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Abstract 

       The dominance ratio quantifies the eigenvalue separation for reactor systems and is the key parameter in 

analyzing the convergence of iterative methods for solving criticality calculations. Two methods for calculating 

the dominance ratio have been tested in the MCNP Monte Carlo code – a new and potentially very accurate 

method based on time-series analysis, and the traditional but approximate fission matrix approach. Both 

methods have been tested on a variety of reactor and criticality safety problems.  
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1. Introduction 

The dominance ratio of a multiplying system is 

defined as DR=k1/k0, where k0=keff is the eigenvalue 

of the fundamental mode and k1 is the eigenvalue of 

the first higher mode. The dominance ratio is a 

fundamental property of a physical system and is a 

key parameter in analyzing system stability 

regarding fluctuations in xenon, voids, temperature, 

etc. Systems with a high dominance ratio (i.e., very 

close to 1.0) are more susceptible to oscillations 

induced by exciting a higher mode, while systems 

with a lower dominance ratio (DR<.9) are more 

stable with regard to fluctuations or disturbances in 

system parameters. This paper focuses, however, on 

a different role of the dominance ratio. When 

calculating keff and the power distribution for a 

reactor system, the dominance ratio is the key 

parameter for determining the convergence rate of 

an iterative numerical solution method. Monte Carlo 

eigenvalue calculations, for example, use the 

standard power method (Nakamura, 1986; Brown, 

2005)   for iteratively determining keff and the power 

distribution. For systems with a high dominance 

ratio, 100s or 1000s of iterations may be required 

before the method achieves convergence, while only 

10s or 100s of iterations are required for systems 

with a low dominance ratio. Knowledge of the 

dominance ratio provides extremely valuable 

guidance to analysts performing the calculations: If 

it is known that the dominance ratio is close to 1.0, 

then convergence will be slow and special attention 

is required to avoid false convergence (i.e., 

misdiagnosis of convergence). If the dominance 

ratio is low, then the problem should converge 

quickly. For Monte Carlo eigenvalue calculations, 

assessment of convergence can sometimes be 

difficult due to the statistical nature of the 

calculations. If the cycle-to-cycle fluctuations in keff 

or the Shannon entropy of the source distribution 

(Hsrc) (Ueki and Brown, 2002; Brown, 2006) are 

large, problems with a high dominance ratio are 

more susceptible to false convergence. Knowledge 

of the dominance ratio would be especially helpful 
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to Monte Carlo practitioners as an aid for assessing 

convergence. 

2. Dominance ratio calculations 

In the past, calculating the dominance ratio for 

criticality problems was generally left to 

deterministic power iteration methods.  Some 

previous calculations using Monte Carlo methods 

involved calculating the fission matrix, and then 

determining the eigenvalues of the fission matrix. 

This approach suffers from both theoretical and 

computational drawbacks: The fission matrix is a 

discrete approximation to the physical problem. The 

infinite set of eigenvalues of the continuous problem 

is approximated by a smaller discrete set of 

eigenvalues, the number of which is equal to the 

number of discrete regions used in formulating the 

fission matrix. While the fundamental eigenvalue is 

identical to that of the continuous problem, all of the 

other eigenvalues of the fission matrix only 

approximate those of the continuous problem, 

approaching the correct values only in the limit of 

infinite dimension of the fission matrix. The 

requirement for a high dimensionality of the fission 

matrix creates computational problems. If the fission 

matrix is based on N regions, then N
2
 storage 

elements are required for the fission matrix. Thus, a 

very crude 10x10x10 spatial mesh requires 10
6
 

storage elements for the fission matrix, and a 

100x100x100 mesh would require an intractable 

10
12

 storage elements. The Fission Matrix Method 

(FMM) for determining the dominance ratio must 

therefore be considered as only an approximate 

method, useful for obtaining “ball park” estimates. 

Nevertheless, the fission matrix method has been 

implemented in a test version of the MCNP5 Monte 

Carlo code (X-5 Monte Carlo Team, 2003). 

