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ABSTRACT 

This paper describes the initial experience and results from implementing a fission matrix 
capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost 
during the normal simulation for criticality calculations. It can be used to provide estimates of the 
fundamental mode power distribution, the dominance ratio, the eigenvalue spectrum, and higher 
mode spatial eigenfunctions. It can also be used to accelerate the source convergence of the power 
method iterations. Past difficulties and limitations of the fission matrix approach are overcome 
with a new sparse representation of the matrix, permitting much larger and more accurate fission 
matrix representations. Numerous examples are presented. 
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1  INTRODUCTION 

Continuous-energy Monte Carlo codes such as MCNP [1] simulate neutron behavior using 
the best available nuclear data, accurate physics models, and detailed geometry models. Reactor 
criticality calculations for keff and the power distribution are carried out iteratively, using the 
power method, where batches of neutrons are simulated for a single generation. The fission 
matrix approach was proposed in the earliest works on Monte Carlo criticality calculations [2-4] 
and has been tried by many researchers over the years. The present work takes advantage of the 
very large computer memories available today and a new sparse matrix representation to 
overcome past difficulties. A recent paper [5] describes the theoretical basis for this fission 
matrix capability. 

2 FISSION MATRIX METHOD 

2.1 Fission Matrix Equations 

As derived in [5], if the physical problem is segmented into N spatial regions, and the k-
effective form of the integral transport equation is integrated over the volumes of each initial 
region J, with  

r0 ∈VJ , and final region I, with  
r ∈VI , then the following equations are obtained:  

SI = 1
K ⋅ FI,J ⋅SJ

J=1

N

∑     (1) 
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where 

 
FI,J = dr

r∈VI
∫ dr0

r0∈VJ
∫

S(r0 )
SJ

⋅H(r0 →
r ), SJ = S(′r )d′r


′r ∈VJ
∫        (2) 

SJ is the fission neutron source in region J, and H  is an energy- and angle-averaged Green’s 
function. The matrix element FI,J  is equal to the number of next-generation fission neutrons born 
in region I due to one average fission neutron starting in region J. The matrix F  is called the 
fission matrix. The fundamental mode eigenvalue of this matrix is formally identical to k-
effective, and the fundamental mode eigenfunction is the regionwise fission neutron source 
distribution. In matrix-vector form, Eq. (1) is 

 

S = 1

K ⋅F ⋅

S      (3) 

where  

S  is a vector of length N giving the single-generation production of neutrons in each 

region from fission, and F  is a full matrix of size NxN. Higher eigenmodes of Eq. (3) can be 
determined according to: 

 
 


Sn = 1

Kn ⋅F ⋅

Sn n = 0,1,...N

k0 > k1 > k2 > ...> kN
     (4) 

where the subscript n refers to the mode, with n=0 the fundamental mode. For a problem with N 
regions in the mesh for the fission matrix, F  is an NxN matrix with N discrete eigenvalues. 
Because F  is a nonsymmetric matrix, the eigenvalues and eigenvectors may be complex, 
although the evidence presented in [5] suggests that they are real-valued. The fundamental mode 
must be strictly real and nonnegative. 

2.2 Monte Carlo Estimation of the Fission Matrix 

In this section, we describe the choices implemented in MCNP6 for the initial proof-of-
principle testing of the fission matrix method, including the region shapes and size, the initial 
source guess, the tallying procedure, the iteration strategy, and parallel computing issues. 
2.2.1 Regions for fission matrix tallies 

The choice of region shapes and sizes for determining the fission matrix is arbitrary, as long 
as all fissionable regions in the physical problem are covered. For the initial testing in MCNP6, 
we have chosen to use a simple, uniform, 3D, Cartesian mesh, with different numbers of mesh 
intervals permitted in the x-, y-, and z-directions. The mesh overlays the detailed Monte Carlo 
geometry for the physical problem and must encompass all fissionable regions in the problem. 
The choice of mesh for tallying the fission matrix does not affect the ordinary Monte Carlo 
tracking in any manner. Future development will include more general meshes. 
2.2.2 Initial source guess 

