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Abstract:   

We describe recent experience and results from implementing a fission matrix capability into the MCNP Monte Carlo 
code. The fission matrix can be used to provide estimates of the fundamental mode fission distribution, the dominance 
ratio, the eigenvalue spectrum, and higher mode forward and adjoint eigenfunctions of the fission neutron source 
distribution. It can also be used to accelerate the convergence of the power method iterations and to provide basis 
functions for higher-order perturbation theory. The higher-mode fission sources can be used in MCNP to determine 
higher-mode forward fluxes and tallies, and work is underway to provide higher-mode adjoint-weighted fluxes and 
tallies. Past difficulties and limitations of the fission matrix approach are overcome with a new sparse representation of 
the matrix, permitting much larger and more accurate fission matrix representations. The new fission matrix capabilities 
provide a significant advance in the state-of-the-art for Monte Carlo criticality calculations. 
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I. Introduction 
The fission matrix method was introduced into local versions 
of MCNP [1,2] in 2006 to investigate estimating the 
dominance ratio for criticality calculations. The method 
suffered from the same drawback found by others over the 
last 60 years, that accuracy was severely limited by 
constraints on memory storage. In 2012, a novel 
computational approach was tried – using a sparse matrix 
storage scheme to enable more detailed meshes for the 
fission matrix estimation. This was first reported in [3], the 
theory was fully detailed in [4], and numerous realistic 
examples were presented in [5]. In 2013, significant 
improvements in the sparse storage methodology were made, 
along with extensions that enable computing higher mode 
eigenfunctions for fluxes and reaction rates, rather than just 
the fission neutron source. In addition, detailed studies using 
the fission matrix have provided insight into the theoretical 
basis for criticality calculations. This paper will summarize 
the work reported in [3-5] and discuss the recent work [6,7] 
accomplished during early 2013. 

II. Background  
Monte Carlo criticality calculations for keff and the fission 
distribution are carried out iteratively with MCNP using the 
power method, where batches of neutrons are simulated for a 
single generation. Since production Monte Carlo codes 
restrict neutron statistical weights to be non-negative, higher 
eigenmodes cannot be evaluated directly from the Monte 
Carlo neutron simulation. The fission matrix approach was 
proposed in the earliest works on Monte Carlo criticality 
calculations [8-10] and has been tried by many researchers 
over the years.  
1. Basis of the Fission Matrix Approach 
The fission matrix equations were derived in [4], without 
approximation, from the k-eigenvalue form of the neutron 

transport equation. The derivation leads to the equations
 

The kernel FI,J is equal to the number of fission neutrons 
born in region I due to one average fission neutron starting in 
region J, and is called the fission matrix. Essentially, the 
fission matrix is a spatially discretized Green’s function for 
the next generation fission neutron source, and Eq. (1) is the 
keff form of Peierl’s equation. The fundamental mode 
eigenvalue of this matrix is identical to the keff eigenvalue, 
and the fundamental mode eigenvector is the regionwise 
fission neutron source distribution. 
It is important to note that the fission matrix elements can be 
estimated during inactive batches in the iteration process. As 
discussed in [4], if a very fine spatial mesh is used for 
estimating the fission matrix elements, then the FI,J in Eq. (1) 
are insensitive to S(r0)/SJ. Examining the eigenvalue 
spectrum of the fission matrix as the mesh is refined 
provides a practical means of assessing the validity of the 
fission matrix. The adjoint fission matrix was also derived 
rigorously in [4], and it was shown that for sufficiently fine 
meshes, the adjoint fission matrix is simply the transpose of 
the forward matrix. 
2. Initial Implementation 
Fission matrix elements can be estimated at essentially no 
extra cost during the normal Monte Carlo simulation using 
only the locations of fission neutron sources at the start and 

 



 

 

end of each batch, without incurring any overhead during the 
neutron random walks. This approach eliminates overhead 
from MPI message passing of fission matrix tallies, since the 
fission matrix can be computed on the master node using the 
existing “fission bank”. 
The principal limitation on accuracy has always been the 
size of the regions for each fission matrix element. Typically, 
a regular 3D spatial mesh with N = Nx x Ny x Nz elements is 
used, giving an NxN fission matrix, with N2 entries. A 
100x100x100 spatial mesh would give rise to a 106x106 
fission matrix 8,000 GB in size, which could not be stored 
on today’s computers. To overcome the memory limitation, 
a sparse representation was used in [3-5] for the fission 
matrix, with a compact banded structure. Neutron sites 
beyond a few nearest neighbor regions were tallied in the 
nearest band region. This approximation, inadequate for 
complex geometries, was removed in the present work [6,7]. 

