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1 Introduction

The α eigenvalue has implications for time-dependent problems where the system is sub- or supercritical.
We present methods and results from calculating the α-eigenvalue spectrum for a continuous-energy infinite
medium with a simplified Monte Carlo transport code. We formulate the α-eigenvalue problem, detail the
Monte Carlo code physics, and provide verification and results.

2 Theory

Formulating the α-eigenvalue problem relies on the separability of the neutron flux time-dependence from
the space- and energy-dependence in the neutron transport or diffusion equations, describing the neutron
flux as the sum

ψ(r, E, Ω̂, t) =
∞∑

i=0

Aiψi(r, E, Ω̂) exp(αit). (1)

The eigenvalues, αi, and kinetic modes, ψi(r, E, Ω̂), depend on the system configuration, while the coeffi-
cients, Ai, are also dependent on source characteristics. Although completeness of the eigenfunctions has
not been rigorously proven, this expansion has empirically shown to be accurate. Note this is not the same
space-time factorization seen in the point kinetics equations [1], where the neutron flux is assumed to be
the product of amplitude and shape functions, the amplitude function providing most of the information on
the reactor power change and the shape function describing the time dependence of the power profile. The
eigenvalue with the largest real part, α0, the fundamental eigenvalue, corresponds to the asymptotic solution
of the system as t→∞ and follows the trend:

α0

 > 0 if supercritical,
= 0 if critical,
< 0 if subcritical.

(2)

For subcritical systems, Rossi-α or pulsed-neutron experiments measure the decay time of the prompt
fundamental α mode. These experiments provide a way of measuring the reactivity of subcritical systems.
Such experiments have applications for accelerator-driven subcritical (ADS) systems [2] and commercial
reactors [3]. With high-energy sources, ADS systems are able to transmute long-lived nuclear isotopes [4].
Previous studies of calculating higher kinetic modes focus on improving experimental results [5] or improving
methods for calculating system reactivity from experimental measurements [6].

Neutron Transport

The time-dependent neutron transport and precursor equations [7] are

1
v

∂ψ

∂t
+ Ω̂ · ∇ψ + Σψ(r, E, Ω̂, t) =

∫∫
Σs(E′ → E, Ω̂ · Ω̂′)ψ′dE′dΩ′

+
∫∫

χp

4π
(1− β)ν̄Σfψ

′dE′dΩ′ +
∑

j

χj

4π
λjCj +Q, (3)

∂Cj

∂t
+ λjCj(r, t) =

∫∫
βj ν̄Σfψ

′dE′dΩ′. (4)

Separating the exponential time-dependence out of the precursor concentration and neutron flux yields

ψ(r, E, Ω̂, t) = ψ(r, E, Ω̂) exp(αt),
Cj(r, t) = Cj(r) exp(αt).
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Inserting this factorization into Eqs. (3) and (4) and excluding the external source yields

α

v
ψ + Ω̂ · ∇ψ + Σψ(r, E, Ω̂) =

∫∫
Σs(E′ → E, Ω̂ · Ω̂′)ψ′dE′dΩ′

+
∫∫

χp

4π
(1− β)ν̄Σfψ

′dE′dΩ′ +
∑

j

χj

4π
λjCj , (5)

αCj + λjCj(r) =
∫∫

βj ν̄Σfψ
′dE′dΩ′. (6)

Equation (5) is similar to the steady-state neutron transport equation except for the extra α/v term,
known as the time-absorption term. Current Monte Carlo and deterministic methods for determining the
fundamental α eigenvalue use an iterative search on a k-eigenvalue problem to find the α for which k = 1.
This method treats the time-absorption term differently depending on its sign. If α > 0, the time-absorption
term combines with the cross section, resulting in a larger effective cross section, Σeff = α/v + Σ. If α < 0,
the time-absorption term effectively moves to the right side of Eq. (5) and is treated as a source [8]. This
method ignores delayed neutron precursors, excluding the last term of Eq. (5) from the solution.

Designed for supercritical problems, this α-k iterative search works poorly for prompt subcritical systems.
As α becomes increasingly negative, the time-absorption term dominates the fission source, causing problems
with the transport calculation. However, if the method accounts for delayed neutron precursors, it becomes
more stable for far subcritical systems. Combining Eqs. (5) and (6) yields

α

v
ψ + Ω̂ · ∇ψ + Σψ(r, E, Ω̂) =

∫∫
Σs(E′ → E, Ω̂ · Ω̂′)ψ′dE′dΩ′

+
∫∫

χp

4π
(1− β)ν̄Σfψ

′dE′dΩ′ +
J∑

j=1

χj

4π
λj

α+ λj

∫∫
βj ν̄Σfψ

′dE′dΩ′, (7)

introducing J discontinuities at α = −λj . When α → −λj , the last term in Eq. (7) either increases
considerably if α > −λj (approaching from −λ+

j ) or decreases considerably if α < −λj (approaching from
−λ−j ). This introduces J more α’s that will balance Eq. (7). These are known as delayed α eigenvalues with
delayed kinetic modes. If the system is very subcritical, α ≈ λj . This means the precursor decay constant
that is smallest in magnitude, λj , limits the fundamental α eigenvalue of a subcritical system. The physical
analog for this behavior is that when a reactor is shut down, there are still delayed neutron precursors present
in the fuel. Those precursors continue to decay and emit delayed neutrons. Thus, the flux does not decay
away any faster than the decay of the longest lived precursor group.

Finding an α eigenvalue that is near these discontinuities with the α-k iterative search is numerically
difficult. In many problems, the fundamental prompt α eigenvalue, the smallest α eigenvalue not associated
with the delayed kinetic modes, is of more interest. Also, the α-k iterative search is computationally costly.
Accelerations studied for this method focus on better initial guesses for α [9]. Other methods explored for
α-eigenvalue searches include Green’s functions [10], diffusion theory approximations [11], and other Monte
Carlo methods [12].

Matrix Equation

Instead of using an iterative approach, we directly solve for the α eigenvalue. Introducing operator notation
into Eqs. (5) and (6) and rearranging terms yields the forward matrix α-eigenvalue problem[

v 0
0 1

] [
−L + Fp χdλj

Fd −λj

] [
ψ(r, E, Ω̂)
Cj(r)

]
= α

[
ψ(r, E, Ω̂)
Cj(r)

]
, (8)

where the L operator combines scattering and leakage. Transposing the second matrix in Eq. (8) yields the
adjoint α-eigenvalue problem[

v 0
0 1

] [
(−L + Fp)† F†d

(χdλj)† −λj

][
ψ†(r, E, Ω̂)
C†j (r)

]
= α†

[
ψ†(r, E, Ω̂)
C†j (r)

]
, (9)
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where the eigenvalue sets α and α† are complex conjugates of each another.
Note that the speed matrix, the far left matrix, is left untransposed. This is because in the adjoint

formulation, the α/v term still associates the neutron speeds with the α eigenvalue. We take advantage of
this and tally the left side of Eq. (9) to obtain the α-eigenvalue spectrum.

