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ABSTRACT 
 

MCNP has a new capability that permits tracking of neutrons and photons on an unstructured 
mesh which is embedded as a mesh universe within its legacy geometry capability.  The mesh 
geometry is created through Abaqus/CAE using its solid modeling capabilities.  Transport results 
are calculated for mesh elements through a path length estimator while element to element 
tracking is performed on the mesh.  The results from MCNP can be exported to Abaqus/CAE for 
visualization or other-physics analysis.  The simple Godiva criticality benchmark problem was 
tested with this new mesh capability.  Computer run time is proportional to the number of mesh 
elements used.  Both first and second order polyhedrons are used.  Models that used second order 
polyhedrons produced slightly better results without significantly increasing computer run time.  
Models that used first order hexahedrons had shorter runtimes than models that used first order 
tetrahedrons. 
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1. INTRODUCTION 
 
The Monte Carlo N-Particle (MCNP) transport code has a more general geometry capability than has 
been available in most combinatorial geometry codes [1].  In addition to the capability of combining 
several predefined geometrical bodies, as in a combinatorial geometry scheme, MCNP gives the user the 
added flexibility of defining geometrical regions from all the first and second degree surfaces of 
analytical geometry and elliptical tori and then of combining them with Boolean operators.  This 
Constructive Solid Geometry (CSG) capability has been well-tested and verified and has exceptionally 
served users for decades.  However, it has long been recognized that as the model complexity increases, 
the process of describing the geometry is difficult, tedious, time-consuming, and error-prone [2,3,4].  
Consequently, innovators have taken on this task of developing a better way to construct geometries, not 
only for MCNP, but other particle transport codes as well. 
 
To address the difficulty of building complex geometry models, three approaches have been taken which 
rely on a Computer Aided Design (CAD) system to create a geometry model.  The first approach 
translates CAD surfaces into their equivalent representation using the Monte Carlo code’s input 
specifications.  The second approach uses the CAD model directly for Monte Carlo particle transport.  
Both of these approaches rely on particle tracking from surface to surface and have been driven by work 
in the fusion reactor and accelerator worlds.  Numerous papers have been published in recent years 
describing these two approaches.  The third approach creates a mesh representation of the solid geometry 
for the Monte Carlo code so that particles track directly on that mesh.  This third approach is the one 
chosen for implementation in MCNP as a modular mesh-tracking library written in Fortran 90/95.   
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In very broad terms, Compute Aided Engineering (CAE) has been defined as the use of computer 
software to solve engineering problems.  In this respect, CAE differs from CAD.  For our purposes, we 
think of CAE to mean the computer solution of engineering problems with the assistance of interactive 
computer graphics to create a solid model representation that supports design, analysis, and simulation.  
The design, analysis, and simulation functionality generally relies on finite element methods which in 
turn require a mesh representation of the geometry. 
 
Packages such as Abaqus/CAE [5] that are tightly integrated with finite element capabilities have the 
ability to generate an unstructured mesh representation of their solid models; generally, CAD programs do 
not have this functionality.  The degree of fidelity between the CAE representation and the unstructured 
mesh is generally good and depends to a degree upon the user’s willingness, ability, and need to refine the 
model.  Neutral particles (neutrons and photons) can track directly on an unstructured mesh model in 
MCNP through a hybrid geometry environment that permits the existence of a mesh within the CSG 
representation.  The amount of mixing of CSG and mesh geometries is at the discretion of the user, within 
certain limitations and restrictions. 
 
This paper describes the third approach that uses a CAE mesh-model embedded into a CSG model, 
forming a hybrid one, to solve this problem.  This approach is illustrated on a simple criticality 
benchmark problem; results are discussed.  The paper is organized as follows: Section 2 discusses the 
hybrid geometry approach with emphasis on the background leading to this development, hybrid 
geometry features in MCNP, some details on unstructured mesh modeling, details on organizing the mesh 
data, and a discussion of tracking issues on the unstructured mesh.  Section 3 presents results from the 
simple Godiva criticality benchmark problem.  Section 4 contains conclusions from this work.  Section 5 
discusses future work. 
 

2. THE HYBRID GEOMETRY APPROACH  

2.1.  Background 
 
Computer-Aided Design and Computer Aided Engineering tools are used by engineers, designers, and 
analysts in many ways depending on the profession of the user and the type of software in question.  The 
mechanical engineering community has invested heavily in coupling finite element analysis methods with 
these tools.  For just the solid modeling aspects of these tools, much effort and money has been expended 
to ensure robust and easy to use products.  Often, along with these products, advanced visualization of 
results capabilities exist.  It is these latter two aspects that are attractive to and of primary importance to 
Monte Carlo users who need to construct complex geometries for their work. 
 
