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Introduction:  Codes for Time-

Dependent Isotopic Evolution 

• Isotope Generation and Depletion 

– ORIGEN-S/ORIGEN2 (ORNL) – Matrix Exponential Method 

– CINDER90 (LANL) – Markovian Chains 

• Depletion codes require accurate cross section and flux data  

– MCNP provides system-dependent, energy-integrated cross sections/fluxes 

for important isotopes 

– MCNP links to CINDER90 internally or externally through Monteburns to 

any of the 3 codes in bullet 1 Profile of ATW System
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– Activation script exists for proton irradiation 

of a target/spallation product generation 

• Deterministic Lattice Physics Methods 

– CASMO/SIMULATE - nodal 3-D simulator  

– Vendor Codes 



Calculations Rely on Data 

147Nd
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• Extent of Nuclides 

– CINDER90 3400 Isotopes, 1325 Fission Products 

– ORIGEN2  1700 isotopes, 850 Fission Products 

– ORIGEN-S 1946 isotopes, 1119 Fission Products 

– Applications such as radiochemistry are limited to ~40 nuclides; 
could benefit from more detailed calculations.  

• Fission Product Yields 

– ORIGEN includes up to 8 actinides/reactor type 

– CINDER90 includes up to 24 actinides from ENDF-B VI 

– Thermal: 18 isotopes, Fast: 22 isotopes,  

     14 MeV: 11 isotopes, Spontaneous Fission:  9 isotopes 

The blue isotopes 

are all created by 

fission and decay 

into 147Nd. 



CINDER90  

(Tal England, Bill Wilson) 

• CINDER90 constructs sequences/chains of nuclide interactions and 

follows all possibilities until they are smaller than a limiting value. 

• Much data for the CINDER90 library came from the Evolved Netherlands 

Energy Research Foundation Activation File (ECNAF) but may also be 

calculated by ALICE or McGNASH. 

– Spontaneous fission 

– Spallation product generation 

– Radionuclide hazards (Cat 3) 

– Delayed neutrons (purpose of initial link to MCNP) 

– Ground state plus first and second isomeric state nuclides 

– Processed spectral data: , -,+, +X-ray,  emission 

– 63-group default neutron cross sections for a Power Reactor; collapsed 

to 1-group for actual calculations 

               - 25-group photon spectra 

 

 

 

Cross Sections:  

- Fission, (n,),  

- (n,), (n,t) 

- (n,2n), (n,3n) 

- more 



Methodology:  

System-Dependent Depletion Process 

Result is neutron fluence, or commonly 

Burnup (BU) = Power*Time/Tons Heavy Metal 
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Non-Linear Problem 

 The depletion equation uses time-
dependent fluxes, interaction rates, and 
number densities to determine inventories 
as a function of time. 
– Unfortunately, the time-dependent flux also is 

dependent on the time-dependent nuclide 
density, thus making the depletion equation 
NONLINEAR 

 

 Reaction rates must be reevaluated as 
spectrum alters further calculations 
– More time intervals = More computational cost 

 

 MCNP6 approximate reaction rates over 
time 



 

Flux Normalization/Power 

 

 

 

 

 

  

 P  = thermal power, 

 keff = effective multiplication factor, 

   = average number of neutrons produced per fission 

               = fsrc/floss or keff * src/floss (“nps” vs. “ksrc” definition), 

 floss = weight of neutrons lost to fission (from MCNP),  

 src = weight of source neutrons (~1),  

 fsrc  =  weight of source neutrons gained in fission,  

 f = the macroscopic fission cross section, 

 V = volume of material, and 

  = neutron flux.  
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Recoverable Energy per Fission (Qrec) 

• CINDER90 gives Qrec for 36 actinides 

• Prompt Q value is determined from  

         ENDF or other sources. 

– File 1 MT 458 

– MCNP6 has data for ~23 actinides 

– Additional Q values desired!  

• Delayed Q value may be estimated 
assuming local energy deposition 

– General 11% increase may be applied. 

Emitted and recoverable energy for fission of U-235

Form
Emitted Energy 

(MeV) 

Recoverable 

Energy (Mev)

Fission Fragments 168 168

Fission Product Decay

         γ -rays 8 8

         β-rays 7 7

neutrinos 12 --

Prompt gamma rays 7 7

Fission neutrons (kinetic 

energy) 5 5
Capture γ-rays -- 3-12

Total 207 198-207

neutrinocaptureeffdelayedprompterablere QQkEQQQ   *))((cov

– Total Q increases with BU as higher actinides build in. 

– 207 of 390 isotopes contain capture gamma data in ENDF VII.0; deposited 
gamma energy may be calculated.  

 



Applications 

• Modeling of Full Reactor Cores 

• Radiochemistry diagnostic calculations and nuclear 

detonation simulations 

• Nonproliferation:  determination of Pu, fission products, 

and more from irradiated nuclear fuel 

– Varies with reactor type 

– Process-dependent 

• Innovative Reactor Concepts/Fuel Cycles 

• Accelerator-Driven Systems 



MCNP Full Reactor 

Core Modeling 

 With increased computing power and 

memory reduction techniques, we can 

now model individual pins in a 

Pressurized Water Reactor core using 

Monte Carlo burnup simulations. 

 6,447 fuel pins in 1/8th core geometry, 

1 axial segment 

 Desired future features: 

• Even more memory reduction 

• More tally flexibility for  

        Monteburns. 
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Comparison to Destructive Analysis (DA) 

• H.B. Robinson infinitely-reflected 

assembly simulation. 

• Plutonium isotopics can be predicted 

within 2-4% of measured values. 