Eigenvalue Spectrum

The solution to Eqs. (8) or (9) have a set of α eigenvalues for i = 0, . . . ,∞ [13]. As previously discussed, α0

is the fundamental eigenvalue, guaranteed to be all real with the trend described in Eq. (2). For i > 0, αi

may be complex, but must have a negative non-zero real part, regardless of system super- or subcriticality.
Complex α eigenvalues always come in complex conjugate pairs, and only have a physical meaning when

used as a pair. They are not a product of noise, but result from physical phenomena. Mathematically,
if there are no complex eigenvalues, the flux contribution of every higher mode only decreases. But in a
physical system, neutrons slow down and induce fission, emitting neutrons at higher energies. Thus, the
flux at a higher energies experiences a decrease as neutrons slow down and an increase as thermal neutrons
fission. This oscillatory motion is only describable with complex α eigenvalues. From Eq. (1), consider the
sum of two kinetic modes i and j, where αi and αj are conjugate pairs

ψi+j(r, E, Ω̂, t) = Aiψi(r, E, Ω̂) exp(αit) +Ajψj(r, E, Ω̂) exp(αjt). (10)

The flux solution takes the form

ψi+j(r, E, Ω̂, t) = [Aiψi(r, E, Ω̂) exp(Im(αi)t) +Ajψj(r, E, Ω̂) exp(Im(αj)t)] exp(Re(αi)t).

The combination of the two terms in the brackets describe an oscillation dictated by the imaginary part
of the eigenvalues. An overall exponential decay dictated by the real part of the eigenvalues damps the
oscillation, where Re(αi) = Re(αj) < 0. Both the coefficients, Ai, and kinetic modes, ψi(r, E, Ω̂), may have
imaginary parts.

Eigenfunction Expansion

The functional expansion [14] of the neutron flux and precursor concentration in matrix form is[
ψ(r, E, Ω̂, t)
C(r, t)

]
=

∞∑
i=0

Ai(t)
[
ψi(r, E, Ω̂)
Cj,i(r)

]
,

where the exponential time dependence in Ai(t) is left undefined. Substituting this expansion into Eqs. (3)
and (4) yields the matrix problem

∞∑
i=0

dAi(t)
dt

[
v−1 0
0 1

] [
ψi(r, E, Ω̂)
Cj,i(r)

]
=

∞∑
i=0

Ai(t)
[
−L + Fp χdλj

Fd −λj

] [
ψi(r, E, Ω̂)
Cj,i(r)

]
+Q(r, E, Ω̂, t).

Multiplying the first term on the right side of the equation by the speed matrix and its inverse yields the
forward α-eigenvalue problem defined in Eq. (8). Multiplying by the adjoint function [ψ†n(r, E, Ω̂) C†j,n(r)]
and integrating over space, energy, and angle takes advantage of the orthogonality condition of the forward
and adjoint functions 〈

ψ†n, v
−1ψi

〉
r,E,Ω̂

+
〈
C†j,n, Cj,i

〉
r

= γiδni,

where γi =
〈
ψ†i , v

−1ψi

〉
r,E,Ω̂

+
〈
C†j,i, Cj,i

〉
r
. The result is the first-order differential equation

dAi(t)
dt

= αiAi(t) +

〈
ψ†i , Q

〉
r,E,Ω̂

γi
. (11)
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Many problems assume that the external source is shut off at t = 0, such as a short pulse, or some given
flux distribution at time t = 0−. This assumption describes the source as a delta function in time, Q0δ(t).
Then, for t > 0 there is no external source and Eq. (11) has the solution

Ai(t) = Ai(0) exp(αit),

revealing the exponential time dependence. Operating on Eq. (11) by
∫ ε

−ε
(·)dt yields the coefficients

Ai(0) =

〈
ψ†i , Q0

〉
r,E,Ω̂

γi
. (12)

These coefficients determine the contribution of each kinetic mode, ψi(r, E, Ω̂), to the total flux. This
formulation presents a complete solution for the approximation of the time-dependence of the neutron flux.
Exact time-dependent Monte Carlo, not requiring the separability approximation, has been an area of re-
search for many years but is still computationally costly [15].

Transition Rate Matrix

Up to this point, we have shown rigorous, unsimplified forms of equations considering space and direc-
tion. Here, we adopt the simplifications of a continuous-energy infinite medium, and exclude these spatial
considerations from the equations.

The product of the speed and adjoint matrices on the left side of Eq. (9) is

Q =
[
v(−L + Fp)† vF†d

(χdλj)† −λj

]
. (13)

To examine the structure of the Q matrix, or transition rate matrix, divide the neutron flux into B energy
bins and separate the precursor concentration into J groups. With the energy bin discretization, the top left
portion of the Q matrix in Eq. (13) is

v(−L + Fp)† =


−v1(Σr1 − χp1ν̄p1Σf1) v1(Σs1→2 + χp2ν̄p1Σf1) v1(Σs1→3 + χp3ν̄p1Σf1) · · ·
v2(Σs2→1 + χp1ν̄p2Σf2) −v2(Σr2 − χp2ν̄p2Σf2) v2(Σs2→3 + χp3ν̄p2Σf2) · · ·
v3(Σs3→1 + χp1ν̄p3Σf3) v3(Σs3→2 + χp2ν̄p3Σf3) −v3(Σr3 − χp3ν̄p3Σf3) · · ·

...
...

...
. . .

 ,
where vb, Σrb, Σfb, ν̄pb, and χpb are the average speed, removal and fission cross sections, average prompt
neutrons emitted per fission, and prompt fission emission probability for energy bin b, respectively; and
Σsb→b′ is the scattering cross section from energy bin b→ b′.