III. Sparse Storage for Fission Matrix 
Development of the fission matrix method in MCNP is in 
progress, with an anticipated release during 2014. The key 
computational advance is the use of a sparse, 
compressed-row storage scheme for the fission matrix tallies. 
With this scheme, no approximations are made; the sparsity 
is general, not banded, and all tallies are rigorously recorded. 
If the fission matrix elements are tallied for a regular 3D 
spatial mesh with N = Nx x Ny x Nz mesh cells, then a fission 
neutron starting from mesh cell [i,j,k]S that creates a 
next-generation fission neutron in mesh cell [i,j,k]T would be 
tallied in the fission matrix tally bin F(I,J), where 
J=iS+(jS-1)Nx+(kS-1)NxNy and I=iT+(jT-1)Nx+(kT-1)NxNy. 
Only the nonzero F(I,J) entries are stored. In the 
compressed-row scheme illustrated in Figure 1, the L(I) 
array entries point to the start of a list of J indices and 
corresponding nonzero F(I,J) tallies. To look up the tally for 
F(I,J), it is necessary to search the J array from location  
L(I) through L(I+1)-1 for the desired J (if it exists), and then 
retrieve the corresponding F tally. If the F(I,J) entry is not 
already stored, then it must be inserted during the tallying. 
The size of the J and F arrays thus increases as more 
neutrons are simulated. 

If M is the total number of nonzero F(I,J) tally entries, then 
the L array has N+1 entries, and the J and F arrays each have 
M entries. In practice, M<<N2, resulting in very large 
reductions in the memory storage for the F(I,J) tallies. 
Figure 2 shows a typical structure of the fission matrix for a 
2D PWR problem. The white portions of the plot correspond 
to zero F(I,J) entries that are not stored in the 

compressed-row storage scheme 
The use of a sparse storage scheme has required the 
development of numerous new Monte Carlo computational 
algorithms, such as performing efficient tallies into the 
sparse matrix, eigensolvers for both the left and right 
eigenvectors of a general sparse nonsymmetric matrix based 
on power iteration, Hotelling deflation of the solution space 
for the sparse power iteration to compute higher-mode left 
and right eigenvectors, etc. Very highly optimized coding 
was developed to perform the tallies in an efficient manner, 
so that the fission matrix tallies typically require less than 1 
second at the end of each batch in the Monte Carlo 
simulation.  
In practice, MCNP simulations are run using a very fine 
spatial mesh for the fission matrix tallies, typically 
1000x1000 mesh cells for 2D problems or 1000x1000x1000 
mesh cells for 3D problems. After the MCNP runs have 
finished, the fission matrix tallies are aggregated into a more 
compact matrix, by combining a moderate number of entries 
for neighboring spatial mesh cells. This aggregation results 
in reduced statistical uncertainties in the fission matrix 
elements. In addition, by aggregating the matrix several 
times and finding the eigenvalue spectrum each time, it is 
straightforward to assess the degree of spatial mesh detail 
that is necessary for a converged spectrum.   

III. Higher Eigenmodes for the Fission Source 
The fission matrix capability was implemented in a local 
version of MCNP with the sparse matrix tally scheme. 
Testing was performed on a variety of different reactor 
applications. The results described below were obtained for a 
2D whole-core PWR model with ENDF/B-VII.0 
continuous-energy nuclear data [4,5]. The fission matrix was 
accumulated during standard KCODE calculations. Tallies 
for the fission matrix were made only for the 4th and 
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J1  J2  J3  J4  J5  J6  J7  J8  J9  ...  JM 

F1  F2  F3  F4  F5  F6  F7  F8  F9  ...  FM 

Figure 1. Compressed Row Storage 

 
 

