
LA-UR-17-30373
Approved for public release; distribution is unlimited.

Title: How to Build MCNP 6.2

Author(s): Bull, Jeffrey S.
MCNP Development Team, XCP Division

Intended for: Report

Issued: 2017-11-13

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

How to Build MCNP 6.2

MCNP6 Development Team

Los Alamos National Laboratory, PO Box 1663, MS A143, Los Alamos NM 87545

 INTRODUCTION

MCNP®* 6.2 can be compiled on Macs, PCs, and most Linux systems. It can also be built for parallel
execution using both OpenMP and Messing Passing Interface (MPI) methods. MCNP6 requires Fortran,
C, and C++ compilers to build the code. The Fortran compiler must be compliant with the 2003 Fortran
Standard [ISO04]. On a Linux type platform, the build system is based upon GNU make [STA98], which
is widely used to build and execute code [STA02a, STA02b]. GNU make may be installed on a system
with the name gmake or make, depending on choices of the system administrator at installation. In this
document, use of the name make is assumed to refer to GNU make. New in MCNP 6.2 is the ability to
compile using Microsoft Visual Studio on Windows systems.

With make, building MCNP6 for a variety of hardware platforms is made relatively easy for end-users.
The end-user simply types a make command, optionally specifying the desired target names and
configuration features.

For the rest of this document, directory names will be subdirectories of the MCNP_CODE/MCNP620
directory in the MCNP6 installation directory.

As of the date of this document, these Fortran compilers are known to build MCNP 6.2:

Compiler Versions†
gfortran 4.8.5 – 6.4.0
Intel 15.0.5 –

18.0
PGI (Linux) 14.10 –

16.10

Versions 7.1 and higher of gfortran do not compile MCNP 6.2

New compiler versions are often released a few times a year, and some of them may not compile MCNP6.
Check the MCNP FAQ (https://mcnp.lanl.gov/mcnp_faq.shtml) web page for the latest information on
which compilers do not build MCNP6, and if any changes can be made to the source code or
configuration files so that MCNP6 can be built with these troublesome compilers.

* MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Los Alamos National Security, LLC,
manager and operator of Los Alamos National Laboratory. Any third party use of such registered marks should be
properly attributed to Los Alamos National Security, LLC, including the use of the ® designation as appropriate.
Any questions regarding licensing, proper use, and/or proper attribution of Los Alamos National Security, LLC
marks should be directed to trademarks@lanl.gov.

† Only a sampling of compiler versions were tested in these ranges.

https://mcnp.lanl.gov/mcnp_faq.shtml
https://mcnp.lanl.gov/mcnp_faq.shtml

2

 CONFIGURING AND BUILDING MCNP6

Before building MCNP6, check that the compilers to be used are installed and can be executed directly
from the command line. This can be checked with the which command (e.g., which ifort; which gcc).
Compilers and libraries are referenced in the Source/config/$(OS).gcf files, where $(OS) is a
particular operating system: Linux, Darwin (Mac OS X), or Windows (Cygwin). Rules associated with
file name extensions for the compiler used on each platform also appear in these files. Although the
Source/config directory contains several other $(OS).gcf files, they have not been updated in several
years, and are unlikely to build MCNP6.

2.1 THE CONFIG MAKE VARIABLE

The CONFIG variable, usually included on the make command line, controls which compilers are used to
build the code and which features are included in the build. Table 2-1 contains a partial list of CONFIG
options.

Table 2-1. MCNP6 CONFIG variable options

CONFIG option Description

FORTRAN COMPILERS*

intel Use the Intel Fortran compiler (default)

gfortran Use the GNU gfortran compiler

C/C++ compilers*

gcc Use the GNU gcc/g++ compiler (default)

Other options (Note: these options must be included to activate
these features)

debug
Compile the code for debugging. Optimizations
are turned off and Fortran post-processed files
are kept in the Source/TMP_FPP directory

ints_8byte Default integer sizes are set to 8-bytes.

jav Do not delete the post processed files in the
Source/TMP_FPP directory.

mpi*
Build the code that uses Message Passing
Interface (MPI) parallelization

omp Build the code with OpenMP parallelization.

*Additional compiler and MPI options are also available. See Section 2.4 for more information

3

CONFIG option Description

plot Include tally and geometry plotting capability

For all systems, the default CONFIG variable is "intel plot omp".

