
LA-UR-15-20422
Approved for public release; distribution is unlimited.

Title: MCNP6 Optimization and Testing for Criticality Safety Calculations

Author(s): Brown, Forrest B.

Intended for: 2015 ANS Annual Meeting, 2015-06-07/2015-06-11 (San Antonio, Texas,
United States)

Issued: 2015-01-23

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

MCNP6 Optimization and Testing for Criticality Safety Calculations

Forrest B. Brown

Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87544, fbrown@lanl.gov

INTRODUCTION

The MCNP6.1.1 [1] Monte Carlo code was released in

2014. It is an update to the MCNP6.1 [2] code released in
2013. The MCNP6.1.1 coding and algorithms were
optimized to provide significant improvements in
performance for criticality safety applications. This paper
reports the performance testing results obtained for
MCNP5-1.60 [3], MCNP6.1, and MCNP6.1.1 on several
modern computer platforms for a suite of ICSBEP criticality
benchmark calculations. The comparisons provide useful
guidance to criticality safety analysts on the benefits of
using the latest version MCNP6.1.1 on newer computers.

BACKGROUND

The MCNP6.1 Monte Carlo code, released in 2013,

provides all of the standard methodology for criticality
calculations available in the previous MCNP5-1.60 code
and was thoroughly verified against MCNP5-1.60 [4].
During 2013, it was evident that MCNP6.1 was slower than
MCNP5-1.60, typically by 20-30%, but sometimes by
factors of 2-5x. Assessment of the code led to a plan for
improving the performance and structure of MCNP6.1. The
initial performance improvements, described in [5], were
incorporated into the 2014 update, MCNP6.1.1. MCNP6.1.1
was also thoroughly verified to ensure correct results for
criticality safety applications [6].

On the particular computer system used for the code
optimization, MCNP6.1.1 demonstrated speedups by factors
of 1.2x - 4x compared to MCNP6.1, depending on the type
of problem. For criticality problems, MCNP6.1.1 is
typically 1.5x - 1.7x faster than MCNP6.1 and 1.2x - 1.3x
faster than MCNP5-1.60.

MCNP6 CODE OPTIMIZATION

Reference [5] provides details on the coding and

algorithm optimizations that were incorporated into
MCNP6.1.1, so only a brief summary is provided here. The
optimization effort included both “classic code
optimizations” and improvements to algorithms. The classic
code optimizations involve well-known practices for
speeding up short, localized sections of coding, such as:
compiler options, eliminating vector operations on
noncontiguous data, inlining heavily used functions such as
binary searches, using guarding if-statements to avoid
unnecessary function calls, using thread-private common
blocks instead of declaring individual variables thread-

private, etc. Classic coding optimizations typically provide
small speedups of 5-30%. Larger speedups can be obtained
from algorithm improvements. A new hash-based energy
lookup algorithm [7] developed for MCNP6.1.1 provided
speedups of 15x – 20x for the portion of MCNP6.1.1 that
calculates macroscopic cross-sections (which can consume
1/3 – 2/3 of the overall runtime). Other minor algorithm
improvements were also included, such as buffering fission
bank entries and improved rejection schemes in collision
physics. Table I provides a summary of test problems used
in the code optimization, and Table II provides the resulting
speedups for MCNP6.1.1 vs. MCNP6.1. The speedups for
criticality problems are 1.14x – 2.20x. These results were
obtained on one particular computer system (2010 Mac Pro
with 2 quad-core 3 GHz Xeon processors), for problems that
are not necessarily representative of day-to-day criticality
safety calculations.

CRITICALITY SUITE TESTING

To provide performance results specifically for routine

criticality safety applications, one of the standard criticality
benchmark suites from the MCNP distribution package was
used, the “Criticality Validation Suite” [8] consisting of 31
problems from the ICSBEP Handbook [9], using the
ENDF/B-VII.0 nuclear data libraries. This suite was also
used as part of the verification testing reported in [4] and
[6]. Collectively for all 31 problems, the suite involves
38.25 M neutron histories, 1.1 GB of cross-section data I/O,
1.1 GB of dumpfile I/O, and 125 K lines of printed output.

 Table III presents the wall-clock time required to run
the 31 benchmark problems on various computer platforms.
For all systems, it can be seen that MCNP6.1.1 is
significantly faster than MCNP6.1, completing the
benchmark problems in about 2/3 of the time (i.e., running
about 50% more neutron histories per minute). Running this
suite on an office computer took 4-8 hours a decade ago, an
hour or less 5 years ago, and 15 minutes or less today on the
newest systems. As can be seen in Table III, the overall
speedups are due to more processor cores, not faster
processors. Because a Monte Carlo code like MCNP makes
extreme demands on memory, with repeated random access
to retrieve small amounts of data, the faster memory
bandwidth in newer systems also significantly improves
performance. However, the timings for the latest Mac Pro
2014 indicate an emergent issue for future work – with 24
hyperthreads sharing the same L3 cache, memory access
contention limits the performance for more than about 15
hyperthreads.