• Better benchmark data is desirable: 

– DA for multiple pins across the 

assembly, 

– Detailed operating history, and 

– Information on surrounding 

assemblies. 

 

MCNP6 SCALE

U235 -0.08 1.97

U236 0.17 0.52

U238 -0.73 -0.07

Pu238 -8.58 -11

Pu239 -0.20 4.21

Pu240 1.32 3.94

Pu241 -2.56 -1.72

Np237 1.58 1.46

Tc99 7.79 14.1

Cs137 -2.45 0.42

% Error = 100%* 

(Calculated – Measured)/Measured 



New Albedo Boundary Capability 

Assists Ability to Match DA 



Desired Future Work:   

Memory Limitations Increase with: 

• Isotopes tracked 

– Fission Products 

– Decay Chains 

• Reaction rates calculated 

– The more reaction rates that are calculated, the larger the storage 
requirements. 

– Only most probable reaction rates should be tracked. 

• Time steps calculated 

• Geometrical size 

– Physical problem size 

– Giant systems may endure large temperature and material density 
variations leading to complicated meshing procedures to accurately 
calculate spatial reaction rates 

 

 

 
 

 

 



Irradiation Creates Fission Products 

and Isomers 

• ENDF/B-VII has 323 non-actinides and 70 actinides that can be 
included in irradiation, ~220 FPs, 3 elements, and 9 metastable isotopes. 
 

• TENDL provides ~2000 isotopes but has not been tested for burnup. 
 

• Lumped fission products may increase accuracy. 

– Fission products lacking data could be lumped into a problem-
dependent material for particle transport. 

• Improved computational cost, but 

• Results are sensitive to choice of fission products. 

• Lumped cross sections would be burnup-dependent. 

– How do we determine what worth value is an acceptable cutoff for 
lumping? 
 

• Isomer branching following capture currently uses established fractions 
but should be energy-dependent. 

 

 



Calculating Number Density  

Error and Error Propagation   

• Toshikazu Takeda, Naoki Hirokawa and Tomohiro Noda “Estimation of Error 
Propagation in Monte-Carlo Burnup Calculations” Journal of Nuclear 
Science and Technology, Vol 36, No. 9, September 1999. 

 

• Number density in depletion calculation satisfies the following equation:  

• M(t) = burnup matrix of group collapsed reaction rates 

• N(t) = number density  
)()(

)(
tNtM

dt

tdN


• If N0(t0) is the true number density then N(t0) = N0(t0) + δN(t0)  

 

• If M0(t0) is the true reaction rate then M(t0) = M0(t0) + δM(t0)  

 

• Then we have an equation to explain change in error of the number density 
as a function of time step: 

)()()()(
)(
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Optimization of Hardware/Parallelization 

• Continuously improving hardware is always desired! 

• Calculations with large numbers of materials possible using: 

• OpenMPI parallel processing implementation for both transport and depletion 

• Infiniband 

• Nodes with lots of memory (256 GB - 16 cores), and SSDs for swap space 

• Example of large problem run: 3,960 materials to burn, ~25 seconds per material  

• Serial mode, 3,960*25 seconds = ~27 hours per production/depletion calc. 

• Parallel mode with ~200 processors  scales by ~200, thus 27 hours  ~10 min. 

• Ability to choose different machinefile (hostfile) for parallel run 

– MCNP has optimum curve for selection of number of CPUs in kcode calculation 

• Too many will slow down calculation in communication 

– For production/depletion want to use as many CPUs as possible 



Conclusions/Areas of Improvement 

• Monte Carlo burnup capability has made HUGE progress! 

• Full nuclear core modeling with MCNP now possible with limited axial fidelity. 

• Future Work 

– More memory reduction 

– Incorporate full isotope chains into a range of calculations 

• Increase in products given detailed geometry/fluxes 

• Lumped fission products 

– Monteburns would benefit from tally flexibility; internal MCNP burn capability 

avoids the necessity 

– Need Qrec values for more actinides 

– Energy-dependent isomer branching ratios 

– Other predictor-corrector methods should be explored 



Applications: Large Reactor Core Design 

• Traditional technique:  deterministic 

• Solve lots of smaller calculations to get average 
parameters to solve the larger calculation. 

• Fuel bundle calculation generates collapsed 
group constants for the full core solution. 

• Utilize collapsed group cross sections to run a 
large-scale nodal calculation of reactor 
behavior. 

• Increases in computational power now improve 
calculations! 

• Time-dependent behavior of every fuel pin is 
important. 

• MCNP can handle detailed, complex geometry 
with continuous-energy data. 

 

 
 

 
 



Data Requests 

• Two categories 
– CINDER90 

• Fission Yields  England/Rider Data is from 1992 
– Data only exists for 0.025 eV,500 KeV, and 14 MeV 

– Does better fission yield data, at more energies, exist? 

• Proton libraries for minor nuclides 
– There are no proton libraries in CINDER90 for minor 

nuclides... This is important for proton target based 
interrogation 

– MCNPX 
• Lack of photon production data 

• Examine Am-241 capture xn to improve Cm-242 
prediction  

 



Traditional Predictor-Corrector MCNP6 Predictor-Corrector 
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Isomer Branching 

• MCNPX 2.6.0 over predicted (n, ) by 

Tallying total (n, ) 

• At ICAPP 2008  “future focus… include 

ENDF/B File 9 MT 102 and File 10 in 

ACE...” 

– W. HAECK, B. Cochet, L. Aguiar, 

“Isomeric Branching Ratio Treatment 

for Neutron-Induced Reactions,” 

Trans ANS, 103, pg 693-695 (2010) – 

Memory Increase 

• Isomer Branching in MCNP   

– Less memory and faster!    
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