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Abstract

The standard discrete thermal neutron scattering treatment in MCNP5 is compared
with a continuous scattering treatment using a criticality suite of 119 benchmark
cases. In the analysis, six bound isotopes are considered: beryllium metal, graphite,
hydrogen in water, hydrogen in polyethylene, beryllium in beryllium oxide and oxy-
gen in beryllium oxide. Overall, there are small changes in the eigenvalue (keff) be-
tween discrete and continuous treatments with the largest differences being greater
than three standard deviations for a mixed-oxide (MOX) lattice with borated wa-
ter at 1090.4 ppm and an unreflected spherical reactor containing uranyl-nitrate
solution. The results indicate the changes in eigenvalue between continuous and
discrete treatments are random, small and well within the uncertainty of measured
data for reactor criticality experiments.
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1 Introduction and Background

The cross section for bound isotopes varies depending on the material being bound to.
The bound and free gas cross sections are the same at high energies, but vary in the
thermal energy range (< 4 eV ). In this thermal energy range, scattering events can
occur resulting in a gain or loss in energy from interactions with the target material.
This is because of the comparable energies between the neutron and the target [1] that
allows energy transfer from the target to the neutron and vice versa. This complicates
the physics of the scattering process and the calculation of the scattering cross section.
Depending on the target material, neutrons will scatter coherently or incoherently, and
a large amount of computer memory is needed to store this scattering information. The
scattering events are described by changes in the neutron momentum (α) [2,3],

α =
(~p− ~p′)2

2mAkT
, (1)

and neutron energy (β),

β =
E − E ′

kT
, (2)

where energy and momentum are dependent on one another. Also, α and β are dimension-
less quantities. In these equations, ~p and ~p′ are, respectively, the pre- and post-collision
neutron momentum vectors, m is the neutron mass, A is the mass of the scattering atom
(the ratio of the target mass and the neutron mass), kT is the ambient temperature, E
and E ′ are, the pre- and post-collision neutron energies and µ is the cosine of the scat-
tering angle. The double-differential scattering cross section in the thermal scattering
region [4] is commonly expressed in terms of α and β by

σ(E → E ′, µ) =
σb

2kT

√
E ′

E
exp

(
−β

2

)
S(α, β), (3)

where σb is the cross section of the bound atom. The bound atom cross section is related
to the free atom cross section (σfree) by [5]

σb =

(
1 +

1

A

)2

σfree, (4)

Currently, Monte Carlo codes such as MCNP5 [6] use an S(α, β) treatment to describe
scattering events in the thermal region for some materials. This S function stores a
large majority of the scattering physics and is thus referred to as the scattering law.
The current discrete method stores values of the S(α, β) function for particular values of
α and β. This is done by expressing the double-differential downscattering probability
distribution function (pdf) by a product of the marginal pdf, m(β | E), and conditional
pdf, c(α | β, E), in alpha, beta and initial energy [7,8]:
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f(α, β) =
σ(α, β)

E/kT∫
0

dβ′

αmax∫
αmin

dα′σ(α′, β′)

=



αmax∫
αmin

dα′σ(α′, β′)

E/kT∫
0

dβ′

αmax∫
αmin

dα′σ(α′, β′)


·


σ(α, β)

αmax∫
αmin

dα′σ(α′, β′)

 ,

(5)

where 

αmax∫
αmin

dα′σ(α′, β′)

E/kT∫
0

dβ′

αmax∫
αmin

dα′σ(α′, β′)


= m(β | E), (6)


σ(α, β)

αmax∫
αmin

dα′σ(α′, β′)

 = c(α | β, E), (7)

and αmin and αmax are the lower and upper limits, respectively, of Eq.(1) found by setting
the cosine of the scattering angle, µ, equal to 1 and -1, respectively [9]. Hence,

αmin =
(
√

E −
√

E ′)2

AkT
, (8)

αmax =
(
√

E +
√

E ′)2

AkT
. (9)

In Eq.(5),

E/kT∫
0

dβ′

αmax∫
αmin

dα′σ(α′, β′) represents the total downscattering cross section at E.