Convergence of the method as a function of the 

mesh size has been examined, and the results have 

been compared to a more accurate method discussed 

next. 
Recently, an accurate method of determining 

the dominance ratio was developed for Monte Carlo 

eigenvalue calculations (Ueki et al., 2003; Ueki et 

al., 2004).  This method was independent of bin 

structure and used time series analysis of a 

particular projection of the fission source vector to 

compute the dominance ratio. DR calculations were 

compared to exact benchmark results computed by 

Green’s function methods.  However, this method 

relied on the careful choice of bin boundaries to 

capture the symmetries of a system and on an 

autoregressive moving average (ARMA(2,1)) fit, 

which could be complicated and require fine tuning 

from the user. This method provided proof-of-

principle and benchmark-quality results, but was 

primarily suitable for experts with prior knowledge 

of the fundamental and higher-mode solutions, 

rather than typical Monte Carlo code users. 

An improvement to the ARMA(2,1) method 

was recently developed that retained the strengths of 

using time series analysis, but did not rely on the 

complicated ARMA fitting.  This became the 

Coarse Mesh Projection Method (CMPM) (Nease 

and Ueki, 2007; Nease, 2008).  This method was 

much the same as the previous one, but improved on 

the particular projection vector used.  It was found 

that when using a certain projection vector, the 

dominance ratio could be computed reliably and 

robustly using a simple autoregressive order one 

(AR(1)) fitting.  This method of calculating the 

dominance ratio has now been tested in the 

continuous-energy Monte Carlo code MCNP5 for a 

variety of realistic problems. Results have been 

compared to other methods of calculating the 

dominance ratio, including the approximate FMM.  

3. CMPM for the dominance ratio 

The CMPM for determining the dominance 

ratio has recently been described fully (Nease and 

Ueki, 2007; Nease, 2008), so only a brief summary 

is given here. The source eigenfunctions and 

eigenvalues of the transport equation, denoted by Sj 

and kj are given by:  

  

   

S
j
(r ) =

1

k
j

S
j
(r )F(r r )dr     (1) 

 
where kj are ordered as 

   
k

0
> k

1
> k

2
>  and 

( )F r r  is the fission neutron kernel. For an 

iterative Monte Carlo calculation with N neutrons 

per cycle, the source for the m-th active cycle is 

represented as  

  

      
   Ŝ

(m) (r ) = NS(r ) + N ê(m) (r )      (2) 
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where 
   ê

(m) (r )  is the deviation from the true 

solution, dependent on the stochastic noise (from 

Monte Carlo histories) in each of the previous 

cycles, 
 

(n) (r ), n = m,m 1,...,1 :  

 

       

ê
(m)

(r ) = A
0
(r r )ê

(m 1)
(r )dr + ˆ(m)

(r )

+O(N
1/ 2

)
 

(3) 
where 

    

   

A
0
(r r )

1

k
0

F(r r ) S
0
(r )         (4) 

 

In the CMPM, p coarse spatial bins (e.g., 2x2x2 

mesh) are used to tally 
   ê

(m) (r )  for each bin for a 

cycle, and then the noise-propagation matrix A0 is 

computed: 

 

    

L
0
= E e

(m)
(e

(m)
)

T

L
1
= E e (m+1) (e (m) )T

A
0
= L

1
L

0
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                        (5) 

 

The eigenvalues and eigenvectors of 0A  are 

then determined 
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and used as projection vectors to obtain an AR(1) 

estimate of the dominance ratio 

 

    

   

DR =
d

1

T e (m 1)( ) d
1

T e (m)( )
m=2

M

M 1( )

d
1

T e (m)( )
2
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M
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   (7) 

 

where M is the number of active cycles. The 

variance of the DR is estimated (for M cycles) by 

(Box et al., 1994): 

 

var(DR)
1

M
(1 DR2 )  

  (8) 

 

For the practical implementation of Eqs. 5-8 

into MCNP5, it has been shown (Nease, 2008) that 

the equations can be recast in terms of Ŝ(m )  rather 

than  e
(m )

, so that Eqs. 5 and 7 are replaced by 

 

   

