
LA-UR-13-24254
Approved for public release; distribution is unlimited.

Title: Importance of Scattering Distributions on
Criticality

Author(s): Kiedrowski, Brian C.

Intended for: ANS Nuclear Criticality Safety Division Topical (NCSD 2013),
2013-09-29/2013-10-03 (Wilmington, North Carolina, United States)

Issued: 2013-06-11

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National 
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.  
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to 
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. 
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the 
U.S. Departmentof Energy.  Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; 
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



ANS NCSD 2013 - Criticality Safety in the Modern Era: Raising the Bar
Wilmington, NC, September 29 October 3, 2013, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2013)

IMPORTANCE OF SCATTERING DISTRIBUTIONS ON CRITICALITY
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ABSTRACT

MCNP6 has the capability to compute sensitivity coefficients for k from scattering distributions as a
function of scattering cosine. A new capability has been prototyped, and will hopefully available in a
future release, that takes those results and converts them into sensitivities for Legendre scattering
moments, which is discussed. Results are shown for a variety of criticality benchmarks for elastic
scattering, and it appears that the P1 elastic scattering Legendre moment (i.e., average scattering cosine
µ̄) may indeed have a significant effect in fast, bare and reflected systems with significant leakage. The
results also show that higher elastic moments and all inelastic moments are typically not important to
criticality.
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1. INTRODUCTION

MCNP6.1 [1], the first production version of MCNP6, has a new capability to compute sensitivity
coefficients for the effective multiplication k from continuous-energy nuclear data [2]. The code can
generate sensitivity coefficients to cross sections, fission ν and χ, as well as scattering distributions. The
scattering distributions have typically not been a major focus until recently when Aliberti and McKnight
[3] showed that the average scattering cosine µ̄ can have a significant impact in bare spherical systems.
They were also able to take these sensitivities and convolve them with Evaluated Nuclear Data File
(ENDF) covariance data, which is represented as covariances for Legendre moments (µ̄ is the P1 Legendre
moment) as a function of incident energy.

The capability in MCNP6.1, however, cannot estimate the sensitivity to µ̄ directly, but rather does so as a
function of scattering cosine µ. To facilitate comparisons to published results as well as uncertainty
propagation, a new capability to take the sensitivities as a function of scattering cosine into sensitivities to
Legendre scattering moments has been developed and is planned to be released in the next version of
MCNP6.

This paper discusses the new method, and applies it to 22 criticality benchmarks from the International
Criticality Safety Benchmark Experiment Project (ICSBEP) Handbook [4]. The results show that the P1

elastic scattering distribution has a significant effect on criticality for fast bare and reflected systems where
leakage is significant. The continuous-energy Monte Carlo results shown are in general agreement with
those from Aliberti and McKnight, which are from multigroup deterministic calculations. The results also
show that the higher elastic Legendre moments and inelastic distributions do not have a significant effect
on criticality, implying that having only µ̄ covariances (which is all that is currently available for some
isotopes in ENDF/B-VII.1) is sufficient for uncertainty quantification for most criticality applications.
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2. METHOD

The sensitivity coefficient of k with respect to parameter x is defined as

Sk,x =
x

k

dk

dx
. (1)

Here the parameter x is taken to be some nuclear data, e.g., cross section, prompt fission spectra, etc. This
can be found from perturbation theory as a ratio of adjoint-weighted integrals:

Sk,x = −

〈
ψ†, (Σx − Sx − λFx)ψ

〉
〈ψ†, λFψ〉

. (2)

Here ψ is the angular (forward) flux and ψ† is its adjoint function. Σx is the cross section corresponding to
x if x is a cross section, and zero otherwise (e.g., fission χ). Sx is the integral scattering operator for x if x
is a scattering cross section or law [includes elastic, inelastic, (n,2n), etc.], and zero otherwise. Fx is the
integral fission operator for x if x is a fission cross section, fission ν, or fission χ and zero otherwise. The
quantity λ = 1/k and the brackets denote integration over all phase space.