By knowing the initial neutron energy, the first bracketed term on the right-hand side of
Eq.(5) is integrated from 0 to β and set equal to a random number, thus determining a
value for β. The same procedure is used to determine α from the other distribution func-
tion, knowing the initial neutron energy and the energy transfer β from the first sample.
The process is repeated for neutron upscattering by refining the terms in Eq.(5) using the
principle of detailed balance. The result is a discrete energy and a discrete direction for
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the collided neutron. The disadvantage of the current discrete method is the presence of
residual spikes that occur at the low energy cutoff. While this typically is not a problem
for reactor problems, certain applications require a more accurate, continuous treatment
of the thermal scattering law.

To model the physics of thermal scattering more accurately, a method was developed
by Bob MacFarlane [10] that uses a continuous-energy distribution. The secondary en-
ergy distributions are converted into pdf form and stored. For an incident energy, a script
determines the closest energy stored in the file. Next, the cumulative distribution func-
tion (cdf) data is searched for the sample and the outgoing energy is interpolated from
the pdf and cdf. Angles are then sampled from the distribution using the initial and final
energies. These continuous S(α, β) cross sections were developed for a select number of
isotopes.

2 Results

To test the effect of using discrete versus continuous S(α, β) cross sections in MCNP5,
a criticality validation suite of 119 benchmark problems developed by Russell Mosteller
[11] is used. The benchmarks are divided into five major categories based on the iso-
tope that provides the majority of fission: Uranium-233, High-Enriched Uranium (HEU),
Intermediate-Enriched Uranium (IEU), Low-Enriched Uranium (LEU) and Plutonium.

The continuous S(α, β) cross sections are specified in the MCNP inputs using an XS card,
which reads cross-section data for the defined isotope from a specified location outside
the standard xsdir file. The continuous S(α, β) datasets are obtained from the t2.lanl.gov
website. These files were generated by Bob MacFarlane using NJOY with ENDF/B-VII.0
data in October 2007. All other materials are evaluated using the ENDF/B-VII.0 library.
The materials in the benchmarks that are affected by the S(α, β) treatment are hydro-
gen in water, hydrogen in polyethylene, beryllium metal, beryllium in beryllium oxide,
oxygen in beryllium oxide, and graphite. Of the 119 benchmarks, 64 use S(α, β) thermal
scattering treatments. Therefore, only these 64 benchmarks are discussed.

There is very little change in the eigenvalue between the two treatments, with the largest
change being around 160 pcm1. This 160 pcm change in eigenvalue occurs in a MOX lat-
tice with fuel rods contained in borated water at 1090.4 ppm (bolded in Table 1). Similar
benchmarks are tested with the same parameters, but with less boron. These cases are
described in Table 1 and displayed in Fig.1 in order of decreasing boron concentration.
The dotted red line represents no change in the eigenvalue between treatments.

The errors reported in the tables have been rounded to preserve significant digits. The
actual unrounded errors are reflected in the figures. All analyses of the data have been
performed using the unrounded errors.

1pcm = per cent mille, or one-thousandth of a percent.
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Table 1: Pacific Northwest Laboratory (PNL) MOX Benchmark Parameters and
Eigenvalue Results*

Case Fuel Pitch Soluble Experiment Discrete Continuous ∆k from
Number Rods [cm] Boron keff keff keff Discrete

[ppm]
106 469 1.77800 1.7 1.0024(60) 1.0010(3) 1.0017(3) 0.0007(4)
107 761 1.77800 687.9 1.0009(47) 1.0028(3) 1.0024(3) -0.0004(4)
108 195 2.20914 0.9 1.0042(31) 1.0032(3) 1.0026(3) -0.0006(4)
109 761 2.20914 1090.4 1.0024(21) 1.0079(3) 1.0063(3) -0.0016(4)
110 161 2.51447 1.6 1.0038(25) 1.0046(3) 1.0040(3) -0.0006(4)
111 689 2.51447 767.2 1.0029(27) 1.0068(3) 1.0063(3) -0.0005(4)

RMS Error 0.00726 0.00567
RMS Continuous / RMS Discrete 0.78080

*The use of parenthesis represents standard deviation times a factor of 104. For example, 0.0007(4) is
equivalent to 0.0007 +/- 0.0004.

