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Abstract 
 

Monte Carlo k-eigenvalue simulations rely on a converged fission source distribution 
for accurate tallies, and it can often be difficult to determine when the source 
distribution has converged to a stationary level.  Currently, convergence is 
determined by running a given number of cycles and examining the trend of keff, the 
multiplication factor.  A newly proposed method to determine convergence is to 
examine the trend of the entropy of the source distribution.  This is considered a more 
sound approach because the entropy is not affected by eigenmode cancellation 
effects.  Six different tests were created and applied to both keff and the entropy of the 
source distribution of five different problem types in MCNP.  The goal was to enable 
MCNP to determine the cycle at which convergence is reached.  This series of tests 
was successful in all but the most difficult cases, i.e. problems with a very high 
dominance ratio. 

 
 
 

1. Introduction 
 
Monte Carlo simulations estimate physical quantities by running many particle histories and 
averaging the resulting tallies, which are generated by given stochastic models.  These histories are 
grouped into cycles, each of which has a fixed number of particle histories.  Source iteration 
techniques are used to allow the source distribution to converge to and remain in an acceptable 
range of fluctuation around the true source distribution.  Statistically, this convergence is known as 
reaching stationarity.  Cycles are thus divided into two types: inactive, where the distribution is not 
yet converged, and active, where stationarity has been reached and tallies are taken.  Only when the 
distribution has converged can valid tallies be taken, making it important to accurately determine 
when the simulation has converged to a stationary level. 
 
The current method to determine convergence in the MCNP Transport Code is to perform a post-
processing examination of the resulting keff.  This quantity is integrated globally over the entire 
reactor.  As will be shown Section 2, this is not always an accurate measure of the convergence of 
the source distribution.  Due to eigenmode cancellation effects, keff can converge much faster than 
the source distribution.  Thus, to determine convergence, the entropy of the source distribution must 
also be examined.  This process is presented in Section 3. 
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Six different tests were examined in this work to gauge convergence.  Each test was applied to five 
different reactor types, all of which converged in a unique manner.  The tests and reactor types are 
explained in further detail in Section 4.  Finally, the results of the tests are presented in Section 5 
and discussed in Section 6.   
 
 
 
 

2. Decay Effects of Eigenmodes 
 
Due to the iterative nature of the keff computation, the dominance ratio, 01 kk , greatly affects the 
convergence rate of keff.  In Monte Carlo simulations, the cycle wise keff is calculated as  
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where effK is the effective multiplication factor, M is the fission operator, and )(n is the angular 
flux after n  cycles of the power iteration process.  It can be shown1 through manipulation of terms 
that this quantity can also be estimated as 
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The critical portions of Equation (2) are the terms 
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The first term emphasizes how the cycle-wise convergence of keff is influenced by the dominance 
ratio.  The second term is significant for reactors with high dominance ratios (e.g. 99.0��DR ), as 
the keff calculation will converge very quickly, often much faster than the source distribution.  This 
is due to the cancellation effects inherent in the whole core integrations, since positive and negative 
fluctuations will cancel over the domain.  High dominance ratios are common in large reactors with 
small leakage, heavy-water reflected or moderated reactors, and loosely coupled systems. 
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3. Convergence to Stationarity 
 
Two quantities can be used to test the convergence of the source distribution.  The first is keff, and is 
currently the only quantity available to measure convergence in MCNP.  The second quantity is a 
measure of the source distribution itself.  Measure of this second quantity is preferred, since keff is 
integrated over the entire domain, potentially causing cancellation effects that make the problem 
appear to converge faster than it actually does.   
 
To properly measure the convergence of the fission source distribution, it must first be 
characterized as a single number.  This can be done through the ShannonÕs entropy.  The fissionable 
regions of the reactor are divided into m spatial bins and a ratio jS is taken of the number of source 

particles in a particular bin j to the total number of source particles.  The entropy of that cycle is 
then estimated as 
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This provides a single number quantifying the source distribution that can be plotted verse cycle to 
examine convergence.  If local quantities such as power distributions for assemblies such as fuel 
pins are investigated, the entropy of the source distribution must be examined because it is not 
affected by the cancellation effects associated with keff convergence.   
 
