LA-UR-17-22442

Approved for public release; distribution is unlimited.

Title: The MCNP6 Book On Unstructured Mesh Geometry: User’s
Guide For MCNP 6.2
Author(s): Roger L. Martz
Intended For: General Reference / MCNP® Website
Issued: March 2017

A
> L;?s Alamos

NATIONAL LABORATORY
EST.1943

Disclaimer: Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos
National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-
AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free
license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S.
Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

This page intentionally left blank.

The MCNP6 Book On Unstructured Mesh Geometry: User’s
Guide for MCNP 6.2

Roger L. Martz

March 2017

This page intentionally left blank.

Copyright (©) 2017 Los Alamos National Laboratory. All Rights Reserved.

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Los Alamos Na-
tional Security, LLC, manager and operator of Los Alamos National Laboratory. Any third
party use of such registered marks should be properly attributed to Los Alamos National Se-
curity, LLC, including the use of the ® designation as appropriate. Any questions regarding
licensing, proper use, and/or proper attribution of Los Alamos National Security, LLC marks
should be directed to trademarks@lanl.gov.

This page intentionally left blank.

Contents

1 Overview 15

2 Terminology 17

3 Constructing A Mesh Geometry 19

3.1 Naming elsets and materials Lo 19

3.2 Pseudo-Cell Creation 21

3.3 Mesh Universe 22

3.4 Overlaps e 23

4 Output: Elemental Edits 25

5 Input Cards 27

5.1 Cell Cards 27

5.2 Data Cards 27

5.2.1 EMBED e e 27

5.2.2 EMBEE s 28

5.2.3 EMBEB e 30

524 EMBEM s 30

5.2.5 EMBTB e 31

5.2.6 EMBTM 31

5.2.7 EMBDE /EMBDF 31

5.2.8 SDEF VOLUMER s s s s s s s 32

5.3 Volume Sourceso 32

5.4 Initial Run Example 33

5.5 Continue Run Example o 33

6 Parallel Input Execution 35

7 MCNP6 Plotter 37

8 Limitations and Restrictions 41

9 The Abaqus Input File 43

9.1 Introduction 43

9.2 Abaqusinp File 43

9.2.1 Part 44
LA-UR-17-22442 5 of 102

CONTENTS

9.22 Node. e 44
9.2.3 Element 44
9.24 Element Set 45
9.25 EndPart 46
9.2.6 Assembly 46
9.2.7 Imstance 46
9.2.8 Material 47
9.2.9 Density 47
9.2.10 Example Abaqus .inp File 0oL 47

10 The EEOUT VFile 51
10.1 Introduction e 51
10.2 EEOUT File 51
10.3 Self-Describing File 51
10.3.1 Identification Segment 52
10.3.2 Title Line Segment Lo 52
10.3.3 Data Segment 53

10.4 The EEOUT File Description 53
10.4.1 First Line e 93
10.4.2 First Data Set 53
10.4.3 Calling Code Labels 53
10.4.4 Integer Parameters 54
10.4.5 Real Parameters 54
10.4.6 Particle List e 54
10.4.7 Particle Edit Listo 54
10.4.8 Edit Description 55
10.4.9 Edit Data Groups 55
10.4.10 Materials 99
10.4.11 Cumulative Instance Element Totals 56
10.4.12Instance Element Names oL 56
10.4.13 Instance Element Type Totals 56
10.4.14Nodes Group oo 57
10.4.15Element Type LY
10.4.16 Element Materials 57
10.4.17 Connectivity Data Group 57
10.4.18 Nearest Neighbor Data Group 57
10.4.19 Edit Sets Group: Data Output and Data Sets 58
10.4.20 Centroids Group 58
10.4.21 Densities & Volumes L 59

10.5 Example EEOUT File 59
11 Other Files 65
11.1 GMV File o e 65
11.2 The MCNPUM File e 65

LA-UR-17-22442 6 of 102

CONTENTS

12 Verification & Validation 67
12.1 Regression Test Problems oo 67
12.2 Publications & Reports 71

12.2.1 Peer Reviewed Publications 71
12.2.2 Los Alamos National Laboratory Reports 72

13 The UM _POST OP Utility Program 73
13.1 Introduction 73
13.2 Valid Command Line Options 73
13.3 Mutually Exclusive Options 74
13.4 The -0 and -ex Options 74
13.5 Merging Files oo 74
13.6 Adding Files. 75
13.7 Converting Files L 75
13.8 Visualization Files 76
13.9 Generating Pseudo-Tallies 76
13.10Writing A Single Edit To A File. oL 7
13.11Writing A Single Edit To A File By Position 78
13.12Generating A Histogram Of Edit Errors 78
13.13Miscellaneouso 78
13.14Example Pseudo-Tally File 79
13.15Example Single Edit File o 80
13.16Example Error Histogram File.00 82

14 The UM _PRE_OP Utility Program 85
14.1 Introduction L 85
14.2 Valid Command Line Options 85
14.3 Mutually Exclusive Options 86
14.4 The -0 and -ex Options L 86
14.5 The -b Option e 86
14.6 The -len Option 86
14.7 Generating an MCNP6 Input File 87
14.8 Converting a Simple Lattice Geometry 87
14.9 Volume Checking 90
14.10Element Checking L 91
14.11Example Volume Check File, 93
14.12Example Element Check File 0L 93

15 The UM _CONVERT Utility Program 95
15.1 Introduction L 95
15.2 Valid Command Line Options 95
15.3 The -b Option 96
15.4 The -a Option 96
15.5 The -0 Option e 96
15.6 The -t Option 96
15.7 The -um Option 96
15.8 Program Execution L 96

LA-UR-17-22442 7 of 102

CONTENTS

15.9 Performance

LA-UR-17-22442

8 of 102

List of Figures

2.1 Finite element type. L 18
3.1 Constructing an assembly from parts. 0oL 19
3.2 Pseudo-cell example.o 21
3.3 Example mesh universe with unstructured mesh. 22
3.4 Illustration of the three critical points for the overlap models. 24
4.1 Tllustration of element-to-element tracking on a 12-element part.. 25
7.1 Pseudo-cells shaded by material in the mesh universe. 37
7.2 Pseudo-cells shaded by material density. 38
7.3 Model demonstrating correct plotting of a gap. L. 38
7.4 Model demonstrating overlaps. o Lo 39
7.5 Model demonstrating gaps. L oL 39
14.1 Example fill file. 88
14.2 Example control file oL 89
14.3 Example twisted first-order tetrahedrao 92

LA-UR-17-22442 9 of 102

This page intentionally left blank.

List of Tables

9.1 Element Type Codes

15.1 MCNP6 Input Processing Performance
15.2 um_convert Performance oL

LA-UR-17-22442 11 of 102

This page intentionally left blank.

IN MEMORIAM

David L. Crane, Ph.D.

1963 - 2016

A

In January 2016 David lost his battle with cancer. We were
deeply honored to have him as a colleague and friend. His
finite element contributions to the unstructured mesh library
in MCNPG6 and technical discussions and guidance have been
invaluable. He is sorely missed by all who knew him.

This page intentionally left blank.

Chapter 1

Overview

Los Alamos National Laboratory’s (LANL) Monte Carlo N-Particle® (MCNP®) transport code
has a more general geometry capability than has been available in most combinatorial geometry
codes [1]. In addition to the capability of combining several predefined geometric bodies, as in
a combinatorial scheme, MCNP6 [2]| gives the user the added flexibility of defining geometric
regions from all the first and second degree surfaces of analytical geometry and elliptical tori
and then combining them with Boolean operators. This decades-old constructive solid geometry
(CSG) capability has been well-tested and verified. However, it has long been recognized that
as the model complexity increases, this process of describing the geometry is difficult, tedious,
time-consuming, and error prone[3, 4, 5|. Consequently, innovators have taken on the task
of developing a better way to construct geometries, not only in MCNPG6, but other particle
transport codes as well.

MCNP6 addresses this issue and the issue of multi-physics integration by permitting the
embedding of an unstructured mesh (UM) representation of a geometry in its legacy CSG to
create a hybrid geometry. The UM is contained within a MCNPG6 universe where it must not
be clipped by the fill cell into which it is placed and no other universe or cell may be contained
within it. MCNPG6 also allows multiple instances of an UM universe and multiple UM universes.

The UM capability was originally designed to work with an unstructured mesh created with
the Abaqus/CAE [6] tool and the ASCII input file that it generates. An overview of this input
file is given in Chapter 9. Many other CAE tools have the ability to generate a mesh from a
solid model that can be easily converted to the Abaqus format. It is the user’s responsibility
to verify that these third-party tools are generating the Abaqus format that meets the MCNP6
specification; see Chapter 9 for what MCNP6 expects. In addition, the information in the
Abaqus input file can be converted to the MCNPG6-friendly MCNPUM file type.

The original intent at the beginning of this work was for this UM capability to be imple-
mented as a modular mesh-tracking library written in Fortran 90/95. Actual code methods and
implementation details are not discussed in this work, but are the subjects of other documents.
The reader will, from time to time, run across in the MCNP6 documentation the term REGL
which stands for Revised Extended Grid Library; this is the UM library and the “regl” tag is
heavily used in the actual coding and documentation.

LA-UR-17-22442 15 of 102

This page intentionally left blank.

Chapter 2

Terminology

One of the problems of merging two capabilities that have long, independent development paths
is dealing with the distinct and sometimes contradictory terminology that has evolved with each.
For example, the term “cell” is often used to generically denote the smallest building block in
a geometry. However, a MCNPG6 cell is quite different from an UM cell that will be referred to
as a “finite element”. Therefore, great care is exercised in giving definitions as can be seen with
the following.

elements or finite elements: The smallest building blocks into which the mesh geometry is
broken. These are unstructured polyhedrons with 4, 5, and 6 sides or faces, Figure 2.1. First-
order elements have nodes only at the vertices. When a face has 4 nodes, all 4 nodes are not
guaranteed to lie in the same plane. This face has a degree of curvature and is known as bilinear.
Thus, first-order elements may have either planar or bilinear faces. First-order elements with
bilinear faces have trilinear volumes.

Second-order elements have nodes at the vertices and at the midpoints between the vertices.
When 4 or more nodes define a face, they are not guaranteed to lie in the same plane. With
6 or 8 nodes defining a face, the degree of curvature can be greater than with 4 nodes and the
faces are known as biquadratic. Thus, second-order elements may have either planar, bilinear,
or quadratic faces. Second-order elements with quadratic faces have triquadratic volumes.

mesh: The collection of elements comprising the entire model. The mesh is a representation
of the geometry described by the solid model in the CAE tool.

elsets: Elsets is short for element sets. An elset is a collection of elements and has associated
with it a specific tag, label, or name.

part: This is the smallest geometric object created in the Abaqus/CAE tool. In a CAE tool
such as Cubit [7], this would be a block. While the part is the smallest object which can be
meshed in Abaqus, it is possible to further sub-divide a part into sections. FEach section can be
assigned a different material and will become a pseudo-cell (see below).

instance: An instance is a copy of a part used in constructing an assembly. Thus, a simple
part may be used multiple times, giving rise to multiple instances of that part.

LA-UR-17-22442 17 of 102

CHAPTER 2. TERMINOLOGY

(a) Tetrahedron (b) Pentahedron (c) Hexahedron

Figure 2.1: Finite element type.

assembly: An assembly is the largest geometric object created in the Abaqus/CAE tool. It
may consist of an instance of one part to many instances of many parts. It can be viewed as a
composite object. From this assembly, MCNP6 will create a global mesh model.

pseudo-cell: In the UM library this refers to an elset with a distinct material and statistical
set definition. Internally to the code, all instances are broken up into pseudo-cells; particle
tracking takes place on the pseudo-cells. In MCNPG6 this is a special cell definition, defined with
a null or zero surface, that is used to associate normal MCNPG6 cell features with the UM elset
(e.g., cells for F4 tallies).

background cell: A cell that serves as the background medium for the UM. This is an MCNP6
cell into which the mesh has been place. If one were to ignore the mesh representation in the
mesh universe, this would be the sole cell that describes the mesh universe.

mesh universe: This is the MCNP6 universe composed of the UM and the background cell.
This universe may not contain any other lower universes or cells. The UM must not be clipped
by the boundaries of the fill cell that define this universe. This clipping requirement is not
enforced by the code at this point, but is the user’s responsibility to ensure that it doesn’t
occur. If clipping does occur, the user will experience lost particles is these regions of phase
space.

LA-UR-17-22442 18 of 102

Chapter 3

Constructing A Mesh Geometry

The first step in creating an unstructured mesh model for use in MCNP6 is to create a part or
series of parts with the CAE tool. Each part can consist of a single segment of one homogeneous
material, or if Abaqus/CAE is used, multiple segments of different homogeneous materials. Once
each part is created, material, statistic, and/or source elsets must be created for it (details given
below). After each part is meshed independently in Abaqus/CAE, they are combined to form
an assembly, Figure 3-1. The final step is to define material names.

Other CAD/CAE tools may promote a different workflow, but ultimately must meet the
requirements present in this chapter.

(a) parts (b) assembly

Figure 3.1: Constructing an assembly from parts.

3.1 Naming elsets and materials

Each elset in the Abaqus inp file must be tagged with a name. The UM input parser requires
the elset name to be in a specific format as shown next.

????AAAAT???_Z77

where AAAA is one of the keywords:

material, statistic, tally, source

[

ZZZ is the set number following an underscore, ‘_’, or an hyphen, “-”, and must be at the end
of the character string. ZZZ can be from 1 to 12 digits in length.

LA-UR-17-22442 19 of 102

CHAPTER 3. CONSTRUCTING A MESH GEOMETRY

7?7777 are any other character or groups of characters, but should NOT be a duplication of
any of the keywords. In addition, none of these keywords should appear in the part name.

For any AAAA, the ZZZ number must be unique within the part if separate elsets are desired
in the part. The ZZZ number must be unique within the assembly for the material elsets and
material names in order for the EEQUT file to be fully functional with auxiliary programs such
as GMV [8]. It is this material number that is assigned internally to the elements by the UM
library and is output in the EEQUT file (see Chapter 10) for each element. For best results, make
ZZZ one of the same numbers that appear on the MCNP6 material cards.

As a convenience, it is possible to construct one elset that has multiple functions by specifying
more than one keyword in the elset name. The suggested format for this name is given as

?77AAAA??7Y,BBBBYCCCC??7%ZZZ

where AAAA, BBBB, and CCCC are the keywords defined above; there should at least be one keyword
present. The elset number, ZZZ, must be an appropriate number for each function or keyword.
MCNP6 will use this info to internally construct the appropriate elsets for its use. If more than
one statistic elset is needed in the part, this format should not be used. % indicates that either
an underscore, ‘_’; or an hyphen, “-”, be present.

In Abaqus/CAE material names are independently created and are placed near the end of
the Abaqus inp file. It is highly recommended that the material names adhere to the following

format

above. In other words, make ZZZ a valid MCNP6 material number.

Material names appear in the pseudo-cell cross reference table that is written to the MCNP6
output file after the REGL processes the mesh description and creates the global tracking model.
This table is intended to help users understand how the pseudo-cells should be specified. When
searching for material names to insert into this table, the code tries to match the material
number for the pseudo-cell to the material number in the material name. If that fails, the code
assumes that the material names have been entered sequentially from 1 to the maximum number
of material numbers and uses the pseudo-cell material number to select one of these. If both of
these rules fail to produce a defined name, a message is inserted into the table to the effect that
the material name does not exist.

Abaqus/CAE permits assignment of material properties with the material name. The phys-
ical density or number density may be entered here using the MCNP6 convention. This infor-
mation is added to the .inp file and is used when um_pre_ op generates a MCNPG6 input deck;
see Chapter 14.

Of the four AAAA keywords, material is required and statistic, tally, and source are
optional. The keywords statistic or tally are highly recommended and are interchangeable;
use one or the other, but not both to describe the elset. Initially, the intent was to collect
individual elements into a group for the purpose of volume tallies (i.e., F4, F6, or F7); hence,
MCNP6’s full statistical treatment for tallies (e.g., tally fluctuation chart, empirical history
score PDF) could be extended to the elsets. Likewise, this group can be used for other features
such as the IMP variance reduction game. Basically, this group exhibits cell-like features; hence,
coining of the term pseudo-cell. It should be recognized that MCNPG6 requires its cells to be

LA-UR-17-22442 20 of 102

3.2. PSEUDO-CELL CREATION

associated with only one material and this must be upheld through the pseudo-cells. Therefore,
the UM library checks the material and statistic elset requests to ensure this requirement.

The source keyword should only be used to describe a volume source region in the un-
structured mesh. MCNP6 will sample the source starting position (x, y, z) uniformly over the
elements associated with the volume source; multiple volume sources are permitted, but see
Section 5.3 on how to select among various volume sources. That is, a source element is selected
from the source elset(s) with a probability proportional to the fractional volume of the source
element in the total source volume. The source coordinates (x, y, z) are uniformly selected, by
a rejection technique, over the selected element. No source biasing of position within a source
elset (or pseudo-cell) is permitted with this capability. All other, non-positional fixed source
(SDEF) options should work in conjunction with this capability, but extensive testing has not be
performed. Volume sources may be defined but will not be used unless requested on the SDEF
card.

3.2 Pseudo-Cell Creation

With detailed models and partitioned parts, it is conceivable that the user may overlook some
elements when collecting them for the material and statistic elsets. Therefore, the UM library
checks every element to ensure that there are material and statistic numbers assigned. If an
element isn’t assigned a material number, the only thing the UM library can do is generate
an error message and stop. The UM library collects all elements of a part that haven’t been
assigned a statistical set number and lumps them into a catch-all set. This may or may not
produce the desired effect wanted by the user. The user is highly encouraged to define all elsets
in the CAE tool. After all elements in a part are checked for material and statistic set numbers,
the UM library uses the material and statistical set information to define the pseudo-cells from
which a cross-reference table is printed in the output. The practitioner can use this table to
double check the pseudo-cell definitions in the MCNPG6 input.

1 1
n
4
(a) 1 part; 2 materials (b) 3 defined; 2 undefined (c) 5 pseudo-cells

statistical regions

Figure 3.2: Pseudo-cell example.

Consider the example shown in Figure 3.2. The user creates a part, Figure 3.2a, with two
materials. That is, there are two material elsets: red (1) and blue (2). The user then creates
a statistical elset (1) in the upper portion of the red material and two statistical elsets (2) and
(3) in the blue material, Figure 3.2b. Notice that the lower portions of the part (white / black

LA-UR-17-22442 21 of 102

CHAPTER 3. CONSTRUCTING A MESH GEOMETRY

regions in Figure 3.2b) are not assigned to any statistical elsets. Since it has been verified by
the UM library that each of the statistical elsets (1), (2), and (3) consist of only one material,
they meet the requirements for a pseudo-cell; hence, Figure 3.2c shows them as pseudo-cells (1),
(2), and (3). Pseudo-cells (4) and (5) in Figure 3.2c arise from the catch-all statistical elsets
in the red and blue materials, respectively. In this example, the user explicitly defined three
pseudo-cells with material and statistic elset numbers and the UM library implicitly defined two
more pseudo-cells from the material and catch-all elsets.

From the UM library’s perspective, pseudo-cells are numbered consecutively starting at 1 in
the order the parts are instanced into the problem. If part #2 is instanced ahead of part #1 in
the Abaqus input file, pseudo-cell #1 is associated with the first instance of part #2. If part
#2 is instanced a second time later in the input, it will generate a different set of pseudo-cell
numbers.

