
LA-UR-15-23986
Approved for public release; distribution is unlimited.

Title: Whisper Source Code Inspection Report

Author(s): Sartor, Raymond Francis
Brown, Forrest B.

Intended for: Report

Issued: 2015-05-28

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National Security, LLC for
the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Departmentof Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Whisper Source Code Inspection Report

TABLE OF CONTENTS

1. Introduction .. 3

2. Conclusions .. 3

3. Software Purpose ... 4

4. Algorithms ... 8

4.1 Evaluate Application Model and Calculate Baseline USL .. 8

4.2 Reject Inconsistent Benchmark Cases ... 18

4.3 Covariance Data Processing .. 19

5. Variables .. 20

5.1 Index Variables .. 20

5.2 Energy Bins and Reactions .. 21

5.3 Benchmark Data .. 22

5.4 Application Data .. 23

5.5 Isotope Sensitivity Matrix .. 23

5.6 Sensitivity Vector .. 24

5.7 Sensitivity Matrices ... 25

5.8 Benchmark Correlation Data ... 27

5.9 Covariance Data ... 28

5.10 Individual Covariance Matrix .. 30

5.11 Expanded Covariance Matrix .. 30

6. Initial Values .. 32

6.1 File Parameters .. 32

6.2 Command Line Defaults .. 32

6.3 User Options .. 32

6.4 Technical Parameters ... 32

7. Program Structure .. 33

7.1 Subroutine WriteHeader .. 34

7.2 Subroutine ParseCommandLine .. 34

7.3 Subroutine CheckFiles ... 35

7.4 Subroutine ReadAndSetupUserOptions ... 35

Page 1 of 94

Whisper Source Code Inspection Report

7.5 Subroutine ReadAndSetupBenchmarks ... 36

7.6 Function ReadKeffSenData ... 39

7.7 Subroutine ReadAndSetupBenchmarkCorrelations ... 40

7.8 Subroutine ReadAndSetupApplications .. 41

7.9 Subroutine ReadAndSetupCovarianceData ... 42

7.10 Subroutine ReadCovarianceData ... 44

7.11 Subroutine ReadCovarianceFile .. 46

7.12 Subroutine MakeThermalScatterConsistent .. 48

7.13 Subroutine EstimateUnknownBenchmarkUncertainties .. 48

7.14 Subroutine ExpandCovarianceMatrixSensitivityVectors .. 50

7.15 Function CovarianceMatrixConstructSUMapVector .. 51

7.16 Subroutine SUMapGetSensitivityVector ... 53

7.17 Subroutine SUMapGetExpandedCovarianceMatrix .. 55

7.18 Subroutine RejectBenchmarks ... 56

7.19 Subroutine AdjustNuclearData .. 58

7.20 Subroutine ExpandCovarianceMatrixSensitivityMatrix .. 60

7.21 Subroutine CalculateNuclearDataUncertainties .. 61

7.22 Subroutine CalculateUpperSubcriticalLimits .. 62

7.23 Subroutine CalculateCalculationalMargin ... 63

7.24 Subroutine CalculateSimilarityWeights ... 64

7.25 Subroutine WriteUSLOutputSummaryTable ... 65

8. References .. 66

Appendix A - Equation to Subroutine Crosswalk ... 67

Appendix B - Questions and Answers .. 69

Appendix C - Treatment of Sensitivity Factors for S(α, β) Cross Sections .. 73

Appendix D - Derived Variable Types in Whisper ... 78

Appendix E - Whisper Files/Modules and Subroutines/Functions ... 86

Appendix F - Whisper Tree Structure ... 89

Appendix G - Unused Whisper Source Code Routines .. 93

Appendix H - Covariance File Formats .. 94

Page 2 of 94

Whisper Source Code Inspection Report

1. Introduction

A method using MCNP6 with sensitivity and uncertainty data to determine the baseline Upper Subcritical
Limits is discussed in:

• LA-UR-14-26558, Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software
for Determining Baseline Upper Subcritical Limits

• LA-UR-14-23202, Methodology for Sensitivity and Uncertainty-Based Criticality Safety
Validation

• LA-UR-14-23352, Validation of MCNP6.1 for Criticality Safety of Pu-Metal, -Solution, and –
Oxide Systems

The Whisper software (Version 1.0.0) was developed to implement the methodology described in these
three documents (although LA-UR-14-23202 and LA-UR-14-23352 do not reference Whisper by name).
The user instructions for the Whisper program and associated script files are given in:

• LA-UR-14-26436, User Manual for Whisper (v1.0.0), Software for Sensitivity- and
Uncertainty-Based Nuclear Criticality Safety Validation

However, none of these documents explain the internal operation of the Whisper code. This report
documents an inspection of the Whisper Fortran source code. As a result of this inspection, this report
explains how (and confirms) the methodology was implemented in the source code. The following
sections document the algorithms, data structures, and program structure in Whisper. When Whisper
implements a specific equation in LA-UR-14-26558, a cross reference to the equation is made. Also,
Appendix A provides a cross reference from the equations in LA-UR-14-26558 to the implementing
subroutine or function.

2. Conclusions

During the inspection of the Whisper Fortran source code, several questions were raised. These questions
are documented in Appendix B. Subsequent correspondence with XCP-3, the group that developed
Whisper, resolved the majority of these issues. The following issues identified by the inspection require
further action:

1. For benchmarks with a zero (or unrealistically low) experimental uncertainty, Whisper calculates
an estimate of the experimental uncertainty. However, after changing the experimental
uncertainty, Whisper does not update the bias uncertainty. The original input value is used in the
calculations for calculational margin, application bias, and application bias uncertainty. This
issue is identified in a problem report (NCS-SQM-WHISPER-PROBID07) in order to initiate
corrective actions. (Appendix B, Item 9)

2. When performing benchmark rejection, the fractional difference between the calculated and
experiment keff values is used in the test to determine whether any (additional) benchmarks should
be rejected but the magnitude difference is used to select which benchmark to reject. This
inconsistency should have a negligible influence on the Whisper results but a problem report
(NCS-SQM-WHISPER-PROBID06) has been drafted in order to initiate corrective actions.
(Appendix B, Item 10)

Page 3 of 94

Whisper Source Code Inspection Report

3. Software Purpose

The Whisper Fortran program has three primary purposes:

1. evaluate an application model and calculate the baseline USL,

2. reject inconsistent benchmark cases, and

3. generate adjusted covariance data.

Regarding the covariance data, Whisper is required in two circumstances, generating the initial
covariance data (which is distributed with Whisper) and replacement covariance data. The following
flowcharts illustrate the inputs to Whisper for these four processes. Other than Whisper, the programs
and script files in the flowcharts are documented in the Whisper Program Suite Validation and
Verification Report.

In the process flow charts, the computer programs are represented by black boxes and text. The
program input arguments shown in square brackets [] are optional. The black arrows indicate that a
program automatically initiates the execution of the next program. If necessary, the computer
programs are numbered to illustrate the execution order. The red blocks, text, and arrows represent the
user input files for this process. Other data files have blue blocks, text, and arrows.

Page 4 of 94

Whisper Source Code Inspection Report

whimcnp

MakeKeffSenLib
.csh

Application
Library (TOC)

Application
MCNP Input

File(s)

RunMCNPInputs
.csh MCNP6

Modified
Application

MCNP Input(s)

Application
MCNP Input
List (TOC)

Application
MCNP Output

File(s)

ww

Application
keff Sensitivity

Data File(s)

Whisper -a [-x]

Adjusted
Covariance

Data

Base
Covariance

Data

Whisper
Output

Rejected
Benchmark

Data

If -x option is included:

Benchmark
Library (TOC)

Benchmark
keff Sensitivity

Data

Energy Grid
Data File

Figure 1
Application Model Evaluation Flowchart

Page 5 of 94

Whisper Source Code Inspection Report

Rejected
Benchmark

Data
Whisper -r [-k]

Benchmark
Correlation

Data

If -k option is included:

Benchmark
Library (TOC)

Benchmark
keff Sensitivity

Data

Figure 2
Benchmark Rejection Flowchart

Adjusted
Covariance
Data Files

ORNL
Covariance

Data

Base
Covariance
Data Files

ProcessCovData
.csh

Benchmark
Correlation

Data

If -k option is included:

Whisper -d [-k]

Benchmark
Library (TOC)

Benchmark
keff Sensitivity

Data

CopyUnadjusted
Data.csh

1

2

3

Figure 3
Initial Covariance Data Flowchart

Page 6 of 94

Whisper Source Code Inspection Report

Benchmark
Correlation

Data

If -k option is included:

Whisper -d [-k]

Benchmark
Library (TOC)

Benchmark
keff Sensitivity

Data

Adjusted
Covariance
Data Files

Base
Covariance
Data Files

Current Data

Adjusted
Covariance
Data Files

Base
Covariance
Data Files

1. Create directories
for bew Cov Data

2. Copy files
(manually)

CopyUnadjusted
Data.csh

3. Calculate bew
Adjusted Data

4. Create missing
Adjusted Data

Figure 4
Replacement Covariance Data Flowchart

Page 7 of 94

Whisper Source Code Inspection Report

4. Algorithms

The following sections present the algorithms for the three purposes above. These algorithms are
presented separately, although Whisper can execute a combination of these algorithms. To explain the
sequence of steps, the algorithm in Section 4.1 includes references to Sections 4.2 and 4.3. LA-UR-14-
26558 (and the Whisper source code) is the reference for these algorithms. B.T. Rearden, et. al., is also a
good introduction to sensitivity and uncertainty analysis methods.

The following algorithms and equations use different subscripts to indicate the different parameters (for
example, the isotope, energy bin, and reaction).

Subscript Parameter
A Application
a Index on application
B Benchmark
C Combined (application and benchmark) data

i • Index on isotope
• Summation index

j • Index on energy
• Summation index

k • Index on reactions
• Variable related to keff

kk Correlation data
m Benchmark index
u Index to benchmark with unknown uncertainty

x
Independent parameter for sensitivity coefficient

(e.g., the cross section of a specific isotope,
 reaction, and incident energy)

xx Covariance data
x'x' Adjusted covariance data

This convention is used only in this document, not the reference documents or the Whisper program itself.

4.1 Evaluate Application Model and Calculate Baseline USL

The following steps are performed to evaluate an application model and calculate the corresponding
baseline Upper Subcritical Limit.

Note: Report LA-UR-14-26558 uses row vectors and the corresponding matrix organization. Whisper
uses a column organization. The following algorithm follows the Whisper notation; the following
equations differ from LA-UR-14-26558 by the transposition of certain vectors and matrices.

Page 8 of 94

Whisper Source Code Inspection Report

1. Expert judgment has been used to determine the appropriate margin for unknowns that remain
undetected in the transport code:

 MOSsoftware = 0.005 (1)

This value has been hard-coded in Whisper (parameter CodeAndMethodMargin).

2. For each benchmark (m):

a. Read the input data: the experimental keff (ki,exp) and uncertainty (σi,exp), the calculational keff
(ki,calc) and uncertainty (σi,calc), and sensitivity coefficients (Sk,x) as isotope sensitivity matrices.
A isotope sensitivity matrix arranges the sensitivity coefficients by row for each energy level
and by column for each reaction, as shown in Figure 5.

 Reaction index
Energy index 1 2 … 11 12

1 Sk(1,1) Sk(1,2) … Sk(1,11) Sk(1,12)

2 Sk(2,1) Sk(2,2) … Sk(2,11) Sk(2,12)

⁞ ⁞ ⁞ … ⁞ ⁞

43 Sk(43,1) Sk(43,2) … Sk(43,11) Sk(43,12)

44 Sk(44,1) Sk(44,2) … Sk(44,11) Sk(44,12)

Figure 5 – Isotope Sensitivity Matrix Organization

1) The definition of a sensitivity coefficient for keff is [LA-UR-14-26558; eq. 28]:

𝑆𝑆𝑘𝑘,𝑥𝑥 ≡

𝑥𝑥
𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (2)

2) Sensitivity coefficients are specific to (and indexed by) the isotope, reaction, and neutron
energy. (This is the order used in Whisper.)

3) The nuclear reactions considered are elastic scattering, inelastic scattering, fission,
capture [(n,2n), (n,γ), (n,p), (n,d), (n,t), (n,3He), (n,α)], fission total ν, and fission χ [LA-
UR-14-23352; Sec. 3.1] [LA-UR-14-26436; Sec. 3.4]. All other reactions are going to be
minor to criticality safety and are ignored [LA-UR-14-26436; Sec. 3.4].

b. Calculate the bias in keff [LA-UR-14-26558; eq. 21]:

 𝛽𝛽𝑚𝑚 = 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚 − 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 (3)

c. Calculate the uncertainty in the keff bias [LA-UR-14-26558; eq. 22]:

𝜎𝜎𝛽𝛽,𝑚𝑚 = �𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚

2 + 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚
2 (4)

3. Read the benchmark correlation data. Populate the correlation matrix (as shown in Figure 6) with
the correlation values between two benchmarks.

Page 9 of 94

Whisper Source Code Inspection Report

Benchmark Benchmark index
index 1 2 … N-1 N

1 1 r1,2 … r1,N-1 r1,N

2 r2,1 1 … r2,N-1 r2,N

⁞ ⁞ ⁞ … ⁞ ⁞

N-1 rN-1,1 rN-1,2 … 1 rN-1,N

N rN,1 rN,2 … rN,N-1 1

Figure 6 – Correlation Matrix Organization

a. The correlation matrix is initialized to the identity matrix with a row and column for each
benchmark.

b. Read the correlation data file for the benchmark names and correlation value, i.e.,

namem1 namem2 rm1,m2

The correlation value (rm1,m2) is also placed in matrix position (m2, m1), i.e., is rm2,m1.

• Any pair of benchmark names can be specified only once in the input file.

• If namem1 = namem2, the input correlation value must be one.

• If namem1 ≠ namem2, the correlation value must be within the range of (-1,1).

• If a pair of benchmarks is not listed in the correlation file, the correlation value
defaults to zero.

4. Read the application data: the calculated keff (kcalc,a) and uncertainty (σcalc,a), and the sensitivity
coefficients (Sk,x) as isotope sensitivity matrices.

5. For sensitivity coefficients on thermal scattering {S(α,β)} cross sections in the benchmark and
application data, add the inelastic scattering sensitivity coefficients to the elastic scattering
sensitivity coefficients. See Appendix C for further discussion of the covariance and sensitivity
data for thermal scattering {S(α,β)} cross sections. Set all sensitivity factors for reactions other
than scattering to zero. For the isotope sensitivity matrix shown above, add column 2 to
column 1 and set columns 2 to 12 to zero.

6. Read the covariance data as individual covariance matrices. Each covariance value is for an
isotope, energy, and reaction (e.g, i1, j1, k1) with another isotope, energy, and reaction (e.g., i2,
j2, k2). Each individual covariance matrix is specific to one isotope and reaction pair (e.g, i1, k1)
and another isotope and reaction pair (e.g., i2, k2). As shown in Figure 7, the rows and columns
of the individual covariance matrix are for the energies (e.g., j1 and j2). See Sections 5.9 and
5.10 below for more information on the covariance data and individual covariance matrix.

a. The individual covariance matrix for the reverse order of isotope and reaction (e.g, i2, k2 and
i1, k1) is the transpose of the matrix for i1, k1 and i2, k2.

Page 10 of 94

Whisper Source Code Inspection Report

 Energy index
Energy index 1 2 … 43 44

1 cov1,1 cov1,2 … cov1,43 cov1,44

2 cov2,1 cov2,2 … cov2,43 cov2,44

⁞ ⁞ ⁞ … ⁞ ⁞

43 cov43,1 cov43,2 … cov43,43 cov43,44

44 cov44,1 cov44,2 … cov44,43 cov44,44

Figure 7 – Individual Covariance Matrix Organization

7. For the benchmarks with an unknown (or unrealistically low) experimental uncertainty, estimate
the experimental uncertainty (σexp,u). For each benchmark with an unknown (or unrealistically
low) experimental uncertainty (Bu):

a. For each benchmark, expand the isotope sensitivity matrices to create the benchmark
sensitivity vector (𝑺𝑺��⃗ 𝑚𝑚).

1) Each sensitivity vector contains all of the sensitivity coefficients for the corresponding
benchmark (or application) organized by isotope, reaction, and energy as shown in
Figure 8. The vector must include the isotopes for all of the benchmarks, as well as the
specified reactions and energies. The sensitivity vector is all of the columns of all of the
benchmark isotope sensitivity matrices (see Figure 5) stacked together.

Page 11 of 94

Whisper Source Code Inspection Report

𝐼𝐼1 →

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑅𝑅1 → �

𝐸𝐸1 →
⋮

 𝐸𝐸44 →

𝑅𝑅2 → �
 𝐸𝐸1 →
⋮

 𝐸𝐸44 →
⋮ ⋮

𝑅𝑅12 → �
 𝐸𝐸1 →
⋮

 𝐸𝐸44 →

𝐼𝐼2 →

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑅𝑅1 → �

𝐸𝐸1 →
⋮

 𝐸𝐸44 →
⋮ ⋮

𝑅𝑅12 → �
 𝐸𝐸1 →
⋮

 𝐸𝐸44 →
⋮ ⋮

𝐼𝐼𝑁𝑁 →

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑅𝑅1 → �

𝐸𝐸1 →
⋮

 𝐸𝐸44 →
⋮ ⋮

𝑅𝑅12 → �
 𝐸𝐸1 →
⋮

 𝐸𝐸44 →

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑆𝑆1
⋮
𝑆𝑆44
𝑆𝑆45
⋮
𝑆𝑆88
⋮

𝑆𝑆485
⋮

𝑆𝑆528
𝑆𝑆529
⋮

𝑆𝑆572
⋮

𝑆𝑆1013
⋮

𝑆𝑆1056
⋮
𝑆𝑆⋯
⋮
𝑆𝑆⋯
⋮
𝑆𝑆⋯
⋮

𝑆𝑆528𝑁𝑁⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= 𝑆𝑆𝑚𝑚

Figure 8 – Sensitivity Vector Organization

b. Create the expanded covariance data matrix (Cxx) from the individual covariance matrices.
Like the sensitivity vectors, the columns and rows of the matrix are arranged by isotope,
reaction, and energy, as shown in Figure 9.

c. Calculate the variance of Bu [LA-UR-14-26558, eq. 31]:

 𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(𝐵𝐵𝑢𝑢) = 𝑺𝑺��⃗ 𝑢𝑢 𝑇𝑇 𝑪𝑪�𝑥𝑥𝑥𝑥 𝑺𝑺��⃗ 𝑢𝑢 (5)

d. For each benchmark with a known (realistic) experimental uncertainty (Bm):

1) Calculate the variance of Bm [LA-UR-14-26558, eq. 31].

2) Calculate the covariance of Bu and Bm [LA-UR-14-26558, eq. 30]:

 𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝐵𝐵𝑢𝑢,𝐵𝐵𝑚𝑚) = 𝑺𝑺��⃗ 𝑢𝑢 𝑇𝑇 𝑪𝑪�𝑥𝑥𝑥𝑥 𝑺𝑺��⃗ 𝑚𝑚 (6)

Page 12 of 94

Whisper Source Code Inspection Report

Isotope #1 #1 … Last isotope
 Reaction 1 2 … 12
 E Bin 1 … 44 1 … 44 … 1 … 44

 1 Covariance Data
for isotope #1, reaction 1
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 1
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 1
& last isotope, last reaction

#1 1 ⁞
 44
 1 Covariance Data

for isotope #1, reaction 2
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 2
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 2
& last isotope, last reaction

#1 2 ⁞
 44
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
 1 Covariance Data

for isotope #1, reaction 12
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 12
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 12
& last isotope, last reaction

#1 12 ⁞
 44
 1 Covariance Data

for isotope #2, reaction 1
& isotope #1, reaction 1

Covariance Data
for isotope #2, reaction 1
& isotope #1, reaction 2

…
Covariance Data

for isotope #2, reaction 1
& last isotope, last reaction

#2 1 ⁞
 44
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞
 1 Covariance Data

for last isotope, last reaction
& isotope #1, reaction 1

Covariance Data
for last isotope, last reaction

& isotope #1, reaction 2
…

Covariance Data
for last isotope, last reaction
& last isotope, last reaction

Last 12 ⁞
isotope 44

Figure 9 - Expanded Covariance Matrix (Cxx) Organization

Page 13 of 94

Whisper Source Code Inspection Report

3) Calculate the correlation coefficient (ck,i) between Bu and Bm [LA-UR-14-26558, eq. 32]:

𝑐𝑐𝑘𝑘,𝑚𝑚 = 𝑐𝑐𝑘𝑘(𝐵𝐵𝑢𝑢,𝐵𝐵𝑚𝑚) =

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝐵𝐵𝑢𝑢,𝐵𝐵𝑚𝑚)

�𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(𝐵𝐵𝑢𝑢) �𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(𝐵𝐵𝑚𝑚)
 (7)

Negative correlation coefficients (ck) are set to zero [LA-UR-14-26558; Sec. III.A.2].

e. Estimate the experimental uncertainty (σu,exp) for Bu [LA-UR-14-26558, eq. 441]:

𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑢𝑢
2 =

∑ 𝑐𝑐𝑘𝑘,𝑚𝑚𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚
2𝑁𝑁

𝑖𝑖=1

∑ 𝑐𝑐𝑘𝑘,𝑚𝑚
𝑁𝑁
𝑖𝑖=1

 (8)

where the summation is performed over all of the benchmarks with known (i.e., greater than
zero) uncertainties (σexp).

Note: Whisper is missing a step to update the uncertainty in the bias (σβ,m) with the new
benchmark uncertainty.

8. If also rejecting inconsistent benchmarks from the data, perform the benchmark rejection; see
Section 4.2 below for this algorithm.

9. Read the adjusted covariance data (as individual covariance matrices).

a. Alternatively calculate the adjusted covariance data; see Section 4.3 below for this algorithm.

10. Determine the uncertainty for the application model due to nuclear data uncertainty and
variability.

a. Create the expanded matrices for the covariance data (Cxx) and the adjusted covariance data
(Cx'x') from the individual covariance matrices.

b. For each application, expand the isotope sensitivity matrices to create the application
sensitivity vector (𝑺𝑺��⃗ 𝐴𝐴).

c. Calculate the square of adjusted relative uncertainties of k (from the adjusted nuclear data
covariances).