L
0
= E Ŝ (m) (Ŝ (m) )T

L
1
= E Ŝ (m+1) (Ŝ (m) )T

A
0
= L

1
L

0

1 I

  (9) 

 

where I is the identity matrix, and 
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d

1
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1

T Ŝ (m)( )
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M

M 1( )
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1
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1
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    (10) 

 

Thus, Eq. 9 is used in MCNP5 to determine the 

noise propagation matrix A0 based on the tallies of 

fission sources for each cycle, then any all-zero 

rows and columns of A0 are removed (i.e., A0 is 

reduced to span only fissionable regions), then the 

eigenvectors 
 
di from Eq. 6 are determined, and 

finally the DR is computed via Eq. 10. This 

approach results in a compact numerical scheme. 

4. Numerical results 

The FMM was implemented into MCNP5 in a 

straightforward manner, using the same mesh that is 

used for calculating the Shannon entropy of the 

source distribution (Brown, 2006). Given source 

neutrons in bin i, a tally of Fij is made when a next-

generation fission site is created in bin j. These 

tallies are accumulated over all cycles, converged or 

not. Periodically during the calculation, the 

eigenvalues of F (with columns normalized by the 

total fission neutron source in each region) are 

found and used to compute the dominance ratio. It 

should be noted that F is symmetric only for 1-

group problems, and is nonsymmetric for general, 

energy-dependent problems. When F is large (e.g., 

100s or 1000s of regions, with the size of F being 

the number of regions squared), finding the 

eigenvalues of a large, nonsymmetric matrix is a 

difficult numerical problem.  

It should also be noted that statistical 

uncertainties were not determined for the DR 

computed with the FMM. There are 2 reasons for 

this: (1) As is well-known and will be demonstrated 

with the results below, the DR computed with the 



 4 

FMM is sensitive to discretization error and may be 

highly inaccurate if the mesh is too coarse. 

Providing statistics on wrong results is problematic; 

code users might be given the wrong impression. (2) 

The most serious difficulty with the FMM is the 

very large amount of computer memory storage 

required for an accurate (fine-mesh) fission matrix. 

Computing statistics would double the amount of 

storage required, hence intensifying the memory 

storage problem and limiting the FMM to even 

coarser meshes with larger discretization errors.  

The tallies for the CMPM are also made on the 

same mesh used for the Shannon entropy, but are 

then collapsed to 2 bins in each direction (or 1 if the 

entropy mesh had only 1 bin in a direction). The 

CMPM tallies are only made for cycles after the 

iterations have converged. Equations (9), (6), and 

(10) are used at problem completion to determine 

the dominance ratio. 

4.1. Results for Godiva test problem 

For the very simple Godiva critical sphere, the 

sensitivity of the FMM approach to the spatial mesh 

is evident in the results shown in Table 1: 

Table 1 

DR results for the Godiva problem 

  Mesh size    Matrix size  DR 

FMM  2 x 2 x 2         8 x 8 .56 

  4 x 4 x 4       64 x 64 .60 

  8 x 8 x 8     512 x 512 .65 

CMPM  2 x 2 x 2         8 x 8               .68 ± .03 

ARMA(2,1) analysis                 .63 ± .04 

 

In comparing results for the DR calculations, 

the ARMA(2,1) results are based on careful 

calculations according to the methodology described 

in (Ueki et al., 2003;  Ueki et al., 2004) and are 

considered benchmark-quality results. The 

discretization error in FMM results is evident in 

Table 1, with the DR approaching the ARMA(2,1) 

DR as the mesh is refined. The CMPM result agrees 

with the benchmark within statistics. 

4.2. Results for 1-group 2D test problem 

For a 1-group 2D problem (Fig 1) with 

dominance ratio very close to 1, taken from (Ueki 

and Nease, 2006), results in Table 2 show a similar 

trend, with large FMM discretization errors for 

coarser meshes, and the CMPM result showing 

agreement with the benchmark ARMA(2,1) result. 

