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INTRODUCTION

The use of deterministic particle transport calculations
to accelerate the convergence of Monte Carlo particle trans-
port calculations is an active research field. These methods
are referred to as “hybrid” methods, but existing methods
do not use moments of the history score distribution higher
than the first (the first moment is the same as the adjoint/im-
portance) or the additional computer time resulting from
the need to track more particles introduced by the biasing
function.

This work presents a method to deterministically cal-
culate the cost of the Monte Carlo calculation o27, where
o2 is the population variance of the history score distribu-
tion and 7 is the expected Monte Carlo computer time per
history. This cost function is inversely proportional to the
figure of merit computed by Monte Carlo codes, which is
defined to be 1/(%T), where 62 = o2 /N is the variance
of the mean, N is the number of histories, and T" = N7
is the computational time for all IV histories. This work is
similar to that of the DSA method of [1] in that both tech-
niques attempt to minimize the cost of the Monte Carlo cal-
culations. However, the DSA method relies on stochastic
techniques while here deterministic methods are employed.

The calculation of the cost function is performed by
solving the history score moment equations [2] (or just the
moment equations) with an .S,, calculation. Similar work
was performed by [3], but all calculations there were lim-
ited to weight-independent variance reduction, e.g. impor-
tance splitting. In this paper, a method is developed to ac-
count for weight-dependent games, e.g. weight windows.

BACKGROUND

The moment equations derived by [2] begin by devel-
oping an integral expression for the score probability dis-
tribution function ¢ (P, s) in terms of the standard trans-
port and collision kernels, as well as, kernels that describe
the transition of Monte Carlo particle weight w. Here, the
phase-space variable in general is P = (r, Q. E,t, w) and
s is the score from a Monte Carlo history. (P, s)ds is
the probability that a Monte Carlo particle at P will con-
tribute a score in ds about s. An integral equation for the

rth moment M,.(P) is then developed by evaluating

oo
M. (P) = / dss"p(P,s) . (1
— 0o

The moment equations are adjoint to the Boltzmann
transport equation [4]. Therefore, the source for the mo-
ment equations is the score resulting from a specific Monte
Carlo tally. The moment functions resulting from that spe-
cific tally can then be used to compute the population vari-
ance, dependent on the physical source, of the history score
distribution by

0® = (S(P), Ma(P))p — (S(P), Mi(P))p, ()

where S(P) is the physical source distribution for the
Monte Carlo calculation, including weight, and the oper-
ator (-)p indicates an integral inner product over P.

For weight-independent games, the weight depen-
dence of the moments is separable. Moreover, the weight is
always separable for the first moment because the expected
score contribution alway scales with the particle’s weight.
This however is not the case for higher moments. It was
under the assumption of weight separability that the work
of [3] was performed. In this work, the weight dependence
is not assumed to be separable. Algorithms have been de-
veloped and implemented to compute the explicit weight
changes and their effect on the cost function with a locally
developed S, code.

METHOD

A one-dimensional, S,,, diamond-differencing code
was written to explicitly solve for the population variance
of the history score distribution o2 by solving the first and
second moment equations. The code also calculates the ex-
pected computer time for the Monte Carlo code to process
a single history 7. This expected time per history compu-
tation is performed by allowing the source for the moment
equations to be a global source of the individual times re-
quired for the Monte Carlo code to process major history
events, e.g. collisions, surface crossings, weight windows,
etc. MCNP [5] is used for the comparison, and the times
required to process the individual events were obtained by
profiling the code. Having computed both ¢ and 7, the
cost of Monte Carlo calculation can be estimated by their
product.
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Fig. 1. Monte Carlo calculation cost as a function of surface location and weight-window lower bound in second cell as
determined by (a) an S,, calculation and (b) a scaled MCNP calculation

RESULTS

Here two problems are investigated with the goal to de-
termine parameters that minimize the cost of a Monte Carlo
simulation of the problem with MCNP5 (RSICC version
1.51). In these problems, the weight window technique is
used, and weight-windows are specified in the same man-
ner as with MCNP. In all problems, isotropic scattering is
assumed.

Investigating Weight-Window Boundary Location and
Lower Bound

The method was used to evaluate the cost of an MCNP
calculation with varying problem parameters. The problem
geometry is a two-cell slab in which the two cells of the slab
are separated by a single surface. The source is assumed to
be isotropically incident on the left side of the slab, and the
tally is a surface current tally on the right surface of the slab
5 mean-free-paths (mfp) from the source. The position of
the surface separating the two cells is varied from 0.25 to
4.75 mfp in increments of 0.25 mfp. The weight-window
lower bound of the left cell (nearest the source) is fixed at
0.5, while the weight-window lower bound of the right cell
(nearest the tally) is logarithmically varied from 10~ to
0.5.

A comparison of the cost functions calculated with the
S, method and MCNP is presented in Fig. 1 for a one-
group problem with ¥,/% = 0.25. Similar results have
been obtained for scattering ratios up to 0.85. The cost cal-
culated is proportional to the inverse of the figure of merit,
and therefore Fig. 1(b) is normalized to our .S,, cost func-
tion.