This portion of the Q matrix has two distinct parts: the diagonal and off-diagonal elements. The diagonal
element of row b of the matrix is

−vbΣrb + vbχpbν̄pbΣfb = −(removal rate from energy bin b) + (fission rate from energy bin b→ b),

which is the negative net removal rate from energy bin b. The off-diagonal element of row b and column
b′ 6= b of the matrix is

vbΣsb→b′ + vbχpb′ ν̄pbΣfb = (scatter rate from energy bin b→ b′) + (fission rate from bin b→ b′), (14)

which is the net removal rate from energy bin b→ b′.
This is similar to a continuous-time Markov process [16], where Q is known as the transition rate matrix

with the form

Q =

 −q11 q12 · · ·
q21 −q22 · · ·
...

...
. . .

 ,
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where qij is the transition rate from state i to state j. For example, qbb′ is the transition rate from state i,
or energy bin b, to state j, or energy bin b′. A neutron transitions from energy bin b → b′ by scattering or
fission, the rates for which are shown in Eq. (14).

This trend extends to the entire Q matrix in Eq. (13), where the remaining three portions are

vF†d =


v1β1ν̄d1Σf1 v1β2ν̄d1Σf1 · · · v1βJ ν̄d1Σf1

v2β1ν̄d2Σf2 v2β2ν̄d2Σf2 · · · v2βJ ν̄d2Σf2

...
...

. . .
...

vBβ1ν̄dBΣfB vBβ2ν̄dBΣfB · · · vBβJ ν̄dBΣfB

 , (15)

(χdλj)† =


χ1→1λ1 χ1→2λ1 · · · χ1→Bλ1

χ2→1λ2 χ2→2λ2 · · · χ2→Bλ2

...
...

. . .
...

χJ→1λJ χJ→1λJ · · · χJ→BλJ

 , (16)

−λj =


−λ1

−λ2

. . .
−λJ

 , (17)

where ν̄db is the average delayed neutrons emitted per fission, χj→b′ is the probability of a delayed precursor
from group j emitting a neutron into energy bin b′, and βj and λj are the delayed neutron fraction and
decay constant for precursor group j. Extending the Markov process analog, qb,B+j is the transition rate
from state i, or energy bin b, to state j, or precursor group j. A neutron transitions to a precursor group
by delayed fission, the rates for which are shown in Eq. (15). This analog applies to the precursor section at
the bottom of the Q matrix: where qB+j,B+j is the transition rate out of precursor group j, and qB+j,b′ is
the transition rate from precursor group j to energy bin b′. A precursor from group j decays at a rate of λj

and transitions to energy bin b′ according to the delayed neutron emission spectrum, χj→b′ . These rates are
shown in Eqs. (16) and (17). Thus, we refer to the the Q matrix in Eq. (13) as the transition rate matrix.

This treatment shares similarities to the fission matrix method. The fission matrix method uses the
kernel Fi,j , the number of fission neutrons born in region i due to one fission neutron born in region j. This
is an unnormalized Markov transition rate matrix for a discrete-time process, known as a Markov chain.
The Q matrix is the continuous-time analog, the unnormalized transition rate matrix for neutrons moving
out of a given state and into another.

3 Computational Tools

For this analysis, the continuous-energy infinite-medium Monte Carlo transport code is in MATLAB [17]
functions to take advantage of linear algebra and visualization tools. We name the code for its purpose, To
Obtain Real-Time Eigenvalues (TORTE).

Code Physics

TORTE has approximately 20 modules, 4 testing scripts, and another 8 post-processing scripts with visual-
ization tools. It calculates the elements of the transition rate matrix during a k-eigenvalue power iteration
calculation. It handles multigroup systems with user-specified cross sections or continuous-energy problems
using ACE-formatted cross sections. For continuous-energy physics, TORTE considers elastic scattering
isotropic and does not model inelastic scattering for fast neutrons. For thermal neutrons, it uses the free-gas
model and continuous-S(α,β) scattering tables for graphite. It samples both delayed and prompt fission
spectra from the cross section files using ENDF Law 4 [18]. TORTE currently handles the most common
reactor materials such as carbon, hydrogen, oxygen, graphite, 235U, and 238U. It treats capture and fission
as analog.
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Tallying the Transition Rate Matrix

TORTE tallies the transition rate matrix in Eq. (13) using the B energy bins and J precursor groups as
discussed. It normalizes the various probabilities such that

B∑
b=1

χpb = 1,

B∑
b=1

χj→b = 1, for j = 1 . . . , J,

J∑
j=1

βj = 1.

TORTE tallies all matrix elements during the Monte Carlo random walk; it does not use known quantities
for decay constants or fractions of delayed precursor groups. All elements are combinations of removal rates
and probabilities, such as

λj = τ−1
rj = (average decay time from precursor group j)−1,

vbΣrb = τ−1
rb = (average removal time from energy bin b)−1,

vbΣfb = vbΣrb
Σfb

Σrb
= τ−1

rb

(
fissions in energy bin b

removals from energy bin b

)
,

vbΣsb→b′ = vbΣrb
Σsb→b′

Σrb
= τ−1

rb

(
scatters from energy bin b→ b′

removals from energy bin b

)
.

TORTE uses J = 6 precursor groups as is specified in the ENDF cross section database for 235U [19].
The number and size of energy bins is arbitrarily set.

Eigenvalues and Eigenfunctions

TORTE calculates up to B+J α eigenvalues and kinetic modes for the forward and adjoint matrix equations.
Because of the infinite medium simplification, the kinetic modes are eigenvectors of length B+ J , where the
first B entries correspond to the neutron flux, and the last J entries correspond to the delayed precursor
groups: [

ψ(E) C
]

=
[
ψ1 ψ2 · · · ψB C1 · · · CJ−1 CJ

]
, (18)

where above, ψb is the neutron flux in energy bin b and Cj is the concentration of precursor group j. The
main interest is in the flux energy spectrum, so the eigenfunction expansion excludes the last J entries of
the eigenvector in Eq. (18).

For the simplified continuous-energy infinite medium, the coefficients in Eq. (12) are dot products of the
adjoint eigenvectors and desired initial source. The eigenfunction expansion for the neutron flux becomes

ψ(E, t) =
N∑

i=0

ψ†i (E) ·Q0(E)
γi

ψi(E) exp(αit),

where N is the desired number of modes from 0 ≤ N ≤ B + J − 1 used to approximate the flux solution.
Generally, as N increases, the flux solution captures increasingly shorter time dependence. If the selection
of N includes any complex eigenvalue, it must also include its complex conjugate eigenvalue. The sum of a
pair of conjugate eigenvalues from Eq. (10) simplifies to

ψi+j(E, t) = 2[D1 cos(| Im(αi)|t)−D2 sin(| Im(αi)|t)] exp(Re(αi)t),

where the vectors D1 = Re(Ai) Re(ψi) − Im(Ai) Im(ψi) and D2 = Re(Ai) Im(ψi) + Im(Ai) Re(ψi). This is
an underdamped all-real solution with damped frequency ωd = | Im(αi)|. An approximation for the number
of oscillations that occur before damping is the ratio |ωd:Re(αi)|.
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4 Results

Because TORTE does not include inelastic scattering, results do not match MCNP5 [18] or other transport
codes. Thus, we provide comparison to analytic results. We analyze the α-eigenvalue spectrum with some
simplified test problems, study the effect of the number of energy bins on the eigenvalue spectrum, make
some remarks on eigenvalue convergence, and show results from the eigenfunction expansion.

