL-33	1.0024 ± 0.0021	1.0057 ± 0.0003	1.0029 ± 0.0003	
PNL-2	1.0000 ± 0.0065	1.0039 ± 0.0005	1.0033 ± 0.0005	

Striking improvement in k_{eff} for fast cases except THOR, and reactivity swing from Jezebel to Flattop-Pu is eliminated

UNCLASSIFIED

SUMMARY OF RESULTS FOR MCNP CRITICALITY VALIDATION SUITE

Range	Pre-ENDF/B-	ENDF/B-VI
$ \Delta \mathbf{k} \leq \sigma$	17	13
$\sigma < \Delta \mathbf{k} \le$	8	9
∆k > 2σ	6	9

Substantial improvements for bare metal spheres (Jezebel-233, Godiva, and Jezebel), BIG TEN, HEU and Pu metal spheres in water (Godiver and Pu-MF-011, respectively), and LEU lattice (B&W XI-2)

ORNL resonance parameters improve results for Godiver, ORNL-10, IEU-CT-03, STACY-36, B&W XI-2, and LEU-ST-02

CONCLUSIONS

Overall, Pre-ENDF/B-VII produces major reactivity improvements relative to ENDF/B-VI

Reactivity swings from bare spheres to similar systems reflected by normal uranium are eliminated or substantially reduced

Need for *ad hoc* adjustment to ²³⁸U resonance integral may be eliminated

Improvements still are needed, particularly for cases with intermediate spectra or with thorium