Figure 1: Deviation of Continuous Eigenvalue Results from Discrete for Pacific
Northwest Laboratory (PNL) MOX Benchmarks
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For the most part, as the amount of boron is decreased in the water, the change in eigen-
value between continuous and discrete S(α, β) treatments for water also decreases. This
makes sense since one expects large differences when changing the scattering law for the
scattering material (hydrogen in water) as the amount of the scattering material is being
reduced in the system. However, a definitive pattern could not be determined. The MOX
lattice benchmark case 106 with 1.7 ppm of boron shows an increase in eigenvalue when
a continuous S(α, β) treatment is used whereas all other MOX lattice benchmarks show
a decrease.

The uncertainty in the difference between discrete and continuous eigenvalues is deter-
mined using standard error propagation, where the two values are assumed to be uncorre-
lated. Therefore, the uncertainty in the difference of discrete and continuous eigenvalues
is proportional to the square root of the sum of the squares of the individual uncertainties,

δ∆k =

√(
∂(∆k)

∂keff,d

)2

δ2
keff,d

+

(
∂(∆k)

∂keff,c

)2

δ2
keff,c

, (10)

where δ∆k is the standard deviation of the difference of discrete and continuous eigenval-
ues, keff,d and keff,c are the eigenvalue results from the discrete cross-section treatment
and continuous cross-section treatment, respectively, and δkeff,d

and δkeff,c
are the standard

deviations of the discrete eigenvalue and continuous eigenvalue results, respectively.

The root-mean-square error (RMS) is computed for the discrete and continuous cases,
each being compared to their respective experimental result. The RMS error for the
discrete treatment is given by

ε =

√∑
i

(keff,d,i − keff,e,i)
2, (11)

where keff,d,i and keff,e,i are the eigenvalue results for the ith benchmark for the discrete
treatment and the experimental case, respectively. The RMS error for the continuous
treatment is the same as Eq.(11), but with the discrete eigenvalue replaced by the con-
tinuous eigenvalue. The RMS error shows on average how far the uncertainty deviates
from zero. By dividing the Continuous RMS Error by the Discrete RMS Error, an as-
sessment of the affect of the continuous S(α, β) treatment can be made. The closer this
ratio is to unity, the closer the two treatments are to one another.

Tables 2–6 and Figs.2–6 show the eigenvalue differences between the two scattering cross
section treatments for different groups of benchmark problems. To emphasize the signifi-
cant results, eigenvalue differences of less than one standard deviation have been omitted
(accounts for 27 of the 64 thermal-treated cases). A full list of results can be found in the
appendix. Results that differ by more than three standard deviations have been bolded
and italicized. All cases were run using 10,000 source histories per cycle with 600 cycles,
the first 100 of which were discarded.
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Table 2: U233 Benchmark Eigenvalue Results

Case Experiment keff Discrete keff Continuous keff ∆k from
Number Discrete

14 1.0000(33) 1.0011(3) 1.0015(3) 0.0004(4)
15 1.0000(33) 1.0009(3) 1.0005(3) -0.0004(4)
16 1.0000(33) 1.0019(3) 1.0006(3) -0.0013(4)
17 1.0000(33) 0.9996(3) 1.0000(3) 0.0004(4)
18 1.0000(29) 1.0014(2) 1.0011(2) -0.0003(3)

RMS Error 0.00278 0.00202
RMS Continuous / RMS Discrete 0.72468

Figure 2: Deviation of Continuous Eigenvalue Results from Discrete for U233
Benchmarks
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Table 3: HEU Benchmark Eigenvalue Results