Physics Verification

To ensure TORTE models collisions and energy distributions properly, we benchmark the results for elastic
scattering, free gas scattering, and delayed and prompt fission spectra. Figure 1 compares some spectra
against analytic distributions [20]. The results agree, providing confidence in TORTE’s continuous-energy
results.

Multigroup Verification

Two multigroup models test TORTE’s ability to calculate the appropriate k eigenvalue and transition rate
matrix. The first is a three-group, prompt fission-only model. The second is a three-group model with two
precursor groups.

Problem 1: This three-group system has fissions in energy group g = 3 emitting ν̄ = 2.5 neutrons in
energy group g = 1. There is no upscatter and downscatter is only allowed into the next group. Table I
gives the cross sections and nuclear data of this system.

Table I: Problem 1 nuclear data (cross sections in cm−1).
g Σγg Σf Σsg→g+1 χ vg[cm/s]

1 1.0 0 5.0 1.0 4.0
2 1.0 0 4.0 0 2.0
3 2.0 2.0 0 0 1.0

The analytic k eigenvalue is

k ≈ ν̄ΣfΣs1→2Σs2→3

Σr1Σr2Σr3
= 0.83333,

0 1 2 3 4 5

Free gas scattering; A = 10; E
in

 = 1k
B
T (0.0253eV)

E
out

 [k
B
T]

 

 

sampled distribution

expected distribution

0 2 4 6 8 10

Prompt fission spectrum

E
out

 [MeV]

 

 

Figure 1: The TORTE free-gas scattering outgoing energy spectrum and χp(Eout) agree well with expected
analytic distributions: the piecewise free-gas scattering kernel and Watt fission spectrum for thermal neutron-
induced fission.
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where Σrg = Σγg + Σfg + Σsg→g+1. The analytic transition rate matrix is −v1Σr1 v1Σs1→2 0
0 −v2Σr2 v2Σs2→3

v3χν̄Σf 0 −v3Σr3

 =

 −24 20 0
0 −10 8
5 0 −4

 ,
with α0 = −0.44534 s−1. From TORTE with 1 × 106 histories, k = 0.83377 ± 0.00059 and the error in the
calculated transition rate matrix is  0.002 0.013 −

− 0.036 0.077
−0.022 − 0.025

%.

The analytic k eigenvalue is within one standard deviation of the calculated k eigenvalue and the calculated
transition rate matrix is within 0.1% of the analytic transition rate matrix. The calculated α0 is within one
thousandth of a percent of the analytic α0.

Problem 2: This three-group system uses two precursor groups to model the emission of ν̄d = 0.5
delayed neutrons per fission. Other nuclear data is the same as Problem 1. To preserve the k eigenvalue,
the Problem 1 ν̄ is taken as the average total neutrons emitted per fission, ν̄t. All precursors emit neutrons
into energy group g = 1. Table II gives the delayed neutron precursor data.

Table II: Problem 2 precursor data.
j λj βj

1 3.0 0.25
2 1.0 0.75

The analytic k eigenvalue is the same as in Problem 1 and the analytic transition rate matrix is
−v1Σr1 v1Σs1→2 0 0 0

0 −v2Σr2 v2Σs2→3 0 0
v3χpν̄pΣf 0 −v3Σr3 v3β1ν̄dΣf v3β2ν̄dΣf

χ1→1λ1 0 0 −λ1 0
χ2→1λ2 0 0 0 −λ2

 =


−24 20 0 0 0
0 −10 8 0 0
4 0 −4 0.25 0.75
3 0 0 −3 0
1 0 0 0 −1

 ,
where ν̄t = ν̄p + ν̄d. The analytic α0 = −0.29137 s−1. From TORTE with 1 × 106 histories, k = 0.83351 ±
0.00059 and the error in the calculated transition rate matrix is

−0.158 −0.121 − − −
− −0.106 −0.122 − −

0.063 − −0.073 −0.052 0.101
0.465 − − 0.465 −
−0.374 − − − −0.374

%.

Again, the calculated k eigenvalue and transition rate matrix are converging to the analytic solutions.
Noticeably, the entries of the transition rate matrix corresponding to delayed neutrons are converging slower
than the remainder of the matrix, even with ν̄d much higher than in a realistic problem. This is due to
the statistical nature of calculating the decay constants, λi, and the low probability of delayed fission in
comparison to prompt fission. The calculated α0 = −0.29414 s−1, and is within 1% of the analytic α0.

These two problems verify TORTE’s ability to accurately calculate the k eigenvalue and the transition
rate matrix for multigroup problems.

Eigenvalue Spectrum

For realistic problems, identifying nuclear processes that affect the calculated α-eigenvalue spectrum is
difficult. Thus, TORTE runs variants of a simplified multigroup problem in an effort to explain nuclear
effects to the spectrum. Problems 4 and 5 are variations of Problem 3.

8



Problem 3: This is the base B = 81 group system for examining the α-eigenvalue spectrum. Neutrons
downscatter only to the next energy group and do not upscatter. Prompt fissions in energy group g = 81
emit an average ν̄ = 2.5 neutrons per fission into energy group g = 1. Table III gives the cross sections and
nuclear data of this system. This system has no delayed fissions.