Generally, CAD/CAE models start with the construction of individual parts, usually of a unique material, 
that are combined to form an assembly.  A part may be used only once or repeated many times in different 
locations.  In the construction of the assembly, gaps and overlaps of parts may exist.  Current CAD/CAE 
systems use some type of boundary representation format to define the three-dimensional boundaries of 
the parts and assembly.  This boundary representation is incompatible with the CSG requirements 
(discussed in the previous section) of a code like MCNP and other Monte Carlo particle transport codes. 
 
As witnessed by the many papers that have been published in recent years, the attractiveness of the 
CAD/CAE tools in creating complex 3-D models has been so great that innovators have accepted the 
expense of building either CAD-to-MCNP convertors or developing approaches to track directly on CAD 
geometries.  While these approaches have been successful in fulfilling a need and have helped to advance 
the state-of-the-art in particle transport code capability, they can only be considered band aids to the real 
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problem – the inability of legacy geometry capabilities (that pre-date modern CAD/CAE tools) in Monte 
Carlo particle transport codes to meet the needs of 21st century particle simulation requirements, 
particularly when multi-physics analysis is needed.  With a program like MCNP that has upwards of 
230,000 lines of code, it would take man-years of effort to re-engineer and re-write completely with what 
some might consider a modern geometry capability that is tightly integrated with all code features.  That 
is, if agreement could be found on what truly constitutes a modern capability. 
 
It is unlikely that any one approach to representing geometry in a code like MCNP would fit the needs of 
everyone.  Much effort was expended in developing, optimizing, and verifying the current CSG approach.  
When the geometry is fairly simple and comprised of homogeneous regions that can be easily represented 
with first and second degree analytic surfaces, this is the approach to use.  For these situations with a 
reasonable number of cells, computer runtimes are good.  At this time, it would be foolhardy to abandon 
this tried and true capability and force users to only one method that accommodates easy creation of 
complex, heterogeneous models at the expense of increased computational cost. 
 
The solution to this quandary is a hybrid geometry capability for MCNP that lets a modern geometry 
capability co-exist with the legacy capability.  Since most robust CAE tools like Abaqus/CAE that are 
integrated with finite element methods can generate an unstructured mesh representation of the solid 
model, we have chosen to implement a hybrid geometry capability in MCNP that permits the existence of 
the mesh as a mesh universe within the legacy CSG.  Thus, each geometry type can be used where it is 
advantageous to do so. 

2.2.  Hybrid Geometry Features 
 
As stated in the previous sub-section, the unstructured mesh is treated as a mesh universe using the 
existing CSG universe capabilities.  The mesh universe must be among the lowest level universes (if there 
is more than one), meaning that no other universe can be embedded within it.  Treating the mesh as a 
universe permits the usual MCNP CSG universe operations of rotation and translation.  Currently, MCNP 
is restricted to reading only one mesh universe, but we expect to relax this limitation to permit multiple 
mesh descriptions for assemblies within the available computer memory. 
 
Outside of the mesh universe, the CSG can be constructed in the legacy manner to the detail that is 
necessary to describe the problem.  MCNP CSG lattices are compatible with the unstructured mesh 
feature provided the mesh cell resides entirely outside the lattice. 
 
Currently, the mesh description must appear in the form of an Abaqus ascii input file.  This input is 
separate from the MCNP input file and its existence is communicated to MCNP through new data-section 
input. 
 
MCNP has many cell-based features, such as tallies and variance reduction techniques, which are 
desirable to use with the mesh.  This is handled by tagging collections of mesh elements to create pseudo-
cells and mapping these collections to special cell cards;  more detail is provided in the next sub-section.  
This approach takes advantage of existing, proven capabilities that do not need to be re-engineered to 
work on the mesh. 
 
