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1 Abstract 

Monte Carlo particle transport is a well-established field, but a number of com­
mon misconceptions persist among many members of the Monte Carlo transport 
community. Some of these misconceptions directly impact current transport cal­
culations and some are interesting to understand when designing new variance 
reduction techniques. 

First, there is some confusion about the role of adjoints in forward Monte 
Carlo simulations. What are adjoints from a Monte Carlo perspective? It is 
common practice to bias a Monte Carlo calculation using adjoint information. 
Why? When does this practice work well and when does it not? What are the 
inherent dangers in basing weight windows on adjoints? The S N codes typically 
only supply a free-flight adjoint. What is an entering collision adjoint and where 
would l\/Iont.e Carlo codes use this adjoint? Second, SN and Monte Carlo codes 
are being coupled together to obtain pulse height tallies. There are some inher­
ent errors Bssociated with this coupling that are often either not recognized, not 
understood, or simply ignored. Third, on a more theoretical level, many people 
intuitively interpret "statistical weight" as representing a number of particles. 
For many transport problems it is shown that this interpretation either severely 
restricts the type of Monte Carlo methods available or is simply wrong. 
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OUTLINE - Common Misconceptions 

1. "The" transport equation describes all particle 
transport 

2. Monte Carlo solves the transport equation 

3. Monte Carlo and SN p ulse height tally estimates . 

4. Monte Carlo and probability of initiation estimates. 

5. Typical education bias: solving a problem is 
synonymous with solving an Eq. 



OUTLINE - Common M·isconceptions 

6. "The" adjoint and importance functions. 

7 . Many ways to get a zero variance calculation. 

8. Splitting concepts and information collection. 

9. Zero variance, importance, and optimal weight 
windows. 

10. List of other misconceptions. 

11. Summary 



"The" transport equation 
The transport equation can be derived as a specific 
average over a Monte Carlo transport problem. 

Monte Carlo "solves" the transport equation in the sense 
that the transport equation can (sometimes) predict the 
average Monte Carlo results. 

Monte Carlo transport can also solve problems that the 
Boltzmann transport equation cannot. 

Examples: 
Pulse height estimates, coincidence estimates, probability 
of extinction estimates 



The usual transport equation contains no information 
about the correlation between particles, because the 
equatilon derivation ignored correlation between 
partilcles. (A different transport equation could be 
derived using a different averaging process that did not 
average over the correlation.) 

Monte Carlo codes (e.g. MCNP) can estimate tallies 
depending on correlation between particles (e.g. pulse 
height tallies) only because the Monte Carlo codes keep 
track of the correlation. 
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A Caution on Using SN Transport Codes for 
Pulse Height Tallies 

There are claims that SN codes can be used to obtain 
pulse heilght tallies such as the MCNP F8 tally. 

Sometimes these claims are even empirically validated 
by direct comparison with the MCNP F8 tally. 

The problem is that the pulse height tally depends on 
correlation between particles that the SN codes ignore. 

Good comparisons with MCNP can be obtained only 
when it is unlikely that two correlated particles will both 
reach the detector. CAVEAT EMPTOR 



~. 

Two 0.511 MeV photons from pair annihilation event 
absorbed in a pulse height detector must contribute 1 
hit in the 1.022 MeV bin and not two hits in the 0.511 
Mev bin. 

Standard SN c·odes do not calculate the required joint 
density of these two correlated particles. 



Analog Monte Carlo transport codes can get pulse height 
tallies because the cadle knows that aU particles from a 
given history are a correlated collection of particles. 

Historically, variance reduction techniques were designed 
for tallies dependent only on indivi:dual particle densities 
and not joint densities. 

Two choices: 
1. Only do analog pulse height calculations (possible, 

but often prohibitively expensive), OR 
2. Redefine the variance reduction to apply to 

collections of particles that tally. 



Probability of Initiation Calculations CPOI or POE=1-POI) 

For a slightly supercritical system, the introduction of 
a stray neutron might produce a divergent neutron 
chain or it might not. What is the probability that a 
divergent chain occurs? 

People have tried to use standard Boltzmann Monte 
Carlo transport concepts to solve this problem. Often, 
people erroneously come to the conclusion that it is 
impossible to get an exact Monte Carlo POI estimate. 



POI calculations are even more prob'lematical than 
pul'se height tallies because they cannot be done even 
with an analogi Monte Carlo approach. 

Typical approach is to realize that a computer cannot 
score on a divergent chain because the chain never 
finishes. 

Make some arbitrary defini tion (say N > 10000) that the 
chain has "diverged". Answers approach truth as N goes 
to infinity, but the computer time approaches infinity 
also. 



An exact calculation is possible and efficient once one 
uses appropriate Monte Carlo concepts. Score on 
extinctions and use POI=1-POE. Use variance 
reduction to stochastically eliminate long (unimportant) 
chains. 

Roulette long chains or importance sample chains to 
favor chains likely to terminate. Weight is assigned to 
chains. 

An interesting thing to note is that an analog POE 
calculation is impossible. With variance reduction it is 
not only possible but can be very efficient if a good 
importance (not "Boltzmann transport") function is 
available. (Exponential convergence for one simple 
problem.) 