3.3 Mesh Universe

A simplified MCNP6 hybrid geometry arrangement with an unstructured mesh embedded in
the CSG geometry (i.e., mesh universe) is shown in Figure 3.3. The mesh universe is everything
contained within the fill cell where the fill cell’s outer boundary is the heavy black rectangle.
Note, “fill cell” means the traditional MCNPG6 cell card that contains the “fill” parameter and a
collection of defined surfaces that crops the universe which it contains. These surfaces must not
crop the mesh!

A background cell is needed to make the mesh universe infinite in extent and is the region
outside of the blue unstructured mesh region in Figure 3.3; it is cropped by the surface that
defines the fill cell. Specifying the background cell in the MCNPG6 input is a 2-step process.
First, a pseudo-cell must be specified in the cell block and the background keyword must appear
on the embed data card; more detail on these input cards is given in Chapter 5. The material
specified for the background cell is also the material used in all gaps within the UM.

<— fill cell

background

Figure 3.3: Example mesh universe with unstructured mesh.

LA-UR-17-22442 22 of 102

3.4. OVERLAPS

3.4 Overlaps

One of the initial requirements for the unstructured mesh implementation in MCNP6 was to
permit multiple, non-contiguous, meshed parts instead of requiring one contiguous mesh. This
naturally leads to the possibility of overlapping parts, particularly when two parts attempt to
share a curved surface. If it is crucial to the model that the integrity of any curved surface be
maintained, the user should then consider, using Abaqus/CAE terminology, merging the two
separate parts into a single part, try second-order elements, or try refining the mesh. Significant
overlapping regions are never a good idea. Users should never rely on any of the following models
to correctly produce the same results as a model where the boundary between two regions is
definitely defined so that there is no overlap.

The program can accommodate a small amount of overlap in one of several ways. For
the initial implementation there was no correction for tracking through overlapping elements.
A particle tracks in an element until it finds a definite transition point in phase space (i.e.,
another element, gap, or background cell). Of the three overlap models currently in place (see
the OVERLAP keyword on the EMBED card and Figure 3.4 below), the initial implementation is
known as the EXIT model, meaning that in an overlap situation the exit point of the overlap is
used and results are accumulated accordingly.

The second overlap model, ENTRY, is the one that uses the entry point of the overlap in an
overlap situation and the results are accumulated accordingly. If the ENTRY point is behind
the particle’s current position, the current position is used; the particle never moves backwards.
The third and last overlap model is called AVERAGE and results in averaging the entry and exit
points in an attempt to find the midpoint of the overlap in the direction the particle is tracking;
the particle’s path length in the overlap is then divided between the two parts instead of being
assigned to one or the other.

Although the code defaults to the EXIT model, ultimately the choice of which model to use
is left to the user. If both parts are important and the particle flux through this region is
fairly isotropic, the AVERAGE model is probably the best choice. If the flux is somewhat more
directional and one part is deemed more significant than the other, a better choice might be
ENTRY or EXIT; the user must decide. The user also has the ability to select the model to use by
the instance/part (i.e., pseudo-cell) with the decision based upon the current instance/part in
which the particle resides. For example, if the particle is currently in a part that specifies the
EXIT model and the part into which it will travel specifies the ENTRY model, the EXIT model is
used.

Note that extensive testing has been performed with the EXIT model but not the other two.

LA-UR-17-22442 23 of 102

CHAPTER 3. CONSTRUCTING A MESH GEOMETRY

Average

- - —— — Particle path
Exit Entry P

Figure 3.4: Illustration of the three critical points for the overlap models.

LA-UR-17-22442 24 of 102

Chapter 4

Output: Elemental Edits

To obtain results at the element level, a path length estimate of the flux is accumulated as
particles track from one element face to another, Figure 4.1.

Figure 4.1: Illustration of element-to-element tracking on a 12-element part.

To differentiate the mesh results from the traditional MCNPG6 tally treatment, those results
accumulated on the unstructured mesh are referred to as elemental edits. There is no current
intention to duplicate all of the tally features with the edits. The elemental edits, along with
a generic description of the unstructured mesh model, are output in a special file (see embee
card) known as the EEOUT (Elemental Edit OUTput) file. See Chapter 10 for a description of
this file. See Chapter 13 for a discussion of the um_post op utility program for manipulating
this file.

At this time, relative errors are optional for the results on any element. Specifying errors can
result in large EEQUT files. If the traditional MCNPG6 statistical analysis (e.g., tally fluctuation
chart, empirical history score pdf) is desired for the results, set up a tally for an appropriate
pseudo-cell.

As stated in Reference 1 (p 2-114), relative errors have a range of zero to unity (inclusive)
when the results are of the same sign.

LA-UR-17-22442 25 of 102

This page intentionally left blank.

Chapter 5

Input Cards

5.1 Cell Cards
The pseudo-cells are defined in the MCNPG6 cell block when a null surface appears in the surface
specification. The cell card format for these cells have the following properties that differentiate
them from the typical MCNPG6 cells.

e have a single null-surface entry for the surface description (i.e., 0)

e are assigned to a universe (e.g., u=10)

e the universe number matches the N specified on the embedN card with which it is associated

e can not be filled by another universe or lattice (i.e., no £ill= or lat= entry)

5.2 Data Cards

There are eight new data section cards that can be used with the unstructured mesh; one is
required and the other seven are optional. Also, there is a new option for the POS parameter on
the SDEF card.

5.2.1 EMBED

EMBED:<p> keyword = value ...
This is the embedded geometry specification. It is valid in a continuation run.

n embedded mesh universe number; must match a universe
number specified on the pseudo-cell cards.

Input on this card follows the keyword value format: key = value(s).

LA-UR-17-22442 27 of 102

CHAPTER 5. INPUT CARDS

Required Keys:
BACKGROUND pseudo-cell number from the cell block that serves as the background cell

MATCELL my Cy My Cop M3 C3 ... My Cj
integer pairs, one for each pseudo-cell in the embedded mesh;
m; values are embedded mesh pseudo-cell numbers; numbers must be
sequential starting at 1
c; values are the MCNPG6 pseudo-cell numbers from the cell block

MESHGEQ mesh type; acceptable values: abaqus, mcnpum
MGEOIN name of input file containing the mesh description
MEEQUT name of the EEOUT results file to write

Optional Keys:

FILETYPE type of file for MEEOUT to write; acceptable entries: ascii or binary;
default: ascii

GMVFILE file name for GMV output file; geometry only description for GMV
program|8]; LANL use

LENGTH a multiplicative conversion factor to centimeters for all mesh dimensions in
the input and output files; default: 1

MCNPUMFILE file name for the MCNPUM output file

MEEIN name of the EEQUT results file to read; required for a continuation run.
Must not be the same as MEEQUT.

OVERLAP model to treat overlapping parts. First entry should be one of the following:
EXIT (default when OVERLAP is not provided), ENTRY, AVERAGE. Treatments
for individual pseudo-cells can be specified by following the initial entry
with a second parameter and a list of valid pseudo-cell numbers (from the
MATCELL entry). All 3 parameters may be used if the format is correct. See
the example in Section 5.4.

5.2.2 EMBEE

EMBEE:<p> keyword = value ...
Embedded elemental edits control card.

n elemental edit number ending in 4, 6, or 7; follows the tally convention for
meaning; if this card is not present, a total flux edit is created for each
particle on the mode card.

<p> particle designator; current valid entries: n, p, h, or any of the valid
charged particles.

LA-UR-17-22442 28 of 102

5.2. DATA CARDS

Input on this card follows the keyword value format: key=value(s)

Required Keys:

EMBED embedded mesh universe number; must correspond to a valid embed card
or mesh universe number

Optional Keys:

COMMENT edit comment to appear in the EEQUT file; limited to 128 characters. Same
functionality as FC card for tallies except that this is for the elemental edits.

ENERGY a multiplicative conversion factor from MeV /g for all energy related output;
default: 1

ERRORS request statistical uncertainties; NO (default) / YES.

TIME a multiplicative conversion factor from shakes for all time related output;
default: 1

LA-UR-17-22442 29 of 102

CHAPTER 5. INPUT CARDS

Additional parameters added to support flux multipliers on the edits.

ATOM

FACTOR

LIST

MAT

MTYPE

flag to multiply by atom density; NO (default) / YES.

multiplicative constant; default: 1.0; equivalent in concept to |C| on the FM
card.

reaction list where this is the sum and/or product of ENDF or special
reaction numbers. Limited to 1 reaction list as with FMESH tallies.
Parentheses can be used but are ignored by the code.

material number identified on an Mn card. Can be a dummy material or 0
(default). If the value is 0, use the cell material.

Multiplier type. Acceptable character input values follow:

flux normal volume flux calculations. Same
interpretation as FMESH tally type = flux. (default)

isotopic isotopic calculation. UM equivalent to the FMESH
isotopic mesh tallies that require an +FM card [3].

population population calculation. Same as an F4 tally with an
FM card where k = -2 in the multiplier set.

reaction reaction calculation that requires the LIST
parameter. This mtype with the LIST parameters is
equivalent to an FMESH tally with a single multiplier
set, specified and its accompanying FM card.

source accumulate source point locations. Same
interpretation as FMESH tally type = source.

tracks tracks calculation. Same as an F4 tally with an FM
card where k = -1 in the multiplier set.

5.2.3 EMBEB

EMBEBn B; B,

By

Embedded elemental edit energy bin boundaries.

n elemental edit number from embee card; 0 is not valid.

B; energy of the i’th bin; monotonically increasing upper energy bin
boundaries; values in units of MeV; default: one energy bin with boundary
set to the maximum energy limit for the particle type.

5.2.4 EMBEM

EMBEMn M; My ...

Mk

Embedded elemental edit energy bin multipliers.

LA-UR-17-22442

30 of 102

5.2. DATA CARDS

n elemental edit number from embee card; 0 is not valid.

M; multiplier for the i’th energy bin; default: 1.

5.2.5 EMBTB

EMBTBn By B, ... By
Embedded elemental edit time bin boundaries.

n elemental edit number from embee card; 0 is not valid.

B; time of the i’th bin; monotonically increasing upper time bin boundaries;
values in units of shakes (1 shake = 10°® s); default: one time bin with
boundary set to the maximum time limit for the particle type.

5.2.6 EMBTM

EMBTMn M; My ... Mg
Embedded elemental edit time bin multipliers.

n elemental edit number from embee card; 0 is not valid.

M; multiplier for the i’th time bin; default: 1.

5.2.7 EMBDE / EMBDF

In order to avoid confusion and maintain the separability of edits from tallies, the following
response function cards are available to implement response functions on the unstructured mesh
edits. These are similar to the standard de/df cards; there are no built in functions associated
with these cards at this time.

EMBDEn By By ... By
Embedded elemental edit dose energy bin boundaries.

n elemental edit number from embee card; 0 is not valid.

B; energy of the i’th bin; monotonically increasing upper energy bin
boundaries; values in units of MeV; default: one energy bin with boundary
set to the maximum energy limit for the particle type.

EMBDFn M; M, ... M
Embedded elemental edit dose function multipliers.

n elemental edit number from embee card; 0 is not valid.

M; multiplier for the i’th time bin; default: 1.

LA-UR-17-22442 31 of 102

CHAPTER 5. INPUT CARDS

5.2.8 SDEF VOLUMER

SDEF general fixed source specification — addendum.

POS =z, y, z vector/reference point for position sampling; default {0,0,0}. Use
value volumer for unstructured mesh volume source(s) so that x, y, z may
be sampled from the volume source description. This value may also be
used with dependent distributions. See Section 5.3 for more discussion on
volume sources and how they may be selected. Note that the last character
‘r’ stands for sampling by rejection.

5.3 Volume Sources

See the source keyword discussion in Section 3.1 for more information about describing volume
sources in the unstructured mesh. This section will describe how the user can select among
multiple volume sources (pseudo-cells) defined in the unstructured mesh.
First, if volume sources have been defined in the mesh and you do not wish to sample from
them, don’t use the VOLUMER value anywhere in describing the source on the SDEF card.
Second, if you want to sample uniformly over all volume source regions defined in a model,
simply set the POS parameter to VOLUMER.

Example: sdef pos=volumer

Next, if the volume sources appear in different pseudo-cells and you desire to sample non-
uniformly among the pseudo-cells, use a dependent distribution where POS is a function of CEL.
Only uniform sampling within a cell is possible.

Example:

sdef pos=fcel=dl cel=d2
dsl L volumer volumer
si2 L 101 103

sp2 0.4 0.6

In this example, MCNP6 will first select proportionally from cells 101 (40%) and 103 (60%).
With the cell selected, the code will select uniformly over that cell proportional to each element’s
volume to find an element from which it will select a position uniformly over that element.

Finally, it is possible to combine volume sources with point sources (and other legacy source
descriptions) with a dependent distribution of distributions.

Example: 2 volume sources and a point source
sdef pos=fcel=d3 cel=d2

c

si2 L 101 102 103

sp2 0.4 0.2 0.4

c

ds3 35546

c

si4 L .1 .2 .3

LA-UR-17-22442 32 of 102

5.4.

INITIAL RUN EXAMPLE

sp4 1

C

sib L volumer
sp5 1

C

si6 L volumer
sp6 1

As before, the cell is selected first, then the position from the appropriate distribution. In this
example, the point source is selected 20% of the time.

5.4 Initial Run Example

C Cell

10
11
12
13
14
15
21
30
40

1

OO, kB KB P

0

Cards

.03
.03
.03
.03
.03
.03

O O O O O O o

-99
99

¢ Surface Cards

99 sph 0.0.3.10.

¢ Data Cards
ml 1001 -0.02 8016 -0.60 1400 -0.38

C

£i11=2

embed2 meshgeo= abaqus

C

embeed :n embed=2

$ pseudo-cell

$ pseudo-cell

$ pseudo-cell

$ pseudo-cell

$ pseudo-cell

$ pseudo-cell

$ background cell
$ £fill cell

meeout= sampleOl.eeout

gmviile= sampleOl.gmv

filetype= binary

background= 21

matcell= 1 10 2 11 3 12 4 13 5 14 6 15

overlap=average exit 1 entry 5 6

embtb4d 1 2 3 4 5 1e+39
embeb4d 0.1 1.0 1e+10

5.5 Continue Run Example

MCNP6 continue runs with the unstructured mesh feature require an input EEQUT file in addition

to the runtpe file.

CONTINUE

LA-UR-17-22442

33 of 102

CHAPTER 5. INPUT CARDS

C
embed2 meshgeo= abaqus
meein= sampleOl.eeout
meeout= sampleOl.cont.eeout
background= 21
matcell=110 211 312 413 514 615

LA-UR-17-22442 34 of 102

Chapter 6

Parallel Input Execution

MCNP6 has been able to transport particles on the UM in parallel (threads, MPI, or both)
for some time. Until September 2011, MCNPG6 input processing was not parallelized. However,
unstructured mesh input can take a long time to process if there are multiple parts and at least
one of the parts has more than roughly 30,000 to 50,000 elements. Therefore, sections of the
unstructured mesh input processing have been parallelized with MPI in order to speed up the
overall process. In addition, some processing loops have been threaded with OpenMP.

Some of the mesh data is organized at the part level while other data is organized at the
instance level. To minimize the input processing time, the number of MPI processes specified
on the command line should be one (1) more than the maximum number of parts or instances
in the mesh input file. This way, one process will be responsible for handling a single part or
instance. For example, if there are 2 parts with 4 instances of the first part and 1 instance of the
second part, then the number of MPI processes to request is 6 in order to achieve the quickest
input processing time. If more MPI processes are requested than required by the rule mentioned
above, the extra MPI processes remain idle until the particle transport is started. If fewer MPI
processes are requested than required by the rule mentioned above, the MPI processes split the
work amongst themselves; there is no load balancing.

The um_ convert utility (see Chapter 15) is a highly parallelized program that can convert
the Abaqus inp file to the MCNPUM file type (see Chapter 11). This file type is highly recommended
when a complex geometry will be used more than once.

LA-UR-17-22442 35 of 102

This page intentionally left blank.

Chapter 7

MCNPG6 Plotter

Limited plotting of the unstructured mesh is possible with the MCNP6 plotter. It is only possible
to produce shaded plots of the mesh pseudo-cells by material, atom density, or mass density so
the user may see that the unstructured mesh is positioned correctly relative to the CSG. No cell
outlines or unstructured mesh lines are possible. Labels may appear but will not be correct. See
Figures 7.1 to 7.5 for several examples. Overlaps may make regions appear distorted, Figure
7.4. Gaps may give rise to extended regions of the background material, Figure 7.5.

Caution should be exercised with large mesh files. While the plotter should be able to plot
large mesh geometries, it may take a long time to build the model if the sequential version of
the code is used; parallel plotting is not supported, but the parallel version of the code will be
beneficial in terms of processing the input.

-20 T T
-20 -10 0 10 20

Figure 7.1: Pseudo-cells shaded by material in the mesh universe.

LA-UR-17-22442 37 of 102

CHAPTER 7. MCNP6 PLOTTER

Figure 7.2: Pseudo-cells shaded by material density.

Figure 7.3: Model demonstrating correct plotting of a gap.

LA-UR-17-22442 38 of 102

154

10+

-107

-157

Figure 7.5: Model demonstrating gaps.

LA-UR-17-22442

39 of 102

This page intentionally left blank.

Chapter 8

Limitations and Restrictions

At this time, the unstructured mesh capability is not fully integrated with all of the pre-existing
MCNP6 features. Also, there are a number of proposed mesh-specific features for implementa-
tion in the future. This chapter highlights the limitations and restrictions known at this time.
Several limitations and restrictions have been removed from this list since this manual was first
issued.

e limited to neutrons, photons, electrons with the default physics option, protons, and
charged particles heavier than protons. Should not be used with magnetic fields.

e unstructured mesh can not be placed inside a lattice
e an universe can not be placed within a mesh universe
e CSG surfaces must not clip or intersect the unstructured mesh

e the MCNPG6 plotter will plot limited aspects of the unstructured mesh for the purpose of
seeing its position in the hybrid geometry

e mesh surfaces can not be used for surface sources; normal surface source reads and writes
have under gone limited testing with the UM and are not guaranteed to work with it

e reflecting and periodic boundary conditions are not guaranteed to work with the unstruc-
tured mesh itself but should work with CSG cells/surfaces that have these conditions

e source particles may not be started in mesh gaps

e surface tallies are not permitted in the unstructured mesh, but can still be used with CSG
surfaces

e only pentahedra and hexahedra may appear together in a part; otherwise a part must
contain only a single mesh type

e overlapping parts must not be severe; any single element may not be wholly contained
within another element

e even running parallel with MPI, problem setup may take considerable time if any one part
has many (> 30,000 to 50,000) elements; consider converting to the MCNPUM file type.

LA-UR-17-22442 41 of 102

CHAPTER 8. LIMITATIONS AND RESTRICTIONS

It is possible that other items have been overlooked and should be added to this section. For
example it is unknown whether a PTRAC file will contain all surface related information. Not
all combinations of parameters associated with the SDEF card have been tested in conjunction
with the unstructured mesh volumes sources.