Case Experiment keff Discrete keff Continuous keff ∆k from
Number Discrete

42 0.9992(15) 0.9957(3) 0.9951(3) -0.0006(4)
43 0.9989(15) 0.9989(2) 0.9983(3) -0.0006(4)
50 0.9977(8) 0.9960(3) 0.9970(3) 0.0010(4)
53 1.0015(28) 1.0000(4) 1.0009(4) 0.0009(6)
54 1.0012(26) 0.9985(3) 0.9989(3) 0.0004(4)
56 1.0009(36) 0.9942(3) 0.9938(3) -0.0004(4)
58 1.0015(26) 0.9991(2) 0.9994(2) 0.0003(3)

RMS Error 0.00868 0.00884
RMS Continuous / RMS Discrete 1.01842

Figure 3: Deviation of Continuous Eigenvalue Results from Discrete for HEU
Benchmarks
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Table 4: IEU Benchmark Eigenvalue Results

Case Experiment keff Discrete keff Continuous keff ∆k from
Number Discrete

70 1.0017(44) 1.0041(3) 1.0034(3) -0.0007(4)
71 0.9961(9) 0.9950(3) 0.9955(3) 0.0005(4)
72 0.9973(9) 0.9977(3) 0.9971(3) -0.0006(4)
73 0.9985(10) 0.9958(3) 0.9963(3) 0.0005(4)
74 0.9988(11) 0.9986(3) 0.9991(3) 0.0005(4)

RMS Error 0.00380 0.00287
RMS Continuous / RMS Discrete 0.75397

Figure 4: Deviation of Continuous Eigenvalue Results from Discrete for IEU
Benchmarks
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Table 5: LEU Benchmark Eigenvalue Results

Case Experiment keff Discrete keff Continuous keff ∆k from
Number Discrete

76 1.0007(16) 1.0012(3) 1.0005(3) -0.0007(4)
79 1.0007(16) 1.0003(3) 0.9999(3) -0.0004(4)
80 1.0007(16) 1.0007(3) 1.0000(3) -0.0007(4)
81 1.0007(16) 1.0020(3) 1.0014(3) -0.0006(4)
83 1.0024(37) 0.9959(3) 0.9951(3) -0.0008(4)

RMS Error 0.00666 0.00741
RMS Continuous / RMS Discrete 1.11311

Figure 5: Deviation of Continuous Eigenvalue Results from Discrete for LEU
Benchmarks
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Table 6: Pu Benchmark Eigenvalue Results

Case Experiment keff Discrete keff Continuous keff ∆k from
Number Discrete

99 0.9992(15) 0.9975(3) 0.9979(3) 0.0004(4)
100 1.0000(20) 1.0019(3) 1.0024(3) 0.0005(4)
101 1.0000(10) 1.0006(3) 1.0001(3) -0.0005(4)
102 1.0000(26) 0.9931(3) 0.9922(3) -0.0009(4)
103 1.0000(26) 1.0021(3) 1.0033(3) 0.0012(4)
105 1.0000(110) 1.0116(2) 1.0119(2) 0.0003(3)
106 1.0024(60) 1.0010(3) 1.0017(3) 0.0007(4)
107 1.0009(47) 1.0028(3) 1.0024(3) -0.0004(4)
108 1.0042(31) 1.0032(3) 1.0026(3) -0.0006(4)
109 1.0024(21) 1.0079(3) 1.0063(3) -0.0016(4)
110 1.0038(25) 1.0046(3) 1.0040(3) -0.0006(4)
111 1.0029(27) 1.0068(3) 1.0063(3) -0.0005(4)
115 1.0000(52) 0.9996(4) 1.0002(4) 0.0006(6)
117 1.0000(65) 1.0044(5) 1.0037(5) -0.0007(7)
118 1.0000(34) 1.0031(3) 1.0026(3) -0.0005(4)

RMS Error 0.01659 0.01653
RMS Continuous / RMS Discrete 0.99665

Figure 6: Deviation of Continuous Eigenvalue Results from Discrete for Pu Benchmarks
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For three benchmark groups (U233, LEU and Pu), the RMS error for the continuous treat-
ment is larger than that for the discrete treatment. The other two benchmark groups
(HEU and IEU) show a decrease in RMS error for the continuous treatment.