Educational Training for Solving Problems 

From junior high onward (10-15 years), solving 
a problem is almost synonymous with solving 
an equation. 

The notion that Monte Carlo "solves" the Boltzmann 
transport equation seems similar to the notion 
that a basketball "solves" Newton's equation when 
making a basket. 

Certainly the ball obeys Newton's equations, but it is a 
stretch to say that the ball "solves" the equation. 

One could write a Monte Carlo transport code without 
ever having seen the transport equation. 



A DETERMINISTIC PERSPECTIVE ON ADJOINTS 

Most nuclear engineers encounter the adjoint equation 
s'hortly after encountering the transport equation. 

1. An equation that is mathematical'ly adjoint to the 
transport equation is derived. 

2. The solution to the adjoint equation (the adjoint fl ux) 
at phase-space point P is then interpreted as the 
expected score from a unit weight particle at P. 



A MONTE CARLO PERSPECTIVE ON ADJOINTS 

For Monte Carlo purposes, it is sometimes useful to 
invert this process. 

1. Define a particle's importance as the expected score 
produced by a unit weight particle. 

2. Write an equation for the expected score and show 
that the equation is adjoint to the transport equation. 

Step 2 is optional from a purely Monte Carlo viewpoint. 



A MONTE CARLO PERSPECTIVE ON ADJOINTS 

Note that the "expected score" is a very simple concept. 

M10nte Carllo can estimate the expected score without 
ever considering whether or not the expected score 
function is adjoint to some other function or not. 

MCNP's weight window generator estimates the 
importance by simply keeping records of the total weight 
entering a region and the total score produced by that 
weight. 

That is, MCNP estimates the average score or 
importance by simple averaging. 



A MONTE CARLO PERSPECTIVE ON ADJOINTS 

There are many kinds of importances 

Two common importance functions are: 

1. The "free-flight" importance is the expected score 
produced by a unit weight particle that is moving 
toward its next collision. (Spanier & Gelbard 
notation X*(P) ) 

2. The "entering collision" importance is the expected 
score produced by a particle that is entering a collision. 

(Spanier & Gelbard notation 4J*(P) ) 
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A MONTE CARLO PERSPECTIVE ON ADJOINTS 

One can take a particle at any stage of a Monte Carlo 
calculation and define an expected score. 

For example, there is an expected score associated 
with a particle that has collided and is midway through 
the output sampling process. 

Expected score for a particle that has collided with 0 16 , 

isotropically scattered Q~Q', and is awaiting the sampling 
of the output energy E'. 



MANY WAYS TO GET A ZERO VARIANCE SOLUTION 

Zero variance derivations almost always assume that 
the set of possilble random walks is the same as the 
analog set of random walks and the only thing that 
changes is the probabil,ity ·of these random walks. 

This is an extremely limited view of zero variance theory. 
Note that it is theoretically possible to get zero variance 
solutions in the presence of splitting, forced collisions, 
weight windows, etc. for which the set of possible 
random walks is NOT the analog set of walks. 



GENERAL WAY TO G,ET ZEIRO VARIANCE SOLUTIONS 

r 

\.. 

If every random decision (sampling) is weighted by the 
. expected score resulting subsequent to the sampling. 

Note that the way most nuclear 'books and papers 
explain zero variance procedures is extremely limiting 
and equation focused . 

"'" 

~ 

Zero variance procedures are well-known in many fields 
besides transport, so it is useful to understand what the 
essence of a zero variance procedure is that connects 
all the different fields. The common theme is not a 
particular equation ... 



Splitting Concept 

source ,,)I( • 

After split have two chances to penetrate. 

count weight 
that penetrates 

Note variance reduction relies on the possibility that 
the split particles might do different things. 

Possible scores 0, 1/2, 1 



Splitting Concept (cont.) 

source tII)[ ~ 

VOID 
count weight 
that penetrates 

If both particles always do the same thing then no 
new information is gained from the split. Might as 
well save the computer time and not follow two particles 
doing exactly the same thing. 



Example of Inefficient Information Collection 

w1 

-? w2 

partic~es at the same location 
with extremely different weights 

P 1=(X1 'Y1 ,Z1 ,vx1 ,Vy1 ,vz1 ,t1)= (X2,Y2,Z2,Vx2,Vy2,Vz2,t2)=P2 

Suppose: w1=O.0001 and w2=1 

Computer time to simulate events (e.g. collisions) 
is independent of weight. 

Particle 2, on average, contributes 10,000 times 
as much to the score as particle 1. 



Suppose: w1=0.0001 and w2=1 

Computer time to simulate events (e.g. collisions) 
is independent of weight. 

Particle 2, on average, contributes 10,000 times 
as much to the score as particle 1. 

Makes no computational sense to spend much 
computer time on particle 1. 