Since multi-physics analyses are becoming more desirable, the MCNP unstructured mesh treatment was 
designed with this in mind.  For example, a user may wish to calculate neutron energy deposition in a 
reactor component and then export this information back to a structural analysis program where finite 
element methods are used on an unstructured mesh for further analysis.  To fulfill this requirement, it is 
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necessary to calculate path length estimates of the flux, etc. for each mesh element through which the 
particles track.  This dictates an element-to-element tracking approach that differs from the cell surface-
to-surface tracking of the CSG geometry (either through a legacy model description or one created from a 
CAD-to-MCNP converter) or the surface-to-surface tracking of the direct-CAD tracking.  In order to 
distinguish results collected on the mesh from the legacy tallies, the former are referred to as edits.  Along 
with a simplified mesh geometry description, these edits are written to a special output file that can be 
used both for post-processing visualization and input to finite element analysis codes.  It is not intended 
for the edit capability to re-engineer all of the functionality of the legacy tallies.  For example, there are 
no statistical uncertainties calculated at the mesh element level.  However, tally functionality can be used 
with collections of mesh elements through the pseudo-cell capability discussed previously.  Providing full 
tally functionality at the mesh element level would prove to be more computationally expensive and 
might be unnecessary for many applications. 

2.3.  Unstructured Mesh Details 
 
An unstructured mesh representation of a part can be created by tessellating it with simple shapes such as 
tetrahedra, pentahedra, or hexahedra to create corresponding mesh elements.  Generally, a part contains 
only one mesh type, except when pentahedrons are mixed with hexahedrons due to difficulties in the 
geometry that the meshing algorithm has trouble resolving.  These elements may be of first order where 
there are nodes only at the element vertices or of second order where there are nodes at the element 
vertices and at the mid-points of the edges connecting the vertices.  When there are more than three nodes 
on a face, the nodes may be positioned such that there is a degree of curvature with that face.  The  
4-noded faces of the first order elements may be either planar or bi-linear.  The 6-or-more-noded faces of 
the second order elements may be planar, bi-linear, or quadratic.  Theoretically, less of the higher order 
elements are needed to accurately represent a curved surface.  These six element types are available in 
MCNP; in fact, all six types may be used in the same model. 
 
The modeling paradigm of creating an assembly of parts in a CAD/CAE tool can lead to overlapping of 
parts in some locations and gaps in others, regardless if it is the boundary representation of the solids or 
the equivalent mesh representation.  One way for the user to avoid this is to create the model out of one 
part where the part has been sectioned into the appropriate material regions; often this is not practical 
while other times it may be the best choice.   
 
Like most Monte Carlo transport codes, MCNP requires that all space be uniquely defined in CSG space.  
For those CAD-to-MCNP conversion routines, these gaps must be converted to cells.  For the direct-CAD 
tracking approach, the gaps can be computed explicitly using Boolean operations commonly found in 
CAD systems or can be treated implicitly [2].  That is, they are implicitly defined from the explicit 
definition of the existing parts.  The approach taken in MCNP for dealing with gaps in the unstructured 
mesh is to treat them implicitly.   
 
Similarly, overlap regions must be reconciled.  In MCNP, we have decided to take a very simple and 
straightforward approach: unless encountering a gap, a particle track stays in a region or element until it 
can definitely determine a new region or element in which to transport.  On models tested to date, this 
approach has worked very well.   
 
It should be noted that when the solid model is created, the user has control over the fidelity of the gaps 
and overlap regions; often, substantial effort may be required on the user’s behalf to minimize the gaps 
and overlaps.  We feel that this is the correct approach since MCNP should not be changing any model in 
a way that is opaque to the user.  We also want MCNP to be robust enough to track in an expected manner 
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on any reasonable mesh that may be less than perfect; however, the amount of deviation from perfect that 
can be tolerated for the unstructured mesh tracking has not been quantified. 

2.4.  Mesh Data Essentials 
Information about the mesh must be organized in specific ways in order to support various functions.  
This sub-section discusses the data organization requirements. 
 
2.4.1. Element sets 
 
A collection of mesh elements is referred to as an element set (elset).  A tool such as Abaqus/CAE allows 
creation of elsets.  Creation of material elsets is essential in assigning material properties to mesh 
elements.  For each material section of a part, a material elset must be created so that all elements are 
associated with some material. 
 
If volume type tallies (cell-averaged flux, energy deposition, or fission energy deposition) are to be 
performed over a collection of mesh elements, these elements must be grouped into a statistic elset.  The 
word statistic is chosen to denote that the full statistical treatment of the tally methodology applies to the 
set.  However, all elements belonging to a statistic elset must also belong to the same material set.  
Thinking of a single part where there is one material set defined for that part, a statistic elset may be an 
exact duplicate of the material elset or it may comprise a subset of the material elset.  A default statistic 
elset is created for any part where elements have not been assigned to one.  It is this grouping of a 
material-statistic elset that is known as a pseudo-cell and must be mapped to the special MCNP cell cards.  
A table appears in the MCNP output file that describes all pseudo-cells that are explicitly or implicitly 
defined. 
 