The adjoint-weighted integrals are computed by special tallies within MCNP using the iterated fission
probability method [5].

For scattering distributions, the Σx and Fx in Eq. (2) terms are always zero. Furthermore, the scattering
law is integrated over some cosine bin, where i represents the index for left edge of the bin and i+ 1/2
represents the bin center. The simplified version for Eq. (2) is therefore

Sk,f,i+1/2 =

〈
ψ†,Sx,iψ

〉
〈ψ†, λFψ〉

, (3)

where the i subscript on Sx represents that the integration of the forward scattering source is only over
cosine bin i.

The sensitivities computed by Eq. (3) are not entirely correct because they do not account for the fact that
they need to be renormalized such that the integral of the probability function is preserved. In other words,
the sensitivity represents some small increase of the data in some energy range, which needs to be offset by
decreases elsewhere. There are many possible methods for doing this; MCNP uses a classic approach
where the entire distribution is renormalized by a constant factor after the hypothetical increase. This
renormalization can be taken into account by

Ŝk,f,i+1/2 = Sk,f,i+1/2 − Fi+1/2Sk,f (4)

Here Sk,f,i+1/2 represents the sensitivity coefficient for f if the distribution were left unnormalized, Fi+1/2

represents the bin-integrated cumulative density function (CDF) obtained from

Fi+1/2 =
∫ µi+1

µi

dµ f(µ), (5)

and Sk,f is given by

Sk,f =
N−1∑
i=0

Sk,f,i+1/2, (6)
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where there are N − 1 cosine bins and N bin edges.

The ENDF covariance data for scattering distributions, however, is represented as uncertainties and
correlations of Legendre scattering moments. It is therefore beneficial to convert the sensitivities into that
format as well. Let f(µ) be the probability density function (PDF) of a neutron scattering with cosine µ
(the incident and outgoing energy dependence are not included for notational brevity). The scattering PDF
may be reconstructed by its Legendre moments through

f(µ) =
∞∑

`=0

2`+ 1
2

P`(µ)f`, (7)

where the `th Legendre moment is found by

f` =
∫ 1

−1
dµ P`(µ)f(µ). (8)

Using the definition of the sensitivity coefficient in Eq. (1), the relative change in k from a relative change
in f may be found by

∆k
k

=
∫ 1

−1
dµ

∆f(µ)
f(µ)

ŝk,f (µ). (9)

Here ŝk,f (µ) is the sensitivity density, which is the bin-integrated sensitivity from Eq. (4) per unit cosine.
The sensitivity density and the bin-integrated sensitivities are related by

Ŝk,f,i+1/2 =
∫ µi+1

µi

dµ ŝk,f (µ). (10)

The integer values of i represent bin edges and the bin-integrated sensitivities are taken at bin centers or
i+ 1/2. If the binning is fine enough, the central difference may be used to adequately approximate the
relationship between the two:

ŝk,f,i+1/2 =
Ŝk,f,i+1/2

µi+1 − µi
. (11)

Likewise, MCNP may estimate the scattering CDF Fi+1/2 where Eq. (9) requires the PDF. Again, for a
fine enough binning, central differencing may be used as well:

fi+1/2 =
Fi+1/2

µi+1 − µi
. (12)

Going back to Eq. (9), suppose the `th Legendre moment is perturbed by a multiplicative factor of 1 + p
where p is small. The change in the scattering distribution ∆f is then

∆f(µ) =
2`+ 1

2
P`(µ)f`p. (13)

Assuming that the binning is fine enough that midpoint integration is valid, Eq. (9) may be written in a
discrete form:

1
p

∆k
k

=
2`+ 1

2
f`

N−1∑
i=0

(µi+1 − µi)
P`(µi+1/2)
fi+1/2

ŝk,f,i+1/2. (14)

The left-hand side is the relative change in k divided by the relative change in the Legendre moment f`, so
that is the sensitivity coefficient for the `th Legendre moment by the definition of the sensitivity coefficient.
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Substituting the CDFs in place of the PDFs using the central differencing approximation, the final result for
the Legendre moment is obtained:

Ŝk,f,` =
2`+ 1

2
f`

N−1∑
i=0

(µi+1 − µi)
P`(µi+1/2)
Fi+1/2

Ŝk,f,i+1/2. (15)

There still remains the task of computing the Legendre moment f`, which is done by midpoint integration:

f` =
N−1∑
i′=0

Fi′+1/2P`(µi′+1/2). (16)

Here the dummy index i′ is used to delineate between the index i.