 𝐶𝐶𝑘𝑘′𝑘𝑘′ = 𝑺𝑺��⃗ 𝐴𝐴 𝑇𝑇 𝑪𝑪�𝑥𝑥′𝑥𝑥′ 𝑺𝑺��⃗ 𝐴𝐴 (9)

1) Note: LA-UR-14-26558 presents the equations for evaluating multiple application
models simultaneously, i.e., calculate the covariance matrix for k [LA-UR-14-26558;
eq. 42]:

 𝑪𝑪�𝑘𝑘′𝑘𝑘′ = 𝑺𝑺�𝐴𝐴 𝑇𝑇 𝑪𝑪�𝑥𝑥′𝑥𝑥′ 𝑺𝑺�𝐴𝐴 (10)

Each diagonal element of the matrix Ck'k' is the adjusted relative uncertainty squared for
the corresponding benchmark.

d. The uncertainty due to nuclear data uncertainty and variability is [LA-UR-14-26558;
Sec. III.B.2]:

 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = �𝐶𝐶𝑘𝑘′𝑘𝑘′ (11)

1 Note: Although LA-UR-14-26558, eq. 44 uses the symbol for bias uncertainty (σi as given in LA-UR-
14-26558 ,eq. 22), the text (Section III.C) states this is a method for calculating the benchmark
(experimental) uncertainty.

Page 14 of 94

Whisper Source Code Inspection Report

11. Calculate the calculational margin for the application model.

a. Calculate the correlation coefficients (ck,i) for the application model (A) with respect to each
benchmark case (Bi) [LA-UR-14-26558, eq. 32]:

𝑐𝑐𝑘𝑘,𝑚𝑚 = 𝑐𝑐𝑘𝑘(𝐴𝐴,𝐵𝐵𝑚𝑚) =

𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘(𝐴𝐴,𝐵𝐵𝑚𝑚)

�𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(𝐴𝐴) �𝑉𝑉𝑉𝑉𝑉𝑉𝑘𝑘(𝐵𝐵𝑚𝑚)
 (12)

b. Determine the maximum values of the correlation coefficients for this application model
(ck,max).

c. Determine the required weight [LA-UR-14-26558, eq. 35]:

 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 +𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�1− 𝑐𝑐𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚� (13)

Where wmin is the minimum sample weight alowed for the validation (default value is 25) and
wpenalty is the coefficient for determining the penalty for not having a benchmark that is
identically similar to the application (default value is 100).

d. Calculate the benchmark weighting factors for the application model [LA-UR-14-26558;
Sec. III.A.2].

1) Initialize the acceptance correlation coefficient (ck,acc) as 99.999% of ck,max.

2) Calculate the individual benchmark weights [LA-UR-14-26558, eq. 34]:

𝑤𝑤𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚 �0,

𝑐𝑐𝑘𝑘,𝑚𝑚 − 𝑐𝑐𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎

𝑐𝑐𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑐𝑐𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎
� (14)

3) Perform the test [LA-UR-14-23202, eq. 8]2:

 �𝑤𝑤𝑚𝑚
𝑖𝑖

≥ 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟 (15)

4) If the test fails and ck,acc > 0, decrement ck,acc by 0.001% of ck,max and return to the
individual benchmark weight calculation {Step d.2) above}.

5) When the iteration on ck,acc is completed, the relevant benchmarks are those with
ck,i ≥ ck,acc. The benchmarks with ck,i < ck,acc have a zero weighting factor and will not
influence the calculational margin.

e. Determine the unadjusted calculational margin3 for the application model.

1) The computational or calculational margin is found by finding the value of x where the
Extreme Value Theory (EVT) cumulative distribution function (CDF) equals (or exceeds)
the desired confidence [LA-UR-14-23202, Sec. 3, last para.]:

 𝐹𝐹�𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢� ≥ 𝑞𝑞 (16)

where munadj is the unadjusted calculational margin and q is the confidence level (default
value is 99%) [LA-UR-14-26558, eq. 24].

2 LA-UR-14-23202, eq. 8 is a variation of LA-UR-14-26558, eq. 33.

3 Unadjusted because this calculational margin value includes any non-conservative biases (βm < 0).

Page 15 of 94

Whisper Source Code Inspection Report

2) The EVT CDF is [LA-UR-14-26558, eq. 19]:

𝐹𝐹(𝑥𝑥) = �𝐹𝐹𝑚𝑚(𝑥𝑥)

𝑁𝑁

𝑚𝑚=1

 (17)

where N is the number of benchmarks.

3) Where Fm(x) is the normal distribution CDF with weight wm [LA-UR-14-26558, eq. 23]:

𝐹𝐹𝑚𝑚(𝑥𝑥) = (1 −𝑤𝑤𝑚𝑚) +

𝑤𝑤𝑚𝑚
2 �1 + 𝑒𝑒𝑒𝑒𝑒𝑒�

𝑥𝑥 − 𝛽𝛽𝑚𝑚

�2𝜎𝜎𝛽𝛽,𝑚𝑚
2 �� (18)

4) The corresponding probability density functions (PDFs) are:

𝑓𝑓(𝑥𝑥) =

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐹𝐹(𝑥𝑥) = �
𝑑𝑑𝐹𝐹𝑚𝑚(𝑥𝑥)
𝑑𝑑𝑑𝑑

� 𝐹𝐹𝑛𝑛(𝑥𝑥)
𝑁𝑁

𝑛𝑛=1
𝑛𝑛≠𝑚𝑚

𝑁𝑁

𝑚𝑚=1

= 𝐹𝐹(𝑥𝑥) �
𝑓𝑓𝑚𝑚(𝑥𝑥)
𝐹𝐹𝑚𝑚(𝑥𝑥)

𝑁𝑁

𝑚𝑚=1

 (19)

𝑓𝑓𝑚𝑚(𝑥𝑥) =

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐹𝐹𝑚𝑚(𝑥𝑥) =
𝑤𝑤𝑚𝑚
√2𝜋𝜋

1
𝜎𝜎𝛽𝛽,𝑚𝑚

𝑒𝑒𝑒𝑒𝑒𝑒 �−
1
2�

𝑥𝑥 − 𝛽𝛽𝑚𝑚
𝜎𝜎𝛽𝛽,𝑚𝑚

�
2

� (20)

from the identity:

 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) =

2
√𝜋𝜋

𝑒𝑒𝑒𝑒𝑒𝑒(−𝑧𝑧2) (21)

f. Determine the unadjusted calculational margin for the application model.

1) Theoretically, the bias of the application is determined by [LA-UR-14-26558; eq. 25]:

𝛽𝛽 = � 𝑥𝑥𝑥𝑥(𝑥𝑥)𝑑𝑑𝑑𝑑

∞

−∞
= � 𝑥𝑥𝑥𝑥(𝑥𝑥) �

𝑓𝑓𝑚𝑚(𝑥𝑥)
𝐹𝐹𝑚𝑚(𝑥𝑥)

𝑁𝑁

𝑚𝑚=1

𝑑𝑑𝑑𝑑
∞

−∞
 (22)

2) This integration is performed with the trapezoid rule [LA-UR-14-26558; Sec. III.A.1].
Because the integration is performed numerically, the integral cannot be performed from
negative infinity to positive infinity. Fortunately, this is not necessary because f(x) ≈ 0
for small and large x values and does not contribute significantly to the integral.
Therefore, in practice, the bias of the application is determined by:

𝛽𝛽 ≈ � 𝑥𝑥𝑥𝑥(𝑥𝑥) �

𝑓𝑓𝑚𝑚(𝑥𝑥)
𝐹𝐹𝑚𝑚(𝑥𝑥)

𝑁𝑁

𝑚𝑚=1

𝑑𝑑𝑑𝑑
𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥

𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥
 (23)

The integration boundary xmin is a point at which the CDF is below a tolerance value (εx)
and the CDF of xmax is within the tolerance to one, i.e.,

 𝐹𝐹(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) < 𝜀𝜀𝑥𝑥 (24)

 𝐹𝐹(𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) > 1 − 𝜀𝜀𝑥𝑥 (25)

The default value of the tolerance is 10-9.

3) Determine the non-conservative bias adjustment [LA-UR-14-26558; eq. 7]:

 Δ𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚(0,−𝛽𝛽) (26)

Page 16 of 94

Whisper Source Code Inspection Report

4) The adjusted calculational margin is determined by adding the non-conservative
adjustment parameter to the unadjusted calculational margin [LA-UR-14-26558; eq. 27]:

 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + Δ𝑚𝑚 (27)

g. Determine the final calculational margin for the application model.

1) If the residual weight fraction is less than (or equal to) zero ��1 − wsum wreq⁄ � ≤ 0�, the
adjusted calculational margin is the final calculational margin:

 𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 (28)

2) If the residual weight fraction is greater than zero ��1 − wsum wreq⁄ � > 0�, all of the
benchmarks are too dissimilar to the application to satisfy the test ∑ wii ≥ wreq. To
address this condition, an interpolation with the unweighted calculational margin is added
[LA-UR-14-16558; eq. 36 4]

𝑚𝑚𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =

𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠
𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟

𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 + �1 −
𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠
𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟

�𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑡𝑡𝑡𝑡 (29)

The unweighted calculational margin is initially calculated in the same manner as the
adjusted calculational margin (eq. 27 above) but with all benchmark weights (wm) equal
to one. Equation 29 relies on the fact that the unweighted calculational margin is always
greater than the weighted calculational margin5. However, the minimum non-coverage
penalty (default value of 0.05) is the lower limit for the unweighted calculational margin.

 𝑚𝑚𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢ℎ𝑡𝑡𝑡𝑡𝑡𝑡 = max �𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎{𝑤𝑤𝑚𝑚 = 1},𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� (30)

12. Calculate the baseline Upper Subcritical Limit (USL) for the application model [LA-UR-14-
26558; eq. 2 and 37]:

 USLbaseline = 1.0 – mfinal – MOSdata – MOSsoftware (31)

a. The margin of subcriticality due to nuclear data uncertainty and variability is [LA-UR-14-
26558; eq. 43]:

 𝑀𝑀𝑀𝑀𝑀𝑀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑛𝑛𝜎𝜎 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (32)

4 The LA-UR-14-16558 text with eq. 36 states the interpolation is performed with the calculational
margin from eq. 24, i.e., the unadjusted calculational margin. However, the interpolation implemented in
Whisper (i.e., the Whisper source code) uses the adjusted calculational margin from eq. 27.

5 From equation 18, the weighted and unweighted CDFs are related by:

 𝐹𝐹𝑚𝑚(𝑥𝑥) = (1 −𝑤𝑤𝑚𝑚) + 𝑤𝑤𝑚𝑚𝐺𝐺𝑚𝑚(𝑥𝑥) = (𝐺𝐺𝑚𝑚(𝑥𝑥) − 1)𝑤𝑤𝑚𝑚 + 1

where Gm(x) is the unweighted (wm = 1) CDF. For 0 ≤ wm ≤ 1, Fm(x) is a linear function of wm from 1 to
Gm(x). Since CDF values (e.g., Gm(x)) are always less than one, Fm(x) is a decreasing linear function of
wm. Therefore, for wm < 1, the weighted CDF is always greater than the unweighted CDF (Fm(x) > Gm(x)).
Since the EVT CDF is the product of the individual CDFs (eq. 17), the weighted EVT CDF (F(x)) is
always greater than the unweighted EVT CDF (G(x)). The (unadjusted) calculation margins for the
weighted and unweighted CDFs is determined by (from eq. 16):

 𝐹𝐹(𝑚𝑚𝐹𝐹) = 𝐺𝐺(𝑚𝑚𝐺𝐺) = 𝑞𝑞

Therefore, since F(x) and G(x) are increasing functions and F(x) ≥ G(x), the unweighted calculation
margin (mG) must be greater than the weighted calculation margin (mF).

Page 17 of 94

Whisper Source Code Inspection Report

where nσ is the standard deviation multiplier corresponding to the confidence level (for the
default confidence level of 99%, nσ = 2.6).

4.2 Reject Inconsistent Benchmark Cases

The generalized linear least squares (GLLS) method is used to adjust the nuclear data to minimize the chi-
squared statistic (see LA-UR-14-23202, eq. 10). Benchmarks are iteratively rejected until the chi-squared
value divided by the number of benchmarks is less than the maximum limit (default value is 1.2). [LA-
UR-14-23352; Sec. 3.1]

The following steps are performed to reject inconsistent benchmarks.

1. Read the benchmark input data (as discussed in Section 4.1 above).

2. Read the benchmark correlation data (as discussed in Section 4.1 above).

3. Read the covariance data as individual covariance matrices (as discussed in Section 4.1 above).

4. For the benchmarks with an unknown (or unrealistically low) experimental uncertainty, estimate
the experimental uncertainty (as discussed in Section 4.1 above).

5. Determine if any benchmarks should be rejected.

a. Create the benchmark sensitivity matrix (SB,kx) from the previously calculated sensitivity
factors. In LA-UR-14-26558, each row of the benchmark sensitivity matrix is the sensitivity
vector for a benchmark experiment [LA-UR-14-26558, Sec. III.B.2, pg. 28]. In Whisper,
each column of the benchmark sensitivity matrix is a sensitivity vector.

b. Create the relative covariance matrix of the benchmark experiments including benchmark
correlations (Ckk). The elements of this matrix are calculated from the correlation (ri,j) input
data:

 �𝐶𝐶𝑘̿𝑘𝑘𝑘�𝑚𝑚1,𝑚𝑚2 = 𝑟𝑟𝑚𝑚1,𝑚𝑚2 ×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1
×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2
 (33)

Because the correlation data is symmetric (rm1,m2 = rm2,m1), matrix Ckk is symmetric.

c. Create a diagonal matrix (B) containing the ratio of the benchmark experimental keff to the
calculated keff:

𝐵𝐵𝑚𝑚,𝑚𝑚 =

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚
 (34)

d. An alternative to creating Ckk and B separately (used in Whisper), is calculate the product
(which is the sole purpose of Ckk and B):

 �𝑩𝑩� 𝐶𝐶𝑘̿𝑘𝑘𝑘 𝑩𝑩��𝑚𝑚1,𝑚𝑚2 = 𝑟𝑟𝑚𝑚1,𝑚𝑚2 ×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚1
×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚2
 (35)

Because the correlation data is symmetric, rm1,m2 = rm2,m1, matrix [B Ckk B] is symmetric.

e. Calculate the covariance matrix of the relative difference vector [LA-UR-14-26558, eq. 40]:

 𝑪𝑪�𝑑𝑑𝑑𝑑 = 𝑩𝑩� 𝑪𝑪�𝑘𝑘𝑘𝑘 𝑩𝑩� + 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘
 𝑇𝑇

 𝑪𝑪�𝑥𝑥𝑥𝑥 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘 (36)

f. Invert the covariance matrix of the discrepancy vector.

g. Calculate the benchmark discrepancy vector (the differences between the benchmarks’
calculated keff and the reference keff [LA-UR-14-26558, Sec. III.D]).

Page 18 of 94

Whisper Source Code Inspection Report

𝐷𝐷��⃗ 𝑚𝑚 =

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚
 (37)

Note: This discrepancy is the fractional difference between kcalc and kexp.

h. Calculate the value of chi-squared per benchmark.

 𝜒𝜒2 =
1
𝑁𝑁

 𝐷𝐷��⃗ 𝑇𝑇 𝐶𝐶𝑑̿𝑑𝑑𝑑−1 𝐷𝐷��⃗ (38)

i. If χ2 is less than (or equal to) the threshold (default value is 1.2), then benchmark rejection is
not necessary.

6. If χ2 is greater than the threshold (default value is 1.2), determine which benchmarks are
inconsistent and should be rejected.

a. For the benchmarks which have not been rejected [LA-UR-14-26558, eq. 45]:

 [∆𝜒𝜒2]𝑚𝑚 = �𝐶𝐶𝑑̿𝑑𝑑𝑑−1�𝑚𝑚,𝑚𝑚 × �𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚�
2 (39)

Note: The discrepancy used in this calculation of chi-squared uses the magnitude difference
between kcalc and kexp. Whereas, the discrepancy vector above and below uses the fractional
difference.

b. Reject the benchmark with the maximum [∆𝜒𝜒2]𝑚𝑚.

c. Generate the inverted covariance matrix of the discrepancy vector and the benchmark
discrepancy vector.

d. Calculate the value of chi-squared per benchmark.

e. If χ2 is greater the threshold (default value is 1.2), repeat step 6.

7. Write list of rejected (and excluded) benchmarks to the rejection file.

4.3 Covariance Data Processing

For the adjusted covariance data, the algorithm is to calculate the adjusted or residual covariance matrix
according to LA-UR-14-26558, eq. (41). The following steps are performed in Whisper to process the
covariance data.

1. Read the benchmark input data (as discussed in Section 4.1 above).

2. Read the benchmark correlation data (as discussed in Section 4.1 above).

3. If evaluating application models, read the application data: the calculated keff (kcalc,a) and
uncertainty (σcalc,a), and the sensitivity coefficients (Sk,x).

4. Read the covariance data as individual covariance matrices (as discussed in Section 4.1 above).

5. For the benchmarks with an unknown (or unrealistically low) experimental uncertainty, estimate
the experimental uncertainty (as discussed in Section 4.1 above).

6. For the combined benchmark and application data:

a. Create the benchmark sensitivity matrix (SB,kx) from the previously calculated sensitivity
factors. In LA-UR-14-26558, each row of the benchmark sensitivity matrix is the sensitivity

Page 19 of 94

Whisper Source Code Inspection Report

vector for a benchmark experiment [LA-UR-14-26558, Sec. III.B.2, pg. 28]. In Whisper,
each column of the benchmark sensitivity matrix is a sensitivity vector.

b. Create the relative covariance matrix of the benchmark experiments including benchmark
correlations (Ckk). The elements of this matrix are calculated from the correlation (ri,j) input
data:

 �𝐶𝐶𝑘̿𝑘𝑘𝑘�𝑚𝑚1,𝑚𝑚2 = 𝑟𝑟𝑚𝑚1,𝑚𝑚2 ×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1
×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2
 (40)

Because the correlation data is symmetric (rm1,m2 = rm2,m1), matrix Ckk is symmetric.

c. Create a diagonal matrix (B) containing the ratio of the benchmark experimental keff to the
calculated keff:

𝐵𝐵𝑚𝑚,𝑚𝑚 =

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚
 (41)

d. An alternative to creating Ckk and B separately (used in Whisper), is calculate the product
(which is the sole purpose of Ckk and B):

 �𝑩𝑩� 𝐶𝐶𝑘̿𝑘𝑘𝑘 𝑩𝑩��𝑚𝑚1,𝑚𝑚2 = 𝑟𝑟𝑚𝑚1,𝑚𝑚2 ×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚1

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚1
×
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒,𝑚𝑚2

𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚2
 (42)

Because the correlation data is symmetric, rm1,m2 = rm2,m1, matrix [B Ckk B] is symmetric.

e. Calculate the covariance matrix of the relative difference vector [LA-UR-14-26558, eq. 40]:

 𝑪𝑪�𝑑𝑑𝑑𝑑 = 𝑩𝑩� 𝑪𝑪�𝑘𝑘𝑘𝑘 𝑩𝑩� + 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘
 𝑇𝑇

 𝑪𝑪�𝑥𝑥𝑥𝑥 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘 (43)

f. Calculate the residual (or adjusted) covariance matrix [LA-UR-14-26558; eq. 41].

 𝑪𝑪�𝑥𝑥′𝑥𝑥′ = 𝑪𝑪�𝑥𝑥𝑥𝑥 − �𝑪𝑪�𝑥𝑥𝑥𝑥 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘 𝑪𝑪�𝑑𝑑𝑑𝑑−1 𝑺𝑺�𝐵𝐵,𝑘𝑘𝑘𝑘
 𝑇𝑇 𝑪𝑪�𝑥𝑥𝑥𝑥� (44)

7. The compressed form of Cx'x' is saved as the new or replacement adjusted covariance data.

5. Variables

The following sections explain the variables used in Whisper.

Whisper uses the derived data type introduced with Fortran 90, i.e., data types with defined components
of the intrinsic and previously defined data types. For the derived data type variables explained below,
the components that are not for data storage, i.e., references to other derived variables and pointers to
procedures, are in light grey highlighting. The following is not a comprehensive list of all of the derived
variables used, however, Appendix D does list all of the derived variable types defined in Whisper. In the
text of this document, component names are underlined, for example Data(n) % M(j1,j2), to indicate the
association of the component names.

5.1 Index Variables

The data in Whisper is dependent on several variables, for example, the isotope, energy bin, and reaction.
In order to explain the data structures and operations of Whisper, it was decided that a standard set of
index variables (rather than the variables used in Whisper) would improve the explanations. This
document uses the following convention for indices to aid the reader. This convention is used only in this
document, not the Whisper program itself.

Page 20 of 94

Whisper Source Code Inspection Report

Index Variable Associated with
i Isotope
j Energy bin
k Reaction
m Benchmark
n Numerical

5.2 Energy Bins and Reactions

Whisper V1.0.0 uses fixed parameter variable names and the associated values in the following tables to
define the energy bins and reactions used in the program. These parameters are used to allocate other
variables, such as the sensitivity matrices.

Parameter Variable Name Value
Number of energy bins NErg 44
Number of reactions (or MT numbers) NRxn 12

Variable EBins contains the forty-five boundaries for the energy bins from low (10-11 MeV) to high
(20 MeV). The energy bins are specified in parameter EBins, which is listed below.

 real(8), parameter :: EBins(1:NErg+1) = &
 [1.0000e-11, 3.0000e-09, 7.5000e-09, 1.0000e-08, 2.5300e-08, 3.0000e-08, &
 & 4.0000e-08, 5.0000e-08, 7.0000e-08, 1.0000e-07, 1.5000e-07, 2.0000e-07, &
 & 2.2500e-07, 2.5000e-07, 2.7500e-07, 3.2500e-07, 3.5000e-07, 3.7500e-07, &
 & 4.0000e-07, 6.2500e-07, 1.0000e-06, 1.7700e-06, 3.0000e-06, 4.7500e-06, &
 & 6.0000e-06, 8.1000e-06, 1.0000e-05, 3.0000e-05, 1.0000e-04, 5.5000e-04, &
 & 3.0000e-03, 1.7000e-02, 2.5000e-02, 1.0000e-01, 4.0000e-01, 9.0000e-01, &
 & 1.4000e+00, 1.8500e+00, 2.3540e+00, 2.4790e+00, 3.0000e+00, 4.8000e+00, &
 & 6.4340e+00, 8.1873e+00, 2.0000e+01]

The variable names in Whisper use the terms reactions and MT numbers interchangeably. This document
does so as well. The MT numbers for the reactions of concern are listed in parameter RelevantMTs.
Module ParametersMod sets array RelevantMTs to:

2, 4, 18, 16, 102, 103, 104, 105, 106, 107, 452, 1018

The reaction associated with each MT number is:

Relevant Reaction (MT) Number MCNP6 Definition
[LA-CP-13-00634; Table 3-104]

2 Elastic
4 Total Inelastic

18 Total Fission
16 (n,2n)
102 (n,γ)

Page 21 of 94

Whisper Source Code Inspection Report

Relevant Reaction (MT) Number MCNP6 Definition
[LA-CP-13-00634; Table 3-104]

103 (n,p)
104 (n,d)
105 (n,t)
106 (n,3He)
107 (n,α)
452 Total Fission ν
1018 Total Fission Chi

5.3 Benchmark Data

Variables BenchmarkData and ExcludedBenchmarks are one-dimension arrays of type
BenchmarkDataType. Each element of the array has the following data structure.