2.4.2. Surfaces 
 
As with cell surfaces in the CSG capability, surfaces for the pseudo-cells and the elements that contribute 
one or more faces to a surface are important to aid in tracking.  Somehow the pseudo-cell surfaces must 
be identified.  While Abaqus/CAE does permit the user to tag surfaces, we have developed a routine to 
perform this function internally, thus alleviating additional user input.  Details on how surface information 
is used in the tracking routine are discussed below. 

2.5.  Tracking Hierarchy 
 
Two important pieces of information are needed for tracking on a mesh: 1) what element contains the 
particle? and 2) what surface will the particle intersect next?  This sub-section discusses how these are 
handled. 
 
2.5.1. Finding the element 
 
If the current source or collision location in the mesh is known, but the element corresponding to that 
location is not, the element number must be found.  MCNP takes the part and assembly information 
provided by the Abaqus input file and constructs a global mesh model where elements are numbered 
consecutively from one to the maximum number.  The global elements with their corresponding axis-
aligned bounding boxes are stored in a spatial kd-tree or skd-tree [6].  The skd-tree is a highly efficient 
data structure that can be searched in O(log n) time.  Whenever a location must be associated with an 
element, the global skd-tree is searched for the approximate location and then verified that the location 
does indeed reside within a potentially trilinear or triquadratic element. 
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During the global model construction, all elements that belong to a cell-surface of a pseudo-cell are stored 
in a skd-tree; one for each pseudo-cell.  When entry into a specific pseudo-cell is in question, these cell-
surface skd-trees are searched in a manner similar to that for finding a location in the global skd-tree, but 
instead of looking for containment, a face intersection is sought. 
 
2.5.2. Element-to-element tracking 
 
Since path-length estimates of quantities are needed for each element, particles must track from element 
to element.  Conceptually, this is tracking at a finer granularity than what is performed with the CSG 
surface to surface tracking.  Given a mesh location and corresponding element number, if the location is 
not located on one of the element’s faces, the code determines which face it intersects and the location of 
the intersection.  Once the intersection location is known on the element’s face, the code determines if 
there is a neighboring element sharing that face.  If the element’s nearest neighbor list exists it searches 
that list for a candidate.  If the nearest neighbor list does not exist, the code creates the list on the fly and 
then checks it.   
 
If the particle tracks to a surface element so that the current position is on the surface and the nearest 
neighbor list search is futile, the code searches all cell-surface skd-trees for a potential intersection.  If this 
search is unsuccessful, the particle is leaving the mesh and normal CSG tracking resumes with the particle 
in the mesh cell’s background region.  During the searching, checks are performed to deal with gaps. 
 
If the particle is tracking from a CSG cell into the mesh cell, the cell-surface skd-trees are searched to 
determine at what location and corresponding element number the intersection takes place.  Normal CSG 
cell tracking takes place until the particle enters the mesh. 
 
 

3. A GODIVA CRITICALITY BENCHMARK 
 
As witnessed by recent publications dealing with CAD to Monte Carlo geometry conversion, most of the 
test problems presented there are of the shielding type.  In testing their tetrahedral mesh capability in 
MONK/MCBEND, Bird [7] noted the difficulty in meshing with first order tetrahedra to accurately 
reproduce curved surfaces and hence volumes and masses for some components of interest; this impacted 
their results.  Since obtaining accurate eigenvalues in criticality calculations is highly dependent on 
accurate volumes and masses, we wanted to test MCNP’s new unstructured mesh capability in this regard.  
We chose to start with the simple Godiva criticality benchmark [8] since it is well understood and poses a 
challenge with its curved surface.  This benchmark is a simple highly-enriched uranium sphere of radius 
8.7407 cm. 
 