Table III: Problem 3 nuclear data (cross sections in cm−1).
g Σγg Σf Σsg→g+1 χ vg[cm/s]

1 1.0 0 100.0 1.0 1.0
2-80 1.0 0 100.0 0 1.0
81 1.0 100.0 0 0 1.0

The capture cross sections, Σγg, neutron speeds, vg, and removal cross sections, Σrg, are the same for
all groups so that this very unphysical system yields a simple, closed-form solution for the k eigenvalue and
α-eigenvalue spectrum. The analytic k eigenvalue is

k =
ν̄Σf (Σsg→g+1)B−1

(Σrg)B
= 1.11663,

and is within two standard deviations of the TORTE eigenvalue calculated with 1 × 106 histories, k =
1.1170 ± 0.0012. Algebraic manipulation of the multigroup equations [21] yields the analytic α-eigenvalue
spectrum

αn

v
= −Σγg + Σsg→g+1[ν̄B−1

exp(2πinB−1)− 1], (19)

where n = 0, . . . , B − 1. The analytic α eigenvalues form a spectrum in the complex plane along a circle
centered at Re(α) = −Σγg −Σsg→g+1 of radius ν̄B−1

Σsg→g+1, where α0 = 0.13765 s−1. As B increases, the
α-eigenvalue spectrum shrinks because the problem k eigenvalue changes. However, if the group cross sections
are adjusted such that the k eigenvalue is the same but the number of groups increases, the α eigenvalues fill
in along the existing circle. Figure 2 compares the analytic α eigenvalues against the calculated spectrum.
The eigenvalues agree well with the analytic solution, with the eigenvalues with the smallest real parts
showing the best agreement.

For this case, there is only one all-real eigenvalue, the fundamental eigenvalue, α0 = 0.13839 s−1. The
calculated α0 is within 1% of the analytic α0. All higher kinetic modes contribute some oscillatory time
dependence to the total flux. Furthermore, there are oscillations that persist for long times, shown by
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Figure 2: The 81-group Problem 3 α-eigenvalue spectrum forms a circle in the complex plane.
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the higher α eigenvalues that have a real part close to that of the fundamental eigenvalue. This is very
unphysical. The eigenvalues with the largest imaginary parts are not the largest in amplitude, but are the
fastest oscillating.

To better understand this eigenvalue spectrum, we examine the time-dependent flux spectrum from the
eigenfunction expansion, given for select times in Figure 3, which compares the approximated solution using
all 81 modes to the fundamental mode solution. The source for the eigenfunction expansion is monoenergetic
in energy group g = 1, where Q0(1) = 5× 104 cm−3 · s−1.

We explain the four subplots of Figure 3 from top left to bottom right: (t = 0.10 s) Neutrons from the
monoenergetic source scatter out of energy group g = 1 at different times, resulting in a small flux packet
that begins to downscatter. (t = 0.70 s) The flux packet continues to widen and decrease due to the different
rates at which neutrons downscatter and neutron capture. When neutrons reach energy group g = 81, they
induce fission and emit neutrons in energy group g = 1. (t = 1.60 s) The flux packet widens to the point
where it combines with the neutrons fissioning into energy group g = 1. (t = 6.00 s) The flux packets are no
longer discernible as the flux distribution approaches and follows the rising fundamental mode.

As t → ∞, the higher modes decay away and the complete flux solution approaches that of the funda-
mental mode. For this problem, this happens at t ≈ 20 s, which is long relative to the lifetime of the prompt
modes. Delayed modes would persist longer. Note the fundamental mode rises considerably as the higher
modes decay. All coefficients, Ai, and eigenvectors, ψi(E), are complex for i = 1, ..., B − 1.
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Figure 3: The 81-group Problem 3 approximated flux from the eigenfunction expansion with a monoenergetic
initial source for select times.
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Problem 4: This variant of the 81-group system changes the speeds to be group dependent, where
vg = 82 − g. The k eigenvalue is the same as Problem 3, but the α-eigenvalue spectrum does not have
an easily obtainable analytic solution. However, with the analytic transition rate matrix, we obtain the
α eigenvalues, and plot them against the calculated results in Figure 4. The analytic α0 = 2.2464 s−1.
From TORTE with 1× 106 histories, the analytic k eigenvalue falls within three standard deviations of the
calculated, k = 1.1139± 0.0012. This is not surprising, as the calculated standard deviation shown is likely
smaller than the actual standard deviation due to the system having fissions in only 1 of 81 groups. Thus,
we have confidence that TORTE is approaching the proper k eigenvalue. The calculated α0 = 2.2008 s−1,
and is within 2.5% of the analytic α0.

With different group speeds, the eigenvalue spectrum changes significantly. The spectrum has two more
very negative real α eigenvalues. The eigenvalues are no longer arranged along a circle, although some
elliptical shapes remain. Some eigenvalues form lines crossing the real axis. Again, the eigenvalues closest
to the fundamental eigenvalue converge faster than the higher eigenvalues, which are converging slower than
in Problem 3.

The extent of the spectrum increases ∼25× along the imaginary axis and ∼45× along the real axis. This
implies an increase of the rate that higher modes are decaying, and an increase in the rate of oscillations.
This is due to neutrons moving with a greater speed through the infinite medium space and downscattering
faster. The higher modes die quickly, and the complete flux solution approaches the fundamental mode
faster than in Problem 3.

Problem 5: This variant of Problem 3 allows downscattering from energy group g → g′ over several
groups with equal probability where g+ 1 ≤ g′ ≤ g+ 5 (except for the last 5 groups, where g+ 1 ≤ g′ ≤ B).
The total downscattering cross section remains the same as Problem 3, but because we are changing the
multigroup equations, the k eigenvalue changes considerably, as does the α-eigenvalue spectrum. The analytic
α0 = 2.2914 s−1. From TORTE with 1× 106 histories, k = 1.7676± 0.0464 and α0 = 2.2937 s−1. Figure 4
compares the calculated α-eigenvalue spectrum to the solution from the analytic transition rate matrix.

The spectrum has a cluster of α eigenvalues close to the real axis where Re(α) < −100 s−1. These
are higher modes that oscillate slowly but decay quickly. There are many more higher eigenvalues in this
spectrum than in Problem 3. This is due to neutrons now being able to downscatter quickly by skipping
several energy groups, even though the speeds are the same as in Problem 3. As in Problem 4, more higher
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Figure 4: The 81-group Problem 3 variant α-eigenvalue spectra with different group speeds (Problem 4)
and downscattering over up to 5 groups (Problem 5) have changed considerably from the base-case circular
α-eigenvalue spectrum.
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Figure 5: The 641 energy bin Problem 6C α-eigenvalue spectrum for a 1:1:1 H:O:235U infinite medium shows
some similarities to the 81-group problems.

modes decay quickly, but the extent of the spectrum is very similar to that in Problem 3. Thus, there are
still oscillatory modes that persist for longer times, and the flux distribution approaches the fundamental
mode at a time similar to Problem 3.

Problems 3, 4, and 5 show simplified α-eigenvalue spectra that identify some of the attributes present in
the spectrum. Some of these are present in the spectrum from a continuous-energy system in Problem 6,
though the spectrum is considerably more complex.