Component Data Type Init. Value
NIso integer
MaxIso integer
ZA(i) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure
FileName character(len=40)
KeffCalc real(8)
KeffCalcUnc real(8)
IsoSen(:) type(IsoSenType) allocatable
IsoSen(i) % Sk(j,k) real(8) allocatable
UnionizeKeffSen procedure
UnionizeKeffSenVector procedure
Union6 generic => UnionizeKeffSen,

UnionizeKeffSenVector

KeffBench real(8)
KeffBenchUnc real(8)
KeffBias real(8)
SigmaBias real(8)

6 Component Union selects subroutine UnionizeKeffSen or UnionizeKeffSenVector depending on the
arguments supplied.

• If there are two arguments that are type KeffSenDataType, then Union calls subroutine
UnionizeKeffSen.

• If there is one or two arguments that are arrays of type KeffSenDataType, then Union calls
subroutine UnionizeKeffSenVector.

Page 22 of 94

Whisper Source Code Inspection Report

Where
 i = isotope index,
 j = energy group index (from 1 to 44), and
 k = reaction index (from 1 to 12).

5.4 Application Data

Variable ApplicationData is a one-dimension array of type ApplicationDataType. Each element of the
array has the following data structure.

Component Data Type Init. Value
NIso integer
MaxIso integer
ZA(i) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure
FileName character(len=40)
KeffCalc real(8)
KeffCalcUnc real(8)
IsoSen(:) type(IsoSenType) allocatable
IsoSen(i) % Sk(j,k) real(8) allocatable
UnionizeKeffSen procedure
UnionizeKeffSenVector procedure
Union6 generic => UnionizeKeffSen,

UnionizeKeffSenVector

DataUnc real(8)
CalcMargin real(8)
Bias real(8)
BiasUnc real(8)
USL real(8)
KeffOverUSL real(8)

5.5 Isotope Sensitivity Matrix

Embedded within the benchmark and application data, there is a separate sensitivity matrix for each
individual isotope. This document calls each matrix within the benchmark and application data an isotope
sensitivity matrix to distinguish them from the sensitivity matrix discussed below. Each isotope
sensitivity matrix (variable Sk(j,k)) has 44 rows for the energy bins and 12 columns for the reactions (MT
numbers)7. Figure 10 illustrates the relationship between the isotope sensitivity matrix locations, energy
bins, and reactions.

7 This document follows the convention that the indices for a two-dimensional array are in the order of
row, column.

Page 23 of 94

Whisper Source Code Inspection Report

 MT: 2 4 … 452 1018
Energy k=1 2 … 11 12

10-11 to
3×10-9 j=1 Sk(1,1) Sk(1,2) … Sk(1,11) Sk(1,12)

3×10-9 to
7.5×10-9 2 Sk(2,1) Sk(2,2) … Sk(2,11) Sk(2,12)

… … … … … … …
6.4340 to

8.1873 43 Sk(43,1) Sk(43,2) … Sk(43,11) Sk(43,12)

8.1873
 to 20 44 Sk(44,1) Sk(44,2) … Sk(44,11) Sk(44,12)

Figure 10 – Whisper Isotope Sensitivity Matrix

5.6 Sensitivity Vector

Whisper requires vectors of the sensitivity factors for the benchmarks and the applications to perform its
calculations. Conceptually, the sensitivity vector is a sequential list of the sensitivity factors for each
isotope, each reaction, and each energy bin in the covariance data. However, Whisper performs the
following operations in order to compress the sensitivity vector.

1. When all of the sensitivity factors for an isotope and reaction are zero, the isotope and reaction
are omitted from the sensitivity vector.

2. When the first sensitivity factor and first diagonal covariance value are both zero, the first
(minimum) energy bin is omitted from the sensitivity vector. This omission continues for the
subsequent consecutive energy bins that also satisfy the condition of zero sensitivity and zero
diagonal covariance.

Figure 11 illustrates the organization of the sensitivity vector for one benchmark or application case.

Page 24 of 94

Whisper Source Code Inspection Report

Isotope Reaction E Bin Sensitivity Vector (variable S)
 MinEBin IsoSen(1) % Sk(1,MinEBin)

#1 #1 … …
 44 IsoSen(1) % Sk(1,44)
 MinEBin IsoSen(1) % Sk(2,MinEBin)

#1 #2 … …
 44 IsoSen(1) % Sk(2,44)

… … … …
 MinEBin IsoSen(2) % Sk(1,MinEBin)

#2 #1 … …
 44 IsoSen(2) % Sk(1,44)

… … … …
 MinEBin IsoSen(imax) % Sk(jmax,MinEBin)

imax jmax … …
 44 IsoSen(imax) % Sk(jmax,44)

Where

imax = number of isotopes with non-zero sensitivity factors in the
benchmark or application data,

jmax = number of reactions with non-zero sensitivity factors for the last
isotope in the benchmark or application data, and

MinEBin = the minimum energy bin value for each isotope and reaction.

Figure 11 – Whisper Sensitivity Vector

5.7 Sensitivity Matrices

5.7.1 Benchmark Data

Whisper requires a matrix of the benchmark sensitivity factors to perform its calculations. In Whisper,
each column of the benchmark sensitivity matrix is a sensitivity vector as described above, and shown in
Figure 12 below. In LA-UR-14-26558, each row of the benchmark sensitivity matrix (SB,kx) is the
sensitivity vector for a benchmark experiment [LA-UR-14-26558, Sec. III.B.2, pg. 28]. Therefore,
Whisper does not transpose the sensitivity matrix when LA-UR-14-26558 does, and vice versa.

5.7.2 Application Data

LA-UR-14-26558, Sec. III.B.2, discusses a sensitivity matrix for the applications (SA,kx); see equations 42
and 43. In Whisper, the USLs for the application models are calculated individually within a loop.
Therefore, the sensitivity vector for each application is used, rather than a matrix for all applications, in
the USL calculations. That is, in LA-UR-14-26558 eq. 42, SA,kx is a vector and Ck'k' is a single value (i.e.,
Ck'k'). Also, the input to eq. 43 is the single value (Ck'k') rather than a diagonal element of the matrix Ck'k'.

Page 25 of 94

Whisper Source Code Inspection Report

 Sensitivity Matrix
Isotope Reaction E Bin Benchmark 1 Benchmark 2 … Last Benchmark

 MinEBin IsoSen(1) % Sk(1,MinEBin) IsoSen(1) % Sk(1,MinEBin) … IsoSen(1) % Sk(1,MinEBin)
#1 #1 … … … … …
 44 IsoSen(1) % Sk(1,44) IsoSen(1) % Sk(1,44) … IsoSen(1) % Sk(1,44)
 MinEBin IsoSen(1) % Sk(2,MinEBin) IsoSen(1) % Sk(2,MinEBin) … IsoSen(1) % Sk(2,MinEBin)

#1 #2 … … … … …
 44 IsoSen(1) % Sk(2,44) IsoSen(1) % Sk(2,44) … IsoSen(1) % Sk(2,44)

… … … … … … …
 MinEBin IsoSen(2) % Sk(1,MinEBin) IsoSen(2) % Sk(1,MinEBin) … IsoSen(2) % Sk(1,MinEBin)

#2 #1 … … … … …
 44 IsoSen(2) % Sk(1,44) IsoSen(2) % Sk(1,44) … IsoSen(2) % Sk(1,44)

… … … … … … …
 MinEBin IsoSen(imax) % Sk(jmax,MinEBin) IsoSen(imax) % Sk(jmax,MinEBin) … IsoSen(imax) % Sk(jmax,MinEBin)

imax jmax … … … … …
 44 IsoSen(imax) % Sk(jmax,44) IsoSen(imax) % Sk(jmax,44) … IsoSen(imax) % Sk(jmax,44)

Figure 12 – Whisper Benchmark Sensitivity Matrix

Page 26 of 94

Whisper Source Code Inspection Report

5.8 Benchmark Correlation Data

Variable BenchmarkCorrel is type BenchmarkCorrelationMatrixType and has the following data
structure.

Component Data Type Init. Value
Name(m) character(len=40) allocatable
Mat(m,m) real(8) allocatable

Where
 m = benchmark index.

5.8.1 Benchmark Correlation Matrix

Variable BenchmarkCorrel % Mat is the correlation matrix for the benchmarks. Because each benchmark
always has perfect correlation with itself, the diagonal elements must always be one (1). The rest of the
matrix is symmetric about the diagonal.

Benchmark Benchmark index
index 1 2 … N-1 N

1 1 r1,2 … r1,N-1 r1,N

2 r2,1 1 … r2,N-1 r2,N

⁞ ⁞ ⁞ … ⁞ ⁞

N-1 rN-1,1 rN-1,2 … 1 rN-1,N

N rN,1 rN,2 … rN,N-1 1

Figure 13 – Benchmark Correlation Matrix (BenchmarkCorrel %Mat)

Page 27 of 94

Whisper Source Code Inspection Report

5.9 Covariance Data

Variables CovarianceData and AdjustedCovarianceData are type CovarianceMatrixType and have the
following data structure.

Component Data Type Init. Value
Data(:) type(MatrixType) allocatable
Data(n) % M(j1,j2) real(8) allocatable
Iso(:,:) type(IsotopeLevelCovarianceMatrixType) allocatable
Iso(:,:) % Rxn(:,:) type(ReactionLevelCovarianceMatrixType) allocatable
Iso(i1,i2) % Rxn(k1,k2) % Data type(MatrixType), pointer => null()
Iso(i1,i2) % Rxn(k1,k2) %
doTranspose logical = .false.

Iso(i1,i2) % mt1(k1) integer allocatable
Iso(i1,i2) % mt2(k2) integer allocatable
ZA(i) character(len=6) allocatable
Read procedure, public => ReadCovarianceData
ReadFile procedure, private => ReadCovarianceFile
Write procedure, public => WriteCovarianceData

FindZAIndex procedure, public =>
CovarianceMatrixFindZAIndex

FindMTIndex procedure, public =>
CovarianceMatrixFindMTIndex

FindNextFreeMatrix procedure, private =>
CovarianceMatrixFindNextFreeMatrix

ConstructSUMap procedure, public =>
CovarianceMatrixConstructSUMapVector

ExpandCovarianceMatrixSensitivity
Vectors procedure, public

ExpandCovarianceMatrixSensitivity
Matrix procedure, public

Expand8
generic, public =>
ExpandCovarianceMatrixSensitivityVectors, &
ExpandCovarianceMatrixSensitivityMatrix

Where
 i, i1, i2 = isotope index,
 j1, j2 = energy group index (from 1 to 44),
 k1, k2 = reaction index, and
 n = numerical index.

The relationships of the covariance data are illustrated in Figure 14.

8 Component Expand selects subroutine ExpandCovarianceMatrixSensitivityVectors or
ExpandCovarianceMatrixSensitivityMatrix depending on the arguments supplied.

• If the first argument types are KeffSenDataType, KeffSenDataType, and
ExpandedCovarianceMatrixSensitivityVectorType, then Expand calls subroutine
ExpandCovarianceMatrixSensitivityVectors.

• If the first argument types are an array KeffSenDataType, and
ExpandedCovarianceMatrixSensitivityMatrixType, then Expand calls subroutine
ExpandCovarianceMatrixSensitivityMatrix.

Page 28 of 94

Whisper Source Code Inspection Report

Iso(i1,i2) % Rxn(k1,k2) % Data

ZA(i1) = ZA of first isotope

Iso(i1,i2) % mt1(k1) = Reaction of first isotope*

Iso(i1,i2) % Rxn(k1,k2) % doTranspose

ZA(i2) = ZA of second isotope

Iso(i1,i2) % mt1(k2)
= Reaction of second isotope*

 Data(x)
 Data(x) % M(j1,j2)

Value?

Covariance factor of isotope ZA(i1),
reaction mt1(k1), & energy bin j1

and isotope ZA(i2), reaction mt2(k2),
& energy bin j2

Covariance factor of isotope ZA(i2),
reaction mt2(k2), & energy bin j2

and isotope ZA(i1), reaction mt1(k1),
& energy bin j1†

False

True

*for this combination of isotopes.
†The covariance matrix of isotope ZA(i1) & reaction (k1) on
isotope (i2) & reaction (k2) is the transpose matrix M.

Figure 14 – Whisper Covariance Data Relationships

Page 29 of 94

Whisper Source Code Inspection Report

5.10 Individual Covariance Matrix

Each (individual) covariance matrix is placed in component Data(n) % M(j1,j2). The array index on Data
is only a sequential placement/count of the covariance matrices and has no identifying information. Each
covariance matrix is a 44 × 44 array (where 44 is the number of energy groups in Whisper V1.0.0).

Component Iso(i1,i2) % Rxn(k1,k2) % Data points to the covariance data for isotope ZA(i1) & reaction
mt1(k1) and isotope ZA(i2) & reaction mt2(k2). If component Iso(i1,i2) % Rxn(k1,k2) % doTranspose is
false, matrix M is the covariance matrix for isotope ZA(i1) & reaction mt1(k1) and isotope ZA(i2) &
reaction mt2(k2). If component Iso(i1,i2) % Rxn(k1,k2) % doTranspose is true, matrix M must be
transposed to get the covariance matrix for isotope ZA(i1) & reaction mt1(k1) and isotope ZA(i2) &
reaction mt2(k2).

Components Iso(i1,i2) % Rxn(k1,k2) % Data and Iso(i2,i1) % Rxn(k2,k1) % Data both point to the same
covariance data. However, the covariance matrix must be transposed for one of these isotope-reaction
ordered pair. That is, for components Iso(i1,i2) % Rxn(k1,k2) % doTranspose and Iso(i2,i1) %
Rxn(k2,k1) % doTranspose, one must be true (and the other must be false).

 Energy index
Energy index 1 2 … 43 44

1 cov1,1 cov1,2 … cov1,43 cov1,44

2 cov2,1 cov2,2 … cov2,43 cov2,44

⁞ ⁞ ⁞ … ⁞ ⁞

43 cov43,1 cov43,2 … cov43,43 cov43,44

44 cov44,1 cov44,2 … cov44,43 cov44,44

Figure 15 – Individual Covariance Matrix Organization

5.11 Expanded Covariance Matrix

A single matrix of the covariance values for the isotopes and reactions in the covariance data is required
for calculations. This is called the expanded covariance matrix in Whisper and is denoted by component
C in the derived type ExpandedCovarianceMatrixType. The expanded covariance matrix also uses the
compression operations that the sensitivity vector uses (see Section 5.6 above). Figure 16 illustrates the
organization of the expanded covariance matrix.

As discussed in Section 0 above, components Iso(i1,i2) % Rxn(k1,k2) % Data and Iso(i2,i1) %
Rxn(k2,k1) % Data point to the same individual covariance matrix. Components Iso(i1,i2) % Rxn(k1,k2)
% doTranspose and Iso(i2,i1) % Rxn(k2,k1) % doTranspose determine whether matrix is transposed or
not before being placed in the expanded covariance matrix.

Page 30 of 94

Whisper Source Code Inspection Report

Isotope #1 #1 … Last isotope
 Reaction 1 2 … 12
 E Bin MinEBin … 44 MinEBin … 44 … MinEBin … 44

 MinEBin Covariance Data
for isotope #1, reaction 1
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 1
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 1
& last isotope, reaction 12

#1 1 ⁞
 44
 MinEBin Covariance Data

for isotope #1, reaction 2
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 2
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 2
& last isotope, reaction 12

#1 2 ⁞
 44
⁞ ⁞ ⁞ ⁞ ⁞ … ⁞
 MinEBin Covariance Data

for isotope #1, reaction 12
& isotope #1, reaction 1

Covariance Data
for isotope #1, reaction 12
& isotope #1, reaction 2

…
Covariance Data

for isotope #1, reaction 12
& last isotope, reaction 12

#1 12 ⁞
 44
 MinEBin Covariance Data

for isotope #2, reaction 1
& isotope #1, reaction 1

Covariance Data
for isotope #2, reaction 1
& isotope #1, reaction 2

…
Covariance Data

for isotope #2, reaction 1
& last isotope, reaction 12

#2 1 ⁞
 44
⁞ ⁞ ⁞ ⁞ ⁞ … ⁞
 MinEBin Covariance Data

for last isotope, last reaction
& isotope #1, reaction 1

Covariance Data
for last isotope, last reaction

& isotope #1, reaction 2
…

Covariance Data
for last isotope, reaction 12
& last isotope, reaction 12

Last 12 ⁞
isotope 44

Where the value MinEBin is specific to each isotope and reaction.

Figure 16 – Whisper Expanded Covariance Matrix Organization

Page 31 of 94

Whisper Source Code Inspection Report

6. Initial Values

6.1 File Parameters

The file parameters and initial values are set in module FilesMod.

6.2 Command Line Defaults

The defaults for the options selected on the command line are set in module FilesMod.

6.3 User Options

The default values for the user options are set in module OptionsMod. See Section 7.4 below for a list of
the user options and the default values.

Module OptionsMod also sets the rejection method to the iterative diagonal method. Because the iterative
diagonal method is the only method available in Whisper V1.0.0, the user cannot change the rejection
method.

6.4 Technical Parameters

The technical parameters are set in module ParametersMod. Examples of the technical parameters are
listed below.

Parameter Variable Name Value
keff for critical system KeffCritical 1.0
Calculational margin due to the code and method CodeAndMethodMargin 0.005
Number of energy bins NErg 44
Number of reactions (or MT numbers) NRxn 12
Data rejection method name and case value IterativeDiagonal 0
Energy bin boundaries EBins(1:NErg+1) See file.
Number of relevant MT numbers NumRelevantMTs 12

The MT numbers for the reactions of concern are listed in parameter RelevantMTs. Module
ParametersMod sets array RelevantMTs to:

2, 4, 18, 16, 102, 103, 104, 105, 106, 107, 452, 1018

See Section 5.2 above for the reaction associated with each MT number.

Page 32 of 94

Whisper Source Code Inspection Report

7. Program Structure

The main program of Whisper calls 14 subroutines; these subroutines in turn call additional subroutines
and functions. Appendix E lists all of the Whisper subroutines and functions. The complete call tree
logic for Whisper is given in Appendix F. However, this report does not describe every subroutine and
function in Appendices E and F in detail, i.e., has a dedicated section for every subroutine and function.
When appropriate, a small summary of a subroutine (and all its subordinates) is given when the call
statement within the higher tier subroutine is discussed. The subroutines and functions that are covered in
detail are listed in the following abbreviated call tree.

Program Whisper

1. WriteHeader
2. ParseCommandLine
3. CheckFiles
4. ReadAndSetupUserOptions
5. ReadAndSetupBenchmarks

5.1. ReadKeffSenData
6. ReadAndSetupBenchmarkCorrelations
7. ReadAndSetupApplications

7.1. ReadKeffSenData
8. ReadAndSetupCovarianceData

8.1. CovarianceData % Read => ReadCovarianceData
8.1.1. This % ReadFile => ReadCovarianceFile

8.2. MakeThermalScatterConsistent
9. EstimateUnknownBenchmarkUncertainties

9.1. CovarianceData % Expand => ExpandCovarianceMatrixSensitivityVectors
9.1.1. This % ConstructSUMap => CovarianceMatrixConstructSUMapVector
9.1.2. EC % SUMap % GetSensitivityVector => SUMapGetSensitivityVector
9.1.3. EC % SUMap % GetExpandedCovarianceMatrix =>

SUMapGetExpandedCovarianceMatrix
10. RejectBenchmarks
11. AdjustNuclearData

11.1. CovarianceData % Expand => ExpandCovarianceMatrixSensitivityMatrix
12. CalculateNuclearDataUncertainties

12.1. CovarianceData % Expand => ExpandCovarianceMatrixSensitivityVectors
12.2. AdjustedData % Expand => ExpandCovarianceMatrixSensitivityVectors

13. CalculateUpperSubcriticalLimits
13.1. CalculateCalculationalMargin

13.1.1. CalculateSimilarityWeights
13.1.1.1. CovarianceData % Expand =>

ExpandCovarianceMatrixSensitivityVectors
14. WriteUSLOutputSummaryTable

Page 33 of 94

Whisper Source Code Inspection Report

These subroutines are described in the following sections. The following sections follow the order given
above (for the first occurrence of each subroutine). The subroutine descriptions include, as applicable,
subsections on the input values, the results, and a summary of the source code. The summary is an
outline of primary logic and calculations for the subroutine or function9. The outline is kept as conceptual
as possible and use of the Fortran variable name is minimized. The following structures are used in the
outline:

• For action statements, the line number in the module file is given first, followed by a description
of the action performed.

• For conditional and loop control statements, the logic is described first, the line number in
parentheses follows.

Appendix G lists six subroutines that are included in the Whisper source code but are not executed in the
program logic. However, the routines may be used in definitions of type-bound procedures.

7.1 Subroutine WriteHeader

This subroutine writes the program version (e.g., “Whisper 1.0.0”) to the terminal. This subroutine is
listed in the InputProcessingMod file.

7.2 Subroutine ParseCommandLine

This subroutine gets the input parameters from the command line and sets the flag variables. The
following table lists the command line arguments for setting program variables. There are two additional
command line arguments, --help (or –h) and --version (or -v), which display the requested information
and terminate execution. This subroutine is listed in the InputProcessingMod file.

Command Argument
Variable Name

Default
Value Flag Variable Name1

Short Long Form
-a --applications ApplicationLibraryFile '' wasApplicationFileSpecified
-b --benchmarks BenchmarkLibraryFile 2 wasBenchmarkFileSpecified
-c --covlibpath CovariancePath 3 wasCovariancePathSet
-d --adjusted AdjustedCovariancePath '' wasAdjustedCovariancePathSet
-k --bench_correl BenchmarkCorrelFile '' wasBenchmarkCorrelFileSpecified
-m --iso_coverage IsotopicCoverageFile '' wasIsotopicCoverageFileSpecified
-o --output OutputFile Whisper.out n/a
-r --reject RejectionOutputFile '' wasRejectFileSpecified
-t --threads NumOpenMPThreads 16 n/a
-u --user_options UserOptionsFile '' wasUserOptionsFileSpecified

9 The source code summaries explain the primary logic and calculations for the subroutine or function.
Other statements, although essential for program operation, have not been not documented in the
summaries. Examples include input and output file open (and close), dynamic memory allocation (and
deallocation), and most write statements. It is presumed that a reader familiar with Fortran 2008 will
understand the statements not discussed in the summary.

Page 34 of 94

Whisper Source Code Inspection Report

Command Argument
Variable Name

Default
Value Flag Variable Name1

Short Long Form
-x --exclude BenchmarkExcludeFile '' wasExcludeFileSpecified

Table Notes

1 All of the flag variables are initially set to false (in module FilesMod) and are set to true only by the
command line.