All of the computer runs for these models were performed under the following set of conditions.  
ENDF/B-VII cross sections were used for all nuclides.  Kcode calculations were performed and photons 
were followed in addition to the neutrons.  Each calculation has 100 inactive cycles followed by 900 
active cycles with 3000 histories per cycle.  Calculations were performed with the sequential version of 
the code using an Intel Xeon X5450 clocked at 3.0 GHz.  The operating system was 64-bit RedHat 
Enterprise Linux 5. 
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The cases considered for the simple sphere model are described in the tables.  Both first and second order 
hexahedrons along with first and second order tetrahedrons were used.  The mesh seed parameter 
presented in the table is an Abaqus/CAE parameter used to set the element size.  Abaqus attempts to make 
elements with edges of this length; no attempt was made to force edges to this length.  The number of 
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total elements in the model is dictated by the seed number.  Also present is a case where the combinatorial 
geometry was used and the actual experimental results, when known.  Representations of the hexahedron 
and tetrahedron meshes are shown in Figure 1; one-quarter of the geometry is removed to aid 
visualization. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Simple Godiva sphere meshed with tetrahedrons (left) and hexahedrons (right) 
using seed values of 1.75 cm. 

 
Figure 2 shows total energy deposition results for the 1.75 cm seed case where first order tetrahedrons are 
used.  The energy deposition behavior is virtually identical to that of the total neutron flux.  The 
component at the left of the figure displays the element average results.  The component at the right of the 
figure shows contour results that were created from the element average results after applying 
Abaqus/CAE’s built in smoothing function. 
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Figure 2.  Energy deposition results for the simple Godiva sphere meshed with 
tetrahedrons and a seed of 1.75 cm:  Element averaged results (left).   

Contoured results (right). 
 
From Table I it can be seen that the smaller sized elements do a better job in terms of reproducing the 
actual volume.  As expected, the second order elements do a better job than the first order elements in 
predicting volumes when compared to the combinatorial calculation.  This is due to the ability of the 
second order elements to possess a higher degree of curvature. 
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Table I. Some physical results for the simple Godiva sphere 

Element 
Type 

Mesh 
Seed 
(cm) 

Number 
of 

Elements 

Volume 
(% change 

from CSG or 
cm^3) 

k-effective k-effective 
(% change 
from CSG) 

Total Flux 
(% change 

from CSG or 
n/cm^2) 

0.875 7168 -0.42 0.99850 -0.14 0.28 
1.75 896 -1.71 0.99524 -0.46 1.24 
3.50 160 -6.77 0.98018 -1.97 5.11 
5.00 56 -17.0 0.94660 -5.33 14.0 

1st Order 
Hex 

6.00 32 -23.6 0.92461 -7.53 20.9 
0.875 35453 -0.46 0.99883 -0.10 0.35 
1.75 4973 -1.65 0.99565 -0.42 1.22 
3.50 459 -6.63 0.98060 -1.93 5.00 
5.00 193 -14.2 0.95702 -4.28 11.6 

1st Order 
Tet 

6.00 32 -29.8 0.90002 -9.99 28.0 
0.875 7168 0.00* 0.99937 -0.05 -0.07 
1.75 896 -0.01 1.00006 0.02 0.02 
3.50 160 -0.10 0.99964 -0.02 0.05 
5.00 56 -0.69 0.99768 -0.22 0.45 

2nd Order 
Hex 

6.00 32 -1.48 0.99393 -0.59 0.89 
0.875 35453 0.00* 0.99975 -0.01 -0.04 
1.75 4847 0.00* 0.99984 0.00 0.00 
3.50 459 -0.05 0.99844 -0.14 -0.12 
5.00 193 -0.27 0.99509 -0.48 -0.23 
5.50 64 -1.49 0.97516 -2.47 -1.02 

2nd Order 
Tet 

6.00 32 -1.50 0.97681 -2.31 -0.84 
CSG n/a n/a 2.79722E+3 0.99986 0.00 2.42274E-3 

Actual n/a n/a 2.79722E+3 1.000 +/- 0.001 -- -- 
* Value due to rounding a small number. 
 
The three columns at the right of Table I and Figures 3 and 4, compare some physical results from the 
calculations.  All calculated results have relative uncertainties less than 0.04%; the uncertainty in the 
actual bare Godiva sphere was 0.1%.  Agreement is generally quite good when the element size is small, 
correlating with how well the volume and mass are reproduced.  As expected, the second order elements 
do a better job (by an order of magnitude) than the first order elements in predicting results when 
compared to the combinatorial calculation.  This is due to the ability of the second order elements to 
possess curvature.  Note: even as the size of the second order elements become larger so that a smaller 
number of elements are used, the ability to accurately reproduce the volume and mass decreases with a 
corresponding effect in the Table I results. 
 