Table I. Test Problems for Performance Improvements

Criticality Problems

ks1 3D PWR, OECD perf. bench., Kord Smith, 60 isos, no tallies
ks2 ks1, with 10 isotopes, no tallies
ks3 ks1, with 10 isotopes, fmesh tallies
ks4 ks1, 60 isotopes, fmesh tallies
baw1 BAWXI2 ICSBEP problem, 31 isotopes, no tallies
baw2 BAWXI2 ICSBEP problem, 31 isotopes, fmesh tally
fvf fuel storage vault, from OECD source convergence
g1 Godiva problem, 3 isotopes
g2 Godiva problem, 423 isotopes
pin AECL pin cell, with FPs, 147 isotopes

Fixed-source Problems
void1 ks1, with VOID card & no tallies
void2 baw1, with VOID card & no tallies
void3 fvf, with VOID card & no tallies
det1 3D well-log, neutrons, weight windows, F4 tallies
med1 medical physics, modified 3D Zubal head, photons
pht1 pulse-height tally test, cylindrical problem, photons

Problems run on Mac Pro (3 GHz Xeon), 8 threads, Intel 12.0 Fortran

Table II. Speedups for
MCNP6.1.1 vs. MCNP6.1

Criticality Problems

ks1 1.76
ks2 2.13
ks3 1.35
ks4 1.36
baw1 2.19
baw2 1.59
fvf 2.04
g1 1.14
g2 2.20
pin 1.73

Fixed-source Problems
void1 3.03
void2 4.11
void3 2.72
det1 1.67
med1 1.15
pht1 1.22

Table III. Overall Run Times for Criticality Validation Suite on Various Computer Systems

Computer CPU Mem. processors cores hyperthreads MCNP MCNP Total
 Speed Speed per per threads Version Time
 (GHz) (GHz) processor core used (min)

MacBook 2010 2.7 1.1 1 - i7 2 2 4 mcnp6.1.1 88.0

MacBook 2013 3.0 1.6 1 - i7 2 2 4 mcnp5-1.60 39.9
 4 mcnp6.1 62.0

 4 mcnp6.1.1 41.7

Mac Pro 2010 3.0 0.67 2 - Xeon 4 - 8 mcnp5-1.60 30.1
 8 mcnp6.1 43.6

 8 mcnp6.1.1 28.3

Windows 2012 2.7 1.3 2 - Xeon 6 - 10 mcnp6.1.1 19.2
 12 mcnp6.1.1 27.1

Mac Pro 2012 2.4 1.07 2 - Xeon 4 2 16 mcnp5-1.60 24.5
 16 mcnp6.1 32.4

 4 mcnp6.1.1 41.8
 8 mcnp6.1.1 24.2

 16 mcnp6.1.1 22.3

Mac Pro 2014 2.7 1.6 1 - Xeon 12 2 12 mcnp5-1.60 13.9
 12 mcnp6.1 19.9

 4 mcnp6.1.1 27.8
 8 mcnp6.1.1 15.9
 12 mcnp6.1.1 13.5

 14 mcnp6.1.1 11.7
 16 mcnp6.1.1 13.0

SUMMARY

The performance gains reported in this work

demonstrate that the initial efforts to improve the
performance and structural foundation of MCNP6 have
succeeded. Many more such improvements are planned over
the next few years to address parallel threading efficiency;
cache and memory access improvements; new techniques
for performing and storing tally information; improved
coding clarity, robustness, and compliance with standards;
parallel MPI improvements for clusters; etc.

A faster Monte Carlo code has direct benefits to the
overall quality of criticality safety analyses, by enabling
analysts to run more problems and reduce the Monte Carlo
statistical uncertainty. The highest priority for development,
however, goes to maintaining and improving the physics
accuracy of the code so that accurate and reliable results are
produced.

ACKNOWLEDGMENTS

This work was supported by the US DOE/NNSA

Nuclear Criticality Safety Program.

REFERENCES

1. J.T. Goorley, "MCNP6.1.1-Beta Release Notes," LA-

UR-14-24680 (2014).

2. J.T. Goorley, et al., "Initial MCNP6 Release Overview -
MCNP6 version 1.0," LA-UR-13-22934 (2013).

3. F.B. Brown, B.C. Kiedrowski, J.S. Bull, "MCNP5-1.60
Release Notes," LA-UR-10-06235 (2010).

4. F.B. Brown, B.C. Kiedrowski, J.S. Bull, "Verification
of MCNP5-1.60 and MCNP6.1 for Criticality Safety
Applications," LA-UR-13-22196 (2013).

5. F.B. Brown, “MCNP6 Monte Carlo Code
Optimization”, Proc. ANS MC2015, Nashville, TN,
April 19-23 (2015).

6. F.B. Brown, B.C. Kiedrowski, J.S. Bull, "Verification
of MCNP6.1 and MCNP6.1.1 for Criticality Safety
Applications," LA-UR-13-22196 (2014).

7. F.B. Brown, "New Hash-based Energy Lookup
Algorithm for Monte Carlo Codes,” Trans.Am. Nucl.
Soc. 111 (2014).

8. Russell D. Mosteller, "Validation Suites for MCNP,"
Proc. of ANS RPSD-12, April 14-17, Santa Fe, NM
(2002).

9. International Handbook of Evaluated Criticality Safety
Benchmark Experiments, NEA/NSC/DOC(95)03,
OECD Nuclear Energy Agency (2007).