2 If the BenchmarkLibraryFile is not specified in the command line, the environment variable
WHISPER_BENCHMARK_TOC is used. The default value for WHISPER_BENCHMARK_TOC is
Whisper/Benchmarks/TOC/BenchmarkTOC.dat.

3 If the path to the covariance data directory is not specified in the command line (CovariancePath), the
environment variable WHISPER_COVDATA_PATH is used. The default value for
WHISPER_COVDATA_PATH is Whisper/CovarianceData/SCALE6.1. For the given path, the base
(unadjusted) covariance data is in subdirectory ‘Data’ and the adjusted covariance data is in subdirectory
‘Adjusted’.

7.3 Subroutine CheckFiles

This subroutine checks whether the files are ready for input or output. This subroutine is listed in the
InputProcessingMod file.

7.4 Subroutine ReadAndSetupUserOptions

The user can supersede Whisper default values by including a user’s option file on the whisper command
line.

7.4.1 Inputs

7.4.1.1 User Option File

If the command line specifies a user options file, the following table lists the variables that can be set with
their default values. This subroutine is listed in the InputProcessingMod file.

Variable Name Default Value
NumOpenMPThreads 16
ThresholdChiSquare 1.2d0
CalcMarginConfidenceLevel 0.990d0
dxCalcMargin 1.d-5
dxAcceptSimilarity 1.d-5
DataUncMultiplier 2.6d0
MinimumWeightSum 25.0d0
WeightSumPenalty 100.0d0
MinimumNonCoveragePenalty 0.05d0

Page 35 of 94

Whisper Source Code Inspection Report

Variable Name Default Value
UnknownDataUncertainty 0.1d0
AdjustedCovarianceCutoff 1.d-6
IntegrationTolerance 1.d-9
IntegrationLimitTolerance 1.d-6

7.4.1.2 User Option File Format

See LA-UR-14-26436, Section 6.1, User Options.

7.5 Subroutine ReadAndSetupBenchmarks

This subroutine reads the benchmark library (or TOC) file. The name of the benchmark library was
previously placed in variable BenchmarkLibraryFile. This subroutine is listed in the InputProcessingMod
file.

7.5.1 Inputs

7.5.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData inout
ExcludedBenchmarks ExcludeData inout

7.5.1.2 Benchmark Library File

The benchmark library (or TOC) file has the following format. The first line is a file path where Whisper
gets the sensitivity profiles. The subsequent lines consist of the MCNP input filename for the benchmark,
the benchmark keff, the benchmark uncertainty in keff, the calculated keff, and the calculated uncertainty in
keff. [LA-UR-14-26436, Sec. 3.4]

7.5.1.3 Exclude Benchmark File

The exclude benchmark file contains a list of benchmark names (one per line) to be excluded from the
validation [LA-UR-14-26436, Sec. 2.3 and 2.4].

7.5.1.4 Benchmark Sensitivity Data File

Each benchmark sensitivity data file has the sensitivity data for one or more isotopes (ZAID) in the
following format.

1. For each reaction (j):

a. ZAID and reaction name, for example:

 1001.80c elastic

Page 36 of 94

Whisper Source Code Inspection Report

b. For reactions other than fission chi, the table header is (including blank lines):

 energy range (MeV) sensitivity rel. unc.

c. If the reaction is fission chi, the table header is (including blank lines):

 incident energy range: 0.0000E+00 1.0000E+36 MeV

 outgoing
 energy range (MeV) sensitivity rel. unc.

d. The sensitivity values for the ZAID, the reaction, and each of the 44 energy bins is listed.
Each line lists the lower energy bound (MeV), the upper energy bound (MeV), the sensitivity
factor, and the relative uncertainty. For example, the first 2 (of the 44 lines) for 1001.80c
elastic are:

 1.0000E-11 3.0000E-09 -2.4282E-06 0.7635
 3.0000E-09 7.5000E-09 2.6719E-06 1.9396

e. Two blank lines.

Whisper assumes the reactions (for each isotope) are in the following order.

1. The first reaction is elastic scattering.
2. The second reaction is inelastic scattering.
3. The last reaction is fission chi.

7.5.2 Results

The following BenchmarkData components in the Whisper main program (see Section 5.3) are set:

• Niso – by calls to ReadKeffSenData.
• MaxIso – by calls to ReadKeffSenData.
• ZA(i) – by calls to ReadKeffSenData.
• FileName – read from the benchmark library file.
• KeffCalc – read from the benchmark library file.
• KeffCalcUnc – read from the benchmark library file.
• IsoSen(i) % Sk(j,k) – by calls to ReadKeffSenData.
• KeffBench – read from the benchmark library file.
• KeffBenchUnc – read from the benchmark library file.
• KeffBias – calculated from the benchmark library file data.
• SigmaBias – calculated from the benchmark library file data.

Where
 i = isotope index,
 j = energy group index, and

Page 37 of 94

Whisper Source Code Inspection Report

 k = reaction index.

The following ExcludedBenchmarks components in the Whisper main program are set:

• FileName

The other components of ExcludeData are not set (or used) by Whisper.

7.5.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The following line numbers
are from the file for module InputProcessingMod.

1. Lines 376 to 383 – Count the number of lines in the benchmark library file.

2. Line 387 – Initialize the number of excluded benchmarks to zero.

3. If an exclude benchmark file was specified on the command line (line 389):

a. Lines 393 to 397 – Count the number of excluded benchmarks.

b. Lines 403 to 406 – Read the filenames for the excluded benchmarks.

c. Line 409 – Calculate the number of benchmarks which were not excluded.

4. If an exclude benchmark file was not specified on the command line (line 389):

a. Line 412 – Set the number of benchmarks to the number of benchmark filenames in the
benchmark library file.

5. For each line in the benchmark library file (line 424):

a. Line 425 – Read a line of the benchmark library file:
• the name of the benchmark input file,
• the benchmark keff,
• the benchmark uncertainty in keff,
• the calculated keff, and
• the calculated uncertainty in keff from the benchmark library file.

b. If the benchmark name is not on the exclusion list (line 426):

1. Lines 434 to 438 – Save the collected benchmark data (variables FileName, KeffCalc,
KeffCalcUnc, KeffBench, KeffBenchUnc).

2. Line 439 – Calculate the bias in keff (variable KeffBias) according to eq. 3 [LA-UR-14-
26558 eq. 21].

3. Line 440 – Calculate the uncertainty in the keff bias (variable SigmaBias) according to
eq. 4 [LA-UR-14-26558 eq. 22].

Page 38 of 94

Whisper Source Code Inspection Report

4. Line 442 – Read the keff sensitivity data from the benchmark data file using function
ReadKeffSenData (see Section 7.6 below). See Section 7.5.2 above for additional
crosswalk information between the benchmark data components and the Whisper
subroutines.

a. Note: If an isotope has more than one data set in the benchmark data file, then the
subsequent sensitivity factors are added to the previous sensitivity factors.

7.6 Function ReadKeffSenData

7.6.1 Inputs

7.6.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData(m) KS inout
BenchmarkLibraryPath FilePath in

7.6.2 Results

For the element of BenchmarkData that is passed to function ReadKeffSenData, the following
components are set from data in the benchmark sensitivity file:

• Niso – by calls to AddIso.
• MaxIso – by calls to AddIso, which calls Init.
• ZA(i) – by calls to AddIso.
• IsoSen(i) % Sk(j,k)

Where
 i = isotope index,
 j = energy group index, and
 k = reaction index.

Function ReadKeffSenData also returns a logical value (true or false) via variable Success.

7.6.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module InputProcessingMod.

1. For each line in the benchmark data file:

Note: Lines 576 and 620 form an infinite loop that is exited when the end-of-file is reached
(line 579).

a. Line 578 – Read isotope ZA ID.

b. Line 579 – If end-of-file is reached on the benchmark data file, exit the do loop (go to Step 2
below).

c. Line 583 – Convert isotope ZA ID to ZA number.

Page 39 of 94

Whisper Source Code Inspection Report

d. Line 584 – Find the array index value that points to this isotope in the sensitivity data by
calling function FindIso. If the isotope is not found in the sensitivity data, FindIso returns
zero.

e. If the isotope is not in the sensitivity data (line 585):

1. Lines 586 to 592 – Add the isotope to the sensitivity data and initialize the sensitivity
data to zero.

f. Lines 601 to 619 – Read the isotope sensitivity matrix and add the current values to any
previous values.

2. Line 623 – Set function return value (variable Success) to “true”.

7.7 Subroutine ReadAndSetupBenchmarkCorrelations

This subroutine reads the correlation data between different benchmarks as documented with the
experimental data. See LA-UR-14-26436, Sec. 4.1 for more information on the benchmark experimental
correlation data. This subroutine is listed in the InputProcessingMod file.

7.7.1 Inputs

7.7.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData in
BenchmarkCorrel BenchmarkCorrel inout

7.7.1.2 Benchmark Correlation File

The benchmark correlation file lists one correlation per line. Each line has the names of two benchmark
input files followed by a correlation coefficient. [LA-UR-14-26436, Sec. 4.1].

7.7.2 Results

This subroutine sets all of the components of BenchmarkCorrel (see Section 5.5 above) for the Whisper
main program.

7.7.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module InputProcessingMod.

1. Line 699 – Initialize the correlation matrix (all correlation factors) to zero.

2. For each benchmark that has been read by Whisper (line 702):

a. Line 703 – Save the benchmark name in the correlation data.

b. Line 704 – Set the diagonal element of the correlation matrix to 1.

Page 40 of 94

Whisper Source Code Inspection Report

Note: At this point, each benchmark is perfectly correlated to itself and to no other benchmarks.

3. If a benchmark correlation file was specified on the command line (line 707):

a. For each line in the benchmark correlation file:

Note: Lines 714 and 778 form an infinite loop that is exited when the end-of-file is reached
(line 716).

1. Line 715 – Read two benchmark names and the correlation value from the benchmark
correlation file.

2. Line 716 – If the end-of-file is reached on the benchmark correlation file, exit the do loop
(and return to the main program).

3. Lines 719 to 735 – For the first and second benchmark names, find the array indices that
point to the matching benchmark names in the correlation data.

4. Lines 737 to 765 and 768 to 773 – Error checking. For non-fatal errors, execution
continues with step 3.a.1 above. For fatal errors, the execution of Whisper is terminated
(stopped).

5. Lines 766 and 767 – Save correlation value between the two benchmarks (both orders of
the benchmark names/indices).

7.8 Subroutine ReadAndSetupApplications

This subroutine sets up the application (process model) data. This subroutine is listed in the
InputProcessingMod file.

7.8.1 Inputs

7.8.1.1 Arguments

Whisper Variable Subroutine Variable Intent
ApplicationData ApplicationData inout

7.8.1.2 Application Library File Format

The application library (or TOC) file has the following format. The first line is a file path where Whisper
gets the sensitivity profiles. The subsequent lines consist of the MCNP input filename for the application,
the benchmark keff (this is normally zero for an application and is ignored if it is not), the benchmark
uncertainty in keff (again, normally zero for an application and is ignored if it is not), the calculated keff,
and the calculated uncertainty in keff. [LA-UR-14-26436, Sec. 3.4]

7.8.2 Results

The following ApplicationData components in the Whisper main program are set:

• Niso – by calls to ReadKeffSenData.
• MaxIso – by calls to ReadKeffSenData.

Page 41 of 94

Whisper Source Code Inspection Report

• ZA(i) – by calls to ReadKeffSenData.
• FileName – read from the application library file.
• KeffCalc – read from the application library file.
• KeffCalcUnc – read from the application library file.
• IsoSen(i) % Sk(j,k) – by calls to ReadKeffSenData.

Where
 i = isotope index,
 j = energy group index, and
 k = reaction index.

The remaining components of ApplicationData are calculated later by Whisper (if an application file was
specified on the command line).

7.8.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module InputProcessingMod.

1. If an application file was specified on the command line (line 483):

a. Lines 492 to 495 – Count the number of lines in the application library file.

b. For each line in the application library file (line 506):

1. Line 507 – Read the application filename, the calculated keff, and the calculated
uncertainty in keff.

2. Line 509 – Read the keff sensitivity data from the application data file using function
ReadKeffSenData (also in the InputProcessingMod file). See Section 7.8.2 for additional
crosswalk information between the application data components and the Whisper
subroutines.

a. Note: If an isotope has more than one data set in the application data file, then the
subsequent sensitivity factors are added to the previous sensitivity factors.

2. If an application file was not specified on the command line:

a. Allocate zero space to ApplicationData; this setting is used later to determine whether there is
application data to process.

7.9 Subroutine ReadAndSetupCovarianceData

This subroutine sets up the base (unadjusted) covariance data [LA-UR-14-26436, Sec. 3.3]. This
subroutine is listed in the InputProcessingMod file.

Page 42 of 94

Whisper Source Code Inspection Report

7.9.1 Inputs

7.9.1.1 Arguments

Whisper Variable Subroutine Variable Intent
CovarianceData CovarianceData inout
BenchmarkData BenchmarkData inout
ApplicationData ApplicationData inout

7.9.2 Results

The following components of CovarianceData in the Whisper main program are set:

• Data(n) % M(j1,j2) – by a call to ReadCovarianceData
• Iso(i1,i2) % Rxn(k1,k2) % Data – by a call to ReadCovarianceData
• Iso(i1,i2) % Rxn(k1,k2) % doTranspose – by a call to ReadCovarianceData
• Iso(i1,i2) % mt1(k1) – by a call to ReadCovarianceData
• Iso(i1,i2) % mt2(k2) – by a call to ReadCovarianceData
• ZA(i) – by a call to ReadCovarianceData

Where
 i, i1, i2 = isotope index,
 j1, j2 = energy group index (from 1 to 44),
 k1, k2 = reaction index, and
 n = numerical index.

7.9.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module InputProcessingMod.

1. Line 651 – List all of the isotopes in the benchmark data.

2. Line 652 – List all of the isotopes in the application data.

3. Line 653 – Merge the benchmark and application isotopes lists into a single list (UnionList).

4. Line 660 – Read the covariance data for the merged isotope list (UnionList) by calling subroutine
ReadCovarianceData. Subroutine ReadCovarianceData is described in Section 7.10 below.

5. Lines 663 to 665 – Convert the sensitivity factors on the S(α,β) cross sections in the benchmark
data such that the sensitivity on both inelastic and elastic scattering is treated as a sensitivity on
elastic scattering by calling subroutine MakeThermalScatterConsistent.

6. Lines 666 to 668 – Convert the sensitivity factors on the S(α,β) cross sections in the application
data such that the sensitivity on both inelastic and elastic scattering is treated as a sensitivity on
elastic scattering by calling subroutine MakeThermalScatterConsistent.

Page 43 of 94

Whisper Source Code Inspection Report

7.10 Subroutine ReadCovarianceData

This subroutine reads the covariance data from the covariance data file. This subroutine is called by
subroutines ReadAndSetupCovarianceData and AdjustNuclearData to read the base and adjusted
covariance data, respectively. This subroutine is listed in the CovarianceMatrixMod file.

7.10.1 Inputs

7.10.1.1 Arguments

Whisper Variable Subroutine Variable Intent
CovarianceData This inout AdjustedCovarianceData
UnionList IsoList in
Path Path in

7.10.1.2 Covariance File

Each covariance data file (for a particular isotope) contains the following data:

1. A single line with:
a. ZA number for the isotope
b. Number of energy bins
c. Number of correlations (pairs of ZA & MT numbers) in the file (NumZAMT)

2. The boundaries of the energy bins (number of bins plus 1 values)
3. NumZAMT lines of:

a. The ZA and MT numbers for the two correlated isotopes-reactions (ZA1, MT1, ZA2, MT2)
4. NumZAMT blocks of:

a. The ZA and MT numbers for the two correlated isotopes (ZA1, MT1, ZA2, MT2)
b. (Map(j), NRow(j), j=1, NErg)
c. (CovData(j), j=1,NErg*NErg)

7.10.2 Results

The following components of CovarianceData or AdjustedCovarianceData in the Whisper main program
are set:

• Data(n) % M(j1,j2) – by calls to ReadCovarianceFile
• Iso(i1,i2) % Rxn(k1,k2) % Data – by calls to ReadCovarianceFile
• Iso(i1,i2) % Rxn(k1,k2) % doTranspose – by calls to ReadCovarianceFile
• Iso(i1,i2) % mt1(k1) – by calls to ReadCovarianceFileHeader
• Iso(i1,i2) % mt2(k2) – by calls to ReadCovarianceFileHeader
• ZA(i) – by calls to ReadCovarianceFileHeader

Where
 i, i1, i2 = isotope index,
 j1, j2 = energy group index (from 1 to 44),
 k1, k2 = reaction index, and
 n = numerical index.

Page 44 of 94

Whisper Source Code Inspection Report

7.10.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. Lines 285 to 292 – From the list of unique isotopes (passed by argument to subroutine
ReadCovarianceData), count the number of covariance data files that exist.

2. For each isotope in the list with a corresponding covariance data file (lines 300 to 303):

a. Line 305 – For each covariance data file determine the following data using subroutine
ReadCovarianceFileHeader. Subroutine ReadCovarianceData has a local array,
CovHeaderData, for this data. The components of CovHeaderData(j) are given below in
parentheses.

1. ZA number for the isotope (FileZA)
2. Number of energy bins (NErg)
3. Number of pairs of ZA & MT numbers in the file (NumFileZAMT)
4. Number of pairs of ZA & MT numbers in the file for which both MT numbers are

relevant10 and will be used (NumUsedZAMT)
5. Number of unique MT numbers in the two MT lists below (NumUniqueMT)
6. A list of the pairs of ZA & MT numbers for which both MT numbers are relevant

(UsedZAMT(i=1,NumUsedZAMT) which has components ZA1, ZA2, MT1, MT2)
7. A list of the unique (and relevant) MT numbers (UniqueMT(i=1,NumUniqueMT))

3. For each existing covariance data file (line 328):

a. Line 329 – Record the ZA number in each block of covariance data (previously determined
by line 305).

4. For each combination of two covariance files (lines 333 and 334):

a. Line 345 – Record the list of unique (and relevant) MT numbers in first covariance data file
in the corresponding block of covariance data.

b. Line 346 – Record the list of unique (and relevant) MT numbers in second covariance data
file in the corresponding block of covariance data.

c. Lines 352 to 356 – Set the data pointers to null, i.e., CovarianceData % Iso(i,j) % Rxn(k,L) %
Data to null (where i & j are indices to isotopes and covariance files, and k and L are indices
to reactions).

5. For each isotope in the list with a corresponding covariance data file (lines 364 to 367):

a. Read the covariance data by calling ReadCovarianceFile (see Section 7.11 below).

10 An MT number is relevant when the the MT number is listed in the array RelevantMT (see
Section 2.1).

Page 45 of 94

Whisper Source Code Inspection Report

7.11 Subroutine ReadCovarianceFile

This subroutine reads the covariance data from the file whose name is passed in. The read data may be
either the base (unadjusted) or adjusted covariance values depending on the filename. This subroutine is
listed in the CovarianceMatrixMod file.

7.11.1 Inputs

7.11.1.1 Arguments

Whisper Variable Subroutine Variable Intent
CovarianceData This inout AdjustedCovarianceData
Trim(FileName) FileName in
CovarianceHeaderData(n) HeaderData in

7.11.2 Results

The following components of CovarianceData or AdjustedCovarianceData in the Whisper main program
are set:

• Data(n) % M(j1,j2)
• Iso(i1,i2) % Rxn(k1,k2) % Data
• Iso(i1,i2) % Rxn(k1,k2) % doTranspose

Where
 i, i1, i2 = isotope index,
 j1, j2 = energy group index (from 1 to 44),
 k1, k2 = reaction index, and
 n = numerical index.

7.11.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. For each correlation (pair of ZA & MT numbers) in the file (line 475):

a. Line 476 – Read the ZA and MT numbers for the two correlated isotopes-reactions (variables
ZA1, MT1, ZA2, MT2) from the covariance data file.

b. Line 482 – Read the covariance values into a one-dimensional array (variable CovData).
This reads the covariance matrix column by column (see Appendix H) into the one-
dimensional array. The covariance data (matrix rows and columns) are also in decreasing
energy order (see Appendix H).

c. If MT1 and MT2 are both relevant MTs (line 487):

1. Lines 493 to 498 – Create a covariance matrix (variable M) from the covariance data
(variable CovData) with the rows and columns in increasing energy order (see Sec. 5.2).
The one-dimensional array is loaded into the matrix with the following arrangement:

Page 46 of 94

Whisper Source Code Inspection Report

CovData Index Value and M(i,j) Location
M(i,j) j = 1 j = 2 j = 3 … j = n-2 j = n-1 j = n
i = 1 n2 (n-1)n (n-2)n … 3n 2n n
i = 2 n2-1 (n-1)n-1 (n-2)n-1 … 3n-1 2n-1 n-1
i = 3 n2-2 (n-1)n-2 (n-2)n-2 … 3n-2 2n-2 n-2
… … … … … … … …

i = n-2 n2-n+3 n2-2n+3 n2-3n+3 … 2n+3 n+3 3
i = n-1 n2-n+2 n2-2n+2 n2-3n+2 … 2n+2 n+2 2
i = n n2-n+1 n2-2n+1 n2-3n+1 … 2n+1 n+1 1

Note: The covariance matrix can also be expressed as M(i,j) = CovData(n(n-j) +n-i+1), although Whisper
does not use this formula.

2. Lines 500 to 501 – For ZA1 and ZA2, find the array index values (iZA and jZA) that
point to the matching ZA numbers in the covariance list (component ZA). Index value is
zero if isotope does not occur in the covariance data.

3. If both isotopes are in the covariance data (line 505):

a. Line 506 – For MT1, find the array index value that points to the matching MT
number in the MT list for the first isotope (component mt1).

b. Line 507 – For MT2, find the array index value that points to the matching MT
number in the MT list for the second isotope (component mt2).

c. For the ZA indices in original order and the MT indices in original order
{Iso(iZA,jZA) % Rxn(iMT,jMT)}:

1. Line 510 – Set the data pointer to Data(iMat) which contains the M matrix just
created.

2. Line 511 – Set the doTranspose flag to false.

d. If the covariance data was for two different isotopes or two different MT numbers
(line 512):

1. For the ZA indices in reverse order and the MT indices in reverse order
{Iso(jZA,iZA) % Rxn(jMT,iMT)}:

a. Line 513 – Set the data pointer to Data(iMat) which contains the M matrix
just created.

b. Line 514 – Set the doTranspose flag to true.

Page 47 of 94

Whisper Source Code Inspection Report

7.12 Subroutine MakeThermalScatterConsistent

Per the source code, this subroutine converts S(α,β) such that both inelastic and elastic are treated as
elastic to maintain consistency with ORNL definitions. This subroutine is listed in the
CovarianceMatrixMod file.