Particles in the same location should have roughly 
the same weights in an efficient calculation. 
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Weight window 

1 above window, split 0 
i Wi ,high 

within window, no action 
o 

Wi ,survive I nl--------------

_
______ ~J~~------~~~::~~~-;,~~~~---W i,0w 1 , below window, roulette 

o 

W i,high == 5 W i,low 

usually something like: 
W i,survive 3w i,iow 



The weight window forces each particle to have 
roughly the same weight, say, 

Wi low < W < 5 Wi low , , 

but how should Wi low be chosen? 
I 

Typical rationale for choosing Wi,low: 

Each particle s:hould have roughly the same expected 
score, say C, independent of location P. 

Let M1{P)= expected score for a unit weight particle at P. 
The expected score for a particle of weight w is w M1{P). 
Thus want: 

W low (P)M1(P) = C or 
c 

W[ow(P) = M1(P) 



All that is left is to specify C. 

For this simple problem, unit weight particles are 
started at source point P s and one chooses C so that 
source particles start within the window. For example, 
if 

c = l M 1(Ps) 
2 

C 1 
w/ow(Ps) = M

1
(P

s
) - 2 

source weight in window 

o.S = wlow < 1 < SW low = 2.S 



M1(P) is sometimes obtained stochastically (e.g. the 
weight window generator in MCNP) and sometimes 
obtained by deterministically solving an equation for 
M1(P) (e.g. the adjoint SN equations). 



This procedure for obtaining a weight window works 
well in many (but not all) instances. 

Note from statistical theory that the variance involves 
the filrst and second moments of the score distribution: 

(J2(p, w) == M 2(P, w) - M I
2(P, w) == M2 (P, w) - w 2 M I

2(P) 

Note that M1 is the same, independent of what variance 
reduction techniques (e.g. splitting) are used. 

Minimizing the variance depends on minimizing M2 . 



The weight windows are normally set using the adjoint, 
or expected score, function M1 and ignoring the function 
M2 that one would like to minimize. 

This seems pretty odd? Why should focusing on the 
average particle behavior, M1, often minimize M2? 

Why does this work at all? 



Aplparent Reason,ing 

1. Zero varilance solutions are poss'ible, in principle, 
using special zero variance procedures. 

2. Zero variance procedures use adjoint (M 1) i1nformation 

3. Then a miracle occurs. 

4. Therefore, optimum low variance solutions using 
non-zero variance procedures (e.g. weight windows) 
can be obtained using adjoint information. 



Consider a hypothetical zero var!iance solution. 

Every source parti:cle contributes the mean score MI " 

The particles that contri,bute most to M1 are the same 
particles that contrilbute most to M2" 

If a Monte Carlo simulation can be arranged so that 
most of the mean and most of the second moment 
result from the same particles, then setting the 
variance reduction using only M1 typically works well. 



r 

\.. 

Setting weight windows using the adjoint w'orks weU 
when no larg,e splits are required. 

For example" ~indow~ that crange py a factor of 2. 

~ 

sou rce .. )K' • 
I count particles 
that penetrate 

I 
wlower 2-1 2-2 2-19 2-20 

wupper I 21 20 2-17 12-18 



Prob'lems with adjoint window setting 

Cylindrical symmetry about void duct axis 

w ~1 

source 1II)Fe ~ 

Wlower 2-1 2-2 

Wupper 21 20 

~------------------------------------------------

w ~ 21

-

19 

2-19 2-20 

2-17 2-18 

split ~ 219 
: 1 ? 



. Four points about a split ~ 219 
: 1 

1. Splitting collects information when the split particles 
do different things. 

2. There aren't really 219 different types of things to do. 

3. Most of the variance in this problem is due to the 
poor sampling of particles going up the duct. 

4. The variance associated with the poor sampling 
up the duct has already occurred. This variance 
cannot be removed even with an infinite split. 



r 

\.. 

S,etting weight windows using the adjoint does 
not work well when large splits are required. 

N,ote that for this problem the very rare particle that 
goes directly up the duct may have comparatively 
l'ittle impact on the mean, but a huge impact on the 
variance. Could be 990/0 of the variance but 10/0 of 
the mean. 

Setti.ng variance reduction according to what happens 
to the typical particles that contribute to the mean is 
not appropriate when the variance is driven by very 
atypical particles. 

~ 



List of Other Common Misconcepti,ons: Theoretical Interest 

1. Weight represents a number of particles. Reality: 
weight is a tally multiplier. Sometimes represents a 
number of particles, sometimes not. 

2. Weight> O. (Actually, can be negative or even 
complex-valued. ) 

3. A necessary and sufficient condition for unbiased 
estimates is that the particle density is preserved. (This 
is neither necessary nor sufficient.) 

4. A particle has one weight. (Actually, the particle can 
have many weights for many different reasons.) 

5. Monte Carlo particle transport need not be Markovian. 
It is often presented that way because analog Monte 
Carlo is Markovian. 



Summary 

1. Focus on solving prob'lems, not equations. 
2. Use equations carefully. 

a. use the correct equation 
b. und'erstand the limitations of the equation 

3. Most Monte Carlo theory is for weight-independent 
transport; the math is easier. Most Monte Carlo codes 
do weight-dependent transport. 

A Transport Process Approach to Understanding 
Monte Carlo Transport Methods: 

mcnp-green ./anl. go vip ublicationlpdflLA -U R-04-1426. pdf 


