
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

05-5950

INCREASING MCNP5 CALCULATION
SPEED BY COMPILER OPTIMIZATION

JESSE CHEATHAM & FORREST B. BROWN

Increasing MCNP5 Calculation Speed by Compiler Optimization

Abstract

 The speed performance of MCNP5 is examined using four different compilers

with their different optimization options on the Lambda Linux computing cluster. Intel,

Portland, Absoft, and Lahey compilers are compared on calculation times by computing

eigenvalue and fixed-source problems with their default options as well as their

optimizations that maintain solution accuracy. By choosing certain optimization options,

a reduction of run time of around 40% was seen in some of the MCNP5 builds for a

single processor.

Introduction

 While work has been done in optimizing the MCNP code for speed, there has

been less attention given to optimization of the code by compilers. To determine whether

different compilers create significantly different run time speeds, four compilers (Intel,

Portland, Absoft, and Lahey (Appendix 2)) are used to build MCNP5 on the Lambda

Linux system (Appendix 1). These MCNP5 builds are then speed tested on an

eigenvalue and fixed-source problem (Problem details in Appendix 4). All of the timed

problems are then normalized to the performance of the Intel default build for the timing

problem in question for cross compiler comparisons. Besides the default builds for each

compiler, compiler specific optimizations are examined as well. All of the timed

problems listed in the discussion section below passed their test for accuracy.

 Guaranteeing the accuracy of the solution can be difficult when optimizing codes.

Optimizing written code with a compiler generally means that the order in which the code

was written will be rearranged in hopes of better stream lining the memory access and

computation. A side effect of this process is that calculations that were coded to work

one way may inadvertently be rearranged to produce very different effects, i.e., a wrong

answer. To insure the accuracy of the MCNP build, there are 42 test problems that are

run at the end of an installation and are compared to the anticipated outputs and MCTAL

files. If the MCTAL files or the Outputs files differ significantly from the expected

values, the MCNP5 build is deemed unusable.

Discussion

 The running times for the MCNP5 builds on the Lambda cluster are shown in

Tables (1(a,b) – 4(a,b)). Run times are recorded in seconds and Rtime and Itime are

relative speed indicators. Rtime is the relative speed of the compiler with its default

options, while Itime is the relative speed with respect to the Intel compiler defaults. Itime

allows for cross compiler comparisons of calculation speed. In the comparison, it should

be noted that the computation time recorded can vary by a couple of seconds each

instance the MCNP5 build in question is run. Therefore, slight differences in calculation

time may not indicate an actual speed increase. The default compiler options (default

build) are shown in gray, the optimal speed build for the compiler is shown in bold, and

details of the options listed in the following tables may be examined in Appendix 3.

 Intel’s Fortran compiler showed the most positive response to optimization. The

MCTAL files passed for all of its general O optimizations as well as some of the more

advanced rearrangement schemes. As shown in Table 1a, optimized MCNP5 builds were

doing the same eigenvalue problem in about 58% of the time of the default build. Table

1b also shows that the fixed source problem has similar success in completing the

problem around 51% of the original time.

Table 1a: Intel Build Eigenvalue Test

Intel option
time
(s) Rtime Itime

O0 404.62 100.0% 100.0%

O1 262.69 64.9% 64.9%

O2 263.95 65.2% 65.2%

O3 264.03 65.3% 65.3%

O0 prof_gen prof_use ipo 402.71 99.5% 99.5%

O1 prof_gen prof_use ipo 237.99 58.8% 58.8%

O2 prof_gen prof_use 248.83 61.5% 61.5%

O2 prof_gen prof_use ipo 234.55 58.0% 58.0%

O2 prof_gen prof_use ipo tpp6 237.08 58.6% 58.6%

O3 prof_gen prof_use ipo 240.45 59.4% 59.4%

Table 1b: Intel Build Fixed Source Test

Intel option
time
(s) Rtime Itime

O0 136.87 100.0% 100.0%

O1 89.75 65.6% 65.6%

O2 89.7 65.5% 65.5%

O3 89.76 65.6% 65.6%

O0 prof_gen prof_use ipo 135.44 99.0% 99.0%

O1 prof_gen prof_use ipo 74.95 54.8% 54.8%

O2 prof (gen use) 72.23 52.8% 52.8%

O2 prof_gen prof_use ipo 74.96 54.8% 54.8%
O2 prof_gen prof_use ipo
tpp6 69.21 50.6% 50.6%