7.12.1 Inputs

7.12.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
BenchmarkData(m) kSen inout ApplicationData(n)

*A vertically split cell indicates different variables used in separate call statements.

7.12.2 Results

When IsoSen(i) corresponds to S(α,β) cross sections, the following Whisper main program variables are
recalculated (by separate subroutine calls):

• BenchmarkData (m) % IsoSen(i) % Sk(j,k)

• ApplicationData(n) % IsoSen(i) % Sk(j,k)

7.12.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. For each isotope in the sensitivity data (line 645):

a. If the isotope corresponds to S(α,β) cross sections, i.e., ZA number contains an alphabetical
character, perform the following (line 647):

1. Line 649 – Add the inelastic sensitivity factors (2nd column of Sk) to the elastic
sensitivity factors (1st column of Sk).

2. Line 650 – Set all sensitivity factors for reactions other than scattering (2nd and
subsequent columns of Sk) to zero.

7.13 Subroutine EstimateUnknownBenchmarkUncertainties

For each benchmark that does not have a known uncertainty, the uncertainty is assumed to be the
similarity coefficient weighted average of the known benchmark uncertainties. [LA-UR-14-26436,
Sec. 3.3]

Page 48 of 94

Whisper Source Code Inspection Report

7.13.1 Inputs

7.13.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData inout
CovarianceData CovarianceData inout

7.13.2 Results

This subroutine calculates a value for:

• BenchmarkData(m) % KeffBenchUnc

when the input value of BenchmarkData(m) % KeffBenchUnc has an value less than 10-5.

7.13.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module UncertaintyMod.

1. Lines 45 to 47 – Calculate variances of each benchmark data set (from variable KeffBenchUnc).

2. Perform an outer loop (m1) over each benchmark (line 50):

a. If benchmark m1 has a variance ≤ 10-10 (line 51):

1. Line 62 – Create the expanded covariance matrix and the sensitivity vector (called Cxx
and SA in LA-UR-14-26558) for benchmark m1 by calling
ExpandCovarianceMatrixSensitivityVectors.

2. Line 63 – Calculate the variance of benchmark m1 according to eq. 5 [LA-UR-14-26558,
eq. 31].

3. Perform an inner loop (m2) over each benchmark (line 67):

a. If benchmark m2 has a variance > 10-10 (line 68):

1. Line 70 – Create the expanded covariance matrix and the sensitivity vectors
(called Cxx and SB in LA-UR-14-26558) for benchmark m1 and benchmark m2
by calling ExpandCovarianceMatrixSensitivityVectors.

2. Line 71 – Calculate the variance of benchmark m2 according to eq. 5 [LA-UR-
14-26558, eq. 31].

3. Line 72 – Calculate the covariance between benchmark m1 and benchmark m2
according to eq. 6 [LA-UR-14-26558, eq. 30].

4. Line 74 – Calculate the correlation coefficient according to eq. 7 [LA-UR-14-
26558, eq. 32] and LA-UR-14-26558 (Section III.A.2) statement that “Whisper
sets negative ck to zero.”

Page 49 of 94

Whisper Source Code Inspection Report

4. Line 78 – Calculate the benchmark uncertainty variance according to LA-UR-14-26558,
eq. 44.

7.14 Subroutine ExpandCovarianceMatrixSensitivityVectors

This subroutine generates the expanded covariance matrix and two sensitivity vectors (for LA-UR-14-
26558 eq. 31). This subroutine is in the CovarianceMatrixMod file. This subroutine is called by the
following subroutines:

• EstimateUnknownBenchmarkUncertainties,
• CalculateNuclearDataUncertainties, and
• CalculateUpperSubcriticalLimits.

Subroutines ExpandCovarianceMatrixSensitivityVectors and ExpandCovarianceMatrixSensitivityMatrix
are similar in that both produce the expanded covariance matrix. However, there are differences in the
format of the input and output data. For the sensitivity data, subroutine
ExpandCovarianceMatrixSensitivityVector requires two sets of benchmark data (i.e., two variables of
type KeffSenDataType) for input and produces two vectors (two 1-d arrays) of sensitivity data. The
output from ExpandCovarianceMatrixSensitivityVectors are components of an
ExpandedCovarianceMatrixSensitivityVectorType variable.

7.14.1 Inputs

7.14.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
CovarianceData This in AdjustedCovarianceData+
BenchmarkData(n1) kSen1 in
BenchmarkData(n2) kSen2 in
ExpCov EC out ExpAdj+

UnknownDataUncertainty Unc in
(optional)

Where n2 may be equal to, or not equal to, n1.
*A vertically split cell indicates different variables used in separate call statements.
+When AdjustedCovarianceData is the input, ExpAdj is the output.

7.14.2 Results

The results for this subroutine are:

• the expanded covariance matrix
(variable EC % C in subroutine ExpandCovarianceMatrixSensitivityVectors)

• two sensitivity vectors
(variables EC % S1 and EC % S2 in subroutine ExpandCovarianceMatrixSensitivityVectors).

Page 50 of 94

Whisper Source Code Inspection Report

7.14.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. Line 786 – Create a new matrix of sensitivity factors (UnionList) by merging the two matrices in
the input benchmark data sets by calling subroutine UnionKeffSen.

Note: For isotopes that are in both benchmarks, for each individual sensitivity coefficient, the
input sensitivity coefficient with the largest magnitude (absolute value) is selected.

2. Line 787 – From the new matrix of sensitivity factors (UnionList), determine the parameters of
the sensitivity/uncertainty map from the sensitivity and covariance data by calling function
CovarianceMatrixConstructSUMapVector. (The components of EC % SUMap contain the
parameters of the sensitivity/uncertainty map.)

3. Line 795 – Create a vector of sensitivity factors (EC % S1) from the sensitivity matrices in kSen1
for the isotopes in EC % SUMap by calling subroutine SUMapGetSensitivityVector.

4. Line 796 – Create a vector of sensitivity factors (EC % S2) from the sensitivity matrices in kSen2
for the isotopes in EC % SUMap by calling subroutine SUMapGetSensitivityVector.

5. Create the expanded covariance matrix (EC % C) by calling subroutine
SUMapGetExpandedCovarianceMatrix.

a. If the optional input for unknown data uncertainty is present (line797), call
SUMapGetExpandedCovarianceMatrix with the unknown data uncertainty value (line 798).
When there is no data for the combination of isotopes and reactions, the corresponding block
of covariance data (see Section 5.11 above) is completed with the unknown data uncertainty
value used as the diagonal values and zero as the non-diagonal values.

b. If the optional input for unknown data uncertainty is not present (line797), call
SUMapGetExpandedCovarianceMatrix without the unknown data uncertainty value (line
800). When there is no data for the combination of isotopes and reactions, the corresponding
block of covariance data (see Section 5.11 above) is completed with all zeroes.

7.15 Function CovarianceMatrixConstructSUMapVector

This subroutine determines the parameters of the sensitivity/uncertainty map from the sensitivity and
covariance data. This subroutine is in the CovarianceMatrixMod file.

7.15.1 Inputs

7.15.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
CovarianceData This in AdjustedCovarianceData
UnionList+ kSen in

*A vertically split cell indicates different variables used in separate call statements.
+Variable local to Subroutine ExpandCovarianceMatrixSensitivityVectors.

Page 51 of 94

Whisper Source Code Inspection Report

7.15.2 Results

Function CovarianceMatrixConstructSUMapVector returns variable Map (of derived type
SUMapVectorType).

Function Variable Type
Map % nBlocks integer
Map % TotalSize integer
Map % SU(:) % ZA character(len=6)
Map % SU(:) % Rxn integer
Map % SU(:) % MinEBin integer
Map % Cov pointer

Function CovarianceMatrixConstructSUMapVector ultimately sets the corresponding main program
variables:

1. ExpCov % SUMap (the sensitivity/uncertainty map from the sensitivity and base covariance data)
when called by subroutines:

a. EstimateUnknownBenchmarkUncertainties,
b. CalculateNuclearDataUncertainties,
c. GetDiscrepancyCovarianceMatrix,
d. AdjustNuclearData, and
e. CalculateSimilarityWeights.

2. ExpAdj % SUMap (the sensitivity/uncertainty map from the sensitivity and adjusted covariance
data) when called by subroutines:

a. CalculateNuclearDataUncertainties.

7.15.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. Line 193 – Save a pointer (variable Map % Cov) to the covariance data used to create the
expanded covariance data (i.e., point to CovarianceData or AdjustedCovarianceData).

2. For all of the isotopes and reactions with a non-zero sensitivity vector (lines 198 to 200):

a. Line 201 – Count the number of isotope & reaction pairs which have any non-zero sensitivity
factors, i.e., the column or vector of the isotope sensitivity matrix has a non-zero value
(variable Map % nBlocks).

3. For each isotope and reaction with a non-zero sensitivity vector (lines 212 to 214):

a. Line 215 – Record the isotope ZA (variable Map % SU(iBlock) % ZA).

b. Line 216 – Record the MT number of the reaction (variable Map % SU(iBlock) % Rxn).

Page 52 of 94

Whisper Source Code Inspection Report

c. Lines 219 to 224 – For the isotope sensitivity matrix (variable Sk) column for this isotope and
reaction, find the first row (lowest energy bin) that is not zero.

If a sequence of zero sensitivity values begins in the first (minimum) energy bin, the explicit
zero values will be omitted from the sensitivity vector when possible.

d. If the first row with a non-zero sensitivity factor (energy index) is greater than 1 (line 227):

Determine the minimum energy group (Map % SU(iBlock) % MinEBin) that has either a
non-zero sensitivity factor or a non-zero diagonal element of M.

1. Line 229 – Find (and record) the array index value that points to the isotope in the
covariance data by calling function CovarianceMatrixFindZAIndex. If the isotope is not
found in the sensitivity data, CovarianceMatrixFindZAIndex returns zero.

2. If the isotope is in the covariance data (line 230):

a. Line 231 – Find (and record) the array index value that points to the reaction (MT
number) in the covariance data by calling function CovarianceMatrixFindMTIndex.
If the reaction is not found in the sensitivity data, CovarianceMatrixFindMTIndex
returns zero.

3. If the isotope and MT number are in the covariance data (line 233):

a. Lines 235 to 241 – Search the covariance matrix M for the lowest energy diagonal
element that is non-zero. Record the minimum energy group (Map % SU(iBlock) %
MinEBin) that has either a non-zero diagonal element of M or a non-zero sensitivity
factor.

4. If the isotope or reaction are not in the covariance data, i.e., there is not a matrix M for
the isotope & reaction combination (line 233):

a. Line 244 – Record the minimum energy group (Map % SU(iBlock) % MinEBin)
based on the sensitivity factors alone (i.e., step 3.c above).

e. If the energy index value is not greater than 1 (lines 227):

1. Record that the minimum energy group with non-zero sensitivity factors (Map %
SU(iBlock) % MinEBin) is group 1.

f. Line 250 – Tally the total number of sensitivity factors that will be used (Map % TotalSize)
because either the sensitivity factor or diagonal covariance value is not zero.

7.16 Subroutine SUMapGetSensitivityVector

This subroutine creates a vector of sensitivity factors (S) from the sensitivity matrices (Sen) for the
isotopes and reactions in the covariance data. This subroutine is in the CovarianceMatrixMod file.

Page 53 of 94

Whisper Source Code Inspection Report

7.16.1 Inputs

7.16.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
EC % SUMap This in
BenchmarkData(m) Sen in ApplicationData(n)
ExpCov % S1 S out ExpCov % S2

*A vertically split cell indicates different variables used in separate call statements.

Component EC % SUMap is populated with the base covariance data when subroutine
ExpandCovarianceMatrixSensitivityVectors calls SUMapGetSensitivityVector. Component EC %
SUMap is populated with the adjusted covariance data when subroutine
ExpandCovarianceMatrixSensitivityMatrix calls SUMapGetSensitivityVector.

7.16.2 Results

This subroutine creates a vector of sensitivity factors (S) from the sensitivity matrices (Sen) for the
isotopes and reactions in the covariance data. See Section 5.6 above for the data organization.

7.16.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. For each isotope and reaction which have any non-zero sensitivity factors (i.e., non-zero column
of Sk) (line 670):

a. Line 671 – Find the array index value that points to the matching isotope in the benchmark or
application data (variable Sen) by calling function FindIso.

b. Lines 672 to 674 – Find the array index value that points to the matching reaction in the
relevant MT list (RelevantMT).

c. For the minimum energy bin with a non-zero sensitivity factor or non-zero diagonal
covariance value and above (line 675):

1. If the isotope is in the covariance data (line 678):

a. Line 679 – Copy the sensitivity factor from isotope sensitivity matrix.

2. If the isotope is not in the covariance data (line 678):

a. Line 681 – Set the sensitivity factor to zero.

Page 54 of 94

Whisper Source Code Inspection Report

7.17 Subroutine SUMapGetExpandedCovarianceMatrix

This subroutine creates a single matrix of the covariance values for the isotopes and reactions in the
covariance data. This is called the expanded covariance matrix in Whisper. This subroutine is in the
CovarianceMatrixMod file.

7.17.1 Inputs

7.17.1.1 Arguments

Whisper Variable Subroutine Variable Intent
EC % SUMap* This in
EC % C* C out
UnknownDataUncertainty Unc Optional in

*Local variables in subroutines ExpandCovarianceMatrixSensitivityVectors and
ExpandCovarianceMatrixSensitivityMatrix.

7.17.2 Results

This subroutine creates a single matrix of the covariance values for the isotopes and reactions in the
covariance data. This is called the expanded covariance matrix in Whisper. See Section 5.11 above for
the data organization.

7.17.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module CovarianceMatrixMod.

1. For each isotope and reaction which have any non-zero sensitivity factors (i.e., non-zero column
of Sk) perform the outer loop (line 707):

a. Line 708 – For the isotope in this block of sensitivity/uncertainty data, find the array index
value that points to the matching isotope in the covariance data by calling
CovarianceMatrixFindZAIndex.

b. Lines 709 to 713 – For the reaction in this block of sensitivity/uncertainty data, find the array
index value that points to the matching reaction in the covariance data; when appropriate call
CovarianceMattrixFindMTIndex.

c. Perform an inner loop for each isotope and reaction which have any non-zero sensitivity
factors (i.e., non-zero column of Sk) after the outer loop block (line 719):

1. Line 720 – For the isotope in the inner loop block of sensitivity/uncertainty data, find the
array index value that points to the matching isotope in the covariance data by calling
CovarianceMatrixFindZAIndex.

2. Lines 721 to 725 – For the reaction in the inner loop block of sensitivity/uncertainty data,
find the array index value that points to the matching reaction in the covariance data;
when appropriate call CovarianceMattrixFindMTIndex.

Page 55 of 94

Whisper Source Code Inspection Report

3. Lines 731 to 739 – Check if the combination of these two reactions exists in the
covariance matrix.

4. If the combination of these two reactions exists in the covariance matrix (line 742):

Copy the covariance matrix to the expanded covariance matrix.

a. If the covariance data for the outer-inner combinations of isotopes and reactions does
indicate that transposition is required (line 743):

1. Line 744 – Transposed locations of the original matrix are copied to the inner
loop row – outer loop column locations.

2. Line 745 – The inner loop column – outer loop row matrix is transposed and
copied to the outer loop row – inner loop column locations.

b. If the covariance data for the outer-inner combinations of isotopes and reactions does
not indicate that transposition is required (line 743):

1. Line 747 – The covariance matrix (outer loop rows - inner loop columns) is
copied (element by element) to the outer loop row – inner loop column locations.

2. Line 748 – The outer loop row – inner loop column matrix is transposed and
copied to the inner loop row – outer loop column locations.

5. If the combination of these two reactions does not exist in the covariance matrix (line
742):

a. Lines 752 – Initialize inner loop row – outer loop column matrix to zero.

b. If first location is on the matrix diagonal and optional uncertainty input (Unc) is
present (line 753):

Note: Optional uncertainty input is always present in Whisper 1.0.0.

1. Lines 754 to 756 – Set diagonal elements to the variance (square of the
uncertainty).

c. If first location is not on the matrix diagonal or the optional uncertainty input (Unc) is
not present (line 753):

1. Line 758 – Set transposed locations (i.e., outer loop row – inner loop column) to
zero.

7.18 Subroutine RejectBenchmarks

This subroutine performs the benchmark rejection which is described in LA-UR-14-26558 Sec. III.D (and
LA-UR-14-23202 Sec. 4.1). This subroutine is in the DataAdjustmentMod file.

Page 56 of 94

Whisper Source Code Inspection Report

7.18.1 Inputs

7.18.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData inout
BenchmarkCorrel BenchmarkCorrel inout
CovarianceData CovarianceData in
ExcludedBenchmarks ExcludedBenchmarks inout

7.18.2 Results

The excluded benchmark data contains a list of benchmark filenames. These benchmarks were either
excluded by the user via an input exclude benchmark file, or rejected by subroutine RejectBenchmarks.
The other components of ExcludedBenchmarks are not set (or used) by Whisper.

7.18.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module DataAdjustmentMod.

1. If a benchmark rejection file was specified on the command line (line 329):

a. Line 337 – For each benchmark, calculate the discrepancy between the calculated keff and the
reference keff according to eq. 37 [LA-UR-14-26558, Sec. III.D].

Subroutine GetDiscrepancyVector calculates the fractional difference between KeffCalc and
KeffBench. Section III.D of LA-UR-14-26558 defines discrepancy as the “difference of the
calculated keff from its reference value.”

b. Line 338 – Generate the covariance matrix of the discrepancy vector according to eq. 36.

c. Line 339 – Invert the covariance matrix of the discrepancy vector.

d. Line 340 – Calculate the value of chi-squared per benchmark according to eq. 38.

e. If the value of chi-squared per benchmark is less than or equal to the threshold value11
(line 345):

1. Line 355 – Return to the main program (no rejection is needed).

f. While the value of chi-squared per benchmark is more than the threshold value (line 379):

1. Lines 396 to 400 – Calculate the chi-squared diagonal terms according to eq. 39 [LA-UR-
14-26558, eq. 45]12.

11 The default threshold value in Whisper is 1.2 [LA-UR-14-26558, Sec. III.D].

12 LA-UR-14-26558, Sec. III.D, refers to this as the diagonal χ2 term, but χ2 is a scalar and does nothave
any diagonal terms. This calculation is for the diagonal terms of the inverse covariance matrix.

Page 57 of 94

Whisper Source Code Inspection Report

Note: This calculation of chi-squared uses the difference between KeffCalc and
KeffBench. Whereas, the fractional difference calculated by Subroutine
GetDiscrepancyVector (called by lines 337 and 425) uses the fractional difference for the
discrepancy and chi-squared values.

2. Line 409 – Identify the benchmark with the largest chi-squared diagonal (with variable j).

3. Lines 414 to 420 – Create new list of benchmarks excluding the benchmark with the
largest chi-squared diagonal.

4. Line 422 – Create new set of benchmark correlations excluding the benchmark with the
largest chi-squared diagonal.

5. Line 425 – For each benchmark remaining, calculate the discrepancy between the
calculated keff and the reference keff [LA-UR-14-26558, Sec. III.D].

6. Line 426 – Generate the covariance matrix of the discrepancy vector.

7. Line 427 – Invert the covariance matrix of the discrepancy vector.

8. Line 429 – Calculate the value of chi-squared per remaining benchmarks.

g. Lines 452 to 454 – The excluded benchmark data is updated to include the rejected
benchmarks.

7.19 Subroutine AdjustNuclearData

This subroutine either reads or calculates the adjusted covariance data, depending on the command line
options. If a path to the adjusted covariance data is specified on the command line, Whisper calculates
the adjusted covariance data from the base (unadjusted) covariance data and the application data. If a
path is not specified and an application file is specified, Whisper reads previously calculated adjusted
covariance data using the subdirectory ‘Adjusted’ in the directory specified by environment variable
WHISPER_COVDATA_PATH. Whisper is distributed with adjusted covariance data that was
precomputed based upon the benchmark suite and the recommended rejection set [LA-UR-14-26436,
Sec. 3.3 and 3.5]. This subroutine is in the DataAdjustmentMod file.

7.19.1 Inputs

7.19.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData in
BenchmarkCorrel BenchmarkCorrel in
ApplicationData ApplicationData in
CovarianceData CovarianceData in
AdjustedCovarianceData AdjustedCovarianceData out

7.19.2 Results

This subroutine provides the adjusted covariance data (variable AdjustedCovarianceData) to the main
program.

Page 58 of 94

Whisper Source Code Inspection Report

7.19.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module DataAdjustmentMod.

1. If a path to the adjusted covariance data was not specified on the command line (line 181):

a. If an application file was specified on the command line (line 182):

1. Line 190 – List all of the isotopes in the benchmark data.

2. Line 191 – List all of the isotopes in the application data.

3. Line 192 – Merge the benchmark and application isotopes lists into a single list.

4. Line 194 – Read the adjusted covariance data (i.e., covariance data in the ‘Adjusted’
subdirectory) for the isotopes listed in the benchmark and application data by calling
subroutine ReadCovarianceData.

2. If a path to the adjusted covariance data is specified on the command line:

a. Lines 206 to 223 – Combine the benchmark and application data into a single array (variable
CombinedData).

b. Line 226 – Create the expanded covariance matrix and sensitivity matrix (variable ExpCov)
by calling ExpandCovarianceMatrixSensitivityMatrix.

c. Lines 244 to 248 – Calculate the covariance matrix of the relative difference vector (variable
Cdd) according to eq. 36 [LA-UR-14-26558, eq. 40]. The steps of this calculation include:

1. Line 244 – Calculate second RHS term of eq. 36.

2. Line 247 – Calculate first RHS term of eq. 36.

d. Lines 251 to 286 – Calculate the adjusted or residual covariance matrix according to eq. 44
[LA-UR-14-26558, eq. 41]. The steps of this calculation include:

1. Line 251 – Invert the covariance matrix of the relative difference vector, i.e., variable
Cdd becomes 𝐶𝐶𝑑𝑑𝑑𝑑−1.

2. Line 259 – Calculate 𝐶𝐶𝑥𝑥𝑥𝑥𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘
𝑇𝑇 .

Note: In variable ValidSkx, each column is a sensitivity vector. In LA-UR-14-26558,
each row of the sensitivity matrix (SB,kx) is a sensitivity vector [LA-UR-14-26558,
pg. 28]. Therefore, Whisper does not transpose the sensitivity matrix when LA-UR-14-
26558 does, and vice versa.

3. Line 266 – Calculate 𝐶𝐶𝑥𝑥𝑥𝑥𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘
𝑇𝑇 𝐶𝐶𝑑𝑑𝑑𝑑−1.

4. Line 274 – Calculate 𝐶𝐶𝑥𝑥𝑥𝑥𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘
𝑇𝑇 𝐶𝐶𝑑𝑑𝑑𝑑−1𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘.