LA-UR-17-22442 42 of 102

Chapter 9

The Abaqus Input File

9.1 Introduction

This chapter provides a brief description of the Abaqus/CAE input file (inp) and how it relates
to the Revised Extended Grid Library (REGL) as implemented in MCNP6. The “format” that
is discussed in this section is based on what Abaqus/CAE is currently generating and merits
two cautionary points: 1) Depending upon the purpose of the model created in CAE and who is
generating it (mechanical vs nuclear engineer, for instance), there may be extraneous information
in the input file that could cause problems with the MCNP6 input file parser. What is shown
in this chapter is the basic information that MCNP6 needs. If the user is not careful, Abaqus
may include information in the inp file that causes problems for MCNPG6. For best results only
include the data types discussed here. 2) Other CAD/CAE tools can write what they claim to
be an Abaqus compatible file, but in reality may include a wrinkle in the file formatting that
MCNP6 can’t handle. It is the user’s responsibility to ensure that the Abaqus/CAE input file
meets the requirements outlined here.

9.2 Abaqus inp File

As it relates to the unstructured mesh (UM) library, this chapter describes the ASCII inp
file that Abaqus/CAE generates. Greater detail on the format can be found in the Abaqus
documentation. In general, comments begin with a double asterisk, “**”. Keyword lines begin
with a single asterisk, “*” and are followed by the keywords. Data lines have no special characters
preceding them, but generally contain integer and/or real numbers. A sample inp file follows
this discussion and it includes all three of these line types.

The sample inp file that follows is color-coded for ease of reading. The keywords of interest
to the unstructured mesh parser are shown in blue. Several special tags, also of interest to the
parser, are shown in red and are discussed below. The model present in this sample file is simple
and consists of one part that has been instantiated (replicated) four times; this is discussed in
more detail in the assembly section below.

Each of the keywords of interest to the unstructured mesh parser are discussed in various
detail next in the order that they usually appear in the inp file. Some keywords occur in pairs,
meaning that there is a keyword that starts a block of data and another keyword that ends a
block of data. Other keywords are singular in that they start a block of data and an unrelated

LA-UR-17-22442 43 of 102

CHAPTER 9. THE ABAQUS INPUT FILE

keyword or comment ends the block. In the following, keywords are shown in mixed case; the
UM input parser converts characters to lower case.

9.2.1 Part

The “*Part” keyword signifies the beginning of the information for a particular part. Each part
is given a name that begins after the “name=" characters on the keyword line. The UM library
parser retrieves everything after the equals sign up to and including 256 characters in the name.

This name is used by the UM library in locating the correct part when it is instantiated in
the assembly. The part name is also used when the UM library outputs information about the
mesh model. Do not use any of the elset keywords in the name of the part. All characters are
converted to lower case.

9.2.2 Node

The “*Node” keyword appears in the “*Part” block and signifies the beginning of the node data
specific to the part. Each line following this keyword contains four numbers: one integer and
three real numbers. The integer is nothing more than the node number starting at 1 and going
sequentially to the maximum number of nodes in the part. The three real numbers are the z-,
y-, z-locations of the given node.

9.2.3 Element

The “*Element” keyword appears in the “*Part” block and marks the beginning of the element
connectivity data. Appearing on this keyword line is a description of the type of elements
appearing in this part. The element type codes appearing on this line that the UM library can
handle are presented in Table 9.1. In the example that follows, the type code is presented in
red-lettered characters on the “*Element” keyword line.

Table 9.1: Element Type Codes

Element Type ‘ Type Code ‘
First-order tetrahedra C3D4
First-order pentahedra C3D6
First-order hexahedra C3D8

Second-order tetrahedra C3D10
Second-order pentahedra C3D15
Second-order hexahedra C3D20

Each line following this keyword contains a variable number of integers depending upon the
number of nodes that define the element. In the type code given in the table above, the number
of nodes for a particular element type appears as the number following the letter “D”. The first
integer on the data line is the element number; the remainder are the node numbers that define
the element. The exception to this is second order hexahedra where two lines are required for
each element. For these, the first line contains the element number plus 15 node numbers; the
second line contains the remaining 5 node numbers and is generally indented.

LA-UR-17-22442 44 of 102

9.2. ABAQUS INP FILE

When multiple element types appear in a part, Abaqus places multiple “*Element” keyword
sets in the “*Part” block. Currently, the UM library can only handle mixed element parts
containing pentahedra and hexahedra. If tetrahedra are needed in the model, they must appear
in parts that don’t contain the other element types.

Other Abaqus type codes may generate similar connectivity data. It is the user’s responsi-
bility to ensure use of codes from Table 9.1.

9.2.4 Element Set

In Abaqus parlance, element sets are referred to as elsets and the “*Elset” keyword signifies the
beginning of the elset data. The elset mechanism permits the grouping of elements in order to
assign various properties. At least two different elsets (see Section 3.1) should be defined or
named for the mesh input to be useful to the UM library; these names are easy to find in the
example that follows -- look for the red-lettered characters after the “*Elset” keyword that is in
a blue font.

The first elset is the material elset and is required. All of the elements in a part must be
assigned a material number. The name or tag for this elset must contain the word “material”
and the material number. At this time, the material number must be the last part of the tag
and it must be separated from the rest of the tag by an underscore character or hyphen. In
addition to the material elset tag presented in the example at the end of this discussion, the
following tag is also acceptable:

Set-my_material_uranium_02

Note that any number of characters can appear between the word “material” and the material
number. But, the total length of the line containing the keyword and the tag is limited to 256.

The second elset is the statistic or tally elset. This elset is optional, but highly recommended.
The name or tag for this elset must contain the word “statistic” or “tally” and the statistic
set number. The same rules and conventions apply to this elset tag as for material elsets. All
elements in a statistic elset must have the same material number; there is no mixing of materials
in the statistic set. The UM library will enforce this.

For each of these keyword types, the data lines following them may be one of two forms.
The first of which is just an integer list of element numbers, on the order of 16 integers per line.
The second form is in compact notation where the word “generate” appears on the keyword line
and the data line consists of 3 integers. The first integer is the starting element number. The
second integer is the ending element number. The third integer is the stride from the starting
to the ending element numbers. For example, to specify all of the odd element numbers from 1
to 27, use the following:

1, 27, 2

The UM library uses these two elsets (material and statistic) to define the pseudo-cells that the
user must map back to the calling code (in this case MCNP6) cells. Every unique material-
statistic elset combination is a new pseudo-cell. The library outputs a “Pseudo-Cell Cross-
Reference” table that shows how the pseudo-cell number matches with the calling code (MCNP6)
cell number, the instance number, the part number, the material number, and the material name.

LA-UR-17-22442 45 of 102

CHAPTER 9. THE ABAQUS INPUT FILE

9.2.5 End Part

The “*End Part” keyword marks the end of a part’s input. Another part description may follow,
in which case there will be another “*Part” keyword to signify its beginning, or the assembly
description may follow.

9.2.6 Assembly

The “*Assembly” keyword appears after all of the parts are defined. A look at the sample file
presented at the end of this chapter shows that an assembly name appears after this keyword
much like what appeared for the part. The UM library does not care what the assembly name
is; it only uses the keyword to know that all of the part input is complete.

There is also an “*End Assembly” keyword that signifies the end of a particular assembly.
Between these two keywords is the important information that the UM library needs in order
to construct the mesh model from the parts.

9.2.7 Instance

Appearing in the Assembly block are the “*Instance” keywords. The number that appear here
correspond to the number of parts that were instantiated into the Assembly; there is one for
each instance. There are two parameters appearing on the “*Instance” keyword line: “name”
and “part”. The “name” parameter is just the name of the instance and, unless changed by the
user in the CAE tool, is just the part name appended with an instance number. The “part”
parameter is of interest to the UM library since this is the same name as one of those used
with the “*Part” keyword. The UM library uses this “part” parameter name to match with the
“*Part” keyword name in order to locate the right one to use.

The “*End Instance” keyword marks the end of the information block for a particular in-
stance. From the example at the end of this discussion there are four instances of the same part.
The last instance in this example has no additional lines between the “*Instance” and “*End
Instance” keyword lines while the other three have one or two data lines present that describe
the translation or rotation of the part as it was instantiated into the assembly.

The first data line appearing between the key words is the translation information. The
three real values given here are nothing more than the values of the translation applied in the
x-, y-, and z-directions, respectively.

If the part is rotated as it is instantiated into the assembly, two lines appear between the
instance keyword lines. The first line is the translation information as discussed previously. If
there is a pure rotation the values for the three real numbers on this line are all zero. If there
is both a translation and rotation, the translation is applied before the rotation.

There are seven real numbers that appear on the rotation line. The first six real numbers
define an axis of rotation. The first three numbers are the z-, y-, and z-locations of the first
point that defines the axis. The second three numbers are the z-, y-, and z-locations of the
second point that defines the axis. The last or seventh number is the angle of rotation in degrees
about the axis.

In the example given at the end of this discussion, the first and third instances have just a
translation while the second instance has a rotation but no translation. The fourth instance is
neither translated or rotated.

LA-UR-17-22442 46 of 102

9.2. ABAQUS INP FILE

9.2.8 Material

The next to last keyword of interest to the UM library appearing in the inp file is “*Material”.
This keyword has one parameter which is the material name. The UM library parser retrieves
everything after the equals sign up to and including 256 characters in the name. Please see the
first section (3.1) of the user’s guide for the recommendations in naming materials.

9.2.9 Density

The last keyword of interest to the UM library appearing in the inp file is “*Density”. On the
next line following this keyword is the actual, user-specified density. If the number is positive,
the library treats it as a number density; if it is negative, then the library interprets it as the
negative of a physical density. This is the same convention as MCNP6. This keyword and
associated value is needed by the um_pre_op program, Chapter 14.

9.2.10 Example Abaqus .inp File

LA-UR-17-22442 47 of 102

CHAPTER 9. THE ABAQUS INPUT FILE

<t‘<l‘<f‘NNNOOO#‘Q‘Q‘NC\;NOOOQ‘Q‘ﬂ'NNNOOO

FANOFTANOFTANOLSTNOLFSTNOLFSTNOLFLNOIFNOIFANO

LT
9T
i

< W0 N~ o

‘eT

‘v

<
N
]
N

N
N

—
N
o
N

‘g ¢

‘zT ¢
‘17 ¢

— M F o,
™ o
S NMF 0 O~ 0

o
i

ygaen=odLa ‘jusweTT*

PSS SIS ITANNANNANNANNNSOOSOS OSSOSO O

S ANM T W0 O~ 00

SpON*

TO ¥20Tq-3IRd=0WRU ‘I3Iedx*

*ok

SLYVd *x*

*ok

ON=2o®3u0d ‘gN=£x03STYy ‘QN=Topou ‘QN=0y2® ‘jutadexds
T-0T°9 dyD/snbeqy :£q pejereuss x

T-TOPON :oweu Topol JO owsp~y20Tq qol :eweu qor *x
Sutpesyx

AN IFIIO OO NN FHLO O~V AN IO A NM O
N A A A A A A A AN AN ANANNANANNNDMNMONONMNHNNMONN S

— NN <FI0 OO0 O~
—

48 of 102

LA-UR-17-22442

9.2. ABAQUS INP FILE

‘¥86.%0°0 L3TsueQx

100" T3xed-TeTIa3e=0ueu ‘TeTISIB)jx

107¥00T1q-31ed=31ed

.
T0~Yo0T1q-3xed=3xed

<0
‘0
10 ¥Mo0Tq-3Ied=31Rd

‘0
T0~00T1q-3xed=3xed

*%
STVTHALVH **
*k
ATquessy pumgx
*k
20URASUT PUT*
‘H-T0 MO0Tq-3Ied=0UeU ‘odURISUI*
*%
90URYSUT PUT*

<0 <3
‘e-T0 YMOO0Tq-1Ied=0WRU ‘8dURISUTI*
*k
20URASUT PUT*

<0 <0

<0 <0
‘Z-T0™YMO0Tq-3Ied=0UeU ‘odURLSUT*
*k
20URYSUT PUT*

<0 <3
‘1-T0™YD0Tq-3Ied=0WRU ‘dOURISUI*
*k
fTquessy=oweu ‘LTquessyx
*%
ATANISSY *x
*%
*k
1xed PUL*

T ‘8 ‘1

ojexous8 ‘JQ T OTISTILIS-308=19STO ‘30STH*

T ‘T ‘1

o3erous8 ‘7O OTISTIRLS-19G=10SU ‘3OSNx*

T ‘8 ‘1

ojeIouUe8 ‘T(Q [RTISICW-39G=10STO ‘3OSTHx

T ‘T ‘T

o3eIoUSS ‘T(T[RTIOICU-308=19SU °3OS*

c8
18
08
6L
8L
L.
9L
GL
VL
€L
oL
1L
0L
69
89
L9
99
g9
79
€9
a9
19
09
6G
8¢
LS
9¢
g¢
124
€9
45
14
0g
67
8V
Ly
9

49 of 102

LA-UR-17-22442

This page intentionally left blank.

Chapter 10

The EEOUT File

10.1 Introduction

This chapter provides a brief description of version 6 of MCNPG6’s elemental edit output file
(EEOUT) generated by the Revised Extended Grid Library (REGL).

10.2 EEOUT File

This chapter describes the elemental edit output file from MCNPG6, otherwise known as the
EEQUT file. This file contains a variety of information besides the edit results that have been
calculated on a given mesh. Mainly, the information in this file consists of the results, known
as edits, and a generic description of the mesh. What is meant by generic is that the mesh
description in the file bears little resemblance to that created by the tool which generated the
mesh. Therefore, many specific formats may eventually be read by the mesh library, but only
one output format will be supported. In that regard, the format for the EEQUT file has been
developed to accommodate what is thought to be all of the relevant data not only for post-
processing but also for problem restart. Some of the data present in the file may be in a form
that is only relevant to the REGL.

The following description is for version 6 of the EEQUT file and is similar to previous versions.
An example EEOUT file follows this discussion and is a composite of two different problems. This
composite file was done to make it easier to illustrate some data sets and to keep the example
short. Some lines in this example are color coded for easier identification.

Note that this implementation of the unstructured mesh library is with Fortran and that
both ASCII and binary versions of the EEQUT file are possible. Fortran inserts beginning and
ending record markers around each binary file record; this should be taken into consideration
when using a non-Fortran programming language to construct a routine that reads this file.
However, if your distribution comes with the source code, consider using REGL to read the
EEQUT file. See the UM utilities for examples of how to work with REGL.

10.3 Self-Describing File

The EEOUT file was designed to be a self-describing file with the goal of allowing easy access
to and identification of the file’s data for those developers who choose not to link with the
mesh library and use its routines. The meta data and keyword-value pairs (KWV-pairs), both

LA-UR-17-22442 51 of 102

CHAPTER 10. THE EEOUT FILE

discussed below, permit the developer a number of options in terms of parsing through the file
to extract relevant information.

The data in the file is grouped into data-sets with at least two data-set segments and at
most three data-set segments per data-set. The three data-set segments are

e identification
e title line
e data

Except for the first line of the file, each data-set adheres to this convention. All data-sets must
contain the data-set identification which is nothing more than the meta data that describes the
segments following it. There is no justification for the meta data appearing in the file by itself,
so either one or both of the other data-set segments follow it.

The EEQUT file also uses KWV-pairs. These appear anywhere there is character data. That
is, these pairs may appear in either the title line segment or the data segment. The keyword-
value pair is a convenient way to group a short description with either a numeric or alphanumeric
value. Each pair consists of one or more keywords to the left of a colon (:) and a value to the
right. When multiple KWV-pairs appear on a line, they are separated by a semicolon (;).

10.3.1 Identification Segment

This single meta data line always consists of six 8-byte integers, 1) through 6). Their significance
is described next and accommodates some flexibility in use.

1. Number of characters in the title line (A value of 0 indicates no title line segment)

2. Number of records in the data-set after the title record (A value of 0 indicates no data
segment)

3. Data type that appears in the data segment. No mixed types are permitted.

0 - no data lines follow (redundant when 2) = 0)
1 - character data

2 - integer data

3 - real data

4. Size in bytes of each 3) data item. If 2) = 0, then 4)’s value is meaningless.
5. Number of items in each data record. If 2) = 0, then 5)’s value is meaningless.

6. Parse length of each record. This is the number of entries formatted for each ASCII data
line. If 2) = 0, then 6)’s value is meaningless.

10.3.2 Title Line Segment

The title line data segment is optional. However, it must be present if there is no data segment.
In this sense, the data is contained within the title line as one or more KWV-pairs. This line is
always interpreted as character data so that item 1) in the meta data line is a positive integer.
Generally, this title line describes the data that follows it.

LA-UR-17-22442 52 of 102

10.4. THE EEOUT FILE DESCRIPTION

10.3.3 Data Segment

The data segment is optional. However, it must be present if there is no title line segment.
This data may be character, integer, or real as indicated by item 3) in the meta data. Most of
the data segments in the EEQUT file are either integer or real. In some instances where there is
character data in this segment it may be something as simple as a list of material names or it
may be KWV-pairs.

10.4 The EEOUT File Description

The following sections discuss the various data-sets that appear in the EEQUT file in the order
that they appear. As mentioned above, an example file follows, Section 10.5. In the example
file all identification segments (meta data) appear in red and all title line segments appear in
blue.

10.4.1 First Line

The first line of the EEQUT file is a description line that contains exactly 12 characters. If the
file is the ASCII version, the 12 characters, ignoring the double quotes, are “MCNP EDITS A”,
where the “A” stands for ASCII. If the file is the binary version, the 12 characters, ignoring the
double quotes, are “MCNP EDITS B”, where the “B” stands for binary. Note that there is no
meta data line preceding this line.

In the binary version of this file there will be Fortran inserted record markers before and
after these 12 characters. If the developer is using a programming language other than Fortran
to read the file, the length of the markers can be deduced from the total length of this line.
With this information, subsequent records in the file can be read and the markers ignored to
obtain the record information.

10.4.2 First Data Set

The first data set in the file does not contain a title line segment, but contains two KW V-pairs
in two records. From the first pair, the value provides the mesh source. Since the Abaqus/CAE
inp file is currently the only mesh input file that the library reads, the value is “ABAQUS”.
From the second KW V-pair, the value provides the version number of the EEQUT file.

10.4.3 Calling Code Labels

The second data-set consists of KWV-pairs containing descriptive information from the code
that calls the mesh library. In the case of MCNPG6, there are 8 labels that it passes to form
the KWV-pairs in the output. Note that the calling code has inserted a special character, “|”
to signify the end of meaningful characters on a line. The first one has keywords “Prob ID”
and is the problem description supplied by the user in the MCNP6 run. The second and third
KWV-pairs have the keywords “Calling Code” and “Code Version” which in this case confirms
that the code using the library is MCNP6 and its associated build version. The fourth KWV-
pair provides the Date & Time that the EEQUT file was generated. The fifth through eighth
KWV-pairs supply four files associated with the MCNPG6 calculation that generated the EEQUT
file. These four files are

)

LA-UR-17-22442 53 of 102

CHAPTER 10. THE EEOUT FILE

e the MCNP6 inp file

e the MCNPG6 outp file

e the MCNP6 runtpe file

e the Abaqus inp file that contains the mesh description

Other associated files may by added to this data-set in the future.
NOTE: When the third entry on MCNP6’s prdmp card is set to -1, this data-set is not
present.

10.4.4 Integer Parameters

The third data-set contains 12 KWV-pairs where the value part of the pair is an integer. The
second through tenth pairs are parameters associated with the mesh geometry and their names
are self-explanatory. They are the numbers of nodes, materials, instances, first-order tetrahedra,
first-order pentahedra, first-order hexahedra, second-order tetrahedra, second-order pentahedra,
and second-order hexahedra.