Figure 2. Fission matrix structure for 2D PWR 

 



 

 

successive batches in order to reduce discretization error 
arising from the arbitrary initial distribution. The total 
MCNP running time was increased by less than 1% due to 
the extra operations required for tallying the fission matrix.    
After completion of the MCNP run, higher-mode 
eigenvalues and eigenfunctions for the fission neutron 
source were determined from the fission matrix.  Four 
different methods for determining the higher modes were 
tried, to check on the correctness of the higher-mode 
solutions: standard power iteration with Hotelling deflation, 
a direct nonsymmetric eigensolver (for smaller fission 
matrices), an iterative solver using the implicitly restarted  
Arnoldi method (IRAM), and the nonsymmetric eigensolver 
available in Matlab. The IRAM solver was fastest for 
general use [7] and is well suited to sparse matrix problems. 
It requires only the multiplication of the sparse matrix times 
a vector, and does not require storage of the full matrix. 
Power iteration was robust but slow. The direct solver and 
Matlab solver require storage of the full fission matrix, 
hence can only be used for problems with a small fission 
matrix (i.e., very coarse spatial resolution).  
Figure 3 shows the eigenvalue spectrum of the fission matrix. 
For this example, MCNP was run with a 120x120x1 spatial 
mesh for the fission matrix tallies. Only the first 195 of the 
set of 14,400 eigenvalues are shown in Figure 3. 

 
Figure 3. First 192 eigenvalues for 2D PWR problem, using a 

120x120 spatial mesh for fission matrix tallies. 

Figure 4 shows the fundamental eigenmode (i.e., the fission 
neutron source distribution) and 9 higher eigenmodes for the 
60x60x1 mesh case. These plots are especially interesting, 
since the higher eigenmodes cannot normally be obtained 
directly from a Monte Carlo calculation. 

IV. Higher Eigenmodes for the Flux 
Using the higher eigenmodes for the fission neutron source, 
MCNP calculations can be performed in a fixed-source 
manner to determine the higher-mode neutron fluxes and any 
desired reaction rates. To determine the mode n flux, the 
mode n eigenfunction of the fission matrix is used as the 
fixed source. As both flux and fission source modes can be 
positive or negative for n>0, a flag is used internally in 
MCNP to mark the sign of a neutron’s weight. That is, 
source neutrons are started according to the magnitude of the 
higher mode source and are flagged as either positive or 
negative. Source points are sampled in an analog manner 
from the loaded fission source mode, and starting locations 
are resampled until fissionable material is found. The NONU 
card is used to treat fission as absorption. Positive neutron 
weights are used in the transport simulation, but tallies may 
be added or subtracted according to the neutron flag. A 
concern here is that for greater positive/negative oscillation 
in the source as mode number rises, there will be more score 
cancellation in tallies. This may lead to larger tally variances 
than is manageable. This issue is examined below. 
To test the forward flux calculations, a fission matrix was 
generated for the 2D PWR problem using a 50x50 spatial 
mesh, 500 batches (skipping the initial 2), and 500k 
neutrons/batch. Then the first 30 eigenmodes of the fission 
matrix were found. Each of these 30 eigenmodes for the 
fission neutron source was then used as the source for fixed 
source calculations to determine fluxes. The 30 fixed source 
calculations each used only 500k neutron histories. Figures 5 
and 6 give results for the flux and relative uncertainties. 
Each of these fixed source flux calculations required only 
about 1 minute of MCNP time using 8 threads. Group 1 flux 
modes are very similar to the fission source modes, and the 
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Figure 4. Fundamental and higher eigenmodes for 2D PWR model obtained  
from a fission matrix using a 60x60x1 spatial mesh.  



 

 

most notable feature of the group 2 flux modes are the new 
peaks in the peripheral water moderator. The relative 

uncertainty plots give a reassuring result – the high relative 
uncertainties are localized near the inflection lines. 
Uncertainties are manageable where the functions are 
significantly nonzero, notwithstanding the cancellation of 
tallies. 