2.2 BUILDING MCNP6 WITH MAKE*

From the Source directory, build the executable by issuing the following commands:

make realclean
make build

The first command will delete all the files created from previous builds, including test results. It will also
delete most of the MCNP6 and MCNP6 Utility executable files in the /bin directory. The second
command will build the default configuration of MCNP6 using to the settings found in the <OS>.gcf file
for the computer system in use.

To build a configuration other than the default, add the desired options on the make command line using
the CONFIG make variable:

make build CONFIG="new config options"

The new MCNP6 executable, named mcnp6, will be placed into the /bin directory. If compiling the code
with the mpi option, the new executable is named mcnp6.mpi.

The build can be executed in parallel if more than one processor is available. Parallel build is controlled
through the make variable GNUJ. For example, the make command "make build GNUJ=4" will invoke a
four-way build. That is, make will attempt to compile four source files simultaneously.

Additional make targets are available in the MCNP6 build system. These are listed in Table 2-2.

Table 2-2. Commonly Used MCNP6 Build System Make Command Targets

Make Target Function

build

Compiles MCNP6.

If the CONFIG options are not the same as the contents of
the CONFIG_SAVE file, this will also perform a
"realclean"

clean Delete compiled object and module files

depends Build the mcnp object dependency files

*The commonly used make targets such as "clean" and "install" are redefined in the MCNP6 build system.

4

Make Target Function

install

Perform a realclean

Build mcnp6

Build the mcnp6 utilities

Run the REGRSSION test set with both type 1and type 2
data sets. Includes running makxsf [BRO06] to create the
type 2 data sets

mcnp_env Create the source file Source/src/mcnp_env.F90 which
contains information about the build

realclean Same as clean, but also delete the object dependency files,
Source/src/mcnp_env.F90, and the CONFIG_SAVE file

test Run the Regression test set

utils Build the MCNP6 utilities

2.3 PARALLELISM SUPPORT SOFTWARE

MCNP6 can be built with either or both of shared-memory and distributed-memory parallelism. OpenMP
is used for shared memory parallelism (threading). OpenMP is supported directly by the compilers and is
built into the executable during compilation. No additional software is needed. The prebuilt executables in
the MCNP6 distribution are compiled for OpenMP threading.

For distributed memory parallelism, MCNP6 exclusively uses the Message Passing Interface (MPI)
communications protocol.

2.3.1 Installing MPI Software
To build and run MCNP6 with MPI, a properly implemented version of MPI with Fortran bindings must
be installed on the system. Many MPI implementations are available, with most common versions used
with MCNP6 are OpenMPI, Intel-MPI, and MPICH.

Most systems do not include MPI software by default, requiring the user to install it themselves. For
Linux systems, MPI can be installed using the distribution’s package manager. Mac's also have package
mangers (e.g., MacPorts (https://www.macports.org/) or Homebrew (https://brew.sh/) which
can be used to install MPI software. There are two supported Windows versions of MPI that can be used
with the Intel compiler. Microsoft MPI can be downloaded for free from the Microsoft Developer
Network web site (https://msdn.microsoft.com/). Intel includes their version of MPI software with
the Intel Parallel Studio XE Cluster Edition for Windows.

Most MPI implementations also provide source code which can be used by the user to compile and install
the software. If compiling from source, be sure to set the MPI_ROOT environment variable to the MPI
installation directory. In addition, add the MPI executables (usually in $MPI_ROOT/bin) to your $PATH.

http://www.openmp.org/
https://www.macports.org/
https://brew.sh/
https://msdn.microsoft.com/

5

2.3.2 Building MCNP6 with MPI

To build MCNP6 with MPI, just add the option mpi to the CONFIG variable. For example.

 make build CONFIG="plot mpi omp intel"

If using Intel-MPI, replace "mpi" with "intelmpi".

2.4 BUILDING MCNP6 ON SPECIFIC PLATFORMS

2.4.1 Linux*
Default CONFIG variable: "intel plot omp"

Additional Fortran complier options:

 gfortran: compile with the GNU Fortran and C/C++ compilers
portland: compile with the Portland Group Fortran compiler

Additional C/C++ compiler options:

 icc: compile with the Intel C/C++

Notes:

1. To compile MCNP6 with plotting support the X11 header files must be installed. On many
Linux distributions the X11 libraries may be installed without the header files. The header
files will commonly be available through the Linux distribution’s package manager in a
"development," "dev," or "devel" package.