 
 
 

4. Convergence Tests 
 
Six different convergence tests were each applied to five different reactor types.  The six tests were 
as follows: 
 

1) Check if value has increased/decreased p  times in a row 
 
2) Check if average of previous q  values has increased/decreased p  times in a row 

 
3) Check if slope of previous q  values has changed sign 

 
4) Check if slope of previous q  values is within t-statistic 

 
5) Check rate of change of average of previous q  values 

 
6) Normality check over previous q  values 
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The first test is a simple one that can be used to determine whether the remaining tests should be 
run.  Since at stationarity the distribution is normal, it is expected that if the value has increased or 
decreased p  times in a row, then the problem is not yet be converged.  For these problems 5=p . 
 
The second test follows a similar design to the first test, but is applied to the average of the previous 
q  values.  Using an average instead of the actual values smoothes the data and allows for a more 
stable test instead of being misguided by noisy data due to too few particles per cycle.  For all 
problems, q  was varied among three values: { }30,20,10=q . 
 
The third test checks the sign of the slope of the previous q  values.  When a change in sign occurs, 
it is expected that the problem has reached stationarity.  At that point, the distribution also becomes 
normal, so the sign of the slope should fluctuate between positive and negative. 
 
The fourth test is similar to the third test, but uses a t-statistic as the criteria for convergence2.  The 
t-statistic is a way to determine if the slope of data is statistically zero.  This is a standard statistical 
practice and is implemented as follows: 
 
 Rejection region: att >||  
 
where at  is the statistic from a table, based on 2q degrees of freedom.  t  is defined as 
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The fifth test checks the rate of change of the average of the previous q  values from cycle to cycle.  
When stationarity is reached, the average should not vary significantly.  The convergence criteria 
for this test is taken as 
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The sixth and final test is the Shapiro-Wilk normality test3.  When the problem reaches 
convergence, the distributions of keff and the entropy become normal.  Thus, the convergence 
criterion is when the previous q  values pass the Shapiro-Wilk normality test.  An algorithm for this 
is already implemented in the MCNP code and is used for this test.  The theory of the test is beyond 
the scope of this work, so it is not presented. 
 
 
 

5. Results 
 
On the following pages are the numerical results for each problem.  Each page begins with a brief 
description and illustration of the problem.  An in-depth discussion of each problem is not given as 
the exact make-up of each is not directly important.  Instead, these problems were chosen because 
of their resulting keff and entropy trends.  The plots of keff and entropy verse cycle are presented, as 
well as the cycle at which true convergence appears to be reached.  Next, the results of each six 
tests are shown for varying q .  The final predicted convergence point is taken as the maximum 
cycle of the series of tests. 
 



 - 6 - 15 August 2005 
 

 

Problem 1 
Description 
Reactor Core Ð inp24 
2000 Particles/Cycle 

 
 
Convergence Plots 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 1: keff Convergence    Figure 2: Entropy Convergence 
 

Figure 1: keff Convergence Figure 2: Entropy Convergence 
True keff Convergence: ~20 True Entropy Convergence: ~20 

 
Convergence Tests Results 
Predicted keff Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 5 11 15 19 16 16  19 
20 5 21 32 24 36 32  36 
30 5 31 41 32 46 42  46 

 
Predicted Entropy Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 17 10 32 37 32 39  39 
20 17 31 42 43 43 44  44 
30 17 46 48 50 49 51  51 
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Problem 2 
Description 
Reactor Core – PNL33i 
5000 Particles/Cycle 
 

 
 
Convergence Plots 
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Figure 3: keff Convergence Figure 4: Entropy Convergence 
True keff Convergence: ~20 True Entropy Convergence: ~20 

 
Convergence Tests Results 
 
Predicted keff Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 6 10 11 19 12 15  19 
20 6 20 20 23 21 25  25 
30 6 30 30 32 46 35  46 

 
Predicted Entropy Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 8 10 22 24 24 26  26 
20 8 29 33 33 34 37  37 
30 8 38 42 43 43 44  44 
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Problem 3 
Description 
Reactor Core Ð bawxi2 
5000 Particles/Cycle 
 

 
 