V. Investigations into Fundamental Reactor Theory 
The fission matrix method can be used to investigate and  
understand some unanswered questions on the fundamental 
theoretical basis for continuous-energy Monte Carlo 
criticality calculations. This is discussed in detail in [4] and 
summarized here. Some new results are also presented. 
1. Eigenvalue Spectrum 
It is known from past theoretical work [11] on the 
fundamental mathematical basis for k-effective criticality 
calculations that: (1) The fundamental mode eigenvalues and 
eigenfunctions of the continuous-energy form of the 
transport equation have been proven to exist [12]. The 

fundamental mode eigenvalue is real and positive, and the 
fundamental mode eigenfunction is real and non-negative. 

(2) For the 1-speed integral transport equation for the scalar 
flux, it has been proven [13,14] that all of the higher modes 
exist, with discrete real eigenvalues and real eigenfunctions.  
For the multigroup transport equation and the 
continuous-energy k-effective transport equation, it is 
conventional practice [11] to assume that higher modes exist, 
with real eigenvalues and eigenfunctions, even though that 
has not been proven. To investigate this assumption, the 
complete eigenvalue spectrum of the fission matrix has been 
determined for the 2D PWR problem. In [4], a 120x120 
spatial mesh was used for the fission matrix tally elements, 
giving 14,400 eigenvalues. In this work, we use a 30x30 
spatial mesh to simplify the reporting of results, giving 772 
eigenvalues. (128 spatial regions contain no fissionable 
material, hence are null columns and rows in the fission 
matrix. These are excluded from the eigenvalue 
calculations.) Figure 7 gives the complete set of 772 
eigenvalues, including both real and imaginary parts. Figure 

  

   
Figure 5. First 30 forward flux modes (top) of 2D PWR 

and relative uncertainties (bottom),  
Group 1 (0.625 eV – 20 MeV). 

 

 

 
Figure 6. First 30 forward flux modes (top) of 2D PWR,  

and relative uncertainties (bottom),  
Group 2 (0 - 0.625 eV). 



 

 

 
Figure 9. Convergence of the first 10 eigenvalues for 

whole-core 2D PWR model as N is increased  
(N = spatial mesh cells for fission matrix tallies). 

8 shows detail for the imaginary parts of the eigenvalues 
after runs with 5M, 250M, and 2500M neutrons. It can be 
seen from Figure 8 that as more neutrons are followed, the 
imaginary parts of the eigenvalues become very much 
smaller. Because the fission matrix is nonsymmetric and 
each of the matrix elements has associated statistical 
uncertainty, the numerical solutions can give rise to 
imaginary components. However, both the magnitude and 
frequency of occurrence of the imaginary parts diminish 
greatly as more neutrons are run to reduce statistical 
uncertainties. This behavior provides strong evidence (but 
not proof) that all of the eigenvalues are discrete and 
real-valued. 
2. Spectrum Convergence with Mesh Refinement 
Figure 9 shows the detailed convergence with mesh 
refinement of the first 10 eigenvalues for the 2D PWR model. 
The number of mesh regions for fission matrix tallies is 
increased (i.e., finer resolution) from 5x5 to 10x10, 15x15, 
30x30, 60x60, and finally 120x120. The 15x15 case 
corresponds to one mesh cell per fuel assembly. For this 
problem, it appears that the 120x120 mesh provides 
satisfactory convergence for the 10 modes shown. These 
mesh refinement studies demonstrate that the eigenvalue 
spectrum converges smoothly to a stationary discrete 
distribution. Further mesh refinement will not change the 
spectrum of lower eigenvalues, indicating that the fission 
matrix results have converged to the limiting values of the 
fully-continuous form of the transport equation. 
3.  Biorthogonality & Orthogonality of Modes 
For the energy-dependent keff form of the transport equation, 
the forward and adjoint fission sources are biorthogonal [11], 
and forward and adjoint fluxes are biorthogonal when fission 
operator weighting is used. For the 2D PWR example 
problem with a 30x30 spatial mesh used for fission matrix 
tallies, Figure 10 (left) shows inner products of forward and 
adjoint fission source modes for all 7722 combinations. The 
inner products are strongly diagonally dominant and near 
zero for off-diagonal terms. This supports the 

biorthogonality, with minor deviations due to the statistical 
uncertainty of fission matrix elements and hence solutions. 
Figure 10 (right) shows the inner products of different 
forward modes with other forward modes for all 7722 
combinations. The appearance is similar to the left plot, and 
indicates that the forward modes are nearly orthogonal 
among themselves. While the orthogonality of forward 
modes alone is not proven, this assumption is often made for 
reactor analysis. The results shown in Figure 10 indicate that 
this is a reasonable assumption. 

