Title: Performance Assessment of Cost-Optimized Variance Reduction Parameters in Radiation Shielding Scenarios

Author(s): Kulesza, Joel A.
Solomon, Clell Jeffrey Jr.
Kiedrowski, Brian C.
Larsen, Edward W.

Issued: 2017-04-06 (Draft)
Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.
Performance Assessment of Cost-Optimized Variance Reduction Parameters in Radiation Shielding Scenarios

Joel A. Kulesza1,2, Clell J. (CJ) Solomon, Jr.2, Brian C. Kiedrowski1, Edward W. Larsen1

1University of Michigan, Department of Nuclear Engineering & Radiological Sciences
2355 Bonisteel Blvd., Ann Arbor, MI, 48109

2Los Alamos National Laboratory, Monte Carlo Methods, Codes, and Applications Group
P.O. Box 1663, Los Alamos, NM, 87545

jkulesza@umich.edu, csolomon@lanl.gov, bckiedro@umich.edu, edlarsen@umich.edu

American Nuclear Society
International Conference on Mathematics & Computational Methods
April 16–20, 2017
Acknowledgements

This work is supported by the Department of Energy National Nuclear Security Administration (NNSA) Engineering Campaign 7. It is also supported by the NNSA under Award Number(s) DE-NA0002576 and in part by the NNSA Office of Defense Nuclear Nonproliferation R&D through the Consortium for Nonproliferation Enabling Capabilities.
OUTLINE

Introduction & Background

Methodology

Test Problem Description

Test Problem Results

Summary & Future Work
Introduction & Background

Objective: compare weight-dependent (WD) and -independent (WI) variance reduction (VR) parameter optimization approaches

- “Traditional” hybrid methods: minimize variance
 - AVATAR (Riper et al., 1997)
 - LIFT (Turner and Larsen, 1997)
 - FW-CADIS (Wagner and Haghighat, 1998)
 - State-of-the-art: FW-CADIS via ADVANTG (Mosher et al., 2015)
- This method: minimize computational cost (i.e., maximize FOM)
 - Computational cost inversely proportional to FOM
 \[
 \tilde{C} (\{VR\}) = \tilde{\sigma}^2 (\{VR\}) \tilde{\tau} (\{VR\})
 \] (1)
- Method implemented via COVRT (Solomon et al., 2014)
 - Calculate $\tilde{\sigma}^2$ and $\tilde{\tau}$ deterministically
 - Optimize these quantities by varying VR parameters
Methodology Overview

- Cost-optimized methods are Monte Carlo code agnostic
- Specific implementations are directly related to a Monte Carlo code
 - Descriptions of geometry, materials, tallies, sources, etc.
 - VR technique availability & implementation
 - Weight-dependent vs. weight-independent techniques
 - Performance measure for various physical & computational events
- Basic Steps
 1. Solve History-Score Moment Equations
 2. Solve Future Time Equations
 3. Calculate computational cost, $\tilde{C} (\{VR\}) = \tilde{\sigma}^2 (\{VR\}) \tilde{\tau} (\{VR\})$
 4. Vary VR parameters, perform 1–3, compare with previous cost
 5. Repeat, as necessary, until $\tilde{C} (\{VR\})$ is minimized
History-Score-Moment Equations (HSMEs) (1/4)

- Construct & discretize weight-augmented phase space:

\[P = (x, \Omega, E, w) = (R, w) \]

Define scoring functions and transport kernels
- How a particle contributes score in \(ds \) about \(s \) in its next event
 - Examples: \(p_\Sigma(P, s_\Sigma) \, ds_\Sigma, \, p_C(P, s_C) \, ds_C \)
- How a particle moves through phase space and changes weight
 - Analog emergence (single scattering) kernel example:

\[
E(P_0, P_1) \, dP_1 = \delta(x_1 - x_0) \, p(\Omega_0, E_0 \rightarrow \Omega_1, E_1) \times \delta(w_1 - w_0) \\
\times dx_1 \, d\Omega_1 \, dE_1 \, dw_1
\]

- Assemble transport kernels into continuous random walks
History-Score-Moment Equations (HSMEs) (2/4)

- Analog collision with scattering example:

\[
\psi_E(P_0, s) \, ds = \int dP_1 \, T(P_0, P_1) \int dP_2 \Sigma(P_1, P_2) \\
\times \int ds_\Sigma \rho_\Sigma(P_2, s_\Sigma) \int dP_3 \, E(P_2, P_3) \psi(P_3, s - s_\Sigma) \, ds
\] (4)

- Assemble into history-score probability distribution function \(\psi(P_0, s) \, ds \)

\[
\psi(P_0, s) \, ds = \sum_i \psi_i(P_0, s) \, ds
\] (5)

- Probability of contributing score \(ds \) about \(s \) from phase space \(P_0 \)
History-Score-Moment Equations (HSMEs) (3/4)

- The m moments of the history-score distribution are:

\[
M_m(P_0) = \int_{-\infty}^{\infty} s^m \psi(P_0, s) \, ds \tag{6}
\]

- First moment ($m = 1$) comparable to adjoint integral transport equation

- Associated detector responses (with physical source term $Q(P_0)$) are:

\[
\tilde{D}_m = \int M_m(P_0) Q(P_0) \, dP_0 \tag{7}
\]

- Population variance is:

\[
\tilde{\sigma}^2 = \tilde{D}_2 - \tilde{D}_1^2 \tag{8}
\]

- Difficulty of solving for $M_{m>1}(P_0)$ affected by VR techniques used
History-Score-Moment Equations (HSMEs) (4/4)