The first KWV-pair is the number of particles in the calculation.

The eleventh KWV-pair is the number of histories from the Monte Carlo calculation upon
which the edit results are based. This is the number that is used in normalizing the edits.

The twelfth KWV-pair provides the number of edits or embee cards that were specified in
the input.

10.4.5 Real Parameters

The fourth data-set contains 2 KWV-value pairs where the value parts of the pairs are real
numbers. In the first pair, the value is the length conversion for all of the spatial coordinates
from the input mesh file and represents the multiplier needed to convert from the units of the
original mesh model to centimeters (in this case the units required by MCNP6). This value has
been applied to all coordinates appearing in the EEQUT file and consequently is reflected in all
of the results. In the second pair, the value is the normalization factor that has been applied to
all results in the file. This factor is used to un-normalize the results for continue runs.

10.4.6 Particle List

The fifth data-set contains a list of the particle numbers from the calling code. In the example
given, there are two particles and the numbers in the data set are 1 and 2. Since this was
MCNP6 writing the file, these number correspond to neutrons and photons. If the number
would have been 2 and 3, the particles would be photons and electrons.

10.4.7 Particle Edit List

The sixth data-set is a mapping of the particles to the edits and is needed internally by the code.
Inside the code this information is stored in a 2-D array where the first index is for the edit
number (where the maximum number of entries corresponds to the total number of edits) and
the second index is for the particle. The value stored in any array slot is the internal edit number
to which the particle contributes. For the example here, it can be seen that neutrons contribute

LA-UR-17-22442 54 of 102

10.4. THE EEOUT FILE DESCRIPTION

to both edits while gammas contribute only to the second edit. A value of 0 terminates the
particle’s list if there are fewer particles in the edit than the maximum number of particles in
the problem.

10.4.8 Edit Description

The seventh data-set begins with the title EDIT DESCRIPTION and contains 6 integers: the
number of different particles, the number of elemental edits -- this is for both the second and
third entries (one of these will be removed at a later date), the maximum number of problem
energy bins, the maximum number of problem time bins, and the maximum number of response
bins.

10.4.9 Edit Data Groups

At this point in the file there begins a variable number of data-sets which describe details of
the elemental edits. What follows for each particle in the problem are 5 data-sets beginning
with EDIT DATA and ending with RESPONSE BINS. Except for the unit conversion factors,
most of the information presented in these next data-sets also appear in the title lines of the
edit data-sets that appear later in the file.

The EDIT DATA data-set set contains 8 integer values described in the following table:

Integer Description
1 internal edit number
2 user edit number;

negative if errors requested

3 special combined energy
deposition indicator;
9 if a combined edit,

0 otherwise

4 particle number in REGL

) particle number from MCNP6
6 number of energy bins

7 number of time bins

8 number of response bins

The CONVERSION FACTORS data-set provides two real numbers in one record: the energy
unit conversion factor followed by the time unit conversion factor.

The next three data-sets each contain two real records. The ENERGY BINS data-set supplies
the upper energy cut points for the energy bins followed by the energy multipliers for these energy
bins. The TIME BINS data-set provides similar information for the time bins. The RESPONSE
BINS data-set provides similar information for the response bins. There should always be one
energy, one time, and one response bin whether requested by the user or not. It is up to the
calling code to enforce this.

10.4.10 Materials

This data-set contains the alphanumeric names of the materials to associate with the material
numbers assigned to each element. The names are ordered alphanumerically.

LA-UR-17-22442 55 of 102

CHAPTER 10. THE EEOUT FILE

10.4.11 Cumulative Instance Element Totals

Parts are instantiated into the global mesh model in the order directed by the mesh input file.
As the parts are added, the number of elements in that part are totaled and stored sequentially
in the cumulative element totals array. The first element of this array contains the number of
elements in the first instance. For the number of elements in the remaining instances (2 through
max number of instances), subtract the value in the preceding array location from the instance’s
array location value. The values appearing in this data-set are just the cumulative values stored
in this array. This information is primarily of interest internally to the mesh library and may
be eliminated at a later date from the EEOUT file.

10.4.12 Instance Element Names

This data-set contains the alphanumeric names of the pseudo-cells. There is one record in the
data segment for each pseudo-cell and, generally, these names are allowed to be 256 characters
long. The order of the names in this data-set is the same order with which they are added to
the global mesh model as directed by the mesh input file.

The user should note that the pseudo-cell names are slightly altered from what appears in
the Abaqus inp file. Abaqus can segment a part. Each of these segments in REGL becomes a
pseudo-cell. Because of a recent infrastructure change in REGL, it was necessary to separate
the pseudo-cells from the instances and promote the pseudo-cell as the entity that builds the
assembly. When the pseudo-cells are separated from the instances, a name is assigned to the
pseudo-cell based on the original instance name. The instance name is appended with the
letter P and a number starting at 1. The number is incremented for each additional pseudo-cell
removed from the instance.

In a future version of this file, the file name of this section may be changed.

10.4.13 Instance Element Type Totals

The elements in the global mesh model are ordered and numbered by element type. This stan-
dard order is first-order tetrahedra, first-order pentahedra, first-order hexahedra, second-order
tetrahedra, second-order pentahedra, and second-order hexahedra. Element numbers proceed
sequentially from 1 to the maximum number of elements in the model. Any first order tetrahe-
dra has an element number that is less than the first first-order pentahedra that appears in the
model. Similar statements can be made regarding the element numbers concerning the other
element types. For example, the first instance added to the model may contain a mixture of
first-order pentahedra and hexahedra. The second instance added may contain only first-order
tetrahedra. Even though the instance containing the tetrahedra was added later, its element
numbers will always be less than the instance containing the pentahedra and hexahedra.

This data-set contains one record of 12 integers for each pseudo-cell in the model and the
records appear in the order in which the pseudo-cells were added to the global mesh model
as directed by the mesh input file. These 12 integers are grouped into pairs with each pair
providing the first global element number and the last global element number for each element
type. The order of the pairs is in standard order. In the example provided in this document, the
first pseudo-cell contains only second-order hexahedra and its first element has global element
number 204 and its last global element number is 331.

In a future version of this file, the file name of this section may be changed.

LA-UR-17-22442 56 of 102

10.4. THE EEOUT FILE DESCRIPTION

10.4.14 Nodes Group

The next three data-sets contain node location data. The first set, “NODES X (cm)”, lists all of
the z-locations for nodes 1 through max number of nodes. The second set, “NODES Y (cm)”,
lists all of the y-locations for nodes 1 through max number of nodes. The third set, “NODES
Z (cm)”, lists all of the z-locations for nodes 1 through max number of nodes. As indicated in
the title line, these values are in centimeters, the required unit for the calling code (in this case,

MCNP6).

10.4.15 Element Type

This data-set contains integers that describe the element type for each of the global elements
starting at 1 and proceeding to the maximum number of elements in the mesh model. First-
order tetrahedra, pentahedra, and hexahedra are given the values 4, 5, and 6, respectively.
These number are just the number of faces in each element type. Second-order tetrahedra,
pentahedra, and hexahedra are given the values 14, 15, and 16, respectively. These number are
just the number of faces in each element type plus 10.

10.4.16 Element Materials

This data-set contains integers that represent the material number assigned to each element.
Each element in the global mesh model is associated with a material through its material number.
The elements appear sequentially from 1 to the maximum number of elements in the global mesh
model.

10.4.17 Connectivity Data Group

There are a variable number of connectivity data-sets appearing in the EEQUT file, depending
upon the element types present in the model. If all six types appear, there will be six data-
sets appearing in standard order. In the example provided in this document, there is only one
data-set in this group and it is for the first-order hexahedra.

The title line in this data-set contains the text ELEMENT ORDERED. This means that
nodes appear by element. All of the nodes for the first element appear before the nodes for the
second element, etc. This is a change from earlier versions of this file where the information was
NODE ORDERED where all of the first nodes of all elements appeared before all of the second
nodes of all of the elements, etc.

10.4.18 Nearest Neighbor Data Group

There are a variable number of nearest neighbor data-sets appearing in the EEQUT file, depending
upon the element types present in the model. If all six types appear, there will be six data-sets
appearing in the standard order. In the example provided in this document, there is only one
data-set in this group and it is for the first-order hexahedra.

This data is ordered in the same fashion as the connectivity data. All of the neighbors for
the first element appear before all of the neighbors of the second element, etc. In addition, the
ordering of the neighbors is by face number. Therefore, a 0 appearing in the third neighbor
position means there is no element appearing as a neighbor on that face.

LA-UR-17-22442 57 of 102

CHAPTER 10. THE EEOUT FILE

10.4.19 Edit Sets Group: Data Output and Data Sets

Depending upon the edit requests from the calling code, a variable number of edit set results
appear after the nearest neighbor data. Starting with the first particle and continuing through
the total number of particle types tracked on the mesh, all of the regular edits are output by
particle type. The title line segment that appears in all of these data-sets contain KW V-pairs
which provide details describing the edit set.

Each particle edit list combination comprises its own edit group. The start of this group of
edits is signified with a data-set consisting of just the meta data segment and a title line segment
with three KWV-pairs. The keyword for the first KWV-pair is DATA OUTPUT PARTICLE
and its value is the particle number. The keyword for the second KWV-pair is EDIT LIST and
its value is just the edit list number for the particle. The edit list is a list used by the mesh
library. The keyword for the third KWV-pair is TYPE and its value is a set of alphanumeric
characters that are an amalgamation of the edit type (e.g., FLUX) and the edit number (e.g.,
14) specified in the calling code.

The next data-set is the DATA OUTPUT COMMENT data-set and consists of the meta
data segment and a title line with one KWV-pair. The keyword is always DATA OUTPUT
COMMENT. If no comment was specified by the user for the edit, the value field is left blank;
otherwise, it contains the comment that was provided in the input.

After the DATA OUTPUT COMMENT data-set, the remainder of the data-sets forming the
edit list appear. These data-sets are full data-sets with title line and data segments. The title
line segment has six KWV-value pairs containing the time and energy bin numbers, bounds, and
multipliers. Note that in order to avoid a KWV-pair with a non-existent value, extra keywords
were added to the first KWV-pair; these extra keywords are DATA SETS and flag the data-set
as the one with the numerical results. The keywords TMULT and EMULT are shorthand for
time bin multiplier and energy bin multiplier, respectively.

If either the time or energy domains are broken into bins, the mesh library will automatically
sum the bins to produce a total result. When this appears in the file the bin number is replaced
with the string TOTAL and the corresponding bin values and multipliers are replaced with
the string N/A, indicating that this information is not applicable because it was not input by
the user. If both the time and energy domains are broken into bins, the mesh library will
automatically sum the bins to provide total time results for each energy bin and total energy
results for each time bin in addition to total time and total energy results.

After all of the regular edit set information is written to the EEQUT file, any edit sets for
composite edits appear. The only thing that differs with this edit group is the particle descriptor
in the DATA OUTPUT title line. For the regular edits the value of the first KWV-pair is a
particle number. For the composite edits the value is a string where the particle numbers have
been blended to produce an unique identifier (e.g., 1 _2).

NOTE: Users familiar with earlier versions of MCNP6 and the EEQUT file should recognize
that the components of the composite edit are no longer handled separately. This was done to
save memory for really large problems.

10.4.20 Centroids Group

After the edit set data-sets there appear three data-sets for the element centroids. These three
data-sets are presented in a similar fashion as the node information. X-centroids for all elements
appear first in their own data-set followed by data-sets for the y-centroids and z-centroids,

LA-UR-17-22442 58 of 102

10.5. EXAMPLE EEOUT FILE

respectively.

10.4.21 Densities & Volumes

The next to last data-set is the material density values for each element for elements number
one to the maximum number of elements in the global mesh model. The units for these values
are grams per cubic centimeter as indicated in the corresponding title line.

The last data-set contains the volumes for each element for elements number one to the
maximum number of elements in the global mesh model. The units for these values are cubic
centimeters.

10.5 Example EEOUT File

LA-UR-17-22442 59 of 102

CHAPTER 10. THE EEOUT FILE

00+30000

S
4 4 8 € T
T T T T T 0
8 8 14 4 T
T 4 4 4
9 9 14 4 T
0 4 4
L
14 14 4 4 T
4
4 4 14 4 T

€0-40000000000000° T +40
00+30000000000000° T -

T £v T T z
z
000T 'S
8z1 :
8 'S
62 :
8zT
8 'S
o€
9 'S
9 'S
12 :
z 'S
T 474 T T T
|dut- L00Tum
| 7e,00TduT
|oeL00Tdut
|eL00TdUT
|%:8%:60 T1/80/20
88" 1°9
| 9dNOW
_HMPOP 8 ﬁu,mm TeOoT3sT3els ® ST JUBWDTS YOed .mn—.ﬂo wﬁmﬁ.ﬂm
S
T T 95z T 8
T T 9T T z

0°T 00+300000°T

H0LOVA NOISYAANOD
6T
vi- T
VLIVa LIaH
ot
4 4

NOILdIHDSHA LIdad

8T

T

SIT LIQd JTDIIYVd

6T

T

LSIT dT0ILYVd

A’
LOVd NOILVZITVWHON
NOISYIANOD HIDNAT

0
SLIAT A0 YIIWAN
JIYOLSIH 40 YHIIWAN
SXHH pug 40 HIIWAN
LNId PUZ A0 HI9WON
SLIL pug 40 HIIWAN
SXHH 3ST A0 YIGWAN
LNId 3ST 40 YHIIWAN
SILIL 3sST 40 HIIWAN
HONVLSNI 40 YHIIWAN
TVIHILYN 40 HIdWAN
SHAON 40 YHIWAN
HTOILYVd 40 YHIWAN

0
: oTT4 dul woen
: oTtq odauny
: a1t4 dang
o1t dur
SWTIL B 93e(Q
uoTSI8) OpPO)H
apo) SurTTed
: dI qoxd
TA9VT JA00 ONITIVO

0c
9 *NOISYHIA
snbvay : 1nodd

0

V SIIAd dNOW

AN IFIIO OO NN FHLO O~V AN IO A NM O
N A A A A A A A AN AN ANANNANANNNDMNMONONMNHNNMONN S

— NN <FI0 OO0 O~
—

60 of 102

LA-UR-17-22442

EXAMPLE EEOUT FILE

10.5.

99¢

95¢

€0¢C

7Lt

TdT-393 UTT pPTU-3Ied
1dT-3ued uTT pTW-3IRd
1d1-X9y penb pus-3ied

SHWYN INAWAT FONVISNI

9 €T
Tee
991 9€T 8¢C1T
STVLOL INIWATI FAILVIOWAND HDNVISNI
T 9€

€0~ 303 penb pruTTeTISGRY
g0 2ued penb prTuTTeTISlR)
T0T393 UTT PTW TRTI®3R|
0 3ued UTT PTU TRTILIBY
@OIKwQIﬁNﬁUIUQWIHm._”HwPNS
T0™X9Y UTT pue [RTIIRY
STYIYALYH
9 (o)
00+300000° T
9€+300000° T
SNIZ JSNOdSTH
4 A
00+300000° T 00+J00000° T
6€+300000° T 00+H00000" T
SNIF FWIL
4 (o)
00+300000° T 00+300000" T
0T+d00000°T 00+300000°T
SNIg ADHANZ
4 41
00+300000° T 00+300000" T
SY0LOVA NOISHAANOD

T 67
4 6 9€- 4
Viva LIdd
T 0T

00+d00000° T
9€+d00000°T
SNId ASNOdSHY
4 T
00+400000° T
€€+d00000° T
SNId dWIL
4 ot
00+400000°T
9€+d00000° T
SNIFG ADYANT
4 43

61 of 102

LA-UR-17-22442

CHAPTER 10. THE EEOUT FILE

- O O O O O

O © O oo

¥0¢

o o o

9C
1T
144
4

0T

0z

O O O YW O O

[

14
9C
€T
(44

O O O O Wwo

€2
144
1C
(014

79

LT

LT

12T

o

L9T

o O OO

[4

[44
€T
(U4
6T

4

00+400000°0
TO+300000° T
00+300000°S
T0+300000° T
00+d00000° S

8

00+d00000"§-
00+400000°0
00+d00000° S
00+H00000" S~
00+400000°0

8

00+400000° S
00+d00000° S
00+300000°0
00+400000°0

8
991

o O o oo

LT
8T
ST
71

3930490 LNIWITI

4

00+300000° S
TO+300000° T
00+300000° S
00+d00000°0
00+d00000° S

00+d00000° S
00+400000° S~
00+d00000°0
00+d00000° S
00+d00000° G-

00+300000° S
00+400000° S
00+400000°0

9T
LT
7T
€T

T

00+400000° S
00+400000°0
00+300000 S
00+400000°0
T0+300000° T

00+400000°0
00+400000° S
00+400000°§-
00+300000°0
00+400000° S

00+300000 S
00+400000°0
00+300000°0

00+300000°S- 00+d00000° S~
00+H00000° G- 00+300000 S~ 00+H00000°S-

O O O OO

o © oo

€

O +O0O OO0 O

v

ST

(4]

TT
6%

T T

TVIY

LT

9 9 9 9
€T

00+d00000°0
00+400000° S
00+300000°0
T0+d00000° T
00+d00000°0
T0+300000° T

€T
00+400000° S
00+H00000" G-
00+400000°0
00+d00000° S
00+H00000" S~
00+300000°0

€T

€T
1
1T
ot

SXHH ¥d4Qd0 ILST VIVA ALIAILDANNOD

I
ALV ILNAWITH

9 9 9 9
ddAL LNIWATH

00+400000°0
TO+300000° T
00+300000°0
T0+d00000° T
00+400000° S
TO+300000° T
(wo) Z SHA0ON

00+300000 0
00+300000° S
00+300000 G-
00+300000° 0
00+300000° S
00+300000 G-
(W) X SAAON

00+300000°S 00+H00000°§
00+H00000°G 00+H00000°§
00+300000°0 00+H00000°0
00+300000°0 00+F00000°0
00+300000° G- 00+300000° G-
00+300000 G- 00+300000° G-

(wd) Y SIAON

€T

o O+ OO O

STVLIOL ddAL LNIWITI HONVISNI

9

62
TdT-Xoy UTT Pus-3Ied
1d1-283 penb pru-i1ed
Td7-3ued penb pru-31ed

L6

62 of 102

LA-UR-17-22442

EXAMPLE EEOUT FILE

10.5.