The implementation of solving for Ŝk,f,` is as follows: First, a cosine grid is created at problem setup. The
user may provide one, and if not, a default of 200 equally spaced cosine intervals of width 0.01 is used.
Note that in MCNP6, these scattering cosines and all calculations are in the reference frame of the table,
which is usually the center-of-mass frame. MCNP obtains random samples of the renormalized
sensitivities and the scattering CDFs on the cosine grid every block of cycles or iterations in the eigenvalue
calculation, and applies Eq. (15) to estimate the random samples of the Legendre scattering moment
sensitivities. This process is repeated again and again and the random samples are averaged to provide the
final estimate of the Legendre scattering moment sensitivities.

The estimate of the Legendre moment sensitivity should be accurate if the cosine grid is a fine enough
representation (the default has empirically been found to be good enough) and there are no negative
scattering probabilities, which MCNP does not treat. Sometimes with Legendre expansion representations
in ENDF, small amounts of unphysical negative scattering occurs. When the data is processed by NJOY,
these negative regions are zeroed out or ignored. Should the data have significant amounts of negative
scattering, estimates obtained by MCNP for the Legendre moment sensitivities will not be accurate. Then
again, negative scattering is unphysical anyway, and the data representation should have used more
Legendre moments for a more accurate representation of the scattering distribution.

To verify this method, fictitious multigroup cross sections were created, and a perturbed cross section
library was created by directly changing either the P1 or P2 scattering moment. For each case, two
calculations were run, one with the reference data, and the other with the perturbed data, and the difference
in k was used to estimate the Legendre sensitivities. These results were compared to the Legendre
scattering moment sensitivities obtained from perturbation theory. The results show agreement and are
published elsewhere [6].

3. RESULTS

To show the impact of scattering distributions, 22 benchmarks were selected from the ICSBEP Handbook
to cover a variety of fissile isotopes, geometries, and neutron spectra. ENDF/B-VII.1 nuclear data [7] was
used for all calculations. The default of 200 equally-spaced cosine bins was used.

Tables I and II show P1 through P5 elastic scattering Legendre moments sensitivities to k for selected
isotopes from each of the 22 benchmarks summed over incident energies from 0 to 10 MeV. An incident
energy grid with 0.1 MeV intervals was used for each.
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Table I. Legendre elastic scattering moment sensitivities to k for fast/intermediate benchmarks

Benchmark Isotope P1 P2 P3 P4 P5

hmf-001 235U -0.10396 0.00401 0.00004 -0.00019 0.00050

hmf-004

1H 0.00013 0.00000 0.00000 0.00000 0.00000
16O -0.01021 0.00384 -0.00032 0.00005 0.00000

235U -0.05046 0.00112 -0.00042 -0.00044 0.00152

hmf-028
235U -0.03883 0.00119 -0.00103 0.00049 0.00025
238U -0.11071 0.01589 -0.00467 0.00139 0.00151

hmf-072
56Fe -0.01716 0.00101 0.00036 0.00016 0.00014
235U -0.00845 0.00054 -0.00029 0.00083 -0.00009

hmi-006 C -0.01259 0.00183 -0.00006 0.00001 0.00002
235U -0.00312 0.00111 -0.00064 0.00014 0.00012

hci-003

1H 0.00028 0.00000 0.00000 0.00000 0.00000
235U -0.02399 0.00065 -0.00076 0.00043 0.00035
238U -0.04202 0.00474 -0.00301 0.00209 0.00018