While the initial guess for the fission neutron source distribution is arbitrary for criticality 
calculations, the use of a uniform volumetric source in fissionable regions of the problem is the 
most prudent choice. This ensures that tallies of fission matrix elements will be made for all 
fissionable regions in the initial stages of the power iteration process used in MCNP. Future 
development will automate this and include stratified sampling techniques. 
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2.2.3 Tallying the fission matrix elements  
Tallies for fission matrix elements can be made using only the locations of fission neutron 

sources at the start and end of each batch, without incurring any overhead during the random 
walk simulation of the neutrons – simply remember the region a fission neutron was born in (J), 
determine the region a next-generation fission neutron is produced in (I), and tally the (I,J)-th 
element of the fission matrix. For Monte Carlo codes that use a fixed number of starting source 
neutrons for every cycle, the region tallies are simply incremented by 1 for each neutron; for 
MCNP with a varying number of neutrons starting each cycle, the tallies need to be incremented 
by M0/M, where M0 is the number of neutrons starting the initial cycle, and M is the number that 
started the current cycle. Before solving the fission matrix equations, the tallies need to be 
normalized by dividing each (I,J)-th element by the total number of starters in region J.  

If a coarse mesh is used to define the spatial regions, then the fission matrix tallies cannot be 
made until after the fission source distribution has converged, since the spatial weighting 
functions in Eq. (2) correspond to the stationary source distribution. However, if a fine enough 
mesh is used such that  

 

S(r0 )
SJ VJ

≈1    for  r0 ∈VJ      (5) 

then Eq. (2) becomes independent of the spatial weighting functions, and valid tallies can be 
made even before the source distribution converges [5].  
2.2.4 Tally updates and iteration strategy 

During a standard k-effective calculation, at the end of each cycle the FI,J  estimators are 
updated by tallying the fission neutron weight using the starting and ending mesh region 
numbers for each point in fission bank. If the mesh is fine enough that Eq. (5) is valid, the tallies 
may be accumulated over cycles even during the inactive cycles, prior to convergence of the 
fission source distribution. In practice, we have chosen to begin the fission matrix tallies at the 
4th iteration cycle, and to accumulate the tallies over all subsequent cycles. Single-cycle 
estimates of the fission matrix are never used. 

At any desired cycle, the eigenvalues and eigenvectors of the fission matrix may be found by 
simple power iteration. If higher modes are desired, then Hotelling deflation or direct solvers 
may be used. In practical application, the fission matrix tallies are accumulated for all problem 
iterations, and then the fission matrix eigenvalues and eigenvectors are determined only after the 
Monte Carlo calculation completes. If it is desired to obtain the fission matrix solution during the 
Monte Carlo calculation, to potentially use it to accelerate the overall source convergence, then 
the fundamental mode eigenvector could be determined at the end of any cycle.  
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2.3 Sparse Fission Matrix Representation 
The principal limitation on the accuracy of 

the fission matrix approach is, and always has 
been, the size of the regions for each fission 
matrix element. Typically, a regular 3D spatial 
mesh with N = NI x NJ x NK elements is used, 
giving an NxN fission matrix, with N2 entries. 
A 100x100x100 spatial mesh would give rise 
to a fission matrix with 1012 elements, which 
could not be stored even on today’s 
computers. 

To overcome this limitation, we are using 
a sparse matrix storage scheme. Clearly, not 
every region in a large 3D problem is tightly 
coupled to every other region; fission neutrons 
induce most further fissions in neighboring 
regions, and few or none in distant regions. To 
investigate this, we examined the structure of 
the fission matrix for a typical 2D PWR 
problem. Fig. 1 shows the structure of the 
fission matrix for the 15x15x1 mesh case, where each mesh element corresponds to an assembly-
sized region. We have chosen to use the compressed-row sparse matrix storage scheme for the 
fission matrix in order to reduce the memory storage requirements by one or more orders of 
magnitude. By doing so, even a fission matrix with 1012 elements can be run on an office 
computer. 

3 EXAMPLES OF HIGHER MODE ANALYSIS USING THE FISSION MATRIX 

In this section we provide 
examples for problems where MCNP 
was used to compute a fission matrix, 
and then higher eigenvalues and 
eigenfunctions of the fission neutron 
source distribution are obtained from 
the fission matrix. All MCNP 
calculations were performed with 
continuous-energy collision physics 
using ENDF/B-VII.0 cross-section 
data [6]. 