O3 prof_gen prof_use ipo 72.33 52.8% 52.8%

 The Portland compiler had a few more difficulties in being optimized. Since the

O2 optimization failed for the compiler, much of the advanced code rearrangement could

not be used since the O2 option is essential for it. Even so, the default Portland MCNP5

build performed 13% better than the default Intel build on the eigenvalue problem shown

in Table 2a. The most optimized run took only 77% of the time of the default Intel run

and 92% of the time of the default Portland run.

Table 2a: Portland Build Eigenvalue Test

Portland option
time
(s) Rtime Itime

O0 349.97 103.5% 86.5%

O1 309.7 91.6% 76.5%

O0 Mrecursive 353.88 104.6% 87.5%

O1 Mprof 415.93 123.0% 102.8%

O1 Mrecursive 318.26 94.1% 78.7%

O1 tp px 338.27 100.0% 83.6%

 Fixed source runs by the Portland build also demonstrate a good speed increase

over the default Intel build as well as with respect to its own default build. The fixed

source problem run time was only 59% of a default Intel build and was 85% of the

default Portland build. This shows the fixed source problem was more responsive to

optimization. As a side note, the Portland runs appeared to be one of the slowest in the

timed tests of the 42 test problems. This is most likely due to the way that the Portland

build loads and unloads information and therefore while Portland is good for long runs, it

should not be used in fast running problems that must be completed over and over.

Table 2b: Portland Build Fixed Source Test

Portland option
time
(s) Rtime Itime

O0 99.08 105.2% 72.4%

O1 80.46 85.4% 58.8%

O0 Mrecursive 103.85 110.3% 75.9%

O1 Mprof 164.53 174.7% 120.2%

O1 Mrecursive 84.75 90.0% 61.9%

O1 tp px 94.19 100.0% 68.8%

 Absoft’s compiler had similar troubles to Portland’s compiler. Most of the

advanced optimizations did not pass the MCTAL tests since its O2 optimization, which is

required for most optimizations, failed. Overall, Absoft’s compiler performed poorly in

optimizing MCNP. Unfortunately, the default build for Absoft seemed to be the fastest

that the code could be run for both fixed source and eigenvalue problems while

maintaining accuracy. The default Absoft runs were comparable to the default Intel runs.

Table 3a: Absoft Build Eigenvalue Test

Absoft option
time
(s) Rtime Itime

O0 548.35 136.7% 135.5%

O1 407.16 101.5% 100.6%

O1 cpu:p6 401.06 100.0% 99.1%

O1 fpic 481.02 119.9% 118.9%

O1 B24 398.2 99.3% 98.4%

O1 P 444.18 110.8% 109.8%

Table 3b: Absoft Build Fixed Source Test

Absoft option

time
(s) Rtime Itime

O0 196.72 140.3% 143.7%

O1 140.36 100.1% 102.5%

O1 cpu:p6 140.24 100.0% 102.5%

O1 fpic 173.46 123.7% 126.7%

O1 B24 142.01 101.3% 103.8%

O1 P 180.64 128.8% 132.0%

 Lahey’s compiler was most difficult to ensure accuracy. The default runs of the

Lahey compiler generate a number of differences in the MCTAL files. On top of that, the

eigenvalue run produces a different eigenvalue, 0.99825, than all of the other compilers

with their options which yielded the same value, 0.99662. Accepting that the default

Lahey MCTAL files were so different to begin with, I continued with optimizations that

yielded the differences in the same ball park.

 The Lahey compiler runs for the eigenvalue problems were similar to the default

Intel runs. The fastest optimization yielded a run time that was 93% of the default Intel

run time. However, the fixed source problems were considerably slower. Even the most

optimized Lahey run took longer than the default Intel run. The default Lahey run for the

fixed source problem ran 50% longer than the Intel one.