imf-003
235U -0.04066 0.00056 -0.00084 0.00057 0.00032
238U -0.07188 0.00147 -0.00145 0.00091 0.00111

mmf-008
235U 0.00082 0.00007 0.00007 -0.00040 -0.00003
238U 0.00985 0.00040 -0.00397 0.00241 -0.00031

pmf-001 239Pu -0.08958 0.00551 -0.00379 0.00224 0.00134

pmf-002
239Pu -0.07224 0.00394 -0.00309 0.00221 0.00089
240Pu -0.01516 0.00045 -0.00172 0.00147 0.00011

pmf-006
238U -0.13136 0.02764 -0.00909 0.00271 0.00106

239Pu -0.03421 0.00086 -0.00195 0.00210 0.00018

pmf-018
9Be -0.04174 0.01282 -0.00138 0.00006 0.00000

239Pu -0.05124 0.00178 -0.00256 0.00171 0.00087

smf-008
235U -0.08178 0.00205 -0.00106 -0.00001 0.00075

237Np -0.00312 -0.00005 -0.00035 0.00033 0.00001

umf-001 233U -0.09876 0.00648 -0.00112 -0.00008 0.00133

umf-004

182W -0.01423 0.00153 0.00030 0.00019 -0.00032
183W -0.00679 0.00033 0.00046 -0.00008 -0.00010
184W -0.01664 0.00168 0.00039 0.00035 -0.00042
186W -0.01768 0.00222 0.00032 0.00046 -0.00051
233U -0.06769 0.00299 -0.00098 0.00073 0.00100
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Table II. Legendre elastic scattering moment sensitivities to k for thermal benchmarks

Benchmark Isotope P1 P2 P3 P4 P5

hst-013
1H 0.00040 0.00000 0.00000 0.00000 0.00000

16O -0.00599 0.00117 0.00005 0.00000 -0.00001
235U 0.00000 0.00000 0.00000 0.00000 0.00000

ict-002

1H 0.00025 0.00000 0.00000 0.00000 0.00000
16O -0.00520 0.00046 -0.00008 0.00004 -0.00001

235U -0.00005 -0.00001 -0.00004 0.00001 -0.00002
238U -0.00062 -0.00015 -0.00008 0.00011 0.00000

lct-008

1H 0.00002 0.00000 0.00000 0.00000 0.00000
16O -0.00139 -0.00008 -0.00010 0.00000 0.00000

235U -0.00004 -0.00010 -0.00002 -0.00000 0.00001
238U -0.00233 0.00020 -0.00088 0.00016 0.00014

lst-002

1H 0.00024 0.00000 0.00000 0.00000 0.00000
16O -0.00528 0.00045 -0.00001 -0.00001 0.00000

235U -0.00001 0.00000 0.00000 0.00000 0.00000
238U -0.00043 -0.00027 0.00005 0.00006 0.00005

mct-001

1H 0.00033 -0.00001 0.00000 0.00000 0.00000
16O -0.00960 0.00174 0.00000 -0.00004 0.00000

238U -0.00267 -0.00027 -0.00006 0.00052 0.00008
239Pu -0.00043 0.00002 -0.00022 0.00013 -0.00002

pst-009

1H 0.00014 0.00000 0.00000 0.00000 0.00000
16O -0.00263 0.00011 0.00011 -0.00003 0.00001

239Pu -0.00001 0.00000 0.00000 0.00000 0.00000

uct-002

1H 0.00041 0.00000 0.00000 0.00000 0.00000
16O -0.01171 0.00149 -0.00004 -0.00002 0.00000

232Th -0.01315 0.00139 -0.00141 0.00110 -0.00014
235U -0.00044 -0.00010 0.00006 0.00001 -0.00002

The results show that fast criticals are far more sensitive than the thermal ones to the angular distributions
of elastic scattering. This is expected because scattering becomes more isotropic at lower incident neutron
energies.