Page 59 of 94

Whisper Source Code Inspection Report

5. Line 282 – Calculate 𝐶𝐶𝑥𝑥𝑥𝑥𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘
𝑇𝑇 𝐶𝐶𝑑𝑑𝑑𝑑−1𝑆𝑆𝐵𝐵,𝑘𝑘𝑘𝑘𝐶𝐶𝑥𝑥𝑥𝑥.

e. Line 289 – Compress the adjusted covariance data by calling subroutine
CompressExpandedCovarianceMatrix.

f. Line 290 – Write the adjusted covariance data (for use in subsequent runs of Whisper) by
calling subroutine WriteCovarianceData.

7.20 Subroutine ExpandCovarianceMatrixSensitivityMatrix

This subroutine generates the expanded covariance matrix and the sensitivity matrix (for LA-UR-14-
26558 eq. 40 to 42). This subroutine is in the CovarianceMatrixMod file. This subroutine is called by the
following subroutines:

• RejectBenchmarks (via GetDiscrepancyCovarianceMatrix), and
• AdjustNuclearData.

Subroutines ExpandCovarianceMatrixSensitivityVectors and ExpandCovarianceMatrixSensitivityMatrix
are similar in that both produce the expanded covariance matrix and organize the sensitivity data.
However, there are differences in the format of the input and output data. For the sensitivity data,
subroutine ExpandCovarianceMatrixSensitivityMatrix requires an array of benchmark data (i.e., an array
with each element of type KeffSenDataType) for input and produces a matrix (one 2-d array) of
sensitivity data. The subroutine output has the derived type
ExpandedCovarianceMatrixSensitivityMatrixType.

7.20.1 Inputs

7.20.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
CovarianceData This in
BenchmarkData kSen in CombinedData+
ExpCov EC out

UnknownDataUncertainty Unc in
(optional)

*A vertically split cell indicates different variables used in separate call statements.
+CombinedData is a combination (concatenation) of the benchmark and application data.

7.20.2 Results

The results for this subroutine are:

• the expanded covariance matrix
(variable EC % C in subroutine ExpandCovarianceMatrixSensitivityMatrix)

• the sensitivity matrix
(variable EC % S in subroutine ExpandCovarianceMatrixSensitivityMatrix).

Page 60 of 94

Whisper Source Code Inspection Report

Note: In variable EC % S, each column is a sensitivity vector. In LA-UR-14-26558, each row of the
sensitivity matrix (SB,kx) is a sensitivity vector [LA-UR-14-26558, pg. 28]. Therefore, Whisper does not
transpose the sensitivity matrix when LA-UR-14-26558 does, and vice versa.

7.20.3 Summary of Source Code

The logic is similar to that in subroutine ExpandCovarianceMatrixSensitivityVector (see Section 7.14.3
above).

7.21 Subroutine CalculateNuclearDataUncertainties

This subroutine calculates the 1σ uncertainty for the adjusted covariance data, which is used to calculate
the baseline USL. (The 1σ uncertainty for the original covariance data is also calculated, but only for user
information.) This subroutine is in the UncertaintyMod file.

7.21.1 Inputs

7.21.1.1 Arguments

Whisper Variable Subroutine Variable Intent
ApplicationData ApplicationData inout
CovarianceData CovarianceData in
AdjustedCovarianceData AdjustedData in

7.21.2 Results

The result of this subroutine is the data uncertainty component (DataUnc) for each application (in variable
ApplicationData).

7.21.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module UncertaintyMod.

1. If an application file was specified on the command line (line 108):

a. For each application (line 118):

1. Line 119 – Create the covariance matrix and the sensitivity vector for the base
(unadjusted) covariance data by calling subroutine
ExpandCovarianceMatrixSensitivityVectors.

Note: Variables ExpCov % S1 and ExpCov % S2 are identical sensitivity vectors
because the same application data is given to subroutine
ExpandCovarianceMatrixSensitivityVectors in the argument list.

2. Line 120 – Create the covariance matrix and the sensitivity vector for the adjusted
covariance data by calling subroutine ExpandCovarianceMatrixSensitivityVectors.

Page 61 of 94

Whisper Source Code Inspection Report

Note: Variables ExpAdj % S1 and ExpAdj % S2 are identical sensitivity vectors because
the same application data is given to subroutine
ExpandCovarianceMatrixSensitivityVectors in the argument list.

3. Line 122 – Calculate the 1σ uncertainty for the original covariance data according to
eq. 11.

4. Lines 123 to 125 – Calculate the 1σ uncertainty for the adjusted covariance data (see
explanation above).

7.22 Subroutine CalculateUpperSubcriticalLimits

This subroutine calculates the Upper Subcritical Limit (by first calculating the contributing factors to the
USL). This subroutine is listed in the UpperSubcriticalLimitMod file.

7.22.1 Inputs

7.22.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData in
ApplicationData ApplicationData inout
CovarianceData CovarianceData in

7.22.2 Results

The following ApplicationData components in the Whisper main program are set:

• CalcMargin – initially by a call to CalculateCalculationalMargin, could be increased
by subroutine CalculateUpperSubcriticalLimits

• Bias – by a call to CalculateCalculationalMargin
• BiasUnc – by a call to CalculateCalculationalMargin
• USL
• KeffOverUSL

7.22.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module UpperSubcriticalLimitMod.

1. If an application file was specified on the command line (line 45):

a. Line 53 – Calculate the calculational margin using unweighted benchmark data by calling
subroutine CalculateCalculationalMargin.

b. If the calculation margin is less than the minimum non-coverage penalty (the default value of
0.05 can be changed by user options), set the calculation margin to the minimum
non-coverage penalty (line 54).

c. For each application file (line 57):

Page 62 of 94

Whisper Source Code Inspection Report

1. Line 58 – Calculate the calculational margin using weighted benchmark data by calling
subroutine CalculateCalculationalMargin.

2. If the residual weight fraction, �1 −𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟⁄ � in LA-UR-14-26558, is greater than
zero (line 62):

a. Line 63 to 67 – Recalculate the calculational margin using eq. 29 [LA-UR-14-26558
eq. 36].

3. Lines 72 to 75 – Calculate USL according to eq. 31 [LA-UR-14-26558 eq. 2, 37, and 43].

4. Lines 77 to 79 – Calculate the amount the application keff (upper limit of the confidence
interval) exceeds the application USL according to LA-UR-14-26558, eq. 3.

7.23 Subroutine CalculateCalculationalMargin

7.23.1 Inputs

7.23.1.1 Arguments

Whisper Variable* Subroutine Variable Intent
BenchmarkData BenchmarkData in
UnweightedData ApplicationData inout ApplicationData(i)
CovarianceData CovarianceData in
SimilarityInfo SimilarityInfo out
Unweighted WeightFlag in

*A vertically split cell indicates different variables used in separate call statements.

7.23.2 Results

The following components of the application data in the Whisper main program, and the unweighted data
in subroutine CalculateUpperSubcriticalLimits, are set:

• CalcMargin
• Bias
• BiasUnc

7.23.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module UpperSubcriticalLimitMod.

1. If non-uniform weighting factors on the normal distribution cumulative distribution functions
(CDFs) in the extreme value CDF has been selected (line 149):

a. Line 150 – Calculate the non-uniform weighting factors by calling subroutine
CalculateSimilarityWeights.

Page 63 of 94

Whisper Source Code Inspection Report

2. If uniform weighting factors on the normal distribution CDFs in the extreme value CDF has been
selected (line 149):

a. Line 155 – Set all weighting factors to one.

3. Line 158 – Make new arrays (vectors) of the benchmark keff biases and bias uncertainties
(variables muVec and sigmaVec) by calling subroutine
GetBenchmarkBiasandUncertaintyVectors.

4. Lines 160 to 167 – Find the calculational margin where the extreme value CDF equals, or
exceeds, the confidence level [LA-UR-14-23202, Sec. 3, last paragraph], i.e., eq. 16. The
extreme value CDF is calculated with subroutine ExtremeNormalCDF. The default confidence
level of 99% may be changed in the user options.

5. Line 169 – Calculate the application bias. Subroutine ExtremeNormalMean evaluates the integral
in eq. 23 using the trapezoidal rule (as stated in LA-UR-14-26558).

6. Line 170 – Calculate the bias uncertainty according to LA-UR-14-26558 eq. 26.

7. Line 173 – Calculate the calculation margin according to eq. 26 and 27 [LA-UR-14-26558, eq. 27
and 7].

7.24 Subroutine CalculateSimilarityWeights

7.24.1 Inputs

7.24.1.1 Arguments

Whisper Variable Subroutine Variable Intent
BenchmarkData BenchmarkData in
ApplicationData(i) ApplicationData in
CovarianceData CovarianceData in
Wgt Wgt out
SimilarityInfo SimilarityInfo out

7.24.2 Results

This subroutine calculates the non-uniform weighting factors on the normal distribution CDFs in the
extreme value CDF. This subroutine also calculates the similarity information (variable SimilarityInfo).
The residual weight fraction (variable SimilarityInfo % ResidualWeightFrac) is used in subroutine
CalculateUpperSubcriticalLimits to calculate the calculational margin.

7.24.3 Summary of Source Code

The following is a summary of the calculations performed in this subroutine. The line numbers are from
the file for module UpperSubcriticalLimitMod.

1. Line 214 – Create the covariance matrix and the sensitivity vector for the application data by
calling ExpandCovarianceMatrixSensitivityVectors.

Page 64 of 94

Whisper Source Code Inspection Report

2. Line 215 – Calculate the variance of the application data according to eq. 5 [LA-UR-14-26558,
eq. 31].

3. For each benchmark (line 218):

a. Line 220 – Create the covariance matrix and the sensitivity vector for the benchmark data by
calling ExpandCovarianceMatrixSensitivityVectors.

b. Line 221 – Calculate the variance of the benchmark data according to eq. 5 [LA-UR-14-
26558, eq. 31].

c. Line 222 – Calculate the covariance according to eq. 6 [LA-UR-14-26558, eq. 30].

d. Line 224 – Calculate the correlation coefficient according to eq. 7 [LA-UR-14-26558, eq. 32]
and LA-UR-14-26558 (Sec. III.A.2) statement that “Whisper sets negative ck to zero.”

4. Lines 233 to 251 – Choose acceptance criteria (ck,acc in LA-UR-14-26558) such that eq. 15 [LA-
UR-14-23202 eq. 8] {a variation of LA-UR-14-26558 eq. 33} is satisfied or the acceptance
criteria reaches zero.

a. Line 236 – Calculate required weight according to eq. 13 [LA-UR-14-26558, eq. 35].

b. Lines 242 to 247 – Calculate weighting factors according to eq. 14 [LA-UR-14-26558,
eq. 34].

c. Line 249 – Calculate LHS of eq. 15 [LA-UR-14-23202 eq. 8]{a variation of LA-UR-14-
26558 eq. 33}.

5. Line 265 – Calculate the residual weight fraction, �1 −𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟⁄ �, which will be used later in
LA-UR-14-26558 eq. 36.

7.25 Subroutine WriteUSLOutputSummaryTable

If an application file was specified on the command line, the USL Summary Table is written to the output
file.

Page 65 of 94

Whisper Source Code Inspection Report

8. References

B. T. Rearden, M. L. Williams, M. A. Jessee, D. E. Mueller, and D.A. Wiarda, Sensitivity and
Uncertainty Analysis Capabilities and Data in SCALE, Nuclear Technology,
Vol. 174, pp. 236-288, May 2011

LA-CP-13-00634, Rev. 0, MCNP6 User’s Manual, Version 1.0, May 2013

LA-UR-14-23202, Methodology for Sensitivity and Uncertainty-Based Criticality Safety Validation,
Brian C. Kiedrowski, 2104-05-07

LA-UR-14-23352, Validation of MCNP6.1 for Criticality Safety of Pu-Metal, -Solution, and –Oxide
Systems, Brian C. Kiedrowski, et. al., 2104-05-13

LA-UR-14-26436, User Manual for Whisper (v1.0.0), Software for Sensitivity- and Uncertainty-Based
Nuclear Criticality Safety Validation, Brian Christopher Kiedrowski, 2104-08-13

LA-UR-14-26558, Whisper: Sensitivity/Uncertainty-Based Computational Methods and Software for
Determining Baseline Upper Subcritical Limits, Brian Christopher Kiedrowski, et.
al., 2104-08-19

ORNL/TM-2005/39, Version 6.1, Scale: A Comprehensive Modeling and Simulation Suite for Nuclear
Safety Analysis and Design, June 2011

Whisper Program Suite Validation and Verification Report, R. F. Sartor and F. B. Brown, Los Alamos
National Laboratory, LA-UR publication pending

Page 66 of 94

Whisper Source Code Inspection Report

Appendix A

Equation to Subroutine Crosswalk

The following table is a crosswalk between the equations in LA-UR-14-26558 and the Whisper
subroutines. Note: Not every equation in LA-UR-14-26558 is listed.

LA-UR-14-26558 Equation Whisper Subroutine (Report Section)
2 Subroutine CalculateUpperSubcriticalLimits (7.22)
3 Subroutine CalculateUpperSubcriticalLimits (7.22)
7 Subroutine CalculateCalculationalMargin (7.23)
19 Function ExtremeNormalPDF

Function ExtremeNormalCDF
20 Function ExtremeNormalPDF
21 Subroutine ReadAndSetupBenchmarks (7.5)
22 Subroutine ReadAndSetupBenchmarks (7.5)
23 Function NormalCDF

2413 Subroutine CalculateCalculationalMargin (7.23)
25 Subroutine CalculateCalculationalMargin (7.23)
26 Subroutine CalculateCalculationalMargin (7.23)
27 Subroutine CalculateCalculationalMargin (7.23)
30 Subroutine EstimateUnknownBenchmarkUncertainties (7.13)

- and –
Subroutine CalculateSimilarityWeights (7.24)

31 Subroutine EstimateUnknownBenchmarkUncertainties (7.13)
- and –
Subroutine CalculateSimilarityWeights (7.24)

32 Subroutine EstimateUnknownBenchmarkUncertainties (7.13)
- and –
Subroutine CalculateSimilarityWeights (7.24)

33 Subroutine CalculateSimilarityWeights (7.24)
34 Subroutine CalculateSimilarityWeights (7.24)
35 Subroutine CalculateSimilarityWeights (7.24)
36 Subroutine CalculateUpperSubcriticalLimits (7.22)

- and –
Subroutine CalculateSimilarityWeights (7.24)

37 Subroutine CalculateUpperSubcriticalLimits (7.22)
40 Subroutine AdjustNuclearData (7.19)
41 Subroutine AdjustNuclearData (7.19)

13 Equation (24), F(m) = q, is implemented as F(m) ≥ q in Whisper.

Page 67 of 94

Whisper Source Code Inspection Report

LA-UR-14-26558 Equation Whisper Subroutine (Report Section)
42 Subroutine CalculateNuclearDataUncertainties (7.21)
43 Subroutine CalculateUpperSubcriticalLimits (7.22)

where the square root operation is in:
Subroutine CalculateNuclearDataUncertainties (7.21)

44 Subroutine EstimateUnknownBenchmarkUncertainties (7.13)
45 Subroutine RejectBenchmarks (7.18)

Page 68 of 94

Whisper Source Code Inspection Report

Appendix B

Questions and Answers

1. Module ParameterMod – This module defines two variables, NRxn and NumRelevantMTs.
Because reaction and MT number correlate to each other, these two variables define the same
program parameter. Consider removing the redundancy to avoid possible conflicts due to a
change in one but not the other.

Answer: This is a matter of programming style or choice, not correctness. Such choices may
affect code understanding or organization, but do not affect results. (communication from Forrest
Brown, XCP-3, 1/16/2015)

2. Function ReadKeffSenData – If an isotope has more than one data set in the benchmark (or
application) data file, then the subsequent sensitivity factors are added to the previous sensitivity
factors when constructing the sensitivity matrix in Whisper. Why would it be appropriate to sum
sensitivity factors?

Answer: An isotope can appear in more than one material, or more than once in the same
material, or at more than one location (tally cell). The sensitivities are computed per isotope and
reaction, not per material or location. (communication from Forrest Brown, XCP-3, 1/16/2015)

3. Subroutine ReadAndSetupCovarianceData – This subroutine ends with two calls to subroutine
MakeThermalScatterConsistent with the benchmark and application data (InputProcessingMod
lines 663 to 668). Since subroutine MakeThermal ScatterConsistent uses and modifies only
benchmark and application data, IsoSen(i) % Sk(j,k), why are these calls in subroutine
ReadAndSetupCovarianceData rather than the ReadAndSetupBenchmarks and
ReadAndSetupApplications subroutines?

Answer: This is a matter of programming style or choice, not correctness. Such choices may
affect code understanding or organization, but do not affect results. (communication from Forrest
Brown, XCP-3, 1/16/2015)

4. Subroutine ReadCovarianceFile – CovarianceMatrixMod line 476 is:

 read(ScratchUnit,*) ZA1, MT1, ZA2, MT2

Using cov.1001.data as an example, the corresponding input line is:

 1001 1 1001 1 1

Is Whisper executing properly while reading four variables when the covariance data file has five
data values?

Answer: Fortran input/output works with records. The above input line is one record. The
Fortran read statement inputs the entire record although only the first four values are transferred
to variables. (“Advancing input/output is record oriented and leaves a file positioned between
records even if an input operation does not completely consume a record.” [Fortran 2003
Handbook; Sec. 9.1.4])

Page 69 of 94

Whisper Source Code Inspection Report

5. Subroutine ReadCovarianceData – CovarianceMatrixMod line 477

 read(ScratchUnit,*) (Map(j), NRow(j), j=1, n)

What is the data in variables Map(j) and NRow(j)?

Answer: The general format for the covariance files permits large datasets to be stored in
“blocks”, excluding large sections of the covariance matrix containing only zeros from the file
storage. The initial coding effort for Whisper made some attempt to handle the general file
storage format, with the complicated block-oriented storage scheme. However, because the only
available covariance data was the relatively compact 44-group ORNL data, which does not
require or use the block-oriented storage scheme, the coding for reading the covariance data files
was simplified. The items mentioned in questions 5 and 6 are leftover remnants from the initial
coding. While not necessary, they do nothing to interfere with the correct processing of the
44-group covariance files.

This restriction to the 44-group covariance data does not affect results to date. In the future, some
additions to the coding will be required if it is desired to read larger, block-oriented covariance
data files (if & when such files are produced).

(communication from Forrest Brown, XCP-3, 1/16/2015)

6. Subroutine ReadCovarianceFile – CovarianceMatrixMod lines 479 and 480 are:

 Map(:) = Map(:) - NRow(:) + 1
 NumCov = sum(Map)

Map and NumCov are local variables for subroutine ReadCovarianceFile. Are variables Map and
NumCov used after line 480? Are lines 479 and 480 superfluous code?

Answer: See answer to question 5 above.

7. Subroutine ReadCovarianceFile – Different variables, nErg and HeaderData % nErg, are used to
allocate and populate matrix M (in This % Data); the code specifics are given in the bullets
below. If the values of these two variables are ever different, subroutine ReadCovarianceFile will
not execute properly. Should Whisper verify that nErg and HeaderData % nErg have the same
value to ensure proper operation of subroutine ReadCovarianceFile?

• CovarianceMatrixMod line 489 performs the allocation M(1:nErg,1:nErg). Variable nErg is
a parameter set to 44 in module ParametersMod.

• Lines 494 to 498 use variable n to populate M. Variable n is set to HeaderData % nErg in
line 461. HeaderData is an argument variable in Subroutine ReadCovarianceFile. Variable
HeaderData % nErg is read from the covariance file by subroutine
ReadCovarianceFileHeader (line 396).

Answer: This is a matter of programming style or choice, not correctness. Such choices may
affect code understanding or organization, but do not affect results. (communication from Forrest
Brown, XCP-3, 1/16/2015)

Page 70 of 94

Whisper Source Code Inspection Report

8. Subroutine EstimateUnknownBenchmarkUncertainties – The experimental uncertainty for each
benchmark (variable BenchmarkData(i) % KeffBenchUnc) is initially an input value read from a
file (subroutine ReadAndSetupBenchmarks). This input value is used to calculate the bias
uncertainty (BenchmarkData(j) % SigmaBias) in subroutine ReadAndSetupBenchmarks. For
benchmarks with unknown (or unrealistically low) experimental uncertainty, subroutine
EstimateUnknownBenchmarkUncertainties calculates an estimate of the experimental
uncertainty. However, subroutine EstimateUnknownBenchmarkUncertainties (or any subroutine)
does not recalculate BenchmarkData(j) % SigmaBias. Subsequently, BenchmarkData(j) %
SigmaBias is used to calculate the calculational margin, application bias, and application bias
uncertainty.

Answer: Subroutine EstimateUnknownBenchmarkUncertainties should recalculate
BenchmarkData(j) % SigmaBias after updating BenchmarkData(i) % KeffBenchUnc. In the
interim, the benchmark uncertainties calculated by Whisper can be used in subsequent Whisper
runs by inserting the Whisper results in the benchmark library (TOC) file.

This issue is identified in a problem report (NCS-SQM-WHISPER-PROBID07) in order to
initiate corrective actions.

9. Subroutine RejectBenchmarks – When calculating the chi-squared diagonal values for deciding
whether a benchmark should be rejected (DataAdjustmentMod lines 337 and 425), the fractional
difference between KeffCalc and KeffBench is used as the discrepancy value. When calculating
the chi-squared diagonal values for selecting a benchmark for rejection (DataAdjustmentMod
lines 396 to 400), the magnitude of the difference between KeffCalc and KeffBench is used as
the discrepancy value. Furthermore, LA-UR-14-26558, Sec. III.D describes the discrepancy as
the difference between the calculated keff from its reference value without mentioning any scaling.

Answer: For consistency, the treatment for rejecting benchmarks (using the magnitude of the
difference) should be changed to use fractional differences. The practical effect on results should
be entirely negligible, however, since the absolute differences only need to be divided by values
that are very close to 1.0 (that is, the benchmark k-effectives, which differ from 1.0 by only
fractions of a percent). (communication from Forrest Brown, XCP-3, 1/16/2015)

This issue is identified in a problem report (NCS-SQM-WHISPER-PROBID06) in order to
initiate corrective actions.

10. Subroutine CalculateUpperSubcriticalLimits – UpperCriticalLimitMod line 54 performs
UnweightedData % CalcMargin = max(UnweightedData % CalcMargin,
MinimumNonCoveragePenalty). Why is it necessary/appropriate to have a minimum limit
(MinimumNonCoveragePenalty) for the unweighted calculation margin?

Answer: This is just conservatism. It would be unthinkable to have a calculation margin of zero,
or one that is artificially small due to lack of a sufficient number of cases. (communication from
Forrest Brown, XCP-3, 1/16/2015)

11. The value of the calculational margin due to the code and method (variable
CodeAndMethodMargin) is a named constant with the value 0.005 in the module
ParametersMod. In the next revision, consider changing variable CodeAndMethodMargin from
being a parameter to a user option variable to give users control over this value.