Problem 6C: This continuous-energy system consists of a 1:1:1 atomic ratio of H:O:235U. The system is
very supercritical, with k > 2.0. The minimum problem energy is Emin = 1× 10−11. There are B − 1 = 640
equal-lethargy bins between 1.5 × 10−8 and Emax = 20 MeV and J = 6 delayed neutron precursor groups.
Figure 5 shows the α-eigenvalue spectrum from TORTE with ∼2.5× 107 histories.

There is one large, positive eigenvalue, α0 = 6.408 s−1. There is a large cluster of eigenvalues at the right
end of the spectrum close to the real axis. The oscillations of these longer-lived modes are relatively slow.
There are still elliptical and circular shapes within the spectrum. The scale is considerably different than
the 81-group problems due to the realistic neutron speeds, but the relative scale of the real and imaginary
axes show more similarities to Problem 4, where each group has a different speed. As in Figure 4, there are
several different elliptical shapes and lines of eigenvalues crossing the real axis. Some of the eigenvalues form
short irregularly-spaced lines [13].

Energy Bins

To investigate the effect of the number of energy bins on the calculated spectrum, we take Problem 6C and
run it with different numbers of equal-lethargy bins.

Problems 6A & 6B: These use the same supercritical, continuous-energy, hydrogenous medium as
Problem 6C, but vary the number of energy bins. Table IV describes the energy bin structure and provides
brief results of the three Problem 6 runs.

The TORTE energy range is Emin = 1×10−11 MeV ≤ E ≤ Emax = 20 MeV. But, for this far supercritical
system, neutrons are unlikely to get to very low energies. Thus, we divide the energy range into B−1 equal-
lethargy bins between the two limits E1 and EB , the top energy limits of energy bins b = 1 and b = B,
respectively, where the B-th energy bin has Emin as its bottom energy limit.

Figure 6 provides a comparison between the three runs. Most importantly, all three converge to the same
positive fundamental α eigenvalue within 0.5%, as shown in Table IV. Some of the higher α eigenvalues
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Table IV: Problem 6 energy bin structure and calculated fundamental α eigenvalue (E in MeV).
Run B E1 EB α0 [s−1]

A 81 20 4.1× 10−8 6.396
B 321 20 1.5× 10−8 6.413
C 641 20 1.5× 10−8 6.408

agree, but many do not. In Figure 6, the higher α eigenvalues of Run A fall between those of Run B. There
is a similar trend seen in the comparison of Runs B and C, although many more α eigenvalues seem to agree,
especially at the front ridges of the spectra. Increasing the number of energy bins does not add higher α
eigenvalues to the left end of the spectrum, but adds many α eigenvalues between existing ones.

Theoretically, the system has an infinite set of α eigenvalues, but TORTE uses a finite number of B energy
bins and J precursor groups. Thus, by using the transition rate matrix to find the α eigenvalues, TORTE
approximates the true infinite α-eigenvalue spectrum with a finite set of eigenvalues. That is the reason
the higher eigenvalues of Run A do not match those of Run B. Those higher Run A eigenvalues attempt to
capture the true higher α-eigenvalue spectrum, approximating it and falling between the eigenvalues of Run
B, which are a better approximation of the true spectrum. But, as the number of energy bins increases,
TORTE begins to match the true α-eigenvalue spectrum, and converges to the true eigenvalues in order,
from i = 0, 1, 2, . . . ,∞. This is seen in comparing Runs B and C, where the α eigenvalues of both runs
approach similar α eigenvalues along the front ridges of the spectra.

Conversely, if TORTE uses too few bins, such as 2 or 3, the eigenvalue spectrum converges to an incorrect
fundamental eigenvalue, because the transition rate matrix approximates the entire time dependence of the
system with too few eigenvalues. This results in an eigenvalue that is often too low. With any of the numbers
of energy bins used in Problem 6, TORTE obtains the same fundamental eigenvalue, giving confidence that
it has the true fundamental eigenvalue of the system. The first few eigenvalues are most important to the
eigenfunction expansion because they are the longest lived. Higher eigenvalues decay very fast, so they are
usually much less important.
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Figure 6: The α-eigenvalue spectra of Problem 6 with different numbers of energy bins show good agreement
for the first few eigenvalues but disagree on the shape of the higher α-eigenvalue spectrum.
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Eigenvalue Convergence

We use three runs of a delayed-supercritical hydrogenous medium to study the convergence of the eigenvalues
and eigenvectors. It is likely that the eigenvalues converge differently depending on the k eigenvalue, and
we expect a delayed-supercritical system to converge slower because k is so close to 1. However, other
factors such as bin structure and number affect convergence because the calculated spectrum depends on the
convergence of the elements, or qij ’s, of the transition rate matrix. As we run more histories, the statistical
uncertainty of the tallied removal rates and probabilities, and thus the qij ’s, decreases.

Problems 7A-C: This is a continuous-energy hydrogenous medium with a 6:3:1 H:O:UO2 molecular
ratio. The enrichment is 1.17% 235U. Three runs explore the effect of the number of equal-lethargy bins on
the convergence of eigenvalues. Table V shows the energy bin structure and run characteristics for these
variations. All runs use 1× 105 histories per cycle.

Table V: Problem 7 energy bin structure and total active cycles (E in MeV).
Run B E1 EB−1 Cycles

A 81 14 5.0× 10−9 100
B 321 15 2.5× 10−9 120
C 641 15 1.0× 10−9 150

For this problem, the TORTE maximum and minimum energies are the same as in Problem 6. But, there
are now B − 2 equal-lethargy bins between the two limits E1 and EB−1, the bottom energy limits of energy
bins b = 1 and b = B − 1, respectively. Table VI shows results of the runs.

Table VI: Calculated eigenvalues for Problem 7.
Run k eigenvalue α0[s−1] α eigenvalues calculated

A 1.0018± 0.0004 9.4988× 10−4 87
B 1.0020± 0.0004 1.3454× 10−3 327
C 1.0024± 0.0003 1.4417× 10−3 647

All runs converge to the same k eigenvalue within statistical uncertainty. The fundamental α eigenvalue
is very near zero and shows much less relative agreement than the calculated k eigenvalue. Figure 7 shows the
convergence behavior for the fundamental eigenvalue and eigenvector for each of the three runs. Convergence
behavior for Run A ends before Runs B and C because more cumulative histories were run as the energy
bins increased. We use the root-mean-square (RMS) of the eigenvector to obtain a single value to measure
its convergence, where the RMS is

RMS(ψ) =

√
1
B

(ψ2
1 + ψ2

2 + · · ·+ ψ2
B).