Based on the results of the 37 cases discussed, approximately 14% (5 cases) yield an
absolute eigenvalue difference between the discrete treatment and the continuous treat-
ment of more than two standard deviations, with two of these five cases having a difference
greater than three standard deviations.

The total RMS data for all 64 cases is given in Table 7.

Table 7: Total RMS for 64 Thermal Scattering-Treated Benchmarks

Discrete Continuous
Total RMS Error 0.03838 0.03857

Total RMS Continuous / Total RMS Discrete 1.00488

From Table 7, there is no significant difference in the RMS error between discrete and con-
tinuous thermal scattering treatments when comparing all benchmark cases. The large
RMS differences in Tables 2, 4 and 5 are a result of random fluctuations in the eigen-
value for individual cases. Because these groups of benchmarks contain a small number
of cases, the RMS error is easily inflated by large eigenvalue differences in one or two cases.

3 Analysis of Benchmarks Yielding Large Eigenvalue

Differences

Of the 64 benchmark cases affected by thermal scattering, two yield an eigenvalue dif-
ference greater than three standard deviations. These cases are analyzed further to
determine a possible cause for the large deviation.

3.1 Benchmark Case 16: u233-sol-therm-001-case-4

This benchmark case is an unreflected, spherical reactor containing a solution of U(NO3)2

(uranyl-nitrate) inside an annular shell of Aluminum-1100 with a spherical source. The
scattering material of interest for this benchmark problem is hydrogen in water. The five
benchmark cases u233-sol-therm-001-case-1 through u233-sol-therm-001-case-5 all con-
tain these same parameters with the concentration of uranyl-nitrate increasing for each
case, from 17.14 g/l for case one to 19.82 g/l for case five. There does not appear to
be a direct correlation between uranyl-nitrate concentration and the effect on eigenvalue
through a different thermal scattering cross section treatment. The eigenvalue differences
from the discrete cases appear to fluctuate randomly between the five cases.
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This case is rerun for the continuous treatment using 100,000 source histories per cy-
cle to see the reduction in the standard deviation. The eigenvalue yielded from this was
1.0009(1). Comparing this to the original result of 1.0006(3) using 10,000 source histories
per cycle, one notices that the standard deviation decreases as expected, but the results
do not significantly change because there is agreement between the two within the given
uncertainty.

3.2 Benchmark Case 109: mix-comp-therm-002-case-pnl33

This benchmark case is a MOX lattice with fuel rods contained in borated water at 1090.4
ppm. The analysis of this case was done earlier in this document with the relevant pa-
rameters and results given in Table 1. For cases mix-comp-therm-002-case-pnl30 through
mix-comp-therm-002-case-pnl35, a definitive trend could not be established relating the
eigenvalue differences to the amount of borated water in the benchmark.

Similarly to benchmark case 16, this case is rerun for the continuous treatment us-
ing 100,000 source histories per cycle to see the reduction in the standard deviation.
The eigenvalue yielded from this is 1.0069(1). Comparing this to the original result of
1.0063(3) using 10,000 source histories per cycle, one notices that the standard devia-
tion decreases as expected and the results do not agree with each other within the given
uncertainties. However, the change is still relatively small and insignificant.

4 Conclusions

There is a relatively small change in the eigenvalue when comparing discrete and con-
tinuous thermal scattering treatments with the largest difference being 160 pcm for a
MOX lattice benchmark. The changes in eigenvalue between other benchmark cases do
not appear to follow a pattern with each other. The changes are small, random and
well within the uncertainty of measured data for reactor criticality experiments. This
is because in reactor criticality experiments, only integrated values of the detailed ther-
mal flux spectrum are of importance and the sharp edges resulting from discrete energy
and angle pairs are not observed. In some non-reactor experiments with very few scat-
ters or experiments where the detailed thermal flux spectrum is important, these sharp
spikes need to be resolved and this is done through the continuous thermal scattering
treatment. Therefore, although the continuous treatment is a more realistic, high-fidelity
treatment of thermal scattering, further analyses with experiments consisting of a few
scattering events are needed to justify a change from discrete to continuous treatment for
future versions of MCNP. However, a change from the traditional discrete treatment to
a continuous treatment does not significantly affect the results of criticality experiments.
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APPENDIX

The following tables display the eigenvalue results of discrete and continuous thermal
scattering treatments as well as the differences between the two. RMS errors are also
given to show deviations from the experimental results.