S
00+300000°T : LIAWA ¢ 00+4000°Z * FNTYA ADYANA ¢ T : NIE ADYANA
S
0
0
V/N ¢ LIOWd ¢ V/N ¢ ENTVA ADYANT ¢ TVIOL : NI ADYANT
S
00+300000°T * LIAWA ¢ OT+H000°T : ANTVA AD¥ANT * T * NIE ADYANA
S
00+300000°T : LIAWA ¢ 00+4000°Z * FNTYA ADYANA ¢ T : NIE ADYANI
S
0
0
00+d400000°T : LIAWA ¢ 9€+H000°'T : HNTVA ADYANT ° T : NIF ADYANA
S
0
0
9
LT 9T
8T LT
ST i
s €T

1

<

3

1

¢

00+400000° T *

6

00+400000° T *

6

00+400000°T

6

00+d00000° T *

6

00+400000°T -

6

8%

14
144
{5574
(474
134
0%
6€

T
ST
[
1T

8

00+d00000°0

€ T
00+300000°0 00+300000°0
00+300000°0 00+300000°0

00+300000°0
00+400000°0

SYT
00+300000°0
00+300000°0

ITIAWL ¢ 6€+H000°T : HANTVA FWIL ° T : NIE AWIL SIINSHY SIAS VIVA
8 € T S¥T
¢ LNIWWOD INdLN0 VIVd
0 0 0 [44
9€TADYANT : HJAL ¢ T : ISIT 1IQE ° ¢ : FIDILYVd INd1N0 VIVA
0 0 0 09
2¢0-4902e¥9°C ¢0-d98¥¥Cc'¢ TO-d1¥0€S'T
C0-I¥69€€°C <CO-HV8E0L T C0-dT9T8S°¢T C¢O-dSeveEYy"'¢ TO-dAV¥¥6E°C
ITAWL ¢ 6€+3000°T : ANTVA AWIL ¢ T : NIE AWIL SIINSAY SIAS VIVA
8 € T LET
¢0-d0CeY9°C ¢0-d98%¥C'C TO-HIY0ES'C TO-dV69€E"T
¢0-d¥8€0L°C TO0-dT9C8S'C ¢O-dASEPEV'C ¢O-dAVYP6E'C 00+H00000°0
LIOWL ¢ 6€+H000°T * INTVA IWIL ¢ T : NIE AWIL SITNSTY SIIAS VIVA
8 € T SY1

00+400000°0

00+300000°0
00+d00000°0

00+300000°0
00+400000°0

00+300000°0
00+400000°0

00+300000°0
00+400000°0

ITIOWL ¢ 6€+H000°T : HANTVA FWIL ¢ T : NIE AWIL SIINSHY SIAS VIVA
8 € T S¥T
¢ LNIWWOD INdLN0 VIVd
0 0 0 (44
9€TADYANT : HJAL ¢ T ¢ ISIT 1IQE ° T : FIDILYVd INd1N0O VIVA
0 0 0 09
C0-d€5L06°% CTO-dSPSOT'¥ CO-dATSSE9'¥ CO-H98EVT ¥
¢0-3%C066° ¥ CO-I9LLEL'¥ CO-HEBBCS'¥ CO-H0S9€%'¥# 00+HO00000°0
LINWL ¢ €€+3000°T : ANTVA AIWIL * T : NIE AWIL ITINSEY SIIAS VIVA
8 € T S¥T
LNIWWOD ILNdLN0 VIVA
0 0 0 (44
PT7XATd ¢ AdAL ¢ T ISIT 1IQE * 7 ATDIIHVd INdIN0 VIVA
0 0 0 89
79 0 0 0 29
€9 514 0 0 19
4c} 174 0 0 09
T8 4% 0 0 65
0S8 574 0 0 835
6% [474 0 0 LS
3174 134 0 0 9§
Ly o¥ 0 0 i)
SXHH ¥3Qd0 IST VIVA ¥YO0gHDIEN LSIUVAN
14 4 T PAS
€T 8 L S 4
4] 6 8 9 S
1T 9 S € 4
ot S 14 4 T

98
g8
¥8
€8
c8
18
08
6L
8L
LL
9L
Gl
2
€L
CL
TL
0L
69
89
L9
99
g9
¥9
€9
a9
19
09
69
8¢
LG
9¢
qg
2
€4
4%
16
0g
67
8V
LV
9V

144
1974
44
1874
ov

63 of 102

LA-UR-17-22442

CHAPTER 10. THE EEOUT FILE

¥/N ¢ LIOWE ¢ V/N ¢ F0TVA ADYWANA °

00+400000°T * LTIAWA -
00+300000°T : LINWF ¢

V/N ¢ LI0WH
00+300000°T * LIAWF ¢

<

TVLI0L

OT+d000°T * HANTIVA ADYANI - T
00+3000°C * ANTVA ADYANFT * T
f¥/N ¢ ENTVA ADYEANT ¢ TVIOL
0T+3000°T * FNTVA ADYANA ¢ T

NIg ADYINI
S

NIg ADYANA
S

NI9 ADYANA
<)

NIg ADYINIT
S

NIF ADYANA

1

<

1

<

8 8 € T
TO+HT0¥.8" T
TO+3T0¥VL8'T TO+dTOVPL8°T TO+ITOVL8'T
8 8 € T
00+400005°C
00+d0000S° . 00+300005°¢C 00+40000S°C
8 8 € T
00+40000S°C
00+H0000S°C- 00+30000S°C 00+d0000S°C-
8 8 € T
00+40000S°C
00+d0000S°C 00+30000S ¢~ 00+d0000S°C-
8 8 € T
C¢0-da¥Cv8L°¢T
¢0-d819S¥°'C <CO-dTLC¥8'C ¢0-d¥69TL°T
00+d00000°T : LTIAWL ¢ 6€+3000°T : ANTYA AWIL * T
6 8 € T
¢0-d¥T¥8L°C TO-H9999€°C
CO0-dTLC¥8°C CO-d¥69TL'C TO-dAVVL9G°C
00+d00000°T * LIAWL ¢ 6€+F000°T : INTYA AWIL * T
6 8 € T

00+d00000°0

C0+3000SC"T <CO0+H000ST'T

00+400000°0
00+d00000°0

¢0+4000SC" T
¢0+d000SC" T

00+300000°0
00+d00000°0

00+300000°T : LIAWL ¢ 6€+d000°T * ANTVA AWIL ° T
6 8 €
0 0 0 0
O€ ADYANT : AJAL * T : ISIT 1IQd
0 0 0 0
€0-30%0T¥ "1
€0-4S€EC6T T €0-dELB8BE"'T €0-ISTEVE'T
00+d00000°T * LIAWL ¢ 6€+F000°T : ANTIVA AWIL * T
6 8 € T
€0-30%0T¥ "1 €0-30080C" T
€0-d€L88E"T €0-dSTEVE"T €0-4960€€"T
00+d00000°T * LIAWL ° 6€+3000°T : ANIVA AWIL * T

1

i

¢0+d000ST" T
¢0+d000SC" T

Z0+3000ST " T
Z0+3000ST " T
(g.md) SANNTOA

ST
TO+ATOVL8 T TO+dTOVL8"T
TO+ATOVL8' T TO+dATOVL8'T
(g.wo/w8) ALISNAQ
8T
00+30000S§°Z 00+F0000S " L
00+H0000S" L 00+H0000S " L
(wd) Z SAIOYINAD
LT
00+30000S°Z- 00+30000S°T
00+30000S°Z 00+J0000G T~
(wd) X SAIOYINAD
LT
00+H0000S°C 00+30000S°T
00+30000S°Z- 00+J0000G T~
(wo) X SAI0YINID
LT
T0-d9959€°C TO-ITES99°T
To0-da¥¥L9S°C TO-HO9LTIS'T
NI AWIL SITINSAY SIAS VIvd
LET
T0-dT€S99°C TO-A8T9SY T
T0-H09LTS°C 00+300000° 0
NI AWIL SITINSAY SIAS VIVA
1€T
00+300000°0 00+300000 0
00+300000°0 TO-F00000" T
NI IWIL SITINSIY SIIS VIvd
TET
INIWWOD INdLNO YIvd
44
TIDIIMYd LNdIN0 YIVa
69
€0-30080Z2°T €£0-HE06VE" T
€0-3960€E€'T €0-F9TET' T
NIg AWIL SITINSIY SIAS VIVA
LET
€0-4£06%€°T €0-ASET6T T
€0-I¥9TEC'T 00+300000° 0
NI AWIL SITINSHY SIAS VIVA

(4N

64 of 102

LA-UR-17-22442

Chapter 11

Other Files

11.1 GMV File

Often times it is beneficial to have an independent and easy to use program for mesh geometry
visualization. The General Mesh Viewer, GMV, program [8] is such a program. For this reason,
it is possible to generate a GMV input file (see embed card, parameter gmvfile). Note that if
during model creation in the CAE tool, the material elsets don’t have unique numbers, it will
be difficult to differentiate parts in GMV. That is, if each part has one material and the number
assigned to that material is the same one in all of the parts, then all elements in GMV will have
the same color. Also, GMV limits material names to 8 characters.
This GMV file capability is primarily for LANL use.

11.2 The MCNPUM File

The Abaqus input file contains some basic information about the unstructured mesh, but does
not contain everything that MCNP6 needs. Once MCNP6 reads this file, it uses the Abaqus
data to generate other information that it needs in its tracking routines such as nearest neighbor
lists. Even with the parallel input processing, discussed elsewhere in this document, significant
computer time can be required to regenerate this data and create other internal data structures
for every MCNPG6 calculation that uses the Abaqus unstructured mesh file.

The MCNPUM file type [9] was created to contain all of the unstructured mesh data structures
that MCNP6 needs, thus eliminating the need to “input process” the Abaqus input file every
time the code is run, including continue runs. MCNPG6 can generate this file (primarily after
processing the Abaqus input file) by simply including the MCNPUMFILE option on the embed
card. MCNPG6 can use the MCNPUM file when the MCNPUM keyword is supplied to the MESHGEO
parameter on the EMBED card. See the input cards Chapter 5.

The um_ convert utility (see Chapter 15) is a highly parallelized program that can convert
the Abaqus inp file to the MCNPUM file type. This file type is highly recommended when a complex
geometry will be used more than once.

LA-UR-17-22442 65 of 102

This page intentionally left blank.

Chapter 12

Verification & Validation

Confidence that MCNP6’s UM feature is functioning as intended and calculating the correct
answer is highly critical. This chapter documents some of the work that has been completed to
meet this goal and is part of the MCNP6 code team’s software quality assurance process (SQA).
In addition the team has performed code reviews on this software. There is also a substantial
amount of internal testing not only by the code developers but by friendly testers.

12.1 Regression Test Problems

What follows in this section is a brief, descriptive list of the UM regression test problems. These
problems are run at least every night with the code team’s continuous build and test system
(CBTS) with various versions of the code; that is, versions of the code that have been built
with different compilers and combinations of compiler options. Each test generates a number of
output files that can vary by problem and are compared against templates. In non-UM problems,
files that are always generated and compared are the outp and mctal files. In addition, for these
non-UM problems, WWOUT, PTRAC, and MESHTAL files may be generated and compared. For UM
problems, EEOUT and GMYV files are generated and compared except where noted in the following
list; sometimes the MCNPUM file is substituted for the GMYV file when the problem needs to test
some MCNPUM aspect of the code. All EEQUT files are ASCII unless otherwise noted.

For those users who have access to the MCNP6 source code, these problems are available
as problems 1001 to 1063 in the REGRESSION test directory and can serve as examples. A
complete understanding of everything mentioned in the following list may only be possible with a
familiarity of the MCNPG6 source code. In the following list tet is an abbreviation for tetrahedra,
pent is an abbreviation for pentahedra, and hex is an abbreviation for hexahedra; plural forms
follow.

1. Element type test: 6 rectangular parts. Surfaces in contact, but no overlap or gaps. 6
element types. Fixed source ray-tracing. Generates and tests overlay FMESH file. 3 particles
on the mode card, but only 1 EMBEE for neutrons.

2. Continuation run for problem 1.

3. Pathological gap test: 4 rectangular parts with 7 pseudo-cells. Surfaces in contact, but no
overlap. 540 1st order hexs. Fixed source ray-tracing. Generates and tests overlay FMESH
file.

LA-UR-17-22442 67 of 102

CHAPTER 12. VERIFICATION & VALIDATION

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

Very hard pathological overlap test: 2 rectangular parts with 4 pseudo-cells. Surface
overlap, but no gaps. 820 1st order hexs. Fixed source ray-tracing.

. Tet criticality test: Godiva with 32 1st order tets. 1 part.

. Mixed part overlap test: Nickel Osaka benchmark. 3 parts as either sphere or spherical

shells with minor overlap. 160 1st order hexs; 440 second-order pents. Mode n only.

Simple cube, fixed source test: 1 part with eight 1st order hexs, one per octant. Each
hex is a pseudo-cell (i.e., 1 instance with multiple pseudo-cells). Plutonium. Mode n p.
Source near center. Multiple time and energy bin edits with errors.

. Simple cube, criticality test. Same as problem 7 except KCODE and writes a binary EEQUT

file.

. Continuation run for problem 8. Reads binary EEQUT file and writes an ASCII final version.

Pathological tet vertex tracking test: 1 rectangular part with 1 pseudo-cell. 569 1st order
tets. Mode n p. Point source near a node. History #31931734, seed #1315, generator
#1 must track through tet vertex (node) and into an element that isn’t on the nearest
neighbor list. Other histories also exhibit this phenomenon.

Greek helmet, mixed element test. 4 parts. Part #1 — mixed 1st order pents & hexs;
Part#2 — mixed second-order pents & hexs; Part #3 — 1st order tets; Part #4 — second-
order tets. Tests index setup in input processing as well as the usual tracking routines.
Void. Ray-tracing from spherical surface.

Volume source test with first order tets, pents, and hexs. Four source parts with air. Hex
part is 20 x 10 x 10. Pent part is 10 x 10 x 10. Tet part is 10 x 10 x 10. Shield part is
20 x 20 x 90 with very low density concrete. Writes FMESH file.

Mesh next to lattice test. Mesh is surrounded by lattice structure. Lattice contains fuel
pins (fuel / clad (Fe instead of Zr) / water; KCODE w/ 3000 histories/batch, 10 total
batches; Mesh block is 6 x 6 x 4 w/ 4 1st order hex elements, 1 per quadrant; center cavity
in lattice (where lattice is not defined) is 12 x 12 x 20.

Proton. 20 x 20 x 30 tungsten block. 20 GeV mono-energetic, isotropic source. 1500 1st
order hexs. 10000 histories. Mesh tally comparison.

Proton. Ray-tracing. Overlap. 2 parts overlap from x = 0 to x = 1. 10 x 10 x 10. 820 1st
order hexs. 10000 histories.

Proton. Ray-tracing. Big gap. 2 part, concentric boxes. Outer part 8 x 8 x 8. Inner part
1 x 1 x 1. 598 1st order hexs. 100,000 histories.

Neutron. Concrete slab with 3200 hexs. SDEF erg = 2 MeV. Use & generated cell-based
weight windows.

Same as #17 except use & generate mesh-based weight windows.

Volume cell sources. 1 part hex model, beam, w/ 3 pseudo-cells. Source regions at each
end. 2 VOLUMER sources not a dependent function of CEL parameter. Causes FATAL error.

LA-UR-17-22442 68 of 102

12.1. REGRESSION TEST PROBLEMS

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Same as #19, but 2 VOLUMER sources are dependent function of CEL parameter.
Same as #20, but added a point source that is in the mesh.

Geometry same as #7. Ray tracing source on sphere directed inward. Void. Source with
3 energies to sample from 3 different EMBDE / EMBDF card sets — enables quick check of
data sets in EEQUT file.

Point detectors. Tets and hexs in contact - - concentric cubes. Copper & graphite blocks.
Neutron. Point source.

Point detectors. Hex only. Concentric blocks — graphite inner, copper outer. Gap between
blocks (causes differences between UM & CSG). Neutron. Point source.

Point detectors. Hex only. Concentric blocks with overlap, gaps, and contact. (causes
differences between UM & CSG). Neutron. Point source.

DXTRAN. 4 parts — hexs and tets. Square cross section duct of air. Cooper cap piece.
Copper top hat. Graphite around duct. Neutron problem. Point source.

Background material (fix) test for neutrons and photons; UM is box shell w/ 1st order
hexs (296), inside & outside is background material; fill cell is a sphere of radius 7 and
this contains the background material outside of the mesh; source is on the spherical, fill
cell surface and is directed inward.

Electron ray-tracing using the same geometry as problem #1: 8 x 8 x 6, 6 parts, 6 different
element types.

Electron. Mimic regression problem #59. Electron beam on copper target. 8000 1st order
hexs. 1 part.

Electron. Slab problem with second-order tets. Turn off knock-on electrons and MCS (no
deflection). 15 instances. 36000 total tets. 2400 tets per part.

Modified (void) Big 10 geometry for ray tracing with second-order tets (3501). Tests tricky
intersection at edge/face where 2 attempts at the intersection routine are required.

Photon & electron. F8 and *F8 tally test w/ 1st order hex shells (air, carbon, aluminum).
3816 elements in 3 parts.

Guard against NaN’s in EEOUT because of improper normalization by voided elements that
have 0 density. Same as problem 1007 except half off the elements are voided. Reduced
number of edits on EMBEE’s. Slightly different tallies.

Electron problem; volume source; 11 parts; 13482 1st order tets - total; problem was in
infinite loop in strag landau because of d=0 being passed; offending history was 4192; 1
line fix in electron history to set dls to huge float.

Neutron problem to test tracking on hemi-head w/ mica washer; 13144 1st order hexs;
symmetric point source locations (+/-Y'); minute gaps in negative Y half that demonstrate
the tolerance of 1020 for distance-squared calculations.

LA-UR-17-22442 69 of 102

CHAPTER 12. VERIFICATION & VALIDATION

36.

37.

38.

39.

40.

41.

42.

43.

44.
45.
46.
47.

48.

49.

50.

51.

52.

Photon problem to test fix for source sampling of position from a distribution that exceeds
the extents of the underlying cell — hence cell rejection. Problem setup generated by
AttiladMC; 3 parts; 9014 1st order tets.

Multiple mesh test problem using the same 8-hex geometry of 1007. Simple cube model
used 3 times in 3 translated mesh universes. 8 1st order hex elements; 1 per octant. Each
element is a statistical set, 8 total. Fixed source, ray tracing from inward directed surface
source. Tally and edit results should be the element volume x source fraction. Tests 4
particles & 3 tracking loops: neutral particle low energy (neutrons & photons), low mass
charged (electrons), heavy mass charged (protons).

Proton energy deposition using the 8-hex geometry from 1007.

Kobayashi benchmark-like. Point detector ray-tracing — traces parallel to tet faces (initially
causing element selection confusion); 3 parts / 3 pseudo-cells; 228 1st order tets; volume
source.

Ueki benchmark-like. Point detector. Neutron. 1 pseudo-cell, but 9 parts in file. Checks
revised transm routine.

Multiple mesh test problem; peg w/ triangular cross section (448 1st order hexs, uranium
fuel) inside square donut (1206 1st order hexs, concrete); point source in peg.

Bank fill test when fissile material is in overlap region; 1st order hexs; Pu-box — 216 hexs;
poly shell — 1304 hexs; neutron fixed source.

Same as 1001 except generates MCNPUM file um1044.inp. GMV file is really MCNPUM file to
compare against the template.

Same as 1001 except uses MCNPUM file generated by 1043.

Continue run of 1044 using the MCNPUM file.

Same as 1012. Testing volume source with MCNPUM file. Testing MCNPUM as GMV.
Same as 1020. Testing volume sources with MCNPUM file. Testing MCNPUM as GMV.

Same as 1037. Testing multiple UM mesh files with 2 being Abaqus and 1 being MCNPUM.
Testing MCNPUM as GMV.

Flux multiplier test problem: eigenvalue problem with neutrons & photons; tests neutron
flux, fission power, photon tracks, photon population by comparing to F4 tallies; tests
neutron source by comparing to FMESH tally.

Flux multiplier test problem: fixed source problem neutrons only; comparing isotopic UM
edits with FMESH tallies like those presented in LA-UR-10-06217 example.