Table 2 

DR results for the 1-group 2D problem 

  Mesh size    Matrix size  DR 

FMM                4 x  4  x 1      16 x 16 .988 

               9 x  9  x 1      81 x 81 .993 

                     18 x 18 x 1    324 x 324 .997 

CMPM                   2 x  2  x 1        4 x 4            .998 ± .002 

ARMA(2,1) (Ueki and Nease, 2006)        .9993 ± .0004 

 

4.3. Results for 2D PWR problem 

A third problem, shown in Fig. 2, is a two-

dimensional version of an initial PWR core as 

specified in (Nakagawa and Mori, 1993), with 

explicit geometry modelling of each fuel rod and 

water tube. The problem was analyzed using 

MCNP5 with reflecting top and bottom boundaries, 

Each unit is a square 4 cm x 4 cm 

C C

C C

C

f = 0.24 cm
-1 

 

f = 0.30 cm
-1 

 

f = 0.39 cm
-1 

 

T = 1.0 cm
-1 

S = 0.7 cm
-1

 

Vacuum BC 

 

Fig. 1.  1-group 2D test problem 

  
 

Fig. 2.  2D PWR initial core 
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and continuous-energy cross-section data. The 

CMPM analysis runs used 200,000 neutrons per 

cycle, 1,000 inactive cycles, 9,000 active cycles, and 

a 2x2x1 spatial mesh (4 bins) for the CMPM 

analysis. As shown in Table 3, the CMPM yields 

accurate results for the DR.  

Table 3 

DR results for the 2D PWR problem 

  Mesh size    Matrix size  DR 

CMPM                   2 x  2  x 1        4 x 4            .991 ± .003 

ARMA(2,1) (Nease and Ueki, 2007)            .993 ± .002 

 

Fig. 3 shows how the DR computed by the 

FMM for this problem varies as a function of the 

number of spatial bins. For the FMM, the DR results 

are not reliable unless a mesh with at least 12x12x1 

bins is used, requiring a 144x144 element fission 

matrix. 

4.4. Results for 3D PWR problem 

When the PWR problem of Nakagawa and Mori 

(1993) is run as originally specified with 3D 

geometry, including the plenum, top and bottom end 

plugs, and top and bottom supports, the FMM 

difficulty with memory storage vs accurate results 

become strikingly apparent. Fig. 4 shows that with a 

12x12x12 mesh, giving 1728 FMM bins and 

2,985,984 matrix elements, the DR computed with 

the FMM is seriously in error.  

4.5. Results for 1D heterogeneous slab problem 

This test problem is a simple, 1-group, multi-

region slab geometry problem with vacuum 

boundaries, shown in Fig. 5. The DR was previously 

computed with a highly-accurate Green’s Function 

method (Kornreich, 2003) using an 1,800-bin mesh. 

This problem verifies that the CMPM can yield 

accurate DR results even when the DR is very close 

to 1, DR ~ .999
+ 

. Table 4 gives the benchmark 

Green’s Function and CMPM results, showing 

excellent ageement. The CMPM used 80,000 

neutrons per cycle, 400 inactive cycles, and 40,000 

active cycles. 

Table 4 

DR results for the 1D slab problem 

  Mesh size    Matrix size  DR 

Green’s Function    1800        .999565 

CMPM                   2 x  1  x 1        2 x 2       .9994 ± .0003 

5. Additional considerations for CMPM 

5.1. Number of cycles for DR calculations 

The basis for the CMPM is an accurate 

estimation of the noise-propagation matrix A0, given 

by Eq. 5 or Eq. 9. Elements of A0 are constructed 

from the covariances among fission sources for each 

tally bin over the active problem cycles.  Hence, 

sufficient cycles must be run to reliably estimate the 

 
 

Fig. 3. DR by FMM for 2D PWR problem 

 
 

Fig. 4. DR by FMM for 3D PWR problem 
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covariances among the fission source tally bins. For 

problems with high DR, however, it is well known 

that the fission source tallies for each cycle are 

highly correlated (Brown, 2005). As discussed in 

(Nease, 2008), these correlations decay roughly as 

DR
m
, where  m is the number of active cycles. To 

ensure that sufficient cycles are used to account for 

the correlations when determining the covariances 

required for A0, we suggest that enough cycles be 

run so that DR
m 

< 0.1%. That is, enough active 

cycles should be run that there is less than about 

0.1% correlation between the first and last active 

cycle. This  ansatz results in the condition 

 

Mmin =
ln0.001

lnDR
   (11) 

 

where Mmin is the minimum number of active cycles 

that should be run. 