It is clear from a comparison of Fig. 1(a) and Fig. 1(b)
that all the major features of the surface are present in the
S, calculation. Differences in these values are due to the

estimation of 7 not o2, as our studies have shown that the
code precisely calculates o2, The minimum cost occurs
when the separating surface is at 1.75 mfp and the right
cell’s weight-window lower bound is approximately 0.025.
The optimum surface location differs from that presented
by [3] where it was found that the optimum is at 3 mfp for
a factor of 2 splitting. The difference between importance
splitting/rouletting and weight windows as well as the split-
ting magnitude were eliminated as potential reasons for the
difference. Because this method requires accurate reflec-
tion of the Monte Carlo code’s variance reduction routines
in the S, code, the discrepancy is most likely a result of
using different Monte Carlo codes for comparison. Here
MCNP is used, whereas in [3] MCSI, a special purpose
code, was used.

Optimizing an Iron-Window-Like Problem

A second two-group slab problem was also investi-
gated. This problem is designed to represent transport in
a material with a substantial antiresonance region where a
specific energy group has a cross section orders of mag-
nitude lower than those around it, similar to the iron an-
tiresonance. Because particles within the antiresonance re-
gion are likely to stream much farther than particles outside
the antiresonance, they can, in general, contribute higher
scores and thus have a larger importance. If a particle en-
ters the antiresonance region an importance-based split will
produce many particles which a Monte Carlo code now has
to track. The split particles require more time to process,
but do not typically reduce the variance commensurately.
Table 1 gives the cross sections for this problem.

The 5 cm slab was divided into four cells, each having
its own weight window for each energy group. Current is
tallied on the right plane of the slab, and the source, all
within g = 1, is isotropically incident on the left plane. Let



Table 1. two-group cross sections representing an antires-
onance (all units in cm ™)

g = Se > r 2
1 1 0.9 1 0.05 0.05
2 1x107% 7x107¢ 2 0 3x 107

I,(z) represent the importance/adjoint function for group
g. Then, the average importance in cell cis defined as I, =
Joeodx Ig(x) /[, dz. This quantity is then normalized
so that the importance in the source cell ¢, is unity, and
the scaled importances Tgc are Tgc = Igc/I4c,. Finally,
the weight-window lower bound w,, for a cell is assumed
to be inversely proportional to the average importance in
the cell, namely wy. = k/I,. In this work, k¥ = 0.5 to
ensure particles are born into the adjoint generated biasing
function. The problem is optimized by creating a new set of
weight-window lower bounds wy,. such that wy, = Agwg,,
where A, is a constant scalar multiplier to be determined
by minimizing the calculation cost.

When A; = A5 = 1, the calculation is the same as us-
ing the importance as the biasing function. A gradient de-
scent algorithm was employed to determine the multipli-
ers that minimize the function, and they are found to be
A; = 0.0375 and A; = 2.78. With these A values, a pre-
dicted cost reduction by a factor of approximately 2.8 is
predicted with respect to the adjoint biasing function.

Three MCNP calculations were performed to com-
pare efficiency results for weight-windows obtained using
MCNP’s weight-window generator, the adjoint function
to construct weight windows, and this cost-minimization
method. The figures of merit are presented in Table 2,
and the weight-window lower bounds used to obtain these
FOMs are given in Table 3. The cost-minimization method
produces a figure of merit over twice that of the other meth-
ods, though not an efficiency increase of 2.8 as predicted.
As the variances of the calculations are computed within
5%, the deviation of the predicted gain from the realized
gain must be the result of inadequate estimation of the com-
putation time and a better estimate may be needed.

Table 2. efficiency comparison for three different methods
of obtaining a weight window set

Method FOM

MCNP WW Generator 274858

Adjoint 360349

Cost Minimization 732740
CONCLUSIONS

A method has been developed to predict and minimize
the cost of a Monte Carlo calculation using a modified S,
method. The S,, calculations determine the cost by solving
the moment equations up to the second moment to calculate

Table 3. weight-window lower bounds obtained from dif-
ferent generation methods (g represents the energy group
number and c represents the cell number from left to right
in the slab)

¢ 1 2 3 4
g

MCNP weight-window generator“

1 5.00000E-01 1.87180E-01  9.01845E-02  2.71272E-02

2 8.09417E-03  7.48382E-03  6.87346E-03  6.76491E-03
adjoint-generated weight windows

1 5.00000E-01  3.70176E-01  2.19845E-01  5.83799E-02

2 2.29280E-02  2.29267E-02  2.29255E-02  2.29243E-02

cost-minimized weight windows
1 1.87517E-02  1.38828E-02  8.24491E-03  2.18944E-03
2 6.38584E-02  6.38548E-02  6.38514E-02  6.38481E-02

“MCNP weight windows were renormalized so particles were in the
window when born

both the population variance of the history score distribu-
tion and an estimate of the computer time required by the
Monte Carlo code to obtain that variance. This implemen-
tation surpasses similar previous works by including Monte
Carlo particle weight as a parameter of the moments and,
thereby, allows its use in weight-dependent variance reduc-
tion analysis. The results presented show the applicability
of this method to optimizing weight-window lower bounds
and surface locations between weight-window regions to
minimize calculation cost. Differences between the pre-
dicted and realized cost gains are a result of the estimates
of the Monte Carlo calculation time. No difficulties are
expected in extending this method to higher spatial dimen-
sions, and higher dimension problems problems currently
under investigation.
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