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Introduction & Background

Objective: compare weight-dependent (WD) and -independent (WI) variance
reduction (VR) parameter optimization approaches

I “Traditional” hybrid methods: minimize variance
I AVATAR (Riper et al., 1997)
I LIFT (Turner and Larsen, 1997)
I FW-CADIS (Wagner and Haghighat, 1998)
I State-of-the-art: FW-CADIS via ADVANTG (Mosher et al., 2015)

I This method: minimize computational cost (i.e., maximize FOM)
I Computational cost inversely proportional to FOM

C̃ ({VR}) = σ̃2 ({VR}) τ̃ ({VR}) (1)

I Method implemented via COVRT (Solomon et al., 2014)
I Calculate σ̃2 and τ̃ deterministically
I Optimize these quantities by varying VR parameters
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Methodology Overview

I Cost-optimized methods are Monte Carlo code agnostic
I Specific implementations are directly related to a Monte Carlo code

I Descriptions of geometry, materials, tallies, sources, etc.
I VR technique availability & implementation
I Weight-dependent vs. weight-independent techniques

I Performance measure for various physical & computational events
I Basic Steps
1. Solve History-Score Moment Equations
2. Solve Future Time Equations
3. Calculate computational cost, C̃ ({VR}) = σ̃2 ({VR}) τ̃ ({VR})
4. Vary VR parameters, perform 1–3, compare with previous cost
5. Repeat, as necessary, until C̃ ({VR}) is minimized
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History-Score-Moment Equations (HSMEs) (1/4)

I Construct & discretize weight-augmented phase space:

PPP = (xxx,ΩΩΩ,E,w) = (RRR,w) (2)

I Define scoring functions and transport kernels
I How a particle contributes score in ds about s in its next event
I Examples: pΣ (PPP, sΣ) dsΣ, pC (PPP, sC) dsC

I How a particle moves through phase space and changes weight
I Analog emergence (single scattering) kernel example:

E (PPP0,PPP1) dPPP1 = δ (x1 − x0) p (ΩΩΩ0,E0 → ΩΩΩ1,E1)

× δ (w1 − w0) dx1dΩ1dE1dw1 (3)

I Assemble transport kernels into continuous random walks
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History-Score-Moment Equations (HSMEs) (2/4)
I Analog collision with scattering example:

ψE (PPP0, s) ds =

ˆ
dPPP1T (PPP0,PPP1)

ˆ
dPPP2Σ (PPP1,PPP2)

×
ˆ

dsΣpΣ (PPP2, sΣ)

ˆ
dPPP3E (PPP2,PPP3)ψ (PPP3, s− sΣ) ds (4)

I Assemble into history-score probability distribution function ψ (PPP0, s) ds

ψ (PPP0, s) ds =
∑

i

ψi (PPP0, s) ds (5)

I Probability of contributing score ds about s from phase space PPP0
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History-Score-Moment Equations (HSMEs) (3/4)
I The m moments of the history-score distribution are:

Mm (PPP0) =

∞̂

−∞

smψ (PPP0, s) ds (6)

I First moment (m = 1) comparable to adjoint integral transport equation
I Associated detector responses (with physical source term Q (PPP0)) are:

D̃m =

ˆ
Mm (PPP0) Q (PPP0) dPPP0 (7)

I Population variance is:
σ̃2 = D̃2 − D̃2

1 (8)
I Difficulty of solving for Mm>1 (PPP0) affected by VR techniques used
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History-Score-Moment Equations (HSMEs) (4/4)
I Weight separability with weight-independent VR techniques (Booth
and Cashwell, 1979):

Mm (RRR, aw) = amMm (RRR,w) = amwmMm (RRR,w = 1) (9)

I This separability shows that weight-independent techniques do not
require a discretized weight mesh for any moments

I Reduced memory requirements
I Reduced deterministic solver computational time
I Permits easier incorporation into pre-existing deterministic solver

Can WI techniques perform as well as WD techniques?
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Future Time Equations (FTEs) (1/1)

I Construct future time distribution like history-score probability
distribution:

Υ (PPP0, τ) dτ =
∑

t

[ Nt∏
nt=1

ˆ
dPPPntBnt (PPPnt−1,PPPnt) τnt (Bnt ,PPPnt)

]
dτ (10)

I Each τnt from profiled Monte Carlo code calculations, O
(
10−7 minutes

)
I Similar to history-score-moment distribution, expected future time of
particle at PPP0 is:

τ (PPP0) =

∞̂

0

τΥ (PPP0, τ) dτ (11)

I Expected future time of a particle then calculated as:

τ̃ =

ˆ
τ (PPP0) Q (PPP0) dPPP0 (12)
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Tophat & Three-legged Duct, from Solomon (2010)

11 / 19



Introduction & Background Methodology Test Problem Description Test Problem Results Summary & Future Work

Mini2Room, inspired by Kulesza et al. (2016)
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Tophat First and Second Moment Solutions

M1 Optimized M2
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Mini2Room First and Second Moment Solutions

M1

Optimized M2
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Tophat & Three-legged Duct Results

I WI FOM ratio usually as good
or better than WD

I WI ∼10× faster
I WI uses ∼100× less memory

I Means approach unity as the
quadrature is refined

I Variance & FOM show no
substantial change

I Relatively coarse quadrature
can be effective

I Iterative optimization depends
on relative changes

MCNP FOM Ratios, Higher is Better
Geometry WD-WWa WI-Ib WI-WWc

THd 3.46 3.53 5.78
TLDe 7.26 7.26 6.77

a WD COVRT→Weight Windows
b WI COVRT→ Importances
c WI COVRT→ Importances→Weight Windows
d Tophat
e Three-legged Duct
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Extended Tophat & Three-legged Duct FOM Ratios
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Mini2Room Comparison with ADVANTG

I ADVANTG (S4, 27 neutron groups), FOM: 3.0
I COVRT (S4, 2, 4, 8, and 27 neutron groups), FOMs: 15, 6.3, 3.8, 6.5

I Varying FOM due to multi-group COVRT calculations collapsed to
one-group importances

I A variety of collapsing schemes were explored, but none gave
consistent or consistently improved FOMs

I ADVANTG time: 8 seconds, MCNP time: 65 hours
I Long-running histories in MCNP drove time up

I COVRT time: 0.3, 1.0, 5.3, 48.0 hours, MCNP time: 34–116 minutes
I COVRT time scales linearly with workload
I Multiple optimization passes for each energy group
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Summary & Future Work

I Demonstrated the effectiveness of cost-optimized VR parameters
I Optimized WI techniques can be as, or more, effective than WD

I Significant savings in deterministic runtime & memory requirements
I Varying levels of agreement between mean and variance values

I Optimization depends on relative changes
I Highly angle-dependent problems challenge these methods
I Value in creating hybrid radiation transport method benchmark suite
I Extension of history-score-moment and future-time equations to
DXTRAN
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