Table A1: U233 Benchmark Eigenvalue Results

Case S(α, β)-treated Experiment keff Discrete keff Continuous keff ∆k from
Number Isotope Discrete

9 Be Metal 1.0000(30) 0.9944(3) 0.9944(3) 0.0000(4)
10 Be Metal 1.0000(30) 0.9925(3) 0.9928(3) 0.0003(4)
11 H in H2O 1.0000(83) 0.9848(5) 0.9844(5) -0.0004(7)
12 H in H2O / H in CH2 1.0000(24) 1.0045(5) 1.0044(4) -0.0001(6)
13 H in H2O 1.0000(31) 1.0015(3) 1.0017(3) 0.0002(4)
14 H in H2O 1.0000(33) 1.0011(3) 1.0015(3) 0.0004(4)
15 H in H2O 1.0000(33) 1.0009(3) 1.0005(3) -0.0004(4)
16 H in H2O 1.0000(33) 1.0019(3) 1.0006(3) -0.0013(4)
17 H in H2O 1.0000(33) 0.9996(3) 1.0000(3) 0.0004(4)
18 H in H2O 1.0000(29) 1.0014(2) 1.0011(2) -0.0003(3)

RMS Error 0.00278 0.00202
RMS Continuous / 0.72468

RMS Discrete



Table A2: HEU Benchmark Eigenvalue Results

Case S(α, β)-treated Experiment keff Discrete keff Continuous keff ∆k from
Number Isotope Discrete

40 Graphite 1.0000(28) 1.0073(3) 1.0073(3) 0.0000(4)
41 O in BeO / Be in BeO 0.9992(15) 0.9955(3) 0.9955(3) 0.0000(4)
42 Be Metal 0.9992(15) 0.9957(3) 0.9951(3) -0.0006(4)
43 H in CH2 0.9989(15) 0.9989(3) 0.9983(3) -0.0006(4)
44 H in CH2 1.0000(28) 1.0008(3) 1.0005(3) -0.0003(4)
45 H in H2O 1.0020(10) 1.0028(3) 1.0029(3) 0.0001(4)
47 H in CH2 1.0000(38) 1.0037(3) 1.0037(3) 0.0000(4)
49 Graphite 0.9977(8) 0.9930(3) 0.9928(3) -0.0002(4)
50 Graphite 0.9977(8) 0.9960(3) 0.9970(3) 0.0010(4)
51 Graphite 1.0015(9) 1.0006(3) 1.0004(3) -0.0002(4)
52 Graphite 1.0016(8) 1.0075(3) 1.0073(3) -0.0002(4)
53 H in H2O / H in CH2 1.0015(28) 1.0000(4) 1.0009(4) 0.0009(6)
54 H in H2O 1.0012(26) 0.9985(3) 0.9989(3) 0.0004(4)
55 H in H2O 1.0007(36) 0.9975(3) 0.9973(3) -0.0002(4)
56 H in H2O 1.0009(36) 0.9942(3) 0.9938(3) -0.0004(4)
57 H in H2O 1.0003(36) 0.9957(3) 0.9959(3) 0.0002(4)
58 H in H2O 1.0015(26) 0.9991(2) 0.9994(2) 0.0003(3)

RMS Error 0.01604 0.01598
RMS Continuous / 0.99630

RMS Discrete

Table A3: IEU Benchmark Eigenvalue Results

Case S(α, β)-treated Experiment keff Discrete keff Continuous keff ∆k from
Number Isotope Discrete