Table 4a: Lahey Build Eigenvalue Test

Lahey option
time
(s) Rtime Itime

o0 454.95 100.0% 112.4%

o1 377.67 83.0% 93.3%

o0 tpp 456.24 100.3% 112.8%

o0 prefetch 374.88 82.4% 92.6%

o0 unroll 4 453.5 99.7% 112.1%

o0 li 454.96 100.0% 112.4%

o0 x arg 451.81 99.3% 111.7%

o0 tp 456.29 100.3% 112.8%

o1 prefetch 379.76 83.5% 93.9%

o1 tp 371.72 81.7% 91.9%

Table 4b: Lahey Build Fixed Source Test

Lahey option
time
(s) Rtime Itime

o0 202.65 100.00% 148.10%

o1 170.17 84.00% 124.30%

o0 tpp 199.09 98.20% 145.50%

o0 prefetch 173.87 85.80% 127.00%

o0 unroll 4 203.03 100.20% 148.30%

o0 li 203.51 100.40% 148.70%

o0 x arg 204.47 100.90% 149.40%

o0 tp 202.84 100.10% 148.20%

o1 prefetch 172.9 85.30% 126.30%

o1 tp 170.05 83.90% 124.20%

Conclusion

 An optimized Intel compiler build solved both fixed source and eigenvalue

problems with run times less than 60% of the default builds. Luckily, for this increased

speed in calculation, there appears to be no noticeable change in accuracy of the solution

according to the MCTAL files. Portland’s compiler also made fast MCNP5 builds. The

optimized Portland runs ran in less than 80% time of the default Intel eigenvalue runs and

less than 60% of the fixed source run time. It may be possible to increase the speed of

the Portland compiler by advanced optimization options if the Portland O2 option would

pass the MCTAL file test.

 Absoft’s compiler did not perform as well as Intel’s or Portland’s. Even its

optimized runs were comparable to the default Intel ones. Like Portland, Absoft failed its

O2 optimizations and therefore cut off many of the code rearrangement options.

Similarly, Lahey also failed the O2 optimization. However, besides giving large

MCTAL differences even in its default run, its optimized run times still were comparable

to Intel’s default for an eigenvalue problem and near 50% longer in calculating a fixed

source problem.

 In conclusion, Intel’s compiler optimized MCNP5 build performed the best out of

all the compiler builds. These results, however, are limited in lifetime. With

improvements in compilers as well as the operating systems and hard ware of the system

in which they are being run, these results will become obsolete. It should also be noted

that these results pertain only to the MCNP5 source code and may vary significantly with

different types of codes.

Appendix

1. Computer type Lambda

Each backend node is a Compaq DL360 with two Intel Pentium-3, 1 GHz processors.

Each backend node has 2 disk drives - a 9 GB system disk and an 18 GB scratch disk.

The Lambda System is running RedHat Linux 2.4.10.

2. Compiler versions

 2.a Intel -- intel-fortran_8.1.023

 2.b Portland -- pgi_5.2-4

 2.c Absoft -- absoft_9.0

 2.d Lahey -- lahey_6.2c

3. Compiler Options

3.a Intel

-O0 Disables all -O<n> optimizations. On IA-32 and Intel(R) EM64T

 systems, this option sets the -fp option.

-O1 On IA-32 and Intel(R) EM64T systems, enables optimizations for

 speed. Also disables intrinsic recognition and the -fp option.

 This option is the same as the -O2 option.

 On Itanium-based systems, the -O1 option enables optimizations

 for server applications (straight-line and branch-like code with

 a flat profile). Enables optimizations for speed, while being

 aware of code size. For example, this option disables software

 pipelining and loop unrolling.

-O2 or -O

 This option is the default for optimizations. However, if -g is

 specified, the default is -O0.

 On IA-32 and Intel(R) EM64T systems, this option is the same as

 the -O1 option.

 On Itanium-based systems, the -O2 option enables optimizations

 for speed, including global code scheduling, software pipelin-

 ing, predication, and speculation. It also enables:

 o Inlining of intrinsics

 o The following capabilities for performance gain: constant

 propagation, copy propagation, dead-code elimination, global

 register allocation, global instruction scheduling and control

 speculation, loop unrolling, optimized code selection, partial

 redundancy elimination, strength reduction/induction variable

 simplification, variable renaming, exception handling opti-

 mizations, tail recursions, peephole optimizations, structure

 assignment lowering and optimizations, and dead store elimina-

 tion.