3.1 2D Whole-core PWR 

A 2D whole-core PWR model is 
shown in Fig. 2 (previously used in 
[7], based on [8]). The fission matrix 
was accumulated during standard 
KCODE calculations with 500K 

 
 
Fig. 1. Fission matrix structure for a 2D 
whole-core PWR model, for a 15 x 15 x 1 
spatial mesh. Matrix dimensions are 225 x 
225. Points in blue are non-zero elements of 
the fission matrix. 

              
 
Fig. 2.  2D quarter-core PWR model, with detail 

shown for the center 1/4-assembly. For the 
current work, a whole-core model was used. 

2.1% Enrichment 
2.6% Enrichment 
3.1% Enrichment 
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neutrons/cycle. Tallies for the fission matrix elements were made only for the 4th and successive 
cycles. keff, the fundamental mode eigenfunction, and the dominance ratio  from the fission 
matrix were determined via an iterative method. Higher-mode eigenvalues and eigenfunctions 
for the fission matrix were determined using Matlab. As discussed in [5], a convergence study of 
the eigenvalue spectrum with mesh refinement was used to determine that the 120x120 mesh 
provided sufficient resolution to produce accurate eigenvalues and eigenfunctions. 

Fig. 3 shows the fundamental eigenmode (i.e., the fission neutron source distribution) and 15 
higher eigenmodes for the 120x120x1 mesh case. These plots are especially interesting, since the 
higher eigenmodes cannot normally be obtained directly from a Monte Carlo calculation. For this 
calculation, the spatial mesh included 14,400 regions, and the fission matrix size was 
14,400x14,400. During the calculation, the dominance ratio k1/k0 was obtained every cycle, and 
all 14,400 eigenvalues and eigenfunctions were obtained after the MCNP calculation using 
Matlab. 

 
 

 
 
Fig. 3. 2D Whole-core PWR model: First 16 eigenfunctions and eigenvalues for fission 
neutron source distribution, obtained using a 120x120 tally mesh for the fission matrix 
(14,400 tally regions, 14,400x14,400 fission matrix). 5M neutrons/cycle, cycles 4-100. 
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3.2 Fuel Storage Vault  
This is Benchmark Problem 1 from the OECD/NEA Source Convergence Benchmarks [9]. 

The problem contains 36 large, loosely coupled spent fuel assemblies in water surrounded by 
concrete reflector.  A sole assembly has concrete reflector on two sides, as opposed to one or 
zero for the others.  Consequently, this single assembly is by far the most reactive, with a total 
fission rate over a factor of 10,000 greater than the least reactive assembly.  Conventional Monte 
Carlo requires around 2000 cycles for fission source convergence with a flat initial guess. 

Fig. 4 shows the convergence behavior of the standard MCNP and fission matrix results.  
The fission matrix is tallied for cycles 3-200, with a batch size of 1 M.  The spatial mesh is 
96x12x10, corresponding in the x-y plane to sixteen mesh regions for every assembly.  By cycle 
30, the fission matrix gives a reasonably converged fundamental eigenvector.  Thus we see the 
potential for excellent source convergence acceleration with the fission matrix. 

Fig. 5 shows the first 8 eigenfunctions for the fuel storage vault problem, and Table I gives 
the corresponding eigenvalues. 

 

 
Fig. 4. Vault model: Shannon entropy to diagnose source convergence for standard MCNP 
(blue) and the fission matrix approach (green). After about 2,000 cycles, the standard MCNP 
value decreases to match the fission matrix value obtained at 30 cycles. 

 
Fig. 5. Vault model: First 8 eigenmodes, with a 96x12x10 spatial mesh.  Fission matrix tallied 
cycles 4-200, batch size of 1 M. 
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Table I.  First 8 eigenvalues for the fuel storage vault problem with a 96x12x10 spatial mesh. 
 

n kn 
0    0.88947 
1    0.88653 
2    0.88600 
3    0.88533 
4    0.88399 
5    0.88275 
6    0.88112 
7    0.87945 

 

3.3 Advanced Test Reactor 

The final problem examined is the Advance Test Reactor (ATR) at Idaho National 
Laboratory [10].  Used primarily for the study of radiation effects, this core has a complex 
serpentine-shape fuel arrangement that does not easily adhere to a Cartesian mesh.  There are 40 
curved fuel assemblies with 93% enriched uranium aluminide powder fuel; each wraps 45 
degrees.  Each assembly has 19 plates of thickness 0.2 cm; the actual thickness of the fuel within 
each plate is 0.05 cm. 