- Weight separability with weight-independent VR techniques (Booth and Cashwell, 1979):

\[M_m (R, aw) = a^m M_m (R, w) = a^m w^m M_m (R, w = 1) \] \hspace{1cm} (9)

- This separability shows that weight-independent techniques do not require a discretized weight mesh for any moments
 - Reduced memory requirements
 - Reduced deterministic solver computational time
 - Permits easier incorporation into pre-existing deterministic solver

Can WI techniques perform as well as WD techniques?
Future Time Equations (FTEs) (1/1)

- Construct future time distribution like history-score probability distribution:

\[
\Upsilon (P_0, \tau) d\tau = \sum_t \left[\prod_{n_t=1}^{N_t} \int dP_{n_t} B_{n_t} (P_{n_t-1}, P_{n_t}) \tau_{n_t} (B_{n_t}, P_{n_t}) \right] d\tau \quad (10)
\]

- Each \(\tau_{n_t} \) from profiled Monte Carlo code calculations, \(\mathcal{O} \left(10^{-7} \text{ minutes} \right) \)

- Similar to history-score-moment distribution, expected future time of particle at \(P_0 \) is:

\[
\overline{\tau} (P_0) = \int_0^\infty \tau \Upsilon (P_0, \tau) d\tau \quad (11)
\]

- Expected future time of a particle then calculated as:

\[
\tilde{\tau} = \int \overline{\tau} (P_0) Q (P_0) dP_0 \quad (12)
\]
Tophat & Three-legged Duct, from Solomon (2010)

![Diagram showing different regions with varying cross-sections and labels for surface tally, void, source, and cross-sections with values of Σ_t.

- Surface Tally
- Void
- $\Sigma_t = 1.0 \text{ cm}^{-1}$
- $\Sigma_t = 0.2 \text{ cm}^{-1}$
- $\Sigma_t = 2.0 \text{ cm}^{-1}$

x [cm]

y [cm]

x [cm]

y [cm]
Mini2Room, inspired by Kulesza et al. (2016)
Tophat First and Second Moment Solutions

![Diagram showing Tophat First and Second Moment Solutions](image-url)

- **M_1**
- **Optimized M_2**
Mini2Room First and Second Moment Solutions

M_1

Optimized M_2
Tophat & Three-legged Duct Results

- WI FOM ratio usually as good or better than WD
- WI $\sim 10 \times$ faster
- WI uses $\sim 100 \times$ less memory
- Means approach unity as the quadrature is refined
- Variance & FOM show no substantial change
- Relatively coarse quadrature can be effective
- Iterative optimization depends on relative changes

<table>
<thead>
<tr>
<th>Geometry</th>
<th>WD-WWa</th>
<th>WI-Ib</th>
<th>WI-WWc</th>
</tr>
</thead>
<tbody>
<tr>
<td>THd</td>
<td>3.46</td>
<td>3.53</td>
<td>5.78</td>
</tr>
<tr>
<td>TLDe</td>
<td>7.26</td>
<td>7.26</td>
<td>6.77</td>
</tr>
</tbody>
</table>

a WD COVRT \rightarrow Weight Windows
b WI COVRT \rightarrow Importances
c WI COVRT \rightarrow Importances \rightarrow Weight Windows
d Tophat
e Three-legged Duct
Extended Tophat & Three-legged Duct FOM Ratios

![Graph showing extended Tophat and three-legged duct FOM ratios.](image-url)

- **Tophat, WD-WW**
- **3-Leg, WD-WW**
- **Tophat, WI-I**
- **3-Leg, WI-I**
- **Tophat, WI-WW**
- **3-Leg, WI-WW**

Figure of Merit Ratio

Extension Length [cm]
Mini2Room Comparison with ADVANTG

- ADVANTG (S_4, 27 neutron groups), FOM: 3.0
- COVRT (S_4, 2, 4, 8, and 27 neutron groups), FOMs: 15, 6.3, 3.8, 6.5
 - Varying FOM due to multi-group COVRT calculations collapsed to one-group importances
 - A variety of collapsing schemes were explored, but none gave consistent or consistently improved FOMs
- ADVANTG time: 8 seconds, MCNP time: 65 hours
 - Long-running histories in MCNP drove time up
- COVRT time: 0.3, 1.0, 5.3, 48.0 hours, MCNP time: 34–116 minutes
 - COVRT time scales linearly with workload
 - Multiple optimization passes for each energy group
Summary & Future Work

- Demonstrated the effectiveness of cost-optimized VR parameters
- Optimized WI techniques can be as, or more, effective than WD
 - Significant savings in deterministic runtime & memory requirements
- Varying levels of agreement between mean and variance values
- Optimization depends on relative changes
- Highly angle-dependent problems challenge these methods
- Value in creating hybrid radiation transport method benchmark suite
- Extension of history-score-moment and future-time equations to DXTRAN
Questions?

Contact Information

Joel A. Kulesza
Mobile: +1 (734) 223–7312 Email: jkulesza@umich.edu

CJ Solomon
Office: +1 (505) 665–5720 Email: csolomon@lanl.gov

Brian C. Kiedrowski
Office: +1 (734) 615–5978 Email: bckiedro@umich.edu

Edward W. Larsen
Office: +1 (734) 936–0124 Email: edlarsen@umich.edu
Backup Slides
Mini2Room Optimized Second Moment, S_4 vs. S_{12}
Tophat Second Moment & Importances

- Optimized M_2
- Optimized Importances
Mini2Room Second Moment & Importances

Optimized M_2

Optimized Importances
References

References