The amount of leakage and the proximity of materials to the system boundary in the fast criticals also plays
a significant role as well. For example, hmf-028 and pmf-006, the Flattop experiment with the
highly-enriched uranium (HEU) and plutonium cores respectively and a natural uranium reflector, have the
highest sensitivities to the 238U P1 elastic moment. The sign of these is negative because increasing P1

increases leakage and leads to a corresponding decrease in k.

On the other extreme is mmf-008, the Zebra-8 experiment, which is modeled as an infinitely reflected fast
unit with a square 37.5 w/o enriched uranium metal plate and natural uranium reflector plates. The 238U
has a lower sensitivity to P1 than the others, but has a positive sign, unlike all the other major P1 moment
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sensitivities reported because the effect of backscattering neutrons into the HEU plate and not having any
leakage to prevent.

For the thermal systems, the P1 elastic moment sensitivities are typically an order of magnitude lower than
in the fast ones. The 16O is the significant contributor in the water moderated systems, which these all are.
In some cases, the actinides of 238U or 232Th provide significant neutron reflection, and those tend to be
more significant in those particular cases.

For this wide selection of benchmarks, rarely does any moment above P1 have a significant effect. The
reasons for this are two-fold. First, the neutrons in a typical fast assembly are 1-2 MeV or lower and in that
regime, much of the anisotropy can be described through only the first Legendre moment. In other words,
the number of neutrons where a high-order Legendre polynomial is necessary are small and therefore do
not contribute much to the overall multiplication of the system. Second, increasing a higher moment tends
to both increase forward scattering and backscattering simultaneously, leading to competing effects on the
multiplication.

Figures 1 and 2 give the P1 through P5 moments for pmf-001 (Jezebel) and hmf-028 (Flattop with the
HEU core) as a function of incident neutron energy. In both cases, the P1 is clearly dominant, and peaks at
about 500 keV and then decreases as higher Legendre moments are needed to treat scattering. The higher
moments peak at higher energies, but are much less in magnitude for the reasons just discussed.

The results from Aliberti and McKnight have their Jezebel P1 sensitivity peaking at a few MeV as opposed
to 500 keV. This makes sense as their deterministic code can only handle P1 scattering, so all the
anisotropy has to be described with only the first Legendre moment. The sum over incident energies shows
agreement, however. Their result is approximately -0.10, whereas this result is -0.09, which is good
agreement considering the different methods and cross section treatments.
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Figure 1. Elastic Legendre moment sensitivities of 239Pu in Jezebel.
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Figure 2. Elastic Legendre moment sensitivities of 238U in Flattop with the HEU core.
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Figure 3. Elastic and Inelastic P1 Legendre moment sensitivities in Lady Godiva.

Figure 3 shows the elastic and inelastic P1 moments for 235U in hmf-001 (Lady Godiva). Note that he
inelastic moment in is multiplied by 50 to make the curves appear on the same scale. The P1 inelastic
moment has a similar shape to the elastic, but peaks at higher energies and is (unscaled) much smaller in
magnitude. Never in any of the cases run does the P1 inelastic case compare significantly with the elastic
one. For criticality, therefore, it is probably safe to neglect Legendre moments of inelastic scattering when
doing sensitivity/uncertainty analysis.
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4. CONCLUSIONS

A new method was implemented in MCNP6 to calculate k sensitivities to Legendre scattering moments,
and is planned to be released in the future. This method was applied to 22 benchmark experiments from the
ICSBEP Handbook; the benchmarks cover a variety of isotopes, geometries, and neutron spectra. The
results are quite consistent showing that most of the sensitivity to k comes from the elastic P1 moment with
the highest effects being those where leakage has a significant impact on criticality. Inelastic scattering
moments typically have a negligible effect on criticality.

In the future, the plan is to take these sensitivities and convolve them with ENDF covariance data to provide
estimates on the uncertainties. It is expected based on the magnitudes of both that the P1 elastic scattering
moment is a significant source of uncertainty and needs to be considered in data adjustment exercises.
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