Figure 7 does not include values calculated before reaching 5× 105 particles.
Both the fundamental eigenvalue and eigenvector converge. This delayed-supercritical system has a very

small α0. In terms of percent difference, the calculated α0 varies considerably over the cycles, but because
it is so close to zero, this is not a good measure of convergence. In absolute terms, α0 varies less than
2× 10−4 s−1 over the last 25 cycles.

The three runs approach different fundamental α eigenvalues. But, in Problem 6, the calculated α0

approaches the same value regardless of the number of energy bins. This is only because of the difference
in the systems; Problem 6 is far supercritical so its α0 is on the order of 1 s−1. In Table IV, the α0 for the
three runs varies on the order of 1× 10−2 s−1, an order of magnitude larger than the Problem 7 α0.

In Table VI, the difference between the α0 of Runs B and C is smaller than the difference between Runs
A and B, supporting the assertion that as B → ∞, α0 approaches the true fundamental α eigenvalue of
the system. Runs B and C converge to nearly the same α0, while Run A converges to a very different α0,
implying that B = 81 energy bins is insufficient for calculating the α0 for this delayed-supercritical system.
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Figure 7: Convergence of the Problem 7A-C fundamental eigenvalues and eigenvectors.

Higher α eigenvalues show similar convergence behavior. However, other than the three α eigenvalues
corresponding to the slowest-decaying delayed neutron precursor groups, all higher α eigenvalues are on the
order of 10 s−1. These higher α eigenvalues show less relative variation over the cycles, but the absolute
variation is greater than that of α0. For the three runs, the higher α eigenvalues converge to different
values. Thus, the spectrum for each of the runs looks different, as in Figure 6. Higher α eigenvectors show
considerable variation over the cycles, and in some cases for the highest α eigenvectors, show little to no
apparent convergence and vary up to 100% of the final RMS of the eigenvector. This is in part due to the
shape of the highest α eigenvectors being sharply peaked in a few energy bins.

One important factor is how these statistical variations or different spectra affect the eigenfunction
expansion. We examine the effect of statistical variation on a given α eigenvalue for two cases: α > 0 and
α < 0.

A positive α eigenvalue only occurs for α0 when the system is supercritical. Consider a system with the
true positive fundamental eigenvalue α0 and a calculated eigenvalue α0 − ε, where ε > 0. Assuming equal
coefficients A, the absolute difference between using these two eigenvalues in the eigenfunction expansion is

f+(t) = A exp(α0t)[1− exp(−εt)].

As time increases, f+(t) grows exponentially. For example, take the most different eigenvalues from Problems
6 and 7 in Tables IV and VI. At t = 10 s, f+(t) for the problems is 15% and 0.5%, respectively. This is
because, even though the Problem 6 α0 eigenvalues seem to agree better than those from Problem 7, the
absolute difference is more important to the eigenfunction expansion. Still, we are more interested in the
short-time behavior of the flux spectrum, during which f+(t) is negligible.

Consider a system with the true negative fundamental eigenvalue α and a calculated eigenvalue α + ε,
where ε > 0. Assuming equal coefficients A, the absolute difference between using these two eigenvalues in
the eigenfunction expansion is

f−(t) = A exp(αt)[exp(εt)− 1].

In contrast to when α is positive, in the limit as t→∞, f−(t) approaches zero. There is a finite time t > 0
where f−(t) is maximized:

t =
1
ε

ln
(

α

α+ ε

)
.

Thus, f−(t) for any negative α eigenvalue is bounded.
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Figure 8 compares the flux spectrum using all modes for the three runs. The source strength is set at
Q0 = 1× 1015 cm−3 · s−1. The initial source is different for all three runs because the energy bin structures
differ. For Run A, a source in energy bin b = 1 is actually a square-shaped pulse in energy from Emax to
E1. To match this source for Runs B and C, the initial source is distributed across the appropriate bins. For
Run B, the source is spread over the first 5 energy bins and for Run C, the source is spread over the first 9
energy bins. This is still an approximation because the bin structures for the runs do not fall on the same
grid, but the difference introduced from this approximation is insignificant.

We explain the four subplots from top left to bottom right: (t = 0.05 ms) At a very short time after
the pulse, the neutrons for all runs downscatter at equal rates and align along the same line. However, the
solution from Runs B and C show much more noise than the solution for Run A. This is in part due to the
higher eigenvectors not being completely converged for Runs B and C. With fewer eigenvalues, the higher
eigenvectors of Run A are more converged. Run A still shows some variation in the lowest energy bins.
(t = 11.0 ms) All runs still agree on the flux spectrum. However, resonances are more resolved with more
energy bins in Run C. Run A still shows dips due to resonances, but they are less pronounced. (t = 1.0
min) All higher kinetic modes are no longer present, and the fundamental mode dictates the shape and time
behavior of the solution. Even at this time, the three runs agree considerably well despite the difference in
the calculated α0. (t = 1.0 hr) The difference caused by the α0’s of the runs is not apparent until long times.
After an hour, the solution for Run C increases considerably more than Run A. However, if this system is
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Figure 8: The Problems 7A-C approximated flux spectra from the eigenfunction expansion showing the effect
of the different convergence behavior from using different numbers of energy bins.
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left unchanged for an hour, temperature and geometry changes will have rendered this solution invalid.
Overall, the flux spectra for all runs agree well despite the difference in the α-eigenvalue spectra and α0.

This is especially true for the short-time behavior of the flux spectrum.

Flux Transients

To show the usefulness of the eigenfunction expansion to approximate the time-dependent flux spectrum,
we select two problems to explore the short time dependence of the solution: a hydrogenous medium and a
graphite medium. Both are slightly supercritical systems with B = 1000 equal-lethargy bins. To calculate the
expansion coefficients for both problems, we use a monoenergetic source in energy bin b = 1, Q0(1) = 1×1015

cm−3 · s−1. This is approximately a 20 MeV pulse.
Problem 8: This is a delayed-supercritical, continuous-energy, hydrogenous medium with a 4:2:1

H:O:UO2 molecular ratio. The calculated α0 = 1.4758 × 10−3 s−1. Figure 9 shows the approximated
flux spectrum for selected times.

