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INTRODUCTION 

 
A new geometry capability has been implemented in 

MCNP [1] that permits the existence of an unstructured 
mesh representation of a geometry with its legacy 
Constructive Solid Geometry (CSG) capability to form an 
hybrid geometry.  This new feature enables the user to 
build complex 3-D models with Computer Aided 
Engineering (CAE) tools, such as Abaqus [2], and 
perform a Monte Carlo neutronics analysis on the same 
geometry mesh that is used for thermo-mechanical 
analyses. 

A requirement in implementing this new geometry 
capability is accurate volume calculations for all mesh 
elements.  This is complicated due to the fact that first and 
second order elements, where the elements may be 4-, 5-, 
or 6-sided, may have bilinear or quadratic faces.  This 
paper discusses the adoption of a methodology for use in 
calculating these volumes and evaluates its use when 
modeling some common primitive objects. 

 
METHODOLOGY 

 
Numerous finite element text books and papers have 

shown the advantage of transforming or mapping from a 
curvilinear coordinate system (global space) to a 
Cartesian coordinate system (master space) where it is 
easier to perform certain calculations.  We pursue this 
approach in order to calculate accurate volumes for 
unstructured mesh elements. 

Let ud
 be the coordinates in the global space with d = 

1, 2, or 3, representing x, y, or z.  Correspondingly, let d
 

be the coordinates in the master space with d = 1, 2, or 3, 
representing g, h, and r.   

The mapping function from one space to the other 
depends upon the element type.  The six different 
functions with which we have dealt can be factored so 
that there exists one term, fm, for each node, M total 
nodes. 
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Mapping of a node w in master space to its 

corresponding node w in global space (i.e., we do not 
intend to permit excessively twisted or inverted elements 

during the mapping process) requires evaluation of the fm 
terms at the w node in the master space.  Hence, 

  denotes the evaluation at node w with the 

corresponding values of g, h, and r so that the terms 
evaluate to either -1, 0, or 1.  Then in general, the 
mapping for each dimension between the two spaces for 
each node w can be written as 
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d
wa  are coefficients for each dimension and can be found 

from 
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To calculate an element’s volume, we use the expression 
for the differential volume [3] 

 

masterglobal dVdrdhdgJdV   (3) 

 
Where J is the Jacobian and 
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The indexes, i, j, k, extend over the three dimensions. 
 
The volume is found by integrating Equation (3) in 

the master space where the limits of integration are 
generally -1 to 1 or 0 to 1, depending on the element 
shape and dimension. 

The triple summation of Equation (4) implies a large 
number of terms for the volume evaluation.  In reality, a 
great many of these terms are zero.  Table I summarizes 
the maximum number of partial terms and the number of 
non-zero partial terms by mesh element type. 
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Table I.  Number of partial terms by element type 
Faces Nodes Max # of  

Partial Terms 
Non-zero 

Partial Terms 
4 4 64 1 
5 6 216 6 
6 8 512 8 
4 10 1000 64 
5 15 3375 222 
6 20 8000 222 

 
It should be recognized that this methodology holds 

for area calculations as well once the appropriate 
simplifications have been made in Equations (1) to (5). 
 
RESULTS 

 
Even when creating complex 3-D geometry models 

with CAE tools, simple primitive objects such as spheres, 
cylinders, and parallelepipeds are often used in some 
fashion.  Other times, objects may be created from 
synthetic surfaces in lieu of analytic surfaces.  Regardless, 
it is from this collection of objects that the unstructured 
mesh is created.  Given a fixed set of element types, the 
accuracy of the mesh to represent the model depends 
upon its granularity.  For example, it is impossible for any 
standard, single 1st order mesh element type to accurately 
model a sphere as it might be feasible to use a single 1st 
order mesh element to model certain parallelepipeds.  A 
single 2nd order hexahedron would fare better, due to its 
ability to possess more curvature with it quadratic faces, 
but it too would fall short.  However, if the elements are 
small enough, more can be used to approximate the 
sphere really well.  The question then is how many and of 
what size need they be?  The answer lies in determining 
how well the sum of the mesh element volumes represents 
the volume of the sphere. 

We examine this issue with several primitive objects 
that possess curvature: a sphere and a right circular 
cylinder. 

First, we chose to mesh a sphere with radius 3 using 
1st and 2nd order hexahedrons with various meshing seeds.  
The seed parameter presented in the table is an 
Abaqus/CAE parameter used to set the element size.  
Abaqus attempts to make elements with edges of this 
length; no attempt was made to force edges to this length.  
The number of total elements in the model is dictated by 
the seed number.  The volume results using the current 
method along with the actual volume are presented in 
Table II. 

Next, we chose to mesh a right circular cylinder with 
radius 5 and height 5 using 1st and 2nd order tetrahedrons 
with various meshing seeds to obtain representations with 
various number of mesh elements.  The volume results 
using the current method along with the actual volume are 
presented in Table III. 

 
Table II.  Volume comparisons for a sphere  

(r = 3 cm) with different numbers 
 of hex elements 

Seed 
(cm) 

Number of 
Elements 

Mesh Volume 
(cm^3) 

% 
Difference* 

1st Order Hexahedrons 
1.5 56 95.0270 19.0 
1.0 224 110.2924 2.54 
0.5 1320 111.6583 1.29 
0.4 3456 112.2451 0.76 
0.3 7168 112.6199 0.42 

2nd Order Hexahedrons 
2.0 32 111.4489 1.50 
1.5 56 112.4322 0.59 
1.0 224 113.0342 0.056 
0.5 1320 113.0941 0.003 
0.4 3456 113.0960 0.001 
0.3 7168 113.0968 0.0004 

Actual 113.0973 n/a 
* from actual volume 

 
Table III.  Volume comparisons for a right circular 

cylinder (r = 5 cm, h = 5 cm) with different  
numbers of tet elements 

Seed 
(cm) 

Number of 
Elements 

Mesh Volume 
(cm^3) 

% 
Difference* 

1st Order Tetrahedrons 
4.0 123 719.709 9.0 
3.0 345 754.154 4.0 
2.0 621 762.589 3.0 
1.5 2170 778.478 0.9 
1.0 5295 780.139 0.7 
0.5 33369 784.023 0.2 

2nd Order Tetrahedrons 
5.0 38 784.635 0.1 
4.0 123 784.955 0.056 
3.0 345 785.296 0.013 
2.0 621 785.343 0.007 
1.5 2170 785.393 0.0006 
1.0 5295 785.395 0.0004 
0.5 33369 785.398 0.0 

Actual 785.398 n/a 
* from actual volume 

 
CONCULSIONS 

 
We have successfully shown that by transforming 

from a curvilinear coordinate system to a Cartesian 
system through a well-behaved mapping, accurate volume 
calculations can be achieved for mesh elements that 
possess bilinear and quadratic faces. 

When modeling primitive objects that possess 
curvature, fewer numbers of 2nd order mesh elements, by 
several orders of magnitude, are needed to accurately 



reproduce the intended volume.  This will have a direct 
impact on particle tracking times and accuracy of results. 
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