Fig. 6 shows the first 16 eigenfunctions for the ATR model, using a 100x100x1 spatial mesh 
for fission matrix tallies. The fission matrix tallies were made for cycles 2-200, with 1M 
neutrons/cycle. Table II gives the first 16 eigenvalues for the ATR problem. 
 

Table II.  First 16 eigenvalues for the ATR, with a 100x100x1 mesh. 
 

n kn  n kn 
0 0.99490  8 0.47004 
1 0.85630  9 0.46173 
2 0.84612  10 0.45794 
3 0.78265  11 0.41144 
4 0.64564  12 0.32865 
5 0.55461  13 0.29454 
6 0.55207  14 0.28401 
7 0.53659  15 0.28327 

 

4 SUMMARY AND CONCLUSIONS  

We have described the initial experience and results from implementing a fission matrix 
capability into the MCNP Monte Carlo code. The fission matrix is obtained at essentially no cost 
during the normal simulation for criticality calculations. It can be used to provide estimates of 
the fundamental mode power distribution, the reactor dominance ratio, the eigenvalue spectrum, 
and higher mode spatial eigenfunctions. It can also be used to accelerate the convergence of the 
power method iterations. Past difficulties and limitations of the fission matrix approach are 
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overcome for many problems with a new sparse representation of the matrix, permitting much 
larger and more accurate fission matrix representations. 

We are investigating the use of the fission matrix to accelerate the power method 
convergence of Monte Carlo criticality calculations. Because the fission matrix can be 
determined accurately with only a few cycles during the inactive portion of the calculation, the 
fundamental eigenmode can be used to bias the fission neutron source, forcing the source 
distribution based on Monte Carlo histories to converge more quickly. Initial testing of this 
method is encouraging, and further study and development are in progress. 
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Fig. 6. ATR model: First 16 eigenfunctions for the fission neutron source distribution, 
obtained from the fission matrix. 



Fission Matrix capability for MCNP 
 

 Page 9 of 9 
 

 

6 REFERENCES 

 
1. X-5 Monte Carlo Team, “MCNP – A General Monte Carlo N-Particle Transport Code, 

Version 5, Volume I: Overview and Theory,” LA-UR-03-1987, Los Alamos National 
Laboratory (2003). 

2. K.W. Morton, “Criticality Calculations by Monte Carlo Methods”, United Kingdom Atomic 
Energy Research Establishment, Harwell, Report T/R-1903 (1956). 

3. E.L. Kaplan, “Monte Carlo Methods for Equilibrium Solutions in Neutron Multiplication”, 
Lawrence Radiation Laboratory, UCRL-5275-T (1958).  

4. J.M. Hammersely & D.C. Handscomb, Monte Carlo Methods, Chapter 8, Methuen & Co. 
(1964).  

5. F.B. Brown, S.E. Carney, B.C. Kiedrowski, W.R. Martin, Fission Matrix Capability for 
MCNP, Part I - Theory”, M&C 2013 conference, Sun Valley, ID, May 5-9 (2013). 

6. M.B. Chadwick, et al., “ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for 
Nuclear Science and Technology”, Nuclear Data Sheets 107, 2931–3060 (2006). 

7. F.B. Brown, “A Review of Best Practices for Monte Carlo Criticality Calculations”, ANS 
NCSD-2009, Richland, WA, Sept 13-17 (2009).  

8. M. Nakagawa & T. Mori, “Whole Core Calculations of Power Reactors by use of Monte Carlo 
Method”, J. Nuc. Sci. and Tech., 30 [7], pp 692-701 (1993).  

9. F. B. Brown, R. C. Little, A. Sood, D. K. Parsons, “MCNP Calculations for the OECD/NEA 
Source Convergence Benchmarks”, Trans. Am. Nucl. Soc., 87, 150 (2003). 

10. S. S. Kim, B. G. Schnitztler, et. al., “Serpentine Arrangement of Highly Enrichment Water-
Moderated Uranium-Aluminide Fuel Plates Reflected by Beryllium”, Idaho National 
Laboratory, HEU-MET-THERM-022, (2005). 

 