Flux multiplier test problem: fixed source; tests proton heating reaction, tracks, popula-
tion by comparing to F4 tallies; tests proton source by comparing to FMESH tally.

Flux multiplier test problem: fixed source; tests electron flux multiplier factor only by
comparing to F4 tallies.

LA-UR-17-22442 70 of 102

12.2. PUBLICATIONS & REPORTS

93.

o4.

95.

56.

o7.

o8.

59.

60.

61.

62.

63.

Continue run of 1047. Testing volume source continue run with MCNPUM file.
Energy deposition verification for protons; use 1007 & 1008 geometry; zinc target
Energy deposition verification for electrons; use 1007 & 1008 geometry; zinc target

Testing extraction of pseudo-cells from a part. Part #1 is 8-element hex cube where each
element is a pseudo-cell. Part #2 is 8-element cube where there is 1 pseudo-cell in the
part. Part #2 is used in 1st and 3rd instance. Part #1 is used in the 2nd instance.

Kobayashi benchmark. 17430 linear tets. Elsets with non-contiguous elements.

Godiva-like criticality problem; 896 1st order hexs; U-235; tests new top level tracking
routine where the source particle is on the surface of an element headed out — 5 surfaces
have intersection values of -1 and 1 surface has value of 0, resulting in nextEl being set to
-2.

Flux multiplier. Same as 1050. Tests that code can set up the necessary material / cross
section info from input on EMBEE cards and not the fm cards.

Fixed source neutron. Berp ball-like. Tests volume source selection in overlap region of
fissile and non-fissile material.

Fixed source photon source. 1008 geometry. Testing photonuclear flux multiplier on edits.

UM hex equivalent of advanced variance reduction class problem — concrete duct w/
penetration; mode n p; photon surface tally; multiple volume source; ensure sources don’t
start in void cell; many parts.

Similar to 1035 — modified hemi-head problem; parts w/ multiple pseudo-cells w/ element
numbers out of order; tests global element number from skdtree search using instFind
trees; mode n.

12.2 Publications & Reports

This section is a list of Verification & Validation (V&V) publications and reports on the UM,;
some are available on the mcnp.lanl.gov website.

12.2.1 Peer Reviewed Publications

e Roger L. Martz, “MCNP6 Unstructured Mesh Initial Validation and Performance Results,”

Nuclear Technology, Vol 180 (Dec 2011).

e Roger L. Martz and Kevin M. Marshall, “A Notable Comparison of Computation Geome-

tries in MCNP6 Calculations,” Nuclear Technology, Vol 184 (Nov 2013).

e Joel A. Kulesza and Roger L. Martz, “Evaluation of the Kobayashi Analytical Benchmark

Using MCNP6’s Unstructured Mesh Capabilities,” Nuclear Technology, Vol 195, (July
2016).

LA-UR-17-22442 71 of 102

CHAPTER 12. VERIFICATION & VALIDATION

Joel A. Kulesza and Roger L. Martz, “Evaluation of Pulsed Sphere Time-of-Flight and
Neutron Attenuation Experimental Benchmarks Using MCNP6’s Unstructured Mesh Ca-
pabilities,” Nuclear Technology, Vol 195, (July 2016).

Joel A. Kulesza and Roger L. Martz, “Evaluation of the Pool Critical Assembly Benchmark
with Explicitly Modeled Geometry using MCNP6’s Unstructured Mesh Capabilities,” to
be published in Proceedings of Sixteenth International Symposium on Reactor Dosimetry
(ISRD16), Santa Fe, New Mexico, May 7-12, 2017.

12.2.2 Los Alamos National Laboratory Reports

Roger L. Martz and David L. Crane, “Accurate Volume Calculations for Unstructured
Mesh Elements When Used to Model Primitive Objects,” Los Alamos National Laboratory
report LA-UR-10-02144 (2010) for American Nuclear Society RPSD 2010 Meeting, Las
Vegas, NV, April 18-23, 2010, on CD-ROM, American Nuclear Society, LaGrange Park,
IL (2010).

Karen C. Kelley, Roger L. Martz, and David L. Crane, “Riding Bare-Back on Unstructured
Mesh for 21st Century Criticality Calculations,” Los Alamos National Laboratory report
LA-UR-09-7320 (2010) for American Nuclear Society PHYSOR 2010 Meeting, Pittsburgh,
PA, May 9-14, 2010, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010).

Timothy P. Burke, et al., “Reactor Physics Verification of the MCNP6 Unstructured Mesh
Capability,” Los Alamos National Laboratory report LA-UR-12-24277 (2012) for American
Nuclear Society International Conference on Mathematics and Computational Methods
Applied to Nuclear Science and Engineering, Sun Valley, ID, May 5-9, 2013, on CD-ROM,
American Nuclear Society, LaGrange Park, IL (2013).

Roger L. Martz, "Flux Multiplier Capability for MCNP6 Unstructured Mesh Feature",
Los Alamos National Laboratory report LA-UR-16-22004 (2016).

Roger L. Martz, "Verification of the Multi-Mesh Capability for MCNP6s Unstructured
Mesh Feature", Los Alamos National Laboratory report LA-UR-16-23111 (2016).

Roger L. Martz, "The MCNPUM Capability for MCNP6s Unstructured Mesh Feature",
Los Alamos National Laboratory report LA-UR-16-23286 (2016).

Roger L. Martz, "Verification of Charged Particle Energy Deposition Edits for MCNPG6s
Unstructured Mesh Feature", Los Alamos National Laboratory report LA-UR-16-23771
(2016).

LA-UR-17-22442 72 of 102

Chapter 13

The UM POST OP Utility Program

13.1 Introduction

The um_ post_op (unstructured mesh post operations) program is a utility program that per-
forms various manipulations on MCNPG6’s elemental edit output file, EEOUT. This program is
written in Fortran and uses various routines and data structures from the Revised Extended Grid
Library (REGL) in order to maintain consistency with MCNP6. Like MCNP6, um_ post_op is
designed to run from the command line. Current supported features include adding and merging
multiple EEQUT files into one, converting binary files to ASCII, generating Visualization TooKit
(VTK) visualization files, creating instance-based pseudo-tallies, writing a single edit to a file,
and generating error histograms for those edits with errors. Some of these features support the
processing of multiple files with one command.

13.2 Valid Command Line Options

To be reminded of um_ post _op’s functionality and to see the command line options, enter the
following at the command line prompt:

um_post_op --help

Note, your path must include the path to the program. A message similar to the following
should appear:

*x UTILITY PROGRAM FOR UNSTRUCTURED MESH EEQUT FILE *x*
Functions:

1) add many eeout files into one

2) merge many eeout files into one

3) convert binary files into ascii files

4) generate vtk files for VisIt visualization
5) generate pseudo-tallies by pseudo-cell

6) write a single edit to an ascii file

7) generate a histogram of edit errors

LA-UR-17-22442 73 of 102

CHAPTER 13. THE UM_POST_ OP UTILITY PROGRAM

Command Line Arguments:

-h, --help summary of features & arguments
-a, --add add multiple files (no weighting)
-m, --merge merge multiple files

-0, --output single output file name

-P, --pos value range for wse and wsep

-bc, --binconvert convert binary file to ascii

-eh, --errorhist generate a histogram of edit errors
-ex, --extension multiple output file extension
-ta, --tally pseudo-tallies from file

-vtk, --vtkfile generate ascii visualization file
-wse, --writesedit write a single edit to file

13.3 Mutually Exclusive Options

This utility program has seven mutually exclusive options: merging (-m) many files into one
ASCII file, adding (-a) many files together into one ASCII file, converting (-bc) any number of
binary files into ASCII files, generating VTK files (-vtk) for visualization, generating pseudo-
tallies (-ta) for instances, writing a single edit (-wse) to an ASCII file, and generating a histogram
of edit errors (-eh) for those edits that have errors. Only one of these options may be requested
at a time.

13.4 The -0 and -ex Options

The output file name (-0, --output) and extension name (-ex, --extension) options are intended
to be mutually exclusive. The user should receive error messages if both of these arguments
appear on the same command line. However, one or the other must be used. The output file
name is intended for use when there is one EEQUT file to manipulate or many files that are to
be merged into one. The extension name is pre-appended with a period, ‘.’, and then appears
as the suffix to the input file name(s) when new files must be created after processing many
input files (e.g., converting many files from ASCII to binary). The first argument following these
arguments is interpreted as either the output file name or the extension name.

13.5 Merging Files

The original intent for this utility program was to establish a means of merging many EEQUT
files into one file. These many files are expected to be from independent runs of a problem so
that results are weighted by the number of histories in the file. This differs from adding files
where there is no history weighting.

When the um_post _op utility is given a list of files to merge into one, it reads the header
information (that includes number of nodes, materials, instances, tetrahedra, pentahedra, hex-
ahedra) and checks the consistency of this header information for each subsequent file against
the first file. For all files other than the first one, a message about that consistency is output to

LA-UR-17-22442 74 of 102

13.6. ADDING FILES

the terminal window. Without consistency among the files, the utility program can not make a
meaningful and successful merge.
If there is only one file specified for merging, the program will print out an error message
and stop. Since one file is created from many, the output file name argument is required.
Example command line:

um_post_op -m -o my_merge_file eeoutl eeout2 ... eeoutN

Note that the first argument after the -o argument is interpreted as the output file name.
At this time, the output file that is generated is ASCII, even if all of the input files are
binary. The input files may be any mixture of ASCII or binary.

13.6 Adding Files

This capability provides a means of adding (or collecting) many EEQUT files into one file. These
many files are expected to be from different calculational runs on the same mesh geometry;
results are NOT weighted by the number of histories in the file. Rather, already normalized
results are simply added together. This differs from merging files where there is history weight-
ing. For example, this capability is useful if there are different runs because independent sources
were used in different calculations and there is a need for the results to be combined.

Cautions and restrictions discussed under the merging files section apply here and are not
repeated.

Example command line:

um_post_op -a -o my_add_file eeoutl eeout2 ... eeoutN

Note that the first argument after the -o argument is interpreted as the output file name.

13.7 Converting Files

This capability allows the conversion of EEQUT files from binary format to ASCII. In performing
this operation there is a loss of precision since all double precision reals are written with only
six significant digits. Currently, there is no capability to convert from ASCII to binary.

On the command line, one or many files may be specified for conversion. When many files
are requested for conversion, there is no consistency check performed as there is when merging
files since that is a meaningless action for this option.

When the conversion request asks for only one file, the -o argument may be used. Example
command line:

um_post_op -bc -o eeout.ascii eeout.binary
It is also legitimate to use the -ex argument. Example command line:
um_post_op -bc -ex ascii eeout.binary

The resulting output file is named: eeout.binary.ascii
When more than one file is to be converted, the -ex argument must be used. Example
command line:

LA-UR-17-22442 75 of 102

CHAPTER 13. THE UM_POST_ OP UTILITY PROGRAM

um_post_op -bc -ex asc eeoutl eeout2 ... eeoutN
The resulting files appear with the names

eeoutl.asc eeout2.asc ... eeoutN.asc

13.8 Visualization Files

This capability should generate files in the VI'K format for visualization from EEQUT files. The
geometry data and the edit information is taken from the EEQUT file and reformatted to be
consistent with version 4.2 of the VTK standard and written to an ASCII file. Details on the
VTK file format and requirements can be found in the VTK documentation, available on the
worldwide web and in text books.

On the command line, one or many files may be specified for conversion to the VTK format.
When many files are requested for conversion, there is no consistency check performed as there
is when merging is requested since that is a meaningless action for this option.

When the generation request asks for only one file, the -o argument may be used.

Example command line:

um_post_op -vtk -o eeout.vtk eeoutl
It is also legitimate to use the -ex argument. Example command line:

um_post_op -vtk -ex vtk eeoutl
The resulting output file is named: eeoutl.vtk

When more than one file is to be generated, the -ex argument must be used. Example

command line:

um_post_op -vtk -ex vtk eeoutl eeout2 ... eeoutlN
The resulting files appear with the names

eeoutl.vtk eeout2.vtk ... eeoutN.vtk
Note that while it is possible to specify any file extension or output file name for the VTK file,

some visualization programs will not recognize it as such unless there is a VTK extension.
Note that this capability has not received extensive testing and may not be supported in the

future.

13.9 Generating Pseudo-Tallies

This capability will generate a pseudo-tally for each pseudo-cell from the corresponding edit and
write the results to an output file (see example at the end of this chapter). If no output file is

LA-UR-17-22442 76 of 102

13.10. WRITING A SINGLE EDIT TO A FILE

specified, the output is written to a file named “fort.1001”. These tallies are volume weighted
according to the following equation:

N
Z vol, - edit,

n=1

N
Zvoln
n=1

tally; =

where

tally; tally for pseudo-cell ¢ form corresponding edit
vol, volume of element n

edit, edit result of element n

N total number of elements in ¢

These results are termed pseudo-tallies since they are equivalent to an MCNP tally aver-
aged over a cell (i.e., F4, F6, F7), but do not have an associated statistical uncertainty, tally
fluctuation chart, etc. Note that these pseudo-tallies are over pseudo-cells.

On the command line one or many files may be specified for pseudo-tally creation. When
many files are requested for pseudo-tally creation, there is no consistency check performed as
there is when merging files since that is a meaningless action for this option.

When the conversion request asks for only one file, the -o argument may be used.

Example command line:

um_post_op -ta -o eeout.tally eeout.binary

It is also legitimate to use the -ex argument.

13.10 Writing A Single Edit To A File

This capability allows the user to write the edit results from a single edit in the EEQUT file
(see example at the end of this chapter) to an ASCII file that is reformatted with detailed
information. For each element in the problem (EEOUT file) the information that is available with
each edit result is element number, element type number, material number, density, volume,
and centroid location. The utility of this file is left to the imagination of the user. Results are
ordered by increasing element number.

This request requires that an edit number be specified with the um_ post op command line
argument, -wse or --writesedit; this number should be the argument immediately following this
keyword argument. The correct edit number can be found in the output from the pseudo-
tally option (see example at the end of this chapter for edit numbers in blue font), described
previously. Since an edit my contain multiple energy, time, and particle bins, using the internal
edit number requires less input on the um_post op command line.

Example command line:

um_post_op -wse 1 -0 eeout.wse eeoutl

LA-UR-17-22442 77 of 102

CHAPTER 13. THE UM_POST_ OP UTILITY PROGRAM

It is also legitimate to use the -ex argument.

It is possible to filter the output for this capability using the -p or --pos arguments. If the
value following this argument is 1 or 41, only values greater than zero are included in the edit.
Conversely, if the value following the argument is -1, only values less than or equal to zero are
included. If a real value is specified instead of the integers just described, its value is the decision
point with the sign of the value indicating whether the filter provides values greater than (+)
or less than or equal to (—).

Example command line requesting to see all results less than or equal to 0.005.

um_post_op -wse 1 -p -5.e-3 -0 eeout.wse eeoutl

13.11 Writing A Single Edit To A File By Position

This capability is similar to that discussed in the previous section, except that the output is
ordered by increasing position (i.e., x, y, z location). The appropriate arguments to use on the
command line are: -wsep or --writeseditpos. Value filtering, as described in the previous section,
works the same way with this capability.

13.12 Generating A Histogram Of Edit Errors

This capability allows the user to write error histograms to an output file for all of the edits
in the EEQUT file for which errors were requested (see example at the end of this chapter). If
no output file is specified, the output is written to a file named “fort.1001”. The number of
histogram bins can be specified directly after the -eh command line option. The default value
is 10 if none is specified. The error bins are defined such that the smallest error is assigned to
the first bin and the largest error is assigned to last bin. Bins are evenly spaced between the
first and the last bins. Relative error values are in the range of 0 to 1, inclusive. See Chapter 4
for more details on errors and the EEQUT file.

The essential header information from the EEQUT file is written at the beginning of the error
histogram file. Following this information, there is a section for each edit for which errors were
requested. There is a description of each edit. In each section following the edit description,
there are results by pseudo-cell and results over all mesh in the model. For each group of
results there is the minimum and maximum errors on the edit in addition to a table with the
error histogram. For each row in the histogram table there is the upper limit for the error bin,
the absolute number of elements that fall into this bin, the relative percentage these elements
represent of the total, and the cumulative percentage of the current row and all preceding rows.

Example command line specifying a table with 20 bins:

um_post_op -eh 20 -o my_error_histogram eeoutl

It is also legitimate to use the -ex argument.

13.13 Miscellaneous

The REGL routine that reads valid EEOUT files has the ability to detect whether the file it is
reading is ASCII or binary. If it can’t make a determination that the file is a valid EEQUT file,

LA-UR-17-22442 78 of 102

13.14. EXAMPLE PSEUDO-TALLY FILE

an error message appears in the terminal window. Therefore, when a list of files is specified on
the command line, for either merging, adding, or generating VTK files, they may be a mixture
of ASCII or binary.

13.14 Example Pseudo-Tally File

What follows is not a complete example. Only enough details are provided to illustrate the
main points.