2. On many Linux systems, the GNU suite of compilers may not be installed by default or only
parts of the suite may be installed (e.g., gcc and g++ but not gfortran). The GNU suite of
compilers can be installed from source (https://gcc.gnu.org/) or by using the Linux
distribution’s package manager.

3. For the Portland Group Fortran compiler, the "omp" option is disabled.

4. If using the gfortran compiler with later versions of OpenMPI (1.7 or higher), segmentation
faults may occur if compiled together with OpenMP. In that case, recompile MCNP6 without
the omp CONFIG option.

2.4.2 Mac OsX
Default CONFIG variable: "intel plot omp"

Additional Fortran complier options:

* Including Linux on Windows. Note: Linux on Windows is not an OS supported by the MCNP Development Team.

https://gcc.gnu.org/

6

 gfortran: compile with the GNU Fortran compiler

Additional C/C++ compiler options:

 none

Notes:

1. To compile MCNP6 with the plotting capability, X11 libraries must be installed. The
XQuartz project (https://www.xquartz.org) provides the necessary X11 libraries for Mac
OS X.

2. The GNU Fortran compiler is not installed by default. It can be installed via one the Mac OS
X package managers, e.g., MacPorts (https://www.macports.org/) or Homebrew
(https://brew.sh/), or by obtaining the sources and compiling it yourself
(https://gcc.gnu.org/).

2.4.3 Cygwin (Windows)
Default CONFIG variable: "intel plot omp"

Additional Fortran compiler options:

 gfortran: compile with the GNU Fortran and C/C++ compilers
 mingw64: compile using the MingGW-64 Fortran and C/C++ compilers

C/C++ compiler options (Intel compiler only):

icl: compile using the Intel C/C++ compiler
msvc: compile using the Microsoft C/C++ compiler (default)

MPI options:

intelmpi: compile using the Intel MPI package (Intel compiler only)
msmpi: compile using the Microsoft MPI package (Intel compiler only)
openmpi: compile using OpenMPI MPI package (gfortran compiler only)

Notes:
1. To setup the environment to use the Intel compiler, it is recommended that the user first open

the Intel compiler command prompt, and then start Cygwin in the same terminal window.

2. When compiled with the Intel compiler, mcnp6 needs access to two dynamically linked
libraries, (libiomp5md.dll and X11_64.dll) to be able to run. If these libraries are not in the
$PATH environment variable, they must be in the same directory as the mcnp6 executable.*

3. The libiomp5md.dll library provided with the MCNP6 installation is for the 17.0.1 version of
the Intel compiler, and might not be compatible with newer or older versions of the compiler.

*If MCNP6 was installed using Cygwin, the $PATH variable already includes these libraries.

https://www.xquartz.org/
https://www.macports.org/
https://brew.sh/
https://gcc.gnu.org/

7

Be sure that the newly compiled mcnp6 executable is using the correct version of
libiomp5md.dll.

4. To compile with either the gfortran or the mingw64 compilers, the Cygwin packages (gcc-
fortran for gfortran, mingw64-x86_64-gcc-fortran for mingw64) must to be installed.

5. There are no additional C/C++ compiler options for gfortran and mingw64.

6. For MPI, gfortran must use the OpenMPI package provided by Cygwin. The OpenMPI

package is not installed by default.

7. The mingw64 compiler option will not build with the Cygwin OpenMPI package.

2.4.4 Visual Studio (Windows)
Four configurations are provided for the MCNP6 Visual Studio solution:

Release same as make CONFIG="intel omp plot"

Debug same as make CONFIG="debug intel omp plot"

MS_MPI_Release
compile using Microsoft MPI
same as make CONFIG="intel msmpi omp plot"

Intel_MPI_Release
compile using Intel MPI
same as make CONFIG="intel intelmpi omp plot"

Notes:
1. The Visual Studio solution file is located in the Source\Visual_Studio folder.

2. Either the Microsoft or Intel C/C++ compilers can be used with Visual_Studio.

3. When compiled within Visual Studio, mcnp6 needs access to two dynamically linked

libraries, (libiomp5md.dll and X11_64.dll) to be able to run. If these libraries are not in the
%PATH% environment variable, they must be in the same folder as the mcnp6 executable.
These libraries are only in %PATH% if running mcnp6 using the MCNP6.2 CMD shortcut.