VI. Work in Progress 
We are investigating the use of the fission matrix to 

 
 
Figure 7. Real and Imaginary parts of the 772 eigenvalues 
for the 2D PWR problem, using a 30x30 spatial mesh for 

fission matrix tallies. 

 
 

Figure 8. Detail for imaginary parts of 2D PWR 
eigenvalues, after 5M, 250M, and 2500M neutrons. 

(vertical scale: -6x10-3 to +6x10-3) 



 

 

accelerate the power method convergence of Monte Carlo 
criticality calculations. In a hybrid high-order/low-order 
scheme, the actual Monte Carlo simulation of neutron 
histories would be the high-order method to be accelerated 
using a low-order solution obtained from the fission matrix. 
Only the fundamental mode solution from the fission matrix 
is needed, so that higher-mode solutions are not necessary 
during the Monte Carlo simulation. It is likely that coarser 
fission matrix resolution will be used initially, with 
refinement as fission matrix uncertainties are reduced with 
more neutrons.  Because the fission matrix can be 
determined accurately with only a few batches during the 
inactive portion of the calculation, the fundamental 
eigenmode can be used to bias the fission neutron source, 
forcing the source distribution based on Monte Carlo 
histories to converge more quickly. Initial testing of this 
method is encouraging, and further study and development 
are in progress. 
The higher modes obtained from the fission matrix are 
useful in explaining, evaluating, and predicting convergence 
of the Monte Carlo source distribution. Convergence can be 
predicted for various choices of the initial guess for the 
fission source [6]. In addition, the number of iterations 
needed to transition from a base-case fundamental mode to a 
perturbed fundamental mode can be predicted [7]. This 
capability may be useful in determining the number of 
iterations required for stable multiphysics calculations. 
Higher-mode adjoint flux weighting, necessary for higher 
order perturbation calculations, is another application of 
higher modes.  This weighting is possible by incorporating 
the fission matrix forward and adjoint source modes with the 
iterated fission probability method.  

VII. Conclusions 
New developments and recent progress in the 
implementation and testing of a fission matrix capability in 
MCNP were discussed. The method can be used to obtain 
interesting and valuable information for criticality problems, 

including the higher mode forward and adjoint eigenvalues 
and eigenfunctions of the fission neutron source. A new 
sparse matrix storage scheme removes previous limitations 
of the fission matrix approach, permitting accurate solutions 
to large, detailed 2D and 3D reactor problems. 
The fission matrix approach is well founded in theory, does 
not significantly increase the cost of standard Monte Carlo 
criticality calculations, and does not significantly increase 
code complexity. Accuracy of the method improves as the 
spatial tally mesh is refined. The fission matrix can be used 
to study fundamental properties of the continuous-energy 
k-effective transport equation. From these studies, common 
assumptions can be confirmed, such as a real-valued set of 
eigenvalues and near-orthogonality of the forward 
eigenfunctions. 
Recent extensions to the method include the determination 
of higher modes for the forward flux, and the calculation of 
coupling coefficients between base and perturbed cases. 
Work is in progress to combine the fission matrix and 
iterated fission probability methods to provide higher-mode 
adjoint-weighted quantities and higher-order perturbation 
theory.  
A high-order / low-order acceleration matrix that is strictly 
Monte Carlo based is under development and appears 
promising. This scheme would provide total consistency 
between the continuous-energy Monte Carlo simulation and 
the associated fission matrix. The simplicity and robustness 
of the method should provide a distinct advantage over other 
acceleration schemes.  
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Figure 10. Biorthogonality of forward and adjoint fission source modes (left), and orthogonality of forward modes (right). 
Plotted points are inner products of modes.   (scales:  red - near 1.0,  blue ≤ 0.1) 
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