Convergence Plots 
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Figure 5: keff Convergence Figure 6: Entropy Convergence 
True keff Convergence: ~20 True Entropy Convergence: ~20 

 
Convergence Tests Results 
 
Predicted keff Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 6 10 14 17 14 15  17 
20 6 20 27 25 36 28  36 
30 6 30 37 34 44 40  44 

 
Predicted Entropy Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 5 10 10 18 26 15  26 
20 5 20 31 21 33 35  35 
30 5 30 44 31 46 35  46 
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Problem 4 
Description 
Array of Spheres Ð test4s 
5000 Particles/Cycle 
 

 
 
Convergence Plots 
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Figure 7: keff Convergence Figure 8: Entropy Convergence 
True keff Convergence: ~50 True Entropy Convergence: ~70 

 
Convergence Tests Results 
 
Predicted keff Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 5 13 13 15 15 17  17 
20 5 23 22 58 23 25  58 
30 5 32 31 33 31 35  35 

 
Predicted Entropy Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 6 12 15 15 16 18  18 
20 6 37 21 85 22 25  85 
30 6 58 90 97 91 97  97 
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Problem 5 
Description 
Fuel Storage Vault Ð bench1 
2000 Particles/Cycle 
 

 

 
 
Convergence Plots 
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Figure 9: keff Convergence Figure 10: Entropy Convergence 
True keff Convergence: ~10 True Entropy Convergence: ~900 

 
Convergence Tests Results 
 
Predicted keff Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 5 10 13 14 13 15  15 
20 5 20 20 21 30 25  30 
30 5 30 30 33 31 35  35 

 
Predicted Entropy Convergence 

Back, q Test 1 Test 2 Test 3 Test 4 Test 5 Test 6  Converge 
10 7 10 35 35 36 36  36 
20 7 20 71 51 72 74  74 
30 7 48 76 73 77 78  78 
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6. Discussion 
 
The first test consistently under predicted the convergence point, and it can be reasonably assured 
that if the first test fails, the problem is not converged.  Once it passes, however, further tests should 
be run to determine if the problem is truly converged. 
 
The second test predicted much higher values of convergence than the first test, even though it was 
similar.  This is because it took averages of the previous q  values.  It was not consistent in 
correctly predicting convergence, especially for10=q , and should not be used as a stand-alone test. 
 
The third and forth tests were very similar to each other, though they sometimes gave considerably 
different results.  Neither test predicted a consistently higher convergence point.  Test four, 
however, often proved the most rigorous of the six tests when10=q .   
 
The fifth and sixth test seemed to predict the highest convergence points out of all the tests.  This is 
important because the combination of these tests almost always ensured that the problem was 
converged.  While the convergence criteria for the fifth test (i.e. that the change in average was less 
than 0.001) was arbitrarily chosen, it did seem to work considerably well.  It was clear in the sixth 
test that the more data points used, the better the test performed.   
 
It should be noted that while certain problems did have large fluctuations in their keff and entropy 
plots (especially in problem 2 and 3), the convergence tests were still able to accurately predict 
when the problem reached a stationary level.  The series of tests only failed for problem 5 where the 
data did not follow an exponential or logarithmic trend.   
 
 

7. Conclusion 
 
An automated and rigorous method to determine convergence of the source distribution to the 
fundamental mode in MCNP would be very beneficial to ensuring accurate tallies.  Data can often 
have such large fluctuations due to the number of particles per cycle that it is difficult to properly 
determine the point of true convergence.  Predicting this point of convergence can be effectively 
done with a series of tests as was shown in this work.  These tests must be applied to both the 
entropy of the source distribution and keff, especially if local quantities such as power distributions 
in fuel bundles are examined.  In most cases, the series of tests applied in this work predicted 
sufficient points of convergence.  Only in the most difficult problem (problem 5) did the tests fail. 
 
There are several areas that this work could be extended to.  While these tests worked in most cases, 
other tests should be created and applied to the problems that failed.  Also, a new routine to 
determine the dominance ratio should be implemented into MCNP so that the user can have an 
indication of whether his problem is a slowly converging type.  Finally, it would be beneficial to 
allow the user to test the fluctuations of the data (and, hence, the number of particles per cycle) to 
ensure that they are sufficiently smooth.   
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