Table II presents computer run times for these calculations as well as estimated memory requirements 
needed by the unstructured mesh.  The last row in the table provides the run time for the CSG run and 
there are no mesh memory needs for it.  Obviously, it takes longer to run the kcode calculation on an 
unstructured mesh compared to the legacy geometry in MCNP and the time increases with the number of 
mesh elements.  When the same number of second order tetrahedrons and hexahedrons represent the 
volume equally well, the calculation with the second order tetrahedrons will run faster since the 
interpolation function and associated tracking routines for the second order tetrahedrons are not as 
complex as that for the second order hexahedrons.  While a similar relationship holds for the first order 
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interpolation functions, the difference is not as severe since the associated interpolation functions and 
tracking routines are much simpler for first order compared to second order.  If the second order 
hexahedrons represent the volume more accurately than the second order tetrahedrons, given a fixed seed 
value, the calculations with the second order hexahedrons will outperform the second order tetrahedrons. 
 
It can also be seen in Figure 5 that the convergence of k-effective is faster for second order elements than 
for first order elements for the same mesh seed.  Memory requirements per mesh element are modest at 
between roughly 500 to 1100 bytes.  The memory requirement per element decreases slightly as the 
number of elements increase due to amortization of basic mesh infrastructure costs over all the elements. 
 

Table II. Computer statistics for the simple Godiva sphere 
Element Type Number of 

Elements 
Runtime 

(min)* 
Mesh Memory 

(kb) 
Mesh Memory Per 

Element (bytes) 
7168 329 4476 624 
896 62 583 650 
160 24 108 678 
56 18 40 707 

1st Order Hex 

32 15 23 729 
35453 1394 18334 517 
4973 209 2547 512 
459 37 254 552 
193 22 108 559 

1st Order Tet 

32 12 21 655 
7168 349 6964 972 
896 80 900 1005 
160 41 166 1039 
56 38 60 1075 

2nd Order Hex 

32 36 35 1101 
35453 1397 17310 488 
4847 218 2416 499 
459 47 244 532 
193 34 104 539 
64 27 36 566 

2nd Order Tet 

32 23 21 653 
CSG n/a 3.4 n/a n/a 

* Runtimes are for un-optimized mesh tracking algorithm and coding. 
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Figure 3.  Ratio of the Eigenvalue from the simple Godiva sphere for various mesh  

types and number of mesh elements to the eigenvalue from CSG geometry. 
 

 
Figure 4.  Ratio of the total neutron flux from the simple Godiva sphere for various mesh 

types and number of mesh elements to the total neutron flux from the CSG geometry. 
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Figure 5.  K-effective convergence relative to runtime for various mesh types. 
(Runtime for un-optimized mesh tracking algorithms and coding.) 

 
 

4. CONCLUSIONS  
 
The unstructured mesh tracking library for MCNP has been discussed in this paper.  It is now possible to 
create a highly three-dimensional, heterogeneous geometry using Abaqus/CAE solid modeling tools, 
create an unstructured mesh representation of that geometry, import the mesh into MCNP where neutron 
and photons may be tracked in a hybrid arrangement, and export transport results such as flux and energy 
deposition back to Abaqus/CAE for visualization and multi-physics analysis. 
 
We have shown that this new capability works quite well for criticality calculations where accurate 
volumes and masses are needed.  However, appropriate refinement of the mesh is needed to achieve good 
answers; this results in increased, but not necessarily prohibitive, computational costs. 
 
Our implementation accommodates both first and second order polyhedral element types.  The second 
order polyhedrons function better than first order ones in accurately reproducing volumes and masses due 
to their ability to possess curved faces.  Although no evidence was presented in this paper, it is expected 
that first order elements will out perform second order elements when objects they are representing 
possess essentially flat surfaces.  The cost in terms of computer run time for using second order 
polyhedrons was comparable to that of using first order polyhedrons on the Godiva criticality benchmarks 
we tested, but yielded roughly an order of magnitude increase in accuracy. 
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5. FUTURE WORK 
 
The development of the unstructured mesh library for Monte Carlo particle tracking in MCNP is ongoing.  
In the future, we hope to optimize the tracking algorithms and the associated coding.  We also intend to 
complete a surface to surface tracking implementation where detailed element to element tracking and 
results are not required; this feature will be pseudo-cell selectable.  We plan to continue verification and 
validation efforts for this feature by studying other benchmark problems. 
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