Pseudo-tallies for eeout file via um_post_op
Eeout file: eeout1007

Created on : 4- 3-2012 @ 9: 0:37

Prob ID : simple cube, each element is a statistical set, 8 total
Calling Code : MCNP6

Inp File : inp1007

Outp File : inp10070

Runtpe File : inp1007r

Geom Inp File : uml007.inp

© 00~ U WN -

=
W =O

NUMBER OF NODES

NUMBER OF MATERIALS:
NUMBER OF INSTANCES:
NUMBER OF 1st TETS :
NUMBER OF 1st PENTS:
NUMBER OF 1st HEXS :
NUMBER OF 2nd TETS :
NUMBER OF 2nd PENTS:
NUMBER OF 2nd HEXS :
NUMBER OF COMPOSITS:
NUMBER OF HISTORIES: 1000
NUMBER OF REG EDITS: 19
NUMBER OF COM EDITS: 9

NN DN DNDDNNDNDDLN === =
O UL WNE O OO Utk
N

O OO 0WOO KKk

1 :: TALLY for EDIT__PARTICLE_1__TIME_BIN_1_ENERGY_BIN_1_FLUX_14

W NN
S © 0
2]
o
L]
=

Energy Bin Boundary: 1.00000E+36 Energy Bin Multiplier: 1.00000E+00
Time Bin Boundary : 1.00000E+33 Time Bin Multiplier : 1.00000E+00

W w w
W N =

Instance Name Volume Result

w
=

simple_cube-1 1.00000E+03 4.77743E-02

w w
D Ot
fure

2 :: TALLY for EDIT__PARTICLE_1__TIME_BIN_1_ENERGY_BIN_1_ENERGY_36

B W W W
O © 00
=
o
H
—

Energy Bin Boundary: 2.00000E+00 Energy Bin Multiplier: 1.00000E+00
41| Time Bin Boundary : 1.00000E+00 Time Bin Multiplier : 1.00000E+00
42
43| Instance Name Volume Result
44| -------- R T T T
45 1 simple_cube-1 1.00000E+03 8.12612E-03
46
L I e et e e
48| EDIT: 3 :: TALLY for EDIT__PARTICLE_1__TIME_BIN_1_ENERGY_BIN_2_ENERGY_36
49
50| Energy Bin Boundary: 1.00000E+10 Energy Bin Multiplier: 1.00000E+00
51 Time Bin Boundary : 1.00000E+00 Time Bin Multiplier : 1.00000E+00
52

LA-UR-17-22442 79 of 102

CHAPTER 13. THE UM_POST_ OP UTILITY PROGRAM

53| Instance Name Volume Result

54| -------- ———— e e

55 1 simple_cube-1 1.00000E+03 7.54778E-03

56

B mmm oo -
58| EDIT: 4 :: TALLY for EDIT__PARTICLE_1__TIME_BIN_2_ENERGY_BIN_1_ENERGY_36
59

60 Energy Bin Boundary: 2.00000E+00 Energy Bin Multiplier: 1.00000E+00

61| Time Bin Boundary : 1.00000E+39 Time Bin Multiplier : 1.00000E+00

62

63| Instance Name Volume Result

64| -------- ———— e e

65 1 simple_cube-1 1.00000E+03 7.84947E-03

66

BT | m oo o
68| EDIT: 5 :: TALLY for EDIT__PARTICLE_1__TIME_BIN_1_ENERGY_BIN_2_ENERGY_36
69

70| Energy Bin Boundary: 1.00000E+10 Energy Bin Multiplier: 1.00000E+00

71 Time Bin Boundary : 1.00000E+39 Time Bin Multiplier : 1.00000E+00

72

73| Instance Name Volume Result

74| -------- L

75 1 simple_cube-1 1.00000E+03 2.26368E-03

13.15 Example Single Edit File

LA-UR-17-22442 80 of 102

13.15. EXAMPLE SINGLE EDIT FILE

¢0-d98%¥6°¥ 00+30000S°C 00+30000S°CT 00+30000S°CT CTO+H000ST'T TO+dT0¥.8° T T 9 8
CO-F9TGEE'¥ 00+30000S°C 00+30000S°C- 00+30000S°C TO+3000ST'T TO+3T0%.8° T T 9 L
CO0-F96T¥T'S 00+30000S°L 00+30000S°'C 00+30000S°CT CTO+HO00ST'T TO+dT0%28° T T 9 9
20-36.86S % 00+30000S L 00+30000S°C- 00+30000S°C TO+H000ST'T TO+dT0%.8° T T 9 S
¢0-38%C66 ¥ 00+30000S°C 00+30000S°'C 00+30000S°'CT- <TO+H000ST'T TO+dT0¥L8° T T 9 4
20-3S8€66° % 00+30000S°C 00+30000S°C- 00+30000S°C- <TO+H000ST'T TO+dT0¥.8° T T 9 €
CO-H9STTL ¥ 00+30000S°L 00+30000S°C 00+30000S°C- <TO+H000ST'T TO+dT0VL8° T T 9 4
C0-35.005°'% 00+30000S°L 00+30000S°C- 00+30000S°C- <TO+H000ST'T TO+dT0%.8° T T 9 T
Z A X
1Insey proxjus) sunTop Kqtsusq Tetxeqel odLL JusweTH
00+300000°T : IoTTdraTny UTg oWIL €£+J00000°T : Axepunog urg ewrl

00+300000°F :xeoTTdTaTni utg L8xeud 9g+H00000°'T :Lrepunog utrg £Sxeuy

6 *SLIAT WOD 40 ¥IgWnNN
6T *S1ICd DFY 40 YIIWAN
0007 *SHIYOLSIH 40 ¥IIWNN
*S1IS0dW0O 40 YHIWAN
¢ SXdH Pug 40 ¥IIWNN
*SIN3d PUuz 40 YIGWAN
¢ SLdl puz 40 ¥IIWAN
¢ SXHH 3ST J0 YIdWAN
*SINdId 3ST 40 YIIWAN
¢ SIAL 3ST J0 YIIWAN
*SHONV.LISNI 40 HHIWAN
CSTVIMALYW J0 ¥IIWAN
: SHAON J0 YIIWNN

I+ O O 0O OO

~
N

dut-,00Tum : oTTg dul woey

x,00tdut : oTTg odauny

0,007dut : a1td dang

L007dut : oTtd dur

9dNOW : @pop SuriTed

Te303 g 39S TeOT3ST3e3S B ST Juawele yoes ‘oqnd oTdwrs : aIl qoxd

SC:11:CT O C102-€ ¥ uo pejesip

L00T3n098 :9TTF 3nosy
do~3sod”um ®BTA STTF 3N0®® JI0F 3TPe OTSUTS O3ITIMN

AN IFIIO OO AN FHLO O~ =AM FLOO0DHO M <f
HrA A A A A A A AN AN ANANANNANNNNNONONHNHNMNMNHNN

— NN <FIO O~ 000 O~
—

81 of 102

LA-UR-17-22442

© 00~ Uk WN

CHAPTER 13. THE UM_POST_ OP UTILITY PROGRAM

13.16 Example Error Histogram File

Write error histograms for eeout file via um_post_op
Eeout file: blockOl_6part_6type.eeout

Created on : 3-11-2014 @ 13: 8:21
Prob ID : blockO1 8x8x6 6 parts, 6 element types

Calling Code : MCNP6_DEVEL
Code Version : 6-1-02

Date & Time : 03/11/14 12.43.38
Inp File : blockOimgvi

Outp File : outy

Runtpe File : runtpn

Geom Inp File : job_block_6part_6type_O1.inp

NUMBER OF NODES : 1258
NUMBER OF MATERIALS: 6
NUMBER OF INSTANCES: 6
NUMBER OF 1st TETS : 30
NUMBER OF 1st PENTS: 8
NUMBER OF 1st HEXS : 128
NUMBER OF 2nd TETS : 29
NUMBER OF 2nd PENTS: 8
NUMBER OF 2nd HEXS : 128
NUMBER OF COMPOSITS: 0
NUMBER OF HISTORIES: 1000000
NUMBER OF REG EDITS: 2
NUMBER OF COM EDITS: 0

EDIT: EDIT__PARTICLE_1__TIME_BIN_1_ENERGY_BIN_1_FLUX_4

Energy Bin Boundary: 1.00000E+10 Energy Bin Multiplier:

Time Bin Boundary : 1.00000E+39 Time Bin Multiplier

Results for Instance # 1 :: part-end_quad_hex-1

Minmum Error : 1.64393E-02

Maximum Error : 1.70379E-02

Bin Width : 2.99308E-05

Bin Upper Absolute Relative Cumulative

Number Bound Number ¢))] €3]
1 1.6469E-02 1 0.7812 0.7812
2 1.6499E-02 1 0.7812 1.5625
3 1.6529E-02 3 2.3438 3.9062
4 1.6559E-02 5 3.9062 7.8125
5 1.6589E-02 0 0.0000 7.8125
6 1.6619E-02 7 5.4688 13.2812
7 1.6649E-02 6 4.6875 17.9688
8 1.6679E-02 14 10.9375 28.9062
9 1.6709E-02 5 3.9062 32.8125
10 1.6739E-02 6 4.6875 37.5000
11 1.6769E-02 13 10.1562 47.6562
12 1.6798E-02 14 10.9375 58.5938
13 1.6828E-02 12 9.3750 67.9688
14 1.6858E-02 11 8.5938 76.5625
15 1.6888E-02 5 3.9062 80.4688
16 1.6918E-02 10 7.8125 88.2812

1.00000E+00
1.00000E+00

LA-UR-17-22442 82 of 102

67

13.16. EXAMPLE ERROR HISTOGRAM FILE

17
18
19
20

e R e

(Results for

.6948E-02
.6978E-02
.7T008E-02
.7T038E-02

=W N

3.1250
5.4688
2.3438
0.7812

91.4062
96.8750
99.2188
100.0000

instances 2 through 6 were removed to make this example shorter.)

Results Over All Mesh

Minmum Error 9.33224E-03
Maximum Error 1.95299E-02
Bin Width 5.09881E-04
Bin Upper Absolute Relative Cumulative
Number Bound Number) (03]
1 9.8421E-03 4 1.2085 1.2085
2 1.0352E-02 8 2.4169 3.6254
3 1.0862E-02 0 0.0000 3.6254
4 1.1372E-02 0 0.0000 3.6254
5 1.1882E-02 4 1.2085 4.8338
6 1.2392E-02 1 0.3021 5.1360
7 1.2901E-02 0 0.0000 5.1360
8 1.3411E-02 3 0.9063 6.0423
9 1.3921E-02 3 0.9063 6.9486
10 1.4431E-02 9 2.7190 9.6677
11 1.4941E-02 9 2.7190 12.3867
12 1.5451E-02 4 1.2085 13.5952
13 1.5961E-02 0 0.0000 13.5952
14 1.6471E-02 15 4.5317 18.1269
15 1.6980E-02 241 72.8097 90.9366
16 1.7490E-02 18 5.4381 96.3746
17 1.8000E-02 5 1.5106 97.8852
18 1.8510E-02 6 1.8127 99.6979
19 1.9020E-02 0 0.0000 99.6979
20 1.9530E-02 1 0.3021 100.0000
LA-UR-17-22442 83 of 102

This page intentionally left blank.

Chapter 14

The UM PRE OP Utility Program

14.1 Introduction

The um_ pre_ op (unstructured mesh pre operations) program is a utility program that performs
various manipulations on input designed to aid in problem setup with the unstructured mesh
(UM). This program is written in Fortran and uses various routines and data structures from the
Revised Extended Grid Library (REGL) in order to maintain consistency with MCNP6. Like
MCNP6, um_pre_op is designed to run from the command line. Current supported features
include creating a skeleton MCNPG6 input deck (-m) from the Abaqus/CAE .inp file, converting
a simple lattice-voxel geometry (-1c) to an Abaqus .inp file, volume checking (-vc) the finite
element volumes, and element checking (-ec) the .inp file for twisted and /or deformed elements.
As with um_ post_op, there is limited error handling.

14.2 Valid Command Line Options

To be reminded of um_pre_op’s functionality and to see the command line options, enter the
following at the command line prompt:

um_pre_op --help

Note, your path must include the path to the program. A message similar to the following
should appear:

**x PRE-PROCESSOR PROGRAM FOR UM CAPABILITY x*x*

Functions:

1) Create MCNP input file from Abaqus .inp file

2) Convert MCNP simple lattice to Abaqus .inp file

3) Volume check the Abaqus .inp file and pseudo-cells
4) Element check the Abaqus .inp file

LA-UR-17-22442 85 of 102

CHAPTER 14. THE UM_PRE_ OP UTILITY PROGRAM

Command Line Arguments:

-b, --back background material for input file

-h, --help summary of features & arguments

-m, --mcnp generate MCNP skeleton input file --(1)
-0, --output output file name

-cf, --controlfile file with lattice conversion controls
-dc, --datacards data cards file to include

-ex, --extension output file extension

-ff, --fillfile file with lattice fill description

-lc, --latconvert convert simple lattice to Abaqus -- (2)
-vc, --volcheck volume check the .inp file -- (3
-ec, --elementcheck element check the .inp file -- (4)
-len, --length scale factor for mesh dimensions

14.3 Mutually Exclusive Options

Currently, this utility program has four mutually exclusive options: generating (-m) a skeleton
MCNP6 input file, converting (-1c) a simple lattice-voxel geometry to an Abaqus .inp file,
volume checking (-vc) the finite element volumes, and element checking (-vc) for twisted and/or
deformed elements.

14.4 The -o and -ex Options

The output file name (-0, --output) and extension name (-ex, --extension) options are
intended to be mutually exclusive. The user should receive error messages if both of these
arguments appear on the same command line. However, one or the other must be used except
where indicated in the following feature discussions. If the -o argument is present then the
output is placed in a file with the name (or argument) that immediately follows on the command
line. If the -ex argument is present, then the output is placed in a file with a name built from
the input file name followed by a period, ‘.’, and the argument immediately following on the
command line.

14.5 The -b Option

The -b option is currently only used with the -m option to specify a background cell material
number. See the discussion below for more information.

14.6 The -len Option

The -len option is currently only used with the -lc option. This is a scale factor to apply to
dimensions from the lattice mesh file.

LA-UR-17-22442 86 of 102

14.7. GENERATING AN MCNP6 INPUT FILE

14.7 Generating an MCNP6 Input File

A skeleton MCNP6 input file can be created from the Abaqus .inp file using the -m option.
The name of the input file to be created is set with either the -o or -ex options. The intent
of this option is to make it easier for users to get up and running with the unstructured mesh
capability and not necessarily to generate a fully functional input file. The degree to which a
fully functional input deck can be generated depends upon the completeness and correctness of
the data card file provided with the -dc option.

The um_ pre_op program can read the Abaqus .inp file and generate a global mesh model
just as if MCNP6 was performing this function. The information in the global mesh model
is then used to create the appropriate pseudo-cell cards, background cell, and minimal CSG
world to hold the mesh universe plus the embed control card for the data section. If more than
a minimal CSG structure is required outside the mesh universe, the user must create this by
hand.

If the -b option is not specified on the command line to supply a valid material number from
the Abaqus .inp file, um_pre op will make the background cell void. If an invalid material
number (i.e., a number for a material that is not defined in the .inp file) is specified with the -b
option, um_ pre_ op will default to making the background cell void. At this time the -b option
only works with the -m option.

When using the -m option it is possible to read a data cards file, -dc argument, for inclusion
in the new MCNPG6 input file. The um_pre_ op program scans the data cards file for existing
cards. For each particle on an existing and active mode card, a default flux edit (embee card)
is specified and written to the new input file. If active IMP cards are present in the data cards
file, they are written to the new input file, otherwise um_pre op creates default IMP cards for
each particle present on the mode card. If an active SDEF card is present in the data cards file,
it is written to the new input file, otherwise a skeleton SDEF card is written provided volume
source elsets are present in the .inp file. All other cards in the data cards file, regardless if they
are active cards or comments, are written to the new input file.

Note: At this point the material numbers for the material definitions in the data cards file
should be consistent with those used in the Abaqus .inp file. This may be the biggest source of
error for some users.

Example command line with data cards argument and the -b argument to use material 7
from the .inp file as the background material for the mesh universe:

um_pre_op --mcnp -o newinput abaqus.inp -dc dc_cards -b 7

14.8 Converting a Simple Lattice Geometry

Simple lattice geometries in MCNP6 that use the £i11 parameter along with the lat parameter
on a cell card can be converted to an Abaqus .inp file for use with the -m option described
previously or for viewing as an orphan mesh geometry in Abaqus. This lattice geometry is
described as simple in that each voxel should have a homogenous structure since each voxel is
converted to a first order hexahedra with a homogeneous material assignment.

For this feature, two input files are required and the .inp file must be specified using the -o
option; the -ex option is invalid here. In addition, a file named lat2abq. summary is created that
contains details about the conversion process. The first of the two input files must contain only

LA-UR-17-22442 87 of 102

CHAPTER 14. THE UM_PRE_ OP UTILITY PROGRAM

the fill information as it appears with the fill parameter on the MCNP6 lattice cell card. A
short example is given in Figure 14.1. This is known as the fill file and is specified to um_ pre_ op
with the -ff option. Any attempt to put other information is this file will undoubtedly cause
um_ pre_ op to terminate in an unfriendly manner.

Figure 14.1: Example fill file.

1 19R

2 7r 3 11R
22472r
224 2r
343R 34 3R

The second of the two required input files is the control file and is specified to the um_ pre_ op
program with the -cf option. An example is provided in Figure 14.2. As can be seen from the
description of this file that follows, there are a number of parameters that can be adjusted for
this feature, making it tedious to implement and use as command line options.

The first line in the control file is the title line. The line is required, must be the first line
in the file, and can contain 256 characters of information. This line is inserted in the Abaqus
.Anp file on the line after the *Heading parameter at the beginning of the file. This is the line
that is used for the MCNPG6 inp file title line if the um_pre_op -m option is invoked.

Any line after the first line with either a #, %, or $ in the first column is treated as a
comment line by um_pre op and ignored.

All of the other parameters for this feature are implemented with a set of keywords where
the keyword appears at the beginning of the line before any values. The keywords do not need
to start in the first column; they can be either upper case, lower case, or a mixture of both.
Most keywords have default values. Those that do not have defaults are required keywords and
should contain meaningful data.

The deltas keyword is required. Three values are needed that specify the length of the
voxels in centimeters along the x, y, and z directions. These values will be used to size the
hexahedra. All hexahedra will have these dimensions.

The £i1l keyword is required. Three sets of values for the x, y, and z directions are needed
in the same format that MCNPG6 requires for this keyword on the lattice cell card. Fach set
consists of two lattice locations separated by a colon. The value to the left of the colon is the
smallest index for that direction (for um_pre op this value should be 0) while the value to
the right of the colon is the largest index for that direction. The values specified for the £ill
keyword should be the full extents of the problem described in the fill file. A subset of this
geometry can be specified with the extents parameter described below.

The universe keyword is required. There may be as many universes specified on separate
lines in the control file as needed to fully describe the problem. For the sake of um_pre_ op
and converting a lattice description to an equivalent unstructured mesh equivalent, the concept
of a universe is more restrictive than what MCNP6 allows in general. As stated above, each
voxel in the lattice must be homogeneous so that one material can be assigned to it. Therefore,
the universe numbers double as material numbers. If the universe and material numbers don’t
coincide in the existing description, it is up to the user to ensure that they do coincide (are

LA-UR-17-22442 88 of 102

14.8. CONVERTING A SIMPLE LATTICE GEOMETRY

Figure 14.2: Example control file

Jacksonville 1000 x 1000 x 31 model; 1 meter resolution
Deltas 100 100 100

£i1l 0:999 0:999 0:30

Origin center

#

universe 1 -1.25000E-03 air
universe 2 -0.05 ext_building
universe 3 -0.01 int_building
universe 4 -1.2 ground

universe 5 -0.01 int_garage
universe 6 -0.087058 ext_garage
universe 7 -0.00125 air

#

exclude 1

extents 0 999 0 999 0 O
hints 200 200 50
threshhold 1

identical). If the user wishes to convert a more complex voxelized lattice to unstructured mesh,
the complex voxels must be homogenized.

Three values are required for each universe keyword. The first is the universe number.
There should be one for every universe number that is used in the fill file. The universe numbers
will be used as the material numbers when describing the material elsets in the Abaqus .inp
file. There is no default value for the universe number; so valid input is required. The second
value for the universe keyword is the material density (either number or physical). This value
will be written to the pseudo-cell cards if wm_pre op is used with the -m option on this file.
The third value for this keyword, is the universe / material name that can contain as many as
128 alphanumeric characters. This name is used in creating material and part names. More
information on the parts created in this process can be found in the discussion for the hints
keyword.

The following keywords are optional.

The exclude keyword is optional. It contains a single integer instructing um_pre_op to
exclude the specified universe number from any of the parts. In the Figure 14.2 example,
universe 1 is part of the simple lattice, but because it is air that we don’t want MCNP6 to
track through as a mesh, we exclude it. This can save computation time, but will not let the
program accumulate results on a mesh in these locations. When excluding any universe, it is
probably a good idea to set the background material for the mesh universe to this material; see
the -b option in conjunction with the -m option..

The extents keyword is optional and is used to select a contiguous extent of the lattice
specified from the £i1l keyword. Default values are 0, but any values specified are taken to
apply in the order lower z-index, upper z-index, lower y-index, upper y-index, lower z-index,
and upper z-index.