Page 71 of 94

Whisper Source Code Inspection Report

Answer: This parameter is based on the carefully considered expert judgment of the most
experienced MCNP code developer. It is not a parameter that should be overruled by a user, no
matter how experienced. If a user disagrees with the value of this parameter, it is a simple matter
to add or subtract from the final baseline USL determined by Whisper. Such changes, however,
would require complete documentation and justification.

Page 72 of 94

Whisper Source Code Inspection Report

Appendix C

Treatment of Sensitivity Factors for S(α, β) Cross Sections

For materials with S(α, β) cross sections (hydrogen bound in light water, zirconium hydride,
polyethylene, and heavy water; deuterium in heavy water; beryllium metal; and graphite), the covariance
data for the inelastic scattering cross sections will be approximated with the covariance data for the elastic
scattering cross sections. To use the elastic scattering covariance data, the inelastic scattering cross
section sensitivity coefficients calculated by MCNP6 are added to the elastic scattering cross section
sensitivity coefficients. The original inelastic scattering cross section sensitivity coefficients are then set
to zero to avoid double counting the sensitivity to low-energy inelastic scattering.

This appendix justifies why this is the appropriate covariance data and sensitivity coefficient treatment.
The following discussion begins with a review of thermal scattering kernels, MCNP6 sensitivity factors,
and covariance data. Then the sources of the covariance data are reviewed to discover the applicability.

Thermal Scattering Kernels

Molecular effects or crystalline structure effects can affect the neutron scattering cross sections. These
effects are included in the S(α, β) thermal neutron scattering data. Every S(α, β) material will have
inelastic scattering and may have either coherent or incoherent elastic scattering (but not both). [LA-UR-
12-00800]

To treat a particular isotope (or isotopes) as a molecular compound in the thermal regime in MCNP6, the
MT card with one of the available S(α,β) data sets is used. As MCNP6 transports particles, the free-gas
treatment is used down to the energy where S(α,β) data are available. At that point, the S(α,β) treatment
automatically overrides the free-gas treatment; there is no mixing of the two treatments for the same
isotope in the same material at a given energy. Typically the free-gas model is used for each isotope of a
material down to a few electron volts and then the S(α,β) treatment takes over for the isotope(s)
comprising the substance specified on the MT card. In general, S(α,β) effects are most significant below
2 eV. [LA-CP-13-00634; Sec. 3.3.2.2]

The following table lists the MCNP6 S(α,β) identifiers used in the Whisper program suite and the
corresponding SCALE identifier.

MCNP6 S(α,β)
Identifier Description(a) SCALE ZA

Identifier Description(b)

lwtr Hydrogen in Light Water 1001 Hydrogen in water with a S(α,β)
thermal kernel

h-zr Hydrogen in Zirconium
Hydride 1701 Hydrogen in zirconium hydride

with a S(α,β) thermal kernel

poly Hydrogen in Polyethylene 1901 Hydrogen in polyethylene with a
S(α,β) thermal kernel

hwtr Deuterium in Heavy Water 1002 Deuterium in heavy water with
S(α,β) thermal kernel

be Beryllium Metal 4309 Beryllium metal with a S(α,β)
thermal kernel (Bebound)

Page 73 of 94

Whisper Source Code Inspection Report

MCNP6 S(α,β)
Identifier Description(a) SCALE ZA

Identifier Description(b)

grph Graphite 6312 Graphite carbon
(a) LA-UR-13-21822; Table 7: Thermal S(α,β) cross-section libraries, and Table 8: continuous-energy

neutron data library
(b) ORNL/TM-2005/39; Table M8.2.3, Elements and special nuclide symbols, Table M8.2.4, Compounds,

and Section M4.A.2, The 44-Group ENDF/B-V Library

MCNP6 produces sensitivity factors for the S(α, β) cross section separate from the parent material cross
sections. For all cross sections, including the S(α, β) cross sections, MCNP6 produces separate sensitivity
factors for elastic and inelastic scattering.

MCNP6 Sensitivity Factors

MCNP6 calculates sensitivity factors for the cross sections used. There are separate sensitivity factors for
elastic and inelastic scattering.

Covariance Data in the Whisper Program Suite

The covariance data in SCALE6 was transferred to the Whisper program suite. In the Whisper program
suite, the covariance data is used with sensitivity factors from MCNP6. The covariance data available for
the S(α, β) identifiers is:

Nuclide Covariance Data Reactions (MT numbers)
lwtr total (1), elastic scatter (2), capture (102)
poly total (1), elastic scatter (2), capture (102)
grph total (1), elastic scatter (2), inelastic scatter (4),

capture (102), n,p (103), n,d (104), n,alpha (107)
be total (1), elastic scatter (2), n,2n (16), capture (102),

n,p (103), n,d (104), n,t (105), n,alpha (107)
hwtr total (1), elastic scatter (2), n,2n (16), capture (102)
h-zr total (1), elastic scatter (2), capture (102)

For neutron scattering, most of these nuclides have only one set of covariance data, identified as elastic
scattering. These nuclides do not have separate covariance data for inelastic scattering (the primary
reason for the S(α, β) thermal neutron scattering data). Graphite is the only exception with covariance
data for both elastic and inelastic scattering.

Covariance Data Sources

The source of the covariance data is:

Nuclide Data source Comments
Bebound BNL-LANL-ORNL (BLO) approximate

data

C-graphite ENDF/B-VI Duplicate of carbon

Page 74 of 94

Whisper Source Code Inspection Report

Nuclide Data source Comments
C ENDF/B-VI
1H above 5 keV :BLO LANL evaluation

below 5 keV: JENDL 3.3

H-ZrH above 5 keV :BLO LANL evaluation
below 5 keV: JENDL 3.3

Duplicate of 1H

H-poly above 5 keV :BLO LANL evaluation
below 5 keV: JENDL 3.3

Duplicate of 1H

Hfreegas above 5 keV :BLO LANL evaluation
below 5 keV: JENDL 3.3

Duplicate of 1H

2H BLO approximate data
Dfreegas BLO approximate data Duplicate of 2H
[ORNL/TM-2005/39; Table M19.4.1]

Beryllium and Deuterium (BLO Approximate Data)

The SCALE-6 covariance data includes approximate uncertainties from the collaborative effort between
Brookhaven National Laboratory (BNL), Los Alamos National Laboratory (LANL), and ORNL to
produce “low fidelity” (lo-fi) covariances spanning the full energy range [Williams and Rearden]. Los
Alamos had responsibility for covariance data for the light isotopes (up through 19F) over the entire
energy range [Little]. The covariance evaluation for the light elements includes high-fidelity R-matrix
analyses for a few reactions {1H(n,n), 1H(n,γ), 10B(n,n), and 10B(n,α)}, but the majority are low-fidelity
estimates [Evaluation of Covariances for Actinides and Light Elements at LANL].

Low fidelity uncertainties in the thermal range were produced by a simple integral approximation which
uses uncertainties in the integral measurements of thermal cross sections to approximate differential data
uncertainties [NEA/NSC/DOC(2007)23]. The method does not provide uncertainties for inelastic
scattering or other types of data with no integral measurements [Williams, et. al.].

In the case of molecules or crystals, the integral measurements will inherently include the effects of the
molecule or crystal on the neutron scattering cross sections. Therefore, the covariance data from the
integral approximation method includes the low-energy inelastic scattering. The covariance data from
integral approximations is for all scattering, elastic and inelastic. For beryllium metal (be) and deuterium
(2H), it is appropriate for the Whisper program to add the inelastic scattering cross section sensitivity
coefficients calculated by MCNP6 to the scattering cross section sensitivity coefficients.

Hydrogen (JENDL 3.3 Data)

Although the table above (from ORNL/TM-2005/39) states that the covariance data for free gas hydrogen
is a duplicate of the covariance data for 1H, i.e., hydrogen in water, this statement is backwards. For a
point of reference, the current ENDF/B-VII.1 nuclear data does not have covariance data specifically for
hydrogen in water14, although there is covariance data for free gas hydrogen. Therefore, free gas
hydrogen is considered to be the source of the bound hydrogen covariance data.

14 http://www.nndc.bnl.gov/exfor/servlet/E4sGetTabSect?EvalID=22417&req=6525

Page 75 of 94

Whisper Source Code Inspection Report

For scattering (mt = 2), the JENDL 3.3 covariances of the hydrogen elastic scattering (mt = 2) cross
sections is based on ENDF/B-V data except that the standard deviation below 1 keV was changed to 0.1%
[JAERI-Data/Code 2002-26]. ENDF/B-V was the first time ENDF/B included covariance data (file 33)
for carbon, and only the total (mt = 1), elastic scattering (mt = 2), and capture (mt = 102) cross sections
were included [BNL-NCS-17541 (1979)].

At this point there is a choice for the covariance data for inelastic scattering with bound hydrogen: use the
default covariance matrix (diagonal elements of 0.10 or the user input value) or the hydrogen S(α, β)
elastic scattering covariance matrix. The elastic scattering covariance matrix was selected as a better
estimate of the low-energy inelastic scattering behavior. Therefore, for bound hydrogen (in light water,
ZrH, or polyethylene), it is appropriate for the Whisper program to add the inelastic scattering cross
section sensitivity coefficients calculated by MCNP6 to the elastic scattering cross section sensitivity
coefficients.

Carbon Graphite (ENDF/B-VI)

The covariance data for carbon graphite is the covariance data for carbon [ORNL/TM-2005/39,
Table M19.4.1]. Carbon is one of the fifty materials in the SCALE6 covariance data with high-fidelity
covariance data. For these fifty materials, the evaluation of nuclear data utilized a regression algorithm to
determine the nuclear physics model parameters that fit the experimental measurements. Information
from the regression analysis can be propagated to uncertainties and correlations in the evaluated
differential data. [ORNL/TM-2005/39; Sec. M19.2.1]

Unlike the other isotopes listed in the table above, carbon graphite has both an S(α, β) scattering kernel
and covariance data for the inelastic scattering (mt = 4) cross sections. At this point, the question is: does
the inelastic scattering cross section covariance data include low-energy scattering behavior due to
molecule or crystal effects? The ENDF/B-VI documentation for carbon has no indication that the
inelastic cross section covariance data includes molecular or crystalline effects. For example:

1. In BNL-NCS-17541 (1991), the two energy ranges discussed for the uncertainty files are < 2
MeV and above.

2. In BNL-NCS-17541 Supplement I (1996), the lowest energy discussed for the uncertainty (of
total elastic scattering cross section) is 1 keV.

3. In Fu & Perey (1978), the thermal cross sections section discusses the total, capture, and
scattering cross sections but scattering is not divided further into elastic and inelastic types.

Furthermore, the covariance data for the inelastic scattering cross sections (with the total, elastic
scattering, and inelastic scatter cross sections) has non-zero values only for energies above 10 keV.
Therefore, the available covariance data for carbon graphite inelastic scattering cross sections is not
applicable to low-energy inelastic scattering or the S(α, β) cross sections.

At this point there is a choice for the covariance data for inelastic scattering with carbon graphite, use the
default covariance matrix (diagonal elements of 0.10 or the user input value) or the carbon S(α, β) elastic
scattering covariance matrix. The elastic scattering covariance matrix was selected as a better estimate of
the low-energy inelastic scattering behavior. Therefore, for carbon graphite (grph), it is appropriate for
the Whisper program to add the inelastic scattering cross section sensitivity coefficients calculated by
MCNP6 to the elastic scattering cross section sensitivity coefficients.

Page 76 of 94

Whisper Source Code Inspection Report

References

BNL-NCS-17541, ENDF-102 ENDF/B-VI Summary Documentation, Brookhaven National Laboratory,
National Nuclear Data Center, Oct. 1991

BNL-NCS-17541 Supp. I, ENDF-102 ENDF/B-VI Summary Documentation Supplement I, ENDF/HE-VI
Summary Documentation, Brookhaven National Laboratory, National Nuclear Data
Center, Dec. 1996

BNL-NCS-50496, 2nd Ed. (ENDF/B-V) Revised, ENDF-102 Data Formats and Procedures for the
Evaluated Nuclear Data File, ENDF/B-V, 1983

Fu, C. Y. and Perey, F. G., Neutron Scattering Cross Sections of Carbon Below 2 MeV Recommended
from R-Matrix Fits to Data, Atomic Data and Nuclear Data Tables 22, 1978, pages
249-267

JAERI-Data/Code 2002-26, Descriptive Data of JENDL-3.3 Part I (Z=1-50), Jan. 2003 [http://jolissrch-
inter.tokai-sc.jaea.go.jp/pdfdata/JAERI-Data-Code-2002-026-Part1.pdf]

Kawano, T., et. al., Evaluation of Covariances for Actinides and Light Elements at LANL, Nuclear Data
Sheets 109, 2008, pages 2817-2821

LA-CP-13-00634, Rev. 0; MCNP6 User’s Manual, Los Alamos National Laboratory, 2013

LA-UR-12-00800, Release of Continuous Representation for S(α, β) ACE Data, Los Alamos National
Laboratory, 2012

LA-UR-13-21822, Listing of Available ACE Data, Los Alamos National Laboratory, 2013

Little, R.C., et. al., Low-fidelity Covariance Project, Nuclear Data Sheets 109, 2008, pages 2828–2833

NEA/NSC/DOC(2007)23, Benchmark for Uncertainty Analysis in Modelling (UAM) for Design,
Operation, and Safety Analysis of LWRs, Volume 1, Organization for Economic Co-
operation and Development (OECD), 21-Jan-2008

ORNL/TM-2005/39, Version 6.1, Scale: A Comprehensive Modeling and Simulation Suite for Nuclear
Safety Analysis and Design, June 2011

Williams, M.L. and Rearden, B.T., SCALE-6 Sensitivity/Uncertainty Methods and Covariance Data,
Nuclear Data Sheets 109, 2008, pages 2796–2800

Williams, Mark L., et al. Approximate Techniques for Representing Nuclear Data Uncertainties, Eighth
International Topical Meeting on Nuclear Applications and Utilization of Accelerators
(AccApp'07), 2007

Page 77 of 94

Whisper Source Code Inspection Report

Appendix D

Derived Variable Types in Whisper

The following tables list the derived variable types used in the program Whisper. Declarations of private
or public are appended to the type name (in bold) in the table title. The subtitle identifies the module that
defines the derived variable type. The table provides the component name, data type, and initial value (if
set). The components that are not for data storage, i.e., references to other derived variables and pointers
to procedures, are in light grey highlighting. Extend operations, and the variables incorporated by the
extend operation, are identified with a triple line (|||) border on the left edge of the table.

ApplicationDataType
(module SensitivityMod)

Component Data type Init. Value
extends(KeffSenDataType)
NIso integer
MaxIso integer
ZA(:) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure
FileName character(len=40)
KeffCalc real(8)
KeffCalcUnc real(8)
IsoSen(:) type(IsoSenType) allocatable
IsoSen(:) % Sk(:,:) real(8) allocatable
UnionizeKeffSen procedure
UnionizeKeffSenVector procedure
Union6 generic => UnionizeKeffSen,

UnionizeKeffSenVector

DataUnc real(8)
CalcMargin real(8)
Bias real(8)
BiasUnc real(8)
USL real(8)
KeffOverUSL real(8)

BenchmarkCorrelationMatrixType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
Name(:) character(len=40) allocatable
Mat(:,:) real(8) allocatable

Page 78 of 94

Whisper Source Code Inspection Report

BenchmarkDataType
(module SensitivityMod)

Component Data type Init. Value
extends(KeffSenDataType)
NIso integer
MaxIso integer
ZA(:) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure
FileName character(len=40)
KeffCalc real(8)
KeffCalcUnc real(8)
IsoSen(:) type(IsoSenType) allocatable
IsoSen(:) % Sk(:,:) real(8) allocatable
UnionizeKeffSen procedure
UnionizeKeffSenVector procedure
Union6 generic => UnionizeKeffSen,

UnionizeKeffSenVector

KeffBench real(8)
KeffBenchUnc real(8)
KeffBias real(8)
SigmaBias real(8)

CovarianceMatrixType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
Data(:) type(MatrixType) allocatable
M(:,:) real(8) allocatable
Iso(:,:) type(IsotopeLevelCovarianceMatrixType) allocatable
Iso(:,:) % Rxn(:,:) type(ReactionLevelCovarianceMatrixType) allocatable
Iso(:,:) % Rxn(:,:) % Data type(MatrixType), pointer => null()
Iso(:,:) % Rxn(:,:) % doTranspose logical = .false.
Iso(:,:) % mt1(:) integer allocatable
Iso(:,:) % mt2(:) integer allocatable
ZA(:) character(len=6) allocatable
Read procedure, public => ReadCovarianceData
ReadFile procedure, private => ReadCovarianceFile
Write procedure, public => WriteCovarianceData

FindZAIndex procedure, public =>
CovarianceMatrixFindZAIndex

FindMTIndex procedure, public =>
CovarianceMatrixFindMTIndex

FindNextFreeMatrix procedure, private =>
CovarianceMatrixFindNextFreeMatrix

ConstructSUMap procedure, public =>
CovarianceMatrixConstructSUMapVector

Page 79 of 94

Whisper Source Code Inspection Report

ExpandCovarianceMatrixSensitivity
Vectors procedure, public

ExpandCovarianceMatrixSensitivity
Matrix procedure, public

Expand15
generic, public =>
ExpandCovarianceMatrixSensitivityVectors, &
ExpandCovarianceMatrixSensitivityMatrix

CovHeaderDataType (private)
(module CovarianceMatrixMod)

Component Data type Init. Value
FileZA character(len=6)
NErg integer
NumFileZAMT integer
NumUsedZAMT integer
NumUniqueMT integer
UsedZAMT(:) type(ZAMTPairType) allocatable
UsedZAMT(:) % ZA1 character(len=6)
UsedZAMT(:) % ZA2 character(len=6)
UsedZAMT(:) % MT1 integer
UsedZAMT(:) % MT2 integer
UniqueMT(:) integer allocatable

15 Component Expand selects subroutine ExpandCovarianceMatrixSensitivityVectors or
ExpandCovarianceMatrixSensitivityMatrix depending on the arguments supplied.

• If the argument types are KeffSenDataType, KeffSenDataType,
ExpandedCovarianceMatrixSensitivityVectorType, and (optionally) real(8), then Expand calls
subroutine ExpandCovarianceMatrixSensitivityVectors.

• If the argument types are an array KeffSenDataType,
ExpandedCovarianceMatrixSensitivityMatrixType, and (optionally) real(8), then Expand calls
subroutine ExpandCovarianceMatrixSensitivityMatrix.

Page 80 of 94

Whisper Source Code Inspection Report

ExpandedCovarianceMatrixSensitivityMatrixType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
extends(ExpandedCovarianceMatrix
Type)

Cov type(CovarianceMatrixType), pointer => null()
SUMap type(SUMapVectorType)
SUMap % nBlocks integer = 0
SUMap % TotalSize integer = 0
SUMap % SU(:) Type(SUMapType)
SUMap % SU(:) % ZA character(len=6)
SUMap % SU(:) % Rxn integer
SUMap % SU(:) % MinEBin integer
SUMap % Cov type(CovarianceMatrixType), pointer
SUMap % GetSensitivityVector procedure => SUMapGetSensitivityVector
SUMap %
GetExpandedCovarianceMatrix

procedure =>
SUMapGetExpandedCovarianceMatrix

C(:,:) real(8) allocatable

FixUp procedure =>
FixUpExpandedCovarianceMatrix

Compress procedure =>
CompressExpandedCovarianceMatrix

S(:,:) real(8) allocatable

Page 81 of 94

Whisper Source Code Inspection Report

ExpandedCovarianceMatrixSensitivityVectorType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
extends(ExpandedCovarianceMatrix
Type)

Cov type(CovarianceMatrixType), pointer => null()
SUMap type(SUMapVectorType)
SUMap % nBlocks integer = 0
SUMap % TotalSize integer = 0
SUMap % SU(:) Type(SUMapType)
SUMap % SU(:) % ZA character(len=6)
SUMap % SU(:) % Rxn integer
SUMap % SU(:) % MinEBin integer
SUMap % Cov type(CovarianceMatrixType), pointer
SUMap % GetSensitivityVector procedure => SUMapGetSensitivityVector
SUMap %
GetExpandedCovarianceMatrix

procedure =>
SUMapGetExpandedCovarianceMatrix

C(:,:) real(8) allocatable

FixUp procedure =>
FixUpExpandedCovarianceMatrix

Compress procedure =>
CompressExpandedCovarianceMatrix

Sen1 type(KeffSenDataType), pointer => null()
Sen2 type(KeffSenDataType), pointer => null()
S1(:) real(8) allocatable
S2(:) real(8) allocatable

ExpandedCovarianceMatrixType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
Cov type(CovarianceMatrixType), pointer => null()
SUMap type(SUMapVectorType)
SUMap % nBlocks integer = 0
SUMap % TotalSize integer = 0
SUMap % SU(:) Type(SUMapType)
SUMap % SU(:) % ZA character(len=6)
SUMap % SU(:) % Rxn integer
SUMap % SU(:) % MinEBin integer
SUMap % Cov type(CovarianceMatrixType), pointer
SUMap % GetSensitivityVector procedure => SUMapGetSensitivityVector
SUMap %
GetExpandedCovarianceMatrix

procedure =>
SUMapGetExpandedCovarianceMatrix

C(:,:) real(8) allocatable

FixUp procedure =>
FixUpExpandedCovarianceMatrix

Compress procedure =>
CompressExpandedCovarianceMatrix

Page 82 of 94

Whisper Source Code Inspection Report

IsoListType (public)
(module IsotopeListMod)

Component Data type Init. Value
NIso integer
MaxIso integer
ZA(:) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure

IsoSenType
(module SensitivityMod)

Component Data type Init. Value
Sk(:,:) real(8) allocatable

IsotopeLevelCovarianceMatrixType (private)
(module CovarianceMatrixMod)

Component Data type Init. Value
Rxn(:,:) type(ReactionLevelCovarianceMatrixType) allocatable
Rxn(:,:) % Data type(MatrixType), pointer => null()
Rxn(:,:) % doTranspose logical = .false.
mt1(:) integer allocatable
mt2(:) integer allocatable

KeffSenDataType
(module SensitivityMod)

Component Data type Init. Value
extends(IsoListType)
NIso integer
MaxIso integer
ZA(:) character(len=20) allocatable
Init procedure
AddIso procedure
WriteIso procedure
IsoExists procedure
FindIso procedure
FileName character(len=40)
KeffCalc real(8)
KeffCalcUnc real(8)
IsoSen(:) type(IsoSenType) allocatable
IsoSen(:) % Sk(:,:) real(8) allocatable
UnionizeKeffSen procedure

Page 83 of 94

Whisper Source Code Inspection Report

UnionizeKeffSenVector procedure
Union16 generic => UnionizeKeffSen,

UnionizeKeffSenVector

MatrixType (private)
(module CovarianceMatrixMod)

Component Data type Init. Value
M(:,:) real(8) allocatable

ReactionLevelCovarianceMatrixType (private)
(module CovarianceMatrixMod)

Component Data type Init. Value
Data type(MatrixType), pointer => null()
doTranspose logical = .false.