Fig. 6 shows the DR computed by the CMPM 

for the 1D slab test problem (Fig. 5) as a function of 

the number of active cycles used. This problem, 

with the actual DR=.999565, is an extreme case, 

where Eq. 11 predicts that about 16,000 active 

cycles are necessary to reduce correlation effects to 

<0.1%. The prediction of Eq. 11 with the actual 

results shown in Fig. 6 is excellent. 

Two applications of Eq. 11 are possible: First, 

the approximate DR from the FMM could be used 

early in a calculation to estimate the number of 

active cycles needed for the CMPM. Second, after 

the CMPM calculation, Eq. 11 could be used as a 

diagnostic for the reliability of the computed DR.   

 

5.2. Numerical issues 

In applying the CMPM, it is necessary to 

determine the eigenvalues and eigenvectors of the 

noise propagation matrix, A0, given by Eq. 9. A0 

will in general be nonsymmetric, even for 1-group 

problems. As such, the eigenvalues of A0 cannot be 

guaranteed as real, and numerical roundoff could 

lead to complex eigenvalues. Further, due to the 

noise introduced in A0 by the Monte Carlo statistical 

fluctuations, there is a greater possibility of 

obtaining complex higher eigenvalues. Such 

complex higher eigenvalues have indeed been 

observed in some of the test problems reported in 

(Nease, 2008). 

It was observed in (Nease, 2008) that complex 

parts to the higher eigenvalues occurred more 

frequently for degenerate eigenvalues (or near-

degenerate); that the magnitude of the complex parts 

was small relative to the real parts; that the 

magnitude of the complex parts decreased when 

more active cycles were used; that the decrease in 

magnitude of the complex parts was bounded by M
-1

 

and M
-1/2

, where M is the number of active cycles; 

and that complex parts generally occurred for 2
nd

, 

3
rd

, or higher eigenvalues and not for the 1
st
, the DR. 

After much investigation, testing, and 

comparison to accurate benchmarks, it was 

determined (Nease, 2008) that the CMPM will 

produce accurate DR results even in the presence of 

 
 

Fig. 5. 1D slab test problem 

 
 

Fig. 6. DR from CMPM vs active cycles,  

for 1D slab test problem 
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small complex parts to higher eigenvalues, so long 

as the real part of the projection vector  
 
d1  is used 

in Eq. 10 for determining the DR. 

5.3. Computation times 

Because the CMPM is free of discretization 

error, a coarse mesh can be used, with just 2 

intervals in each coordinate direction. Typically the 

sizes of the A0 matrix are 2x2 for 1D problems, 4x4 

for 2D problems, and 8x8 for 3D problems. 

Accordingly, the computer memory storage and 

additional CPU time for the CMPM is negligible 

compared to the time for running the Monte Carlo 

histories. In (Nease, 2008), some test problems were 

run using more mesh intervals, primarily for 

determining additional higher mode eigenvalue 

ratios, k2/k0, k3/k0, etc. 

6. Conclusions 

Two methods for calculating the dominance 

ratio have been implemented into a test version of 

MCNP5. The fission matrix method is approximate, 

but has the advantage that it yields a rough estimate 

of the dominance ratio early in a calculation, even 

before a problem has converged. The coarse-mesh 

projection method provides an accurate estimate of 

the dominance ratio, but can be used only after a 

calculation has converged. Both methods are robust 

and require little or no user intervention. Testing has 

being carried out on a variety of reactor and 

criticality safety problems. Given the continued 

success of the methods, both will be made available 

in forthcoming production versions of MCNP. 

Knowledge of the dominance ratio should be a 

very useful aid to Monte Carlo practitioners for 

assessing convergence. In addition, knowledge of 

the dominance ratio may be useful in deriving 

automated tests for convergence during the Monte 

Carlo calculations. 
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