-O3 Enables -O2 optimizations plus more aggressive optimizations,

 such as prefetching, scalar replacement, and loop transforma-

 tions. Enables optimizations for maximum speed, but does not

 guarantee higher performance unless loop and memory access

 transformations take place.

 On IA-32 and Intel(R) EM64T systems, when the -O3 option is used

 with the -ax and -x options, it causes the compiler to perform

 more aggressive data dependency analysis than for -O2, which may

 result in longer compilation times.

 On Itanium-based systems, the -O3 option enables optimizations

 for technical computing applications (loop-intensive code): loop

 optimizations and data prefetch.

-tpp6 (i32 only)

 Optimizes for the Intel(R) Pentium(R) Pro, Intel(R) Pentium(R)

 II and Intel(R) Pentium(R) III processors.

-prof_gen

 Instruments a program for profiling.

-prof_use

 Enables use of profiling information during optimization.

-ipo[n]

 Enables multifile interprocedural (IP) optimizations (between

 files). When you specify this option, the compiler performs

 inline function expansion for calls to functions defined in sep-

 arate files.

3.b Portland

-O[level]

 Set the optimization level. If -O is not specified, then the

 default level is 1 if -g is not specified, and 0 if -g is

 specified. If a number is not supplied with -O then the

 optimization level is set to 2. The optimization levels and

 their meanings are as follows:

 0 A basic block is generated for each C statement. No

 scheduling is done between statements. No global

 optimizations are performed.

 1 Scheduling within extended basic blocks is performed.

 Some register allocation is performed. No global

 optimizations are performed.

-Mrecursive -Mnorecursive (default)

 Allocate (don't allocate) local variables on the stack, thus

 allowing recursion. SAVEd, data-initialized, or namelist members

 are always allocated statically, regardless of the setting of

 this switch.

-Mprof[=option[,option,...]]

 Set profile options. Normally, the -ql, -qp, or -pg switches are

 used for this; however, on some systems, it is desirable to

 override the default method of profiling. See the PGI User's

 Guide, or the system profiler manual, for further information.

-tp px

 blended code generation that will work on any x86-compatible processor

3.c Absoft

-O0 no optimizations

-O1 Turn on basic optimizations to make executable programs run

 faster. The basic optimizations are: common subexpression elim-

 ination, constant propagation, and branch straightening.

-cpu:type

 Use the -cpu:type option to generate instructions specific to a

 particular processor. The recognized type arguments are:

 486 non-Pentium class Intel processor

 p5 first generation Pentium

 p6 Pentium Pro, II, and III

 p7 Pentium 4

 athlon AMD Athlon and Duron

 host automatically establishes processor based on the

 machine that the program is compiled on. If the CPU type cannot

 be established, p5 is assumed.B24

-P Cause the compiler to instrument the code for profiling with

 gprof(1).Fpic

-B86 Forces the compiler to remove indexed address expressions from within loops.

For the X86, this often has the desirable effect of reducing instruction stalls for

floating point access. However, because the index must still be calculated,

additional integer operations must be performed. If the application needs to be

as fast as possible, try running once with this option and once without.

3.d Lahey

--o0 | -O0

 no optimizations

--o1 | -O

 classical, memory, and interprocedural optimizations

--tp

 generate Pentium code

--tpp

 generate Pentium Pro code

--[n]prefetch

 Athlon and Pentium III optimizations

--[n]unroll <value>

 perform/control loop unrolling

--[n]li

 Lahey intrinsic procedures

-x arg

 inline code

4. Problem Details

4.a Eigenvalue Problem

The eigenvalue problem run was BAWXI2i which came from the MCNP criticality

validation suite. The only change was the kcode card which became

“kcode 5000 1.0 10 50”

 4.b Fixed Source Problem

The fixed source problem came from problem 12 of the 42 test problems found in

testinp.tar. The only change was the nps card which became

“nps 105000”

REFERENCES

X-5 Monte Carlo Team, "MCNP – A General Monte Carlo N-Particle Transport Code,

Version 5", LA-UR-03-1987, Los Alamos National Laboratory (2003).