4. The libiomp5md.dll library provided with the MCNP6 installation is for the 17.0.1 version of

the Intel compiler, and might not be compatible with newer or older versions of the compiler.
Be sure that the newly compiled mcnp6 executable is using the correct version of
libiomp5md.dll.

2.5 THE SOURCE DIRECTORY

This directory contains all the source code files needed for MCNP6 and the top-level Makefile for
building the code. The Source/src directory contains the main source code for MCNP6. The directories

8

cgm, dedx, hexs, import, incl_abla, lcs, and llnlfiss contain the source code for specific code
packages that have been incorporated into MCNP6.

The Makefile in this directory is used to invoke the main functions required for building and testing the
code including the cleaning of all directories (removing files from previous builds and testing), building
the MCNP6 executable(s), building the MCNP6 utilities in the Utilities folder, and regression testing of
the code.

2.6 SOURCE/CONFIG DIRECTORY

This directory contains files needed to setup the build configuration. The files in this directory include the
following:

<OS>.gcf (with <OS>=Linux, Darwin, Windows)
make_depends.pl
make_setup.mk
mcnp_env.pl
VC_info.gcf

The system-dependent configuration files have names of the form <OS>.gcf. These files contain system-
dependent defaults, values of compiler flags, and links to specific files and libraries which are used for
certain options such as plotting.

The file make_setup.mk contains Makefile elements common to all operating systems.

The script mcnp_env.pl, together with the VC_info.gcf file, generate a Fortran source code file,
Source/src/mcnp_env.F90, which includes information about the build including, but not limited to,

• The date of the build,
• The compiler versions used,
• The configuration options, and
• The code version information.

The script make_depends.pl is used to generate the list of files (FILE_list) and their dependencies
(Depends). These files are located in the directory module_lib/, which is created by the build system, if
not present. This directory and all of its contents are deleted by the command "make realclean"

2.7 MCNP620/UTILITIES DIRECTORY

The Makefile in this directory generates many of the MCNP6 utilities and places them in the bin
directory. These utilities include:

• The event-log analyzer (ela.pl)
• FIT_OTF*
• gridconv*
• makxsf*
• mcnp_pstudy

* At present, the utilities FIT_OTF, gridconv, makxsf, and um_convert can only be built with the Intel Fortran
compiler

9

• merge_mctal
• merge_meshtal
• simple_ace.pl
• the unstructured mesh utilities (um_convert*, um_post_op, and um_pre_op)

The utilities can be built by entering "make utils" from the MCNP620 directory, or just "make" in the
MCNP620/Utilities directory. If not using the Intel Fortran compiler, add CONFIG="compiler" to the
make line

2.8 TESTING/REGRESSION DIRECTORY

The Makefile in this directory is used to execute the regression test suite and present a summary of the
test results in comparison against the standard templates (expected answers) included in the MCNP6
distribution. The list of numbers after each test input name are the length, in bytes, of the difference
between the calculation and the appropriate template. The summary table also includes information about
parallelism used in the calculations, if used. All templates in the distribution were generated by a
sequentially run, default-built executable.

Don't be surprised if the summary table lists a few test differences. Differences are possible if mcnp6 is
compiled or executed with different compilers, operating systems, and/or hardware. The report
"MCNP6.2.0 Release Testing" [MCN17] includes testing results from several different computer
environments.

An additional option is to run the tests with type-2 data. With this option, the regression tests are run with
type-1 data and then MAKXSF is executed to generate type-2 data files. Then the regression tests are
repeated with the type-2 data. The summary table indicates when type-2 data results are being shown.

It is important to note that most options can be overridden on the make command line. For example, if a
user wants to execute the tests with OpenMP threading, say with three threads, the following command
will do so:

make test1 NTRD=3

This assumes that the executable has been built with threading enabled.

Note: Sequential or OpenMP executables will have the same name, mcnp6, while MPI executables,
with or without OpenMP capability, will be named mcnp6.mpi.