The hints keyword is optional, but highly recommended since values associated with this

LA-UR-17-22442 89 of 102

CHAPTER 14. THE UM_PRE_ OP UTILITY PROGRAM

keyword set the overall size of segments and parts. Three values, one for each direction, are
permitted with the default for each being 9999999. The values are not physical units, but rather
the number of columns (X), rows (Y), or planes (Z). Since MCNP6 input processing for parts
in the unstructured mesh can be time intensive if the parts have more than 750,000 elements,
it is best to segment any geometry, whether it comes from a lattice or not, into smaller pieces.
The values associated with this keyword provide guidance to um_pre op in order to create
these segments. um_ pre_ op will construct segments that are close to the size specified. Each
segment has a set of i-j-k indices that describes its location from the lower left hand corner in
the overall geometry. Once the segments are defined, the program can create parts from the
segments. All elements with the same material are lumped together into a part whose name is
derived from the i-j-k indices, the material number, and the material name. For example, a
part composed of the material “ground” with an associated material number of 4 and possessing

The origin keyword is optional and is used to adjust the location of the mesh origin. If
this keyword is not included, the origin defaults to 0 0 0, otherwise it is shifted to the value
specified. An X Y Z location can be specified, or as a convenience, the characters CENTER may
be input. With CENTER specified, the program calculates the problem’s center based upon the
overall extents specified with the fill and deltas keywords. Any triples of values causes the
origin to shift to that location.

The threshold keyword is optional. It contains a single value instructing um_pre op to
make parts when the number of elements in the part exceed the value specified. The default
value is 1. It is always a good idea to create parts with more than 1 element.

The information in the lat2abq.summary file is fairly self-explanatory. The information in
this file can help the user set or adjust values for the hints keyword, among other things. It
was decided that it was more appropriate to write this information to a file rather than to the
terminal screen.

Example command line to convert a simple lattice geometry:

um_pre_op -lc -o geomlattice.inp -ff fillfile -cf control

14.9 Volume Checking

This option enables the user to check the finite element volumes (against a value) and obtain
volumes and masses for the pseudo-cells. Results are printed to a file specified with either the
-0 or -ex options. See the results from the example file at the end of this chapter.

Any value appearing on the command line after the -vc argument is treated as the test value.
If this value is positive, um_pre_ op will print out all elements and their corresponding volumes
that are greater than or equal to the specified value. If this value is negative, all elements and
their corresponding volumes that are less than or equal to the specified value are printed. If no
value follows the -vc argument, the test is for volumes less than or equal to zero.

Once the volume checks are performed on all of the finite elements, um_pre_op calculates
the volumes and masses for all of the pseudo-cells. Masses are based on the densities that are
present in the Abaqus .inp file. This information appears in the output file after the element
listing from the finite element volume check. After this, a list of the instance names appears
followed by a list of the material names and associated densities.

Example command line to find all finite elements with a volume less than or equal to 15:

LA-UR-17-22442 90 of 102

14.10. ELEMENT CHECKING

um_pre_op -vc -15 -o vc.out simple_cube_warped.inp

14.10 Element Checking

This option enables the user to check the .inp file for deformed and/or twisted elements by
calculating the determinant of the Jacobian at the appropriate Gauss points and at all node lo-
cations that define the finite element. Normal elements (i.e., not deformed or twisted) will have
a positive Jacobian indicating that each point (finite volume) in the master space is mapped to
an appropriate point (finite volume) in the global space (where some of the tracking algorithms
operate). However, very small positive values indicate distortion in the mapping. With appro-
priate positive Jacobians, the volumes and masses will be correct (as modeled) and there should
be no problem with the particle transport.

If a failed element is found (negative Jacobian) during the execution of this option, the global
element number and appropriate location information are written to the terminal screen. This
same information as well as the results for the Jacobian evaluation at each Gauss and node point
are written to the file specified with either the -o or -ex options. Note that the information is
organized by instance. See the results from the example file at the end of this chapter. It is the
user’s responsibility to fix the problem mesh with the appropriate meshing tool.

Example command line:

um_pre_op -ec -o warped.out simple_cube_warped.inp

LA-UR-17-22442 91 of 102

CHAPTER 14. THE UM_PRE_ OP UTILITY PROGRAM

Figure 14.3: Example twisted first-order tetrahedra

LA-UR-17-22442 92 of 102

© 00~ U WN -

14.11.

EXAMPLE VOLUME CHECK FILE

14.11 Example Volume Check File

simple warped cube

- Data from file
- Created on

: simple_cube_warped.inp
1-17-2014 @ 14: 0:58

1.50000E+01 : 1

Cell Instance Part Material Denisty Volume Mass
1 1 1 1 -8.95000 9.99219E+03
Instance Name
1 simple_cube-1
Material Denisty Name
1 -8.95000 material-copper_01
2 -2.25000 material-graphite_02

8.94301E+04

14.12 Example Element Check File

LA-UR-17-22442 93 of 102

CHAPTER 14. THE UM_PRE_ OP UTILITY PROGRAM

T0-3SC"T-
TO0-3ST"T-
T0-3SC°T
T0-3SC°T
T0-3SC°T
T10-3S2°7
T0-3ST°T
T0-3SC°7T
uetqooer

sopoy ooedg Ie3sSe| 3y SOnNTe) 93RUTWIDIS(J

¢0-350°€-
¢0-350°€-
¢0-dge’8
¢0-d€e’8
¢0-dge’8
¢0-d€e’8
TO-3%1°T
T0-d%1°1
uetqooer

00000°T 00000°T
00000 T 00000°T
00000°T 00000°T
00000°T 00000°T
00000°T- 00000°T
00000°T- 00000°T
00000°T- 00000°T
00000°T- 00000°T

squtod sS

GELLS'O0 SELLS'O
GE€LLS°0 SELLS'O
SELLS'0 SELLS'O
GE€LLS°0 SELLS'O
SE€LLS 0~ SELLS'O
GELLS 0~ SELLS'O
G€LLG°0- SGELLS'O
GELLS 0~ SELLS'O

squtod SS

00000 T~

00000° T
- 00000°T
- 00000°7T-

00000° T~

00000 T
- 00000°T
- 00000°T-
nen

SELLS O~

S€LLS°0
- S§E€LLS'0
- S§€LLS°O-

SELLS O~

SELLSO
- S€LLS°0
- S§E€LLS'O-
nen

S1UTOd SSnesH 3y sonfe) 93eUTWISISQ

00+400000°C
00+d00000°C
00+400000°T
00+d00000° T
00+400000°C
00+300000°C
00+300000° T
00+300000° T

00+d0000S" T

00+300000°0
00+300000° T
00+400000°0
00+300000° T
00+400000°T
00+300000°0
00+300000°0
00+300000° T
A
T0-300000°S

00+400000° T
00+300000° T
00+400000° T
00+300000° T
00+400000°C
00+400000°C
00+300000°C
00+400000°C
A X
00+d0000S° T

A NMF 0N O~ —NM WO~ 00

N M W0 O~ o0

T
:sopoN
:pTOIjuUL)

!SQUSWSTS POTTeJ JFO Joqunu Te3o]

‘paTTer T 1queweTH

1-oqno-3xed T

L B an B I TnliNe]

94 of 102

LA-UR-17-22442

Chapter 15

The UM CONVERT Utility Program

15.1 Introduction

The um_ convert (unstructured mesh convertor) program is a command-line utility program that
takes the information in the Abaqus .inp file and processes it with the UM input processing
routines from REGL to produce the internal data structures that MCNPG6 needs. The data from
these internal data structures are written to a new file type, MCNPUM, that MCNP6 can quickly
read before launching into calculations. With the MCNPUM file type the UM input processing start
up penalty need not happen every time the UM geometry is required. This can save substantial
time for large mesh geometries that are used repeatedly. Details on the structure of this file and
its contents are best learned from looking at the source code.

15.2 Valid Command Line Options

To be reminded of um_ convert’s functionality and to see the command line options, enter the
following at the command line prompt:

um_convert_op --help

Note, your path must include the path to the program. A message similar to the following
should appear in the command window:

**% UNSTRUCTURED MESH CONVERSION PROGRAM *x*
Functions:

1) Convert ABAQUS inp file to mcnpum file
Command Line Arguments:

-h, --help summary of features & arguments

-b, --binary create mcnpum in binary format

-a, --abaqus ABAQUS input file -- (D
-0, --output um_convert output file name

-t, --threads number of threads

-um, --mcnpum mcnpum output file name

LA-UR-17-22442 95 of 102

CHAPTER 15. THE UM_CONVERT UTILITY PROGRAM

15.3 The -b Option

This argument (-b, --binary) requests that the MCNPUM file be created as a binary file instead
of ASCII. ASCII is default and results if this option is not specified.

15.4 The -a Option

This argument (-a, --abaqus) followed by the file name of the Abaqus .inp file communicates
this information to the utility program. This information is required.

15.5 The -o Option

This argument (-o, --output) followed by a file name tells the utility program where to write
messages and information from the file conversion process. The information that MCNP6 would
normally print to its outp file when building the unstructured mesh model is written to this
file. This argument is optional. If no name is specified, the information is written to the
um_convert.out file.

15.6 The -t Option

This argument (-t, --threads) followed by a number sets the number of OpenMP threads
for use in the conversion process. The user should be careful and not oversubscribe threads by
requesting too large of a number. (See Section 15.8). This is an optional argument. The default
value is 1.

15.7 The -um Option

This argument (-um, --mcnpum) followed by a file name tells the utility program what to call
the MCNPUM file that it generates. If no name is specified, the information is written to the
um_convert.mcnpun file.

15.8 Program Execution

The um_convert utility is a highly parallelized program that can be compiled to use MPI
processes, OpenMP threads, and vectorized loops. As a note to those wishing to build the
code on their systems from the source, the following is the appropriate command line (using
the traditional MCNP6 make system) that will build the code with MPI processes, OpenMP
threads, and vectorized loops once the mainline MCNP6 code has been built:

make depends build CONFI="’intel openmpi omp’’ FC_OPT="’-03"’ GNUJ=4

Normal execution of um_ convert from the command line will result in messages similar to the
following appearing in the command window:

LA-UR-17-22442 96 of 102

15.9. PERFORMANCE

UM_CONVERT input processing begins. 11- 9-2015 @ 9:46:31
Max threads available: 16
Global Tracking Model Complete
Element Neighbors Found
Part Cell Surfaces Complete
SKD-Trees Build Complete
Element Connectivity Complete
um_convert execution time 19.6 sec
UM_CONVERT input processing ends. 11- 9-2015 @ 9:46:50

Note that the program provides the user with the maximum number of available threads. The
product of the number of MPI processes and the number of threads, specified with the -t Option,
should not exceed the number of cpu cores present or performance will be degraded.

A combination of MPI processes and OpenMP threads should produce the shortest execu-
tion times on most systems. If the user doesn’t have MPI available (e.g., a desktop Windows
machine), executing with the maximum number of available threads should still produce ac-
ceptable execution times. The utility will process one part / instance at a time, using all of the
requested threads as it needs them.

If the user is running on a Linux cluster where MPI has been installed, a combination of
MPI processes and OpenMP threads is recommended. As always, performance is contingent on
the number of parts / instances in the Abaqus inp file. If there are more cpu cores available than
parts / instances, then specifying one MPI process for each part / instance with several threads
per process is recommended. If fewer MPI processes are specified than parts / instances, then
um_ convert will give each process a number of parts / instances to work on in a sequential
fashion much like MCNP6 does with its parallel processing of parts / instances. In this later
scenario where there are more parts / instances than cpu cores, it may be beneficial to reduce
the number of MPI processes so that each process has two threads. This should help when one
or a few parts have substantially more elements than the other parts.

Unlike MCNP6 where the master MPI process basically functions as a controller during the
calculational phase, all MPI processes in the um_ convert utility have a chunk of the parts /
instances with which to work.

As a reminder when using MPI processes and OpenMP threads together on certain Linux
clusters, the mpi_paffinity_alone and bynode switches (or their equivalent) may be necessary
when using mpirun to ensure that threads are assigned to the correct hardware. Check you MPI
install.

15.9 Performance

In order to provide some insight on choosing the number of processes and threads when there
are more parts / instances in the model than there are available processes so that there is one
part / instance per process, a short study was conducted with a rather large model. The model
consists of 400 parts, where there is one instance of each part, or a total of ~1.48 million first-
order tetrahedra. The size of the parts ranged from a few hundred elements to ~ 44 thousand
elements. This variability in part size does not make an ideal input processing situation from
the point of load balancing. Invariably, with the way the parts / instances are assigned to the
processes, some processes will finish well before others and remain idle. This scenario is a likely

LA-UR-17-22442 97 of 102

CHAPTER 15. THE UM_CONVERT UTILITY PROGRAM

one for users.

These tests were performed on one of LANL’s high-performance Chaos linux clusters during
November 2015. Each node has 16 Intel Xeon E5-2670 cpu’s operating at 2.6 GHz. Each cpu
has ~200 MB of cache and ~2 GB of RAM. During these tests, eight nodes were available for a
total of 128 cpus. Because this model was so large and the memory per cpu limited, 128 MPI
processes couldn’t be requested for the MCNPG6 tests and neither 64 nor 128 MPI processes
could be requested for the um_ convert tests. Each test was performed a number of times and
averages appear in Tables 15.1 (MCNP6) and 15.2 (um_ convert).

Table 15.1: MCNP6 Input Processing Performance

| # MPI / # Threads | Time (sec) |

64 /2 204
32 /4 159
16 /8 133
8/ 16 160

Table 15.2: um_convert Performance

MPI / Time (sec) # MPI / Time (sec) # MPI / Time (sec)
Threads # Threads # Threads
32/ 1 221 16/ 1 305 8/ 1 429
32 /2 167 16 / 2 204 8 /2 304
32 /4 137 16 /4 153 8 /4 221
16 /8 125 8/8 173
8 /16 143

LA-UR-17-22442

98 of 102

Acknowledgements

Over the years, the following personnel have been a part of the MCNP6 unstructured mesh
development team, either full-time or part-time, and have contributed in some form to its
development.

Roger L. Martz; development and documentation lead, chief architect of REGL
David L. Crane; finite element methods, Abaqus interfacing
Karen C. Kelley; verification and validation, requirements

Steven S. McCready; Engineering Campaign 7 Program funding lead, verification and
validation, requirements

Lawrence J. Cox; user interface; software quality assurance

Tim Goorley; ASC Program funding lead, verification and validation

Casey Anderson; Vislt (visualization) post-processing; verification and validation
Chelsea D’Angelo; verification and validation

Jeffrey Bull; technical reviews

David Dixon; technical reviews

Joel Kulesza; verification and validation; Iy X / KTEX support

C. J. Solomon Jr.; verification and validation, requirements, technical review

Kristofer Zieb; performance testing

MCNPG6 unstructured mesh development over the life of this work was funded from the US De-
partment Of Energy’s NNSA -- Advanced Strategic Computing (ASC) and Engineering Cam-
paign 7 (C7) programs. We thank these sponsors.

LA-UR-17-22442 99 of 102

This page intentionally left blank.

Bibliography

[1] X-5 MONTE CARLO TEAM, “MCNP - A General Monte Carlo N-Particle Transport
Code, Version 5, Volume I: Overview and Theory,” Los Alamos National Laboratory report

LA-UR-03-1987 (April 2003).

[2] T. Goorley, et al., “Initial MCNP6 Release Overview,” Nuclear Technology, 180, 3, 298-315
(2012).

[3] Timothy J. Tautges, Paul P. H. Wilson, Jason A. Kraftcheck, Brandon M. Smith, Douglass
L. Henderson, “Acceleration Techniques For Direct Use Of CAD-Based Geometries In Monte
Carlo Radiation Transport,” International Conference On Mathematics, Computational
Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009, on CD-ROM,
American Nuclear Society, LaGrange Park, IL (2009).

[4] Yican Wu, Qin Zeng, and Lei Lu, “CAD-Based Modeling For 3D Particle Transport,”
International Conference On Mathematics, Computational Methods & Reactor Physics,
Saratoga Springs, New York, Mary 3-7, 2009, on CD-ROM, American Nuclear Society,
LaGrange Park, IL (2009).

[5] D. GroBe and H. Tsige-Tamirat, “Current Status of the CAD Interface Program McCad
for MC Particle Transport Calculations,” International Conference On Mathematics, Com-
putational Methods & Reactor Physics, Saratoga Springs, New York, May 3-7, 2009, on
CD-ROM, American Nuclear Society, LaGrange Park, IL (2009).

[6] Dassault Systémes Simulia, Inc., “ABAQUS USER MANUALS, Version 6.9,” Providence,
RI (2009).

[7] CUBIT Geometry and Meshing Toolkit, Version 13.0, February 2011,
http://cubit.sandia.gov .

[8] Frank A. Ortega, “General Mesh Viewer User’s Manual GMV Version 3.8”, Los Alamos
National Laboratory report LA-UR-95-2986 (1995).

[9] Roger L. Martz, “The MCNPUM Capability for MCNP6’s Unstructured Mesh Feature,”
Los Alamos National Laboratory report LA-UR-16-23286 (2016).

LA-UR-17-22442 101 of 102

This page intentionally left blank.

	Overview
	Terminology
	Constructing A Mesh Geometry
	Naming elsets and materials
	Pseudo-Cell Creation
	Mesh Universe
	Overlaps

	Output: Elemental Edits
	Input Cards
	Cell Cards
	Data Cards
	EMBED
	EMBEE
	EMBEB
	EMBEM
	EMBTB
	EMBTM
	EMBDE / EMBDF
	SDEF VOLUMER

	Volume Sources
	Initial Run Example
	Continue Run Example

	Parallel Input Execution
	MCNP6 Plotter
	Limitations and Restrictions
	The Abaqus Input File
	Introduction
	Abaqus inp File
	Part
	Node
	Element
	Element Set
	End Part
	Assembly
	Instance
	Material
	Density
	Example Abaqus .inp File

	The EEOUT File
	Introduction
	EEOUT File
	Self-Describing File
	Identification Segment
	Title Line Segment
	Data Segment

	The EEOUT File Description
	First Line
	First Data Set
	Calling Code Labels
	Integer Parameters
	Real Parameters
	Particle List
	Particle Edit List
	Edit Description
	Edit Data Groups
	Materials
	Cumulative Instance Element Totals
	Instance Element Names
	Instance Element Type Totals
	Nodes Group
	Element Type
	Element Materials
	Connectivity Data Group
	Nearest Neighbor Data Group
	Edit Sets Group: Data Output and Data Sets
	Centroids Group
	Densities & Volumes

	Example EEOUT File

	Other Files
	GMV File
	The MCNPUM File

	Verification & Validation
	Regression Test Problems
	Publications & Reports
	Peer Reviewed Publications
	Los Alamos National Laboratory Reports

	The UM_POST_OP Utility Program
	Introduction
	Valid Command Line Options
	Mutually Exclusive Options
	The -o and -ex Options
	Merging Files
	Adding Files
	Converting Files
	Visualization Files
	Generating Pseudo-Tallies
	Writing A Single Edit To A File
	Writing A Single Edit To A File By Position
	Generating A Histogram Of Edit Errors
	Miscellaneous
	Example Pseudo-Tally File
	Example Single Edit File
	Example Error Histogram File

	The UM_PRE_OP Utility Program
	Introduction
	Valid Command Line Options
	Mutually Exclusive Options
	The -o and -ex Options
	The -b Option
	The -len Option
	Generating an MCNP6 Input File
	Converting a Simple Lattice Geometry
	Volume Checking
	Element Checking
	Example Volume Check File
	Example Element Check File

	The UM_CONVERT Utility Program
	Introduction
	Valid Command Line Options
	The -b Option
	The -a Option
	The -o Option
	The -t Option
	The -um Option
	Program Execution
	Performance