62 Graphite 1.0000(30) 1.0075(3) 1.0075(3) 0.0000(4)
70 H in H2O 1.0017(44) 1.0041(3) 1.0034(3) -0.0007(4)
71 H in H2O 0.9961(9) 0.9950(3) 0.9955(3) 0.0005(4)
72 H in H2O 0.9973(9) 0.9977(3) 0.9971(3) -0.0006(4)
73 H in H2O 0.9985(10) 0.9958(3) 0.9963(3) 0.0005(4)
74 H in H2O 0.9988(11) 0.9986(3) 0.9991(3) 0.0005(4)
75 H in H2O 0.9983(11) 0.9975(3) 0.9977(3) 0.0002(4)

RMS Error 0.00845 0.00805
RMS Continuous / 0.95322

RMS Discrete



Table A4: LEU Benchmark Eigenvalue Results

Case S(α, β)-treated Experiment keff Discrete keff Continuous keff ∆k from
Number Isotope Discrete

76 H in H2O 1.0007(16) 1.0012(3) 1.0005(3) -0.0007(4)
77 H in H2O 1.0007(16) 1.0013(3) 1.0015(3) 0.0002(4)
78 H in H2O 1.0007(16) 1.0007(3) 1.0005(3) -0.0002(4)
79 H in H2O 1.0006(16) 1.0003(3) 0.9999(3) -0.0004(4)
80 H in H2O 1.0007(16) 1.0007(3) 1.0000(3) -0.0007(4)
81 H in H2O 1.0007(16) 1.0020(3) 1.0014(3) -0.0006(4)
82 H in H2O 1.0038(40) 1.0000(3) 0.9998(3) -0.0002(4)
83 H in H2O 1.0024(37) 0.9959(3) 0.9951(3) -0.0008(4)

RMS Error 0.00768 0.00846
RMS Continuous / 1.10247

RMS Discrete

Table A5: Pu Benchmark Eigenvalue Results

Case S(α, β)-treated Experiment keff Discrete keff Continuous keff ∆k from
Number Isotope Discrete

97 Graphite 1.0000(20) 0.9993(3) 0.9993(3) 0.0000(4)
98 Be Metal 1.0000(30) 0.9964(3) 0.9962(3) -0.0002(4)
99 Be Metal 0.9992(15) 0.9975(3) 0.9979(3) 0.0004(4)
100 H in CH2 1.0000(20) 1.0019(3) 1.0024(3) 0.0005(4)
101 H in H2O 1.0000(10) 1.0006(3) 1.0001(3) -0.0005(4)
102 O in BeO / Be in BeO 1.0000(26) 0.9931(3) 0.9922(3) -0.0009(4)
103 Be Metal 1.0000(26) 1.0021(3) 1.0033(3) 0.0012(4)
105 Graphite 1.0000(110) 1.0116(2) 1.0119(2) 0.0003(3)
106 H in H2O 1.0024(60) 1.0010(3) 1.0017(3) 0.0007(4)
107 H in H2O 1.0009(47) 1.0028(3) 1.0024(3) -0.0004(4)
108 H in H2O 1.0042(31) 1.0032(3) 1.0026(3) -0.0006(4)
109 H in H2O 1.0024(21) 1.0079(3) 1.0063(3) -0.0016(4)
110 H in H2O 1.0038(25) 1.0046(3) 1.0040(3) -0.0006(4)
111 H in H2O 1.0029(27) 1.0068(3) 1.0063(3) -0.0005(4)
112 H in H2O 1.0000(33) 1.0190(2) 1.0189(2) -0.0001(4)
113 H in H2O 1.0000(52) 1.0060(4) 1.0061(4) 0.0001(6)
114 H in H2O 1.0000(52) 0.9943(4) 0.9939(4) -0.0004(6)
115 H in H2O 1.0000(52) 0.9996(4) 1.0002(4) 0.0006(6)
116 H in H2O 1.0000(32) 1.0043(4) 1.0048(4) 0.0005(6)
117 H in H2O 1.0000(65) 1.0044(5) 1.0037(5) -0.0007(7)
118 H in H2O 1.0000(34) 1.0031(3) 1.0026(3) -0.0005(4)
119 H in H2O 1.0000(62) 0.9999(4) 0.9998(4) -0.0001(6)

RMS Error 0.02714 0.02726
RMS Continuous / 1.00431

RMS Discrete