We explain the four subplots from top left to bottom right: (t = 0.5 ms) Neutrons from the monoenergetic
pulse source begin to downscatter. Flux dips form at high energies as neutrons downscatter past resonances.
Because neutrons are able to downscatter to near-zero energies in a collision with hydrogen, a long tail of
neutrons extends to lower energies. (t = 1.5 ms) Neutrons continue to downscatter as the flux at high

10−8 10−6 10−4 10−2 100
100

101

102

103

104

105

106

107
time = 0.5 ms

10−8 10−6 10−4 10−2 100
100

101

102

103

104

105

106

107
time = 1.5 ms

10−8 10−6 10−4 10−2 100
100

101

102

103

104

105

106

107
time = 30.0 ms

energy [MeV]

flu
x 

[c
m

−2
s−1

]

 

 

fundamental mode

all modes

10−8 10−6 10−4 10−2 100
100

101

102

103

104

105

106

107
time = 150.0 ms

Figure 9: The Problem 8 approximated flux spectrum from the eigenfunction expansion for a monoenergetic
high-energy pulse source in a delayed-supercritical hydrogenous medium.
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energies finally begins to dip. A very broad flux packet forms. (t = 30.0 ms) The flux at high energies
continues to decrease and dips below the fundamental mode because the neutrons downscatter out of higher
energies faster than they induce fissions and emit neutrons at higher energies. Lower energy resonances
cause dips in the flux packet as neutrons downscatter. (t = 150.0 ms) The flux at higher energies recovers
as neutrons enter thermal energies and induce fission. The majority of the higher kinetic modes decay away
and the complete flux solution approaches the fundamental mode solution.

Problem 9: This is a highly-scattering, continuous-energy, graphite medium with a 4000:1 C:UO2

molecular ratio. It is slightly above delayed supercritical, and the calculated α0 = 1.6529×10−2 s−1. Figure
10 shows the approximated flux spectrum for selected times.

We explain the four subplots from top left to bottom right: (t = 0.05 ms) Neutrons from the monoener-
getic pulse begin to downscatter and form a distinct flux packet, as neutrons colliding with carbon cannot
scatter to near-zero energies. The flux at higher energies decreases rapidly, as neutrons are not at energies
at which fission can replenish the higher energy flux. The peaks below the energy of the flux packet are
statistical noise from the eigenfunction expansion attempting to model near-zero flux or very improbable
neutrons existing at lower energies. (t = 0.50 ms) The distinct flux packet maintains its form and continues
to propagate to lower energies. The flux at higher energies decreases considerably and forms dips due to
resonances. (t = 9.00 ms) The flux packet encounters low energy resonances as the flux at higher energies
decreases far below the fundamental mode. Not enough neutrons induce fission because the flux packet is
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Figure 10: The Problem 9 approximated flux spectrum from the eigenfunction expansion for a monoenergetic
high-energy pulse source in a highly-scattering graphite medium.
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still above energies at which fission is preferential. (t = 80.00 ms) The flux at higher energies recovers due
to neutrons inducing fission. The complete flux solution approaches the fundamental mode solution.

With B = 1000 energy bins, the neutron flux approximations capture dips in the flux due to cross section
resonances. The difference between the two problems in the depth of these resonances is due to the vastly
different relative concentrations of moderating nuclei. The flux packet is far more defined in Figure 10
because the neutrons have a minimum non-zero energy to which they can downscatter. This also contributes
to the Problem 9 flux at higher energies decreasing below the fundamental mode more than the Problem 8
flux. Furthermore, the flux at higher energies in Problem 9 tends to oscillate more, rising and decreasing
several times before approaching the fundamental mode solution. There is a flux hump at higher energies in
Problem 8 because of the higher relative concentration of fissile nuclei compared to Problem 9.

In both problems, on the log-log scale in the plots, the fundamental mode solution does not move as
the higher modes decay. This far more physical solution is in stark contrast to the Problem 3 flux solution.
These are relatively slow transients because k < 1 + βeff. We expect the fundamental mode to move faster
for a prompt supercritical system. Most of the interesting energy-dependent flux effects occur within a tenth
of a second.

Problems 8 and 9 show the potential for use of eigenfunction expansion to approximate the time depen-
dence of the flux spectrum. In both problems, the higher kinetic modes do not decay to the fundamental
mode solution for a few seconds. During these first few seconds, the fundamental mode solution is a com-
pletely inaccurate representation of the flux spectrum. This flux shape is important for short time transients,
pulsed neutron sources, or determining reaction rates for ADS systems. This energy-dependent time behavior
is of interest in time-dependent Monte Carlo.

5 Summary

We have a method for calculating the α-eigenvalue spectrum in a continuous-energy infinite-medium. The
continuous-time Markov process described by the transition rate matrix provides a way of obtaining the
α-eigenvalue spectrum and kinetic modes. These are useful for the approximation of the time dependence
of the system.

Performance

The continuous-energy infinite medium Monte Carlo code TORTE accurately calculates the k eigenvalue
and transition rate matrix of hydrogenous and graphite media. The calculated eigenvalue spectrum is an
approximation to the true infinite α-eigenvalue spectrum. With enough energy bins, TORTE calculates the
true fundamental α eigenvalue as well as a few higher eigenvalues. The highest calculated α eigenvalues are
an approximation to the actual higher α-eigenvalue spectrum, but still serve to approximate the short-time
dependence of the flux.

This method is independent of the k eigenvalue of the system, although the convergence may behave
differently depending on how close the system is to critical. The eigenfunction expansion approximates the
time-dependent flux for the short time that the fundamental mode is a poor approximation.

Future Work

Ongoing and future work for this method include convergence and comparisons to time dependent Monte
Carlo. Convergence conclusions are preliminary and based off of the behavior of a few types of systems.
Finding some quantification of the statistical uncertainty of the calculated fundamental eigenvalue is also of
interest.

Comparing the approximated fluxes to true time dependent Monte Carlo is useful in quantifying the
usefulness of the eigenfunction expansion method and thus the higher kinetic modes. If the approximated
flux matches well, then studying the accuracy of the approximation or identifying its weaknesses gives insight
to the method. Lastly, introducing leakage and spatial variables to obtain two or three dimensional kinetic
modes is of great use in reactor analysis.
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[19] M.B. Chadwick, M. Herman, P. Obložinský, et al., “ENDF/B-VII.1 Nuclear Data for Science and
Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data”, Nuclear Data
Sheets, 112, pp. 2887 - 2996, 2011.

[20] E.W. Larsen, “NERS 543: Advanced Nuclear Reactor Theory Lecture Notes,” (2008).

[21] E.W. Larsen, Personal Correspondence, (2012).

20