SimilarityInfoType
(module SensitivityMod)

Component Data type Init. Value
NSimilar integer
CalcMargin real(8)
WeightSum real(8)
MaxSimilarity real(8)
CutoffRatio real(8)
ResidualWeightFrac real(8)
CoveragePenalty real(8)
Name(:) character(len=40) allocatable
Ck(:) real(8) allocatable
Wgt(:) real(8) allocatable

SUMapType
(module CovarianceMatrixMod)

Component Data type Init. Value
ZA character(len=6)
Rxn integer
MinEBin integer

16 Component Union selects subroutine UnionizeKeffSen or UnionizeKeffSenVector depending on the
arguments supplied.

• If there are two arguments that are type KeffSenDataType, then Union calls subroutine
UnionizeKeffSen.

• If there is one or two arguments that are arrays of type KeffSenDataType, then Union calls
subroutine UnionizeKeffSenVector.

Page 84 of 94

Whisper Source Code Inspection Report

SUMapVectorType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
nBlocks integer = 0
TotalSize integer = 0
SU(:) type(SUMapType) allocatable
SU(:) % ZA character(len=6)
SU(:) % Rxn integer
SU(:) % MinEBin integer
Cov type(CovarianceMatrixType), pointer
GetSensitivityVector procedure => SUMapGetSensitivityVector

GetExpandedCovarianceMatrix procedure =>
SUMapGetExpandedCovarianceMatrix

ZAMTType (public)
(module CovarianceMatrixMod)

Component Data type Init. Value
ZA character(len=6)
MT integer

ZAMTPairType
(module CovarianceMatrixMod)

Component Data type Init. Value
ZA1 character(len=6)
ZA2 character(len=6)
MT1 integer
MT2 integer

Page 85 of 94

Whisper Source Code Inspection Report

Appendix E

Whisper Files/Modules and Subroutines/Functions

Files/Modules and Subroutines/Functions Line Number

1. WhisperMain.F90

1.1. program Whisper ... 1

2. module CovarianceMatrixMod

2.1. integer function CovarianceMatrixFindZAIndex ... 123

2.2. integer function CovarianceMatrixFindMTIndex ... 144

2.3. integer function CovarianceMatrixFindNextFreeMatrix .. 165

2.4. type(SUMapVectorType) function CovarianceMatrixConstructSUMapVector 181

2.5. subroutine ReadCovarianceData ... 259

2.6. subroutine ReadCovarianceFileHeader .. 380

2.7. subroutine ReadCovarianceFile .. 439

2.8. subroutine WriteCovarianceData .. 526

2.9. subroutine MakeThermalScatterConsistent .. 635

2.10. subroutine SUMapGetSensitivityVector .. 658

2.11. subroutine SUMapGetExpandedCovarianceMatrix ... 689

2.12. subroutine ExpandCovarianceMatrixSensitivityVectors .. 770

2.13. subroutine ExpandCovarianceMatrixSensitivityMatrix ... 806

2.14. subroutine FixUpExpandedCovarianceMatrix ... 841

2.15. subroutine CompressExpandedCovarianceMatrix .. 924

3. module DataAdjustmentMod

3.1. subroutine GetDiscrepancyCovarianceMatrix .. 19

3.2. subroutine GetDiscrepancyVector .. 57

3.3. subroutine GetCovKeffMeasurement ... 78

3.4. subroutine RemoveBenchmarkCorrel ... 108

3.5. subroutine AdjustNuclearData .. 155

3.6. subroutine RejectBenchmarks .. 295

4. module FilesMod

5. module InputProcessingMod

5.1. subroutine WriteHeader .. 9

5.2. subroutine ParseCommandLine .. 23

5.3. subroutine CheckFiles ... 137

Page 86 of 94

Whisper Source Code Inspection Report

5.4. subroutine ReadAndSetupUserOptions .. 282

5.5. subroutine ReadAndSetupBenchmarks .. 350

5.6. subroutine ReadAndSetupApplications .. 467

5.7. logical function ReadKeffSenData ... 536

5.8. subroutine ReadAndSetupCovarianceData ... 629

5.9. subroutine ReadAndSetupBenchmarkCorrelations .. 674

5.10. subroutine DisplayHelp .. 788

5.11. subroutine DisplayVersion.. 824

5.12. subroutine GetVersion .. 858

5.13. subroutine AppendForwardSlash .. 890

6. module IsotopeListMod

6.1. subroutine Init ... 28

6.2. subroutine AddIso ... 43

6.3. subroutine WriteIso ... 75

6.4. logical function IsoExists .. 89

6.5. integer function FindIso .. 108

6.6. subroutine ConvertZAIDtoZA .. 127

6.7. subroutine IntersectIsoLists .. 145

6.8. subroutine UnionIsoLists .. 167

6.9. subroutine UnionIsoListVector ... 187

7. module MatrixInverseMod

7.1. subroutine InvertMatrix .. 11

7.2. integer function idamax .. 43

7.3. subroutine dswap .. 105

7.4. subroutine dscal .. 183

7.5. subroutine daxpy ... 248

7.6. subroutine dgefa .. 319

7.7. subroutine dgedi .. 424

8. module OptionsMod

9. module ParametersMod

10. module SensitivityMod

10.1. subroutine AssignKeffSenDataType .. 44

10.2. subroutine UnionizeKeffSen ... 104

10.3. subroutine UnionizeKeffSenVector .. 143

10.4. integer function FindBenchmarkIndex ... 201

Page 87 of 94

Whisper Source Code Inspection Report

10.5. subroutine GetBenchmarkBiasAndUncertaintyVectors ... 231

11. module StatsMod

11.1. real(8) function NormalPDF ... 9

11.2. real(8) function NormalCDF... 23

11.3. real(8) function ExtremeNormalPDF ... 37

11.4. real(8) function ExtremeNormalCDF ... 76

11.5. real(8) function ExtremeNormalMoment ... 96

11.6. real(8) function ExtremeNormalMean .. 182

11.7. real(8) function ExtremeNormalVariance .. 194

12. module UncertaintyMod

12.1. subroutine EstimateUnknownBenchmarkUncertainties ... 9

12.2. subroutine CalculateNuclearDataUncertainties .. 91

13. module UpperSubcriticalLimitMod

13.1. subroutine CalculateUpperSubcriticalLimits .. 25

13.2. subroutine CalculateCalculationalMargin... 122

13.3. subroutine CalculateSimilarityWeights .. 178

13.4. subroutine WriteUSLOutputSummaryTable .. 280

Page 88 of 94

Whisper Source Code Inspection Report

Appendix F

Whisper Tree Structure

The structure tree below is organized as follows:

a) The structure tree does not include any logic as to if or when a subroutine or function is called.

b) The first level subroutines, i.e., subroutines called by the main program, are in bold text.

c) Type-bound procedures are shown with a pointer to the subroutine or function name.

d) Underlining on the subroutine/function name indicates that other calls to the subroutine/function
occur below but the tree for the subroutine/function will not be repeated.

e) Multiple calls are indicated after the subroutine/function name by the number of call statements in
parantheses.

Program Whisper

1. WriteHeader
1.1. GetVersion

2. ParseCommandLine
2.1. DisplayHelp
2.2. DisplayVersion

3. CheckFiles
3.1. GetVersion

4. ReadAndSetupUserOptions
5. ReadAndSetupBenchmarks

5.1. AppendForwardSlash
5.2. FindBenchmarkIndex
5.3. ReadKeffSenData

5.3.1. ConvertZAIDtoZA
5.3.2. ks % FindIso => FindIso
5.3.3. ks % AddIso => AddIso

5.3.3.1. This % Init => Init
6. ReadAndSetupBenchmarkCorrelations
7. ReadAndSetupApplications

7.1. AppendForwardSlash
7.2. ReadKeffSenData – see 5.3 above

8. ReadAndSetupCovarianceData
8.1. UnionIsoListVector (2)

8.1.1. UnionList % Init => Init
8.1.2. UnionList % AddIso => AddIso

Page 89 of 94

Whisper Source Code Inspection Report

8.2. UnionIsoLists
8.2.1. UnionList % Init => Init
8.2.2. UnionList % AddIso => AddIso (2)

8.3. AppendForwardSlash
8.4. CovarianceData % Read => ReadCovarianceData

8.4.1. ReadCovarianceFileHeader
8.4.2. This % ReadFile => ReadCovarianceFile

8.4.2.1. This % FindNextFreeMatrix => CovarianceMatrixFindNextFreeMatrix
8.4.2.2. This % FindZAIndex (2) => CovarianceMatrixFindZAIndex
8.4.2.3. This % FindMTIndex (2) => CovarianceMatrixFindMTIndex

8.5. MakeThermalScatterConsistent (2)
9. EstimateUnknownBenchmarkUncertainties

9.1. CovarianceData % Expand17 => ExpandCovarianceMatrixSensitivityVectors (2)
9.1.1. UnionList % Union18 => UnionizeKeffSen

9.1.1.1. UnionIsoLists – see 8.2 above
9.1.1.2. kSen1 % FindIso => FindIso
9.1.1.3. kSen2 % FindIso => FindIso

9.1.2. This % ConstructSUMap => CovarianceMatrixConstructSUMapVector
9.1.2.1. This % FindZAIndex => CovarianceMatrixFindZAIndex
9.1.2.2. This % FindMTIndex => CovarianceMatrixFindMTIndex

9.1.3. EC % SUMap % GetSensitivityVector => SUMapGetSensitivityVector (2)
9.1.3.1. Sen % FindIso => FindIso

9.1.4. EC % SUMap % GetExpandedCovarianceMatrix =>
SUMapGetExpandedCovarianceMatrix (2)

9.1.4.1. This % Cov % FindZAIndex => CovarianceMatrixFindZAIndex (2)
9.1.4.2. This % Cov % FindMTIndex => CovarianceMatrixFindMTIndex (2)

17 Component Expand selects subroutine ExpandCovarianceMatrixSensitivityVectors or
ExpandCovarianceMatrixSensitivityMatrix depending on the arguments supplied.

• If the first argument types are KeffSenDataType, KeffSenDataType, and
ExpandedCovarianceMatrixSensitivityVectorType, then Expand calls subroutine
ExpandCovarianceMatrixSensitivityVectors.

• If the first argument types are an array KeffSenDataType, and
ExpandedCovarianceMatrixSensitivityMatrixType, then Expand calls subroutine
ExpandCovarianceMatrixSensitivityMatrix.

18 Component Union selects subroutine UnionizeKeffSen or UnionizeKeffSenVector depending on the
arguments supplied.

• If there are two arguments that are type KeffSenDataType, then Union calls subroutine
UnionizeKeffSen.

• If there is one or two arguments that are arrays of type KeffSenDataType, then Union calls
subroutine UnionizeKeffSenVector.

Page 90 of 94

Whisper Source Code Inspection Report

10. RejectBenchmarks
10.1. GetDiscrepancyVector (2)
10.2. GetDiscrepancyCovarianceMatrix (2)

10.2.1. CovarianceData % Expand17 => ExpandCovarianceMatrixSensitivityMatrix
10.2.1.1. UnionList % Union18 => UnionizeKeffSenVector

10.2.1.1.1. UnionIsoListVector (3) – see 8.1 above
10.2.1.1.2. UnionIsoLists – see 8.2 above
10.2.1.1.3. kSen1(n) % FindIso => FindIso
10.2.1.1.4. kSen2(n) % FindIso => FindIso

10.2.1.2. This % ConstructSUMap => CovarianceMatrixConstructSUMapVector
– see 9.1.2 above

10.2.1.3. EC % SUMap % GetSensitivityVector => SUMapGetSensitivityVector –
see 9.1.3 above

10.2.1.4. EC % SUMap % GetExpandedCovarianceMatrix =>
SUMapGetExpandedCovarianceMatrix (2) – see 9.1.4 above

10.2.2. GetCovKeffMeasurement
10.3. InvertMatrix (2)

10.3.1. dgefa
10.3.1.1. idamax
10.3.1.2. dscal
10.3.1.3. daxpy

10.3.2. dgedi
10.3.2.1. dscal
10.3.2.2. daxpy (2)
10.3.2.3. dswap

10.4. RemoveBenchmarkCorrel
11. AdjustNuclearData

11.1. UnionIsoListVector (2) – see 8.1 above
11.2. UnionIsoLists – see 8.2 above
11.3. AdjustedCovarianceData % Read => ReadCovarianceData – see 8.4 above
11.4. CovarianceData % Expand => ExpandCovarianceMatrixSensitivityMatrix – see 10.2.1

above
11.5. GetCovKeffMeasurement
11.6. InvertMatrix – see 10.3 above
11.7. ExpCov % Compress => CompressExpandedCovarianceMatrix

11.7.1. Cov % FindZAIndex => CovarianceMatrixFindZAIndex
11.8. AdjustedCovarianceData % Write => WriteCovarianceData

12. CalculateNuclearDataUncertainties
12.1. CovarianceData % Expand17 => ExpandCovarianceMatrixSensitivityVectors – see 9.1

above
12.2. AdjustedData % Expand17 => ExpandCovarianceMatrixSensitivityVectors – see 9.1

above

Page 91 of 94

Whisper Source Code Inspection Report

13. CalculateUpperSubcriticalLimits
13.1. CalculateCalculationalMargin (2)

13.1.1. CalculateSimilarityWeights
13.1.1.1. CovarianceData % Expand17 =>

ExpandCovarianceMatrixSensitivityVectors (2) – see 9.1 above
13.1.2. GetBenchmarkBiasAndUncertaintyVectors
13.1.3. ExtremeNormalCDF

13.1.3.1. NormalCDF
13.1.4. ExtremeNormalMean

13.1.4.1. ExtremeNormalMoment
13.1.4.1.1. ExtremeNormalCDF (2)

13.1.4.1.1.1. NormalCDF
13.1.4.1.2. ExtremeNormalPDF (2)

13.1.4.1.2.1. NormalCDF
13.1.4.1.2.2. NormalPDF

14. WriteUSLOutputSummaryTable

End of Whisper Tree

Page 92 of 94

Whisper Source Code Inspection Report

Appendix G

Unused Whisper Source Code Routines

The following Whisper source code routines are not executed in the Whisper program logic. The routines
may possibly be used in definitions of type-bound procedures.

 Routine* Module
1. subroutine FixUpExpandedCovarianceMatrix CovarianceMatrixMod
2. subroutine WriteIso IsotopeListMod
3. logical function IsoExists IsotopeListMod
4. subroutine IntersectIsoLists IsotopeListMod
5. subroutine AssignKeffSenDataType SensitivityMod
6. ExtremeNormalVariance StatsMod

Page 93 of 94

Whisper Source Code Inspection Report

Appendix H

Covariance File Formats

The Whisper program suite has three types of covariance data: native, original, and adjusted.

1. The native data file (ORNL_SCALE6.1.cov) is a COVERX file. The format of COVERX files is
documented in Table M18.A.8 of ORNL/TM-2005/39. Each data block has a flag or prefix. For
example, the neutron group energy boundaries are prefixed with ‘3D’ and each covariance matrix
is prefixed with ‘9D’.

2. The original data files are extracts from the native file. The extracted covariance data is identical
to the native data. The original data files do not use the block flags. The original data files also
separate the different isotopes into separate files (rather than a single covariance data file).

3. The adjusted covariance files have covariance values calculated by Whisper but use the same
format as the original data files. In some cases, the adjusted covariance file is identical to the
original covariance data file because Whisper does not calculate any adjusted covariance values
for the isotope.

Energy Structure

In the covariance data files, the energy structure is high to low. This is illustrated by the ‘3D’ block in the
native covariance data file ‘ORNL_SCALE6.1.cov’ [ORNL/TM-2005/39; Table M18.A.8], which is
listed below.

3d 2.0000E+07 8.1873E+06 6.4340E+06 4.8000E+06 3.0000E+06
 2.4790E+06 2.3540E+06 1.8500E+06 1.4000E+06 9.0000E+05 4.0000E+05
 1.0000E+05 2.5000E+04 1.7000E+04 3.0000E+03 5.5000E+02 1.0000E+02
 3.0000E+01 1.0000E+01 8.1000E+00 6.0000E+00 4.7500E+00 3.0000E+00
 1.7700E+00 1.0000E+00 6.2500E-01 4.0000E-01 3.7500E-01 3.5000E-01
 3.2500E-01 2.7500E-01 2.5000E-01 2.2500E-01 2.0000E-01 1.5000E-01
 1.0000E-01 7.0000E-02 5.0000E-02 4.0000E-02 3.0000E-02 2.5300E-02
 1.0000E-02 7.5000E-03 3.0000E-03 1.0000E-05

The energy bins in Whisper are identical but are organized from low to high (see Sec. 5.2).

Matrix Structure

Table M18.A.8 of ORNL/TM-2005/39 identifies that the matrix data in the COVERX file is prefixed with
‘9D’, but refers to the matrix data as a one-dimensional array, COV(K). However, the covariance data
matrix follows the row, column standard with the matrix written/read column by column. This is
illustrated by the following read statement from SCALE 6.1 subroutine print_matrix where the row index
is the inner loop and the column index is the outer loop:

read(77, iostat=io) ((cov(i,j), i=1+j-ijj(j),jband(j)+j-ijj(j)),j=1,ngroup)

Page 94 of 94

	1. Introduction
	2. Conclusions
	3. Software Purpose
	4. Algorithms
	4.1 Evaluate Application Model and Calculate Baseline USL
	4.2 Reject Inconsistent Benchmark Cases
	4.3 Covariance Data Processing

	5. Variables
	5.1 Index Variables
	5.2 Energy Bins and Reactions
	5.3 Benchmark Data
	5.4 Application Data
	5.5 Isotope Sensitivity Matrix
	5.6 Sensitivity Vector
	5.7 Sensitivity Matrices
	5.7.1 Benchmark Data
	5.7.2 Application Data

	5.8 Benchmark Correlation Data
	5.8.1 Benchmark Correlation Matrix

	5.9 Covariance Data
	5.10 Individual Covariance Matrix
	5.11 Expanded Covariance Matrix

	6. Initial Values
	6.1 File Parameters
	6.2 Command Line Defaults
	6.3 User Options
	6.4 Technical Parameters

	7. Program Structure
	7.1 Subroutine WriteHeader
	7.2 Subroutine ParseCommandLine
	7.3 Subroutine CheckFiles
	7.4 Subroutine ReadAndSetupUserOptions
	7.4.1 Inputs
	7.4.1.1 User Option File
	7.4.1.2 User Option File Format

	7.5 Subroutine ReadAndSetupBenchmarks
	7.5.1 Inputs
	7.5.1.1 Arguments
	7.5.1.2 Benchmark Library File
	7.5.1.3 Exclude Benchmark File
	7.5.1.4 Benchmark Sensitivity Data File

	7.5.2 Results
	7.5.3 Summary of Source Code

	7.6 Function ReadKeffSenData
	7.6.1 Inputs
	7.6.1.1 Arguments

	7.6.2 Results
	7.6.3 Summary of Source Code

	7.7 Subroutine ReadAndSetupBenchmarkCorrelations
	7.7.1 Inputs
	7.7.1.1 Arguments
	7.7.1.2 Benchmark Correlation File

	7.7.2 Results
	7.7.3 Summary of Source Code

	7.8 Subroutine ReadAndSetupApplications
	7.8.1 Inputs
	7.8.1.1 Arguments
	7.8.1.2 Application Library File Format

	7.8.2 Results
	7.8.3 Summary of Source Code

	7.9 Subroutine ReadAndSetupCovarianceData
	7.9.1 Inputs
	7.9.1.1 Arguments

	7.9.2 Results
	7.9.3 Summary of Source Code

	7.10 Subroutine ReadCovarianceData
	7.10.1 Inputs
	7.10.1.1 Arguments
	7.10.1.2 Covariance File

	7.10.2 Results
	7.10.3 Summary of Source Code

	7.11 Subroutine ReadCovarianceFile
	7.11.1 Inputs
	7.11.1.1 Arguments

	7.11.2 Results
	7.11.3 Summary of Source Code

	7.12 Subroutine MakeThermalScatterConsistent
	7.12.1 Inputs
	7.12.1.1 Arguments

	7.12.2 Results
	7.12.3 Summary of Source Code

	7.13 Subroutine EstimateUnknownBenchmarkUncertainties
	7.13.1 Inputs
	7.13.1.1 Arguments

	7.13.2 Results
	7.13.3 Summary of Source Code

	7.14 Subroutine ExpandCovarianceMatrixSensitivityVectors
	7.14.1 Inputs
	7.14.1.1 Arguments

	7.14.2 Results
	7.14.3 Summary of Source Code

	7.15 Function CovarianceMatrixConstructSUMapVector
	7.15.1 Inputs
	7.15.1.1 Arguments

	7.15.2 Results
	7.15.3 Summary of Source Code

	7.16 Subroutine SUMapGetSensitivityVector
	7.16.1 Inputs
	7.16.1.1 Arguments

	7.16.2 Results
	7.16.3 Summary of Source Code

	7.17 Subroutine SUMapGetExpandedCovarianceMatrix
	7.17.1 Inputs
	7.17.1.1 Arguments

	7.17.2 Results
	7.17.3 Summary of Source Code

	7.18 Subroutine RejectBenchmarks
	7.18.1 Inputs
	7.18.1.1 Arguments

	7.18.2 Results
	7.18.3 Summary of Source Code

	7.19 Subroutine AdjustNuclearData
	7.19.1 Inputs
	7.19.1.1 Arguments

	7.19.2 Results
	7.19.3 Summary of Source Code

	7.20 Subroutine ExpandCovarianceMatrixSensitivityMatrix
	7.20.1 Inputs
	7.20.1.1 Arguments

	7.20.2 Results
	7.20.3 Summary of Source Code

	7.21 Subroutine CalculateNuclearDataUncertainties
	7.21.1 Inputs
	7.21.1.1 Arguments

	7.21.2 Results
	7.21.3 Summary of Source Code

	7.22 Subroutine CalculateUpperSubcriticalLimits
	7.22.1 Inputs
	7.22.1.1 Arguments

	7.22.2 Results
	7.22.3 Summary of Source Code

	7.23 Subroutine CalculateCalculationalMargin
	7.23.1 Inputs
	7.23.1.1 Arguments

	7.23.2 Results
	7.23.3 Summary of Source Code

	7.24 Subroutine CalculateSimilarityWeights
	7.24.1 Inputs
	7.24.1.1 Arguments

	7.24.2 Results
	7.24.3 Summary of Source Code

	7.25 Subroutine WriteUSLOutputSummaryTable

	8. References