The regression tests can also be executed with MPI distributed memory parallelism. The command form
for MPI test execution [with optional threading] is

make CONFIG=mpi* NMPI=<n> [NTRD=<m>]

where <n> is the number of MPI processes (master plus workers) and <m> is the number of OpenMP
threads per MPI process. (Leave off the square and angle brackets). The command-line option,
CONFIG=mpi, causes make to look for an executable named mcnp6.mpi and issues appropriate MPI
commands for execution, e.g., mpirun. This execution form will use (1+(n-1)*m) processes: 1 master
MPI task; and (n-1) MPI workers—each consisting of (m) threads.

* If mcnp6 was compiled with intelmpi or msmpi configuration options,

10

If using the Windows terminal, the batch file RunRegression.bat is used to run the REGRESSION
tests. This script does not support testing mcnp in parallel.

 ADDITIONAL SOFTWARE

3.1 INSTALLING A LINUX EMULATOR FOR WINDOWS—CYGWIN

To use the make-based MCNP6 build system, a Linux-like command environment must be available.
Cygwin, a freeware port of a Linux command shell for Windows, is one such emulator and provides all
necessary and desirable Linux commands.

To install Cygwin, follow the instructions on its website, http://www.cygwin.org. MCNP6 requires the
64-bit installation of Cygwin. In addition to the default Cygwin packages, MCNP6 needs the perl,
diffutils, and make packages to use the make utility for building and testing. Other packages that can
be used by MCNP6 are gcc-fortran, mingw64-x86-gcc-fortran, and openmpi

3.2 INSTALLING PLOTTING SOFTWARE—X-WINDOWS CLIENT

In order to use the MCNP6 plotter, an X11 windows client/server software package is needed. The
MCNP6 team does not recommend or endorse any of these products, free or commercial. The listed
X-Window servers have been tested with MCNP6.

For Windows, Xming is a popular X-Windows software package. Cygwin also provides an X-Windows
package, X11. There are also several commercial X-Windows products available for Windows operating
systems

For Mac OS X, the XQuartz project (https://www.xquartz.org/) provides X11 libraries and server
support.

For Linux, X11 libraries are standard.

 TESTING

4.1 TEST EXECUTION

After building an MCNP6 executable, we strongly recommend that you verify its functionality by running
the REGRESSION/ test suite located in the Testing/ directory. The Testing/ directory contains cross-
section files and libraries used with the set of tests in the same directory.

The Source/ and Testing/ directories are at the same directory level in the MCNP6 distribution. You
can run the REGRESSION/ tests from within the Source/ directory.

If you wish to run the tests with only type-1 (ASCII) cross-section data, use the command
make test1

If you wish to run the tests with only type-2 (binary) cross-section data, use the command
make test2

https://www.xquartz.org/)

11

Although the REGRESSION/ test suite runs a variety of differently contrived tests, it does not test the
plotting utilities. To run a few simple tests of the plotting utilities, work from the Testing/REGRESSION/
directory:

cd ../Testing/REGRESSION

4.2 TESTING THE PLOTTER

MCNP6 supports three types of plotting. Testing of each is discussed in the following section. The
instructions for each type of test assume the following:

1. The DISPLAY environment variable has been properly set,

2. An X11 server has been started, and

3. The REGRESSION/ test suite has been run as described above.
• This leaves the directory suitably set up for plotter testing.
• If this is not the case, issue to following commands to set up for the plotter tests:

make type1 (to link in cross-section files)
cp Inputs/inp01 . (to get inp01 into the working directory)

4.2.1 Geometry Plotting—PLOT Utility
Run the executable (mcnp6) and specify the input file (i=inp01), the cross-section file
(xsdir=testdir1), and options to process input and enable geometric plotting (ip) with the command
shown below:

../../bin/mcnp6 i=inp01 xsdir=testdir1 ip

Interact with the plot window that appears according to the instructions in the MCNP6 User's Manual. To
end the session, click End in the bottom plot window menu. If a plot window appears, the plotter is
working.

4.2.2 Tally Plotting—MCPLOT Utility
Run the executable (mcnp6) and specify the input file (i=inp01), the output file (o=out01), the runtpe file
(r=rtpe01), and the cross-section file (xsdir=testdir1) with the command shown below:

../../bin/mcnp6 i=inp01 o=out01 r=rtpe01 xsdir=testdir1

Run the executable (mcnp6) and specify the runtpe file where results of the prior run were collected
(r=rtpe01), and enable tally plotting (z) with the command shown below:

../../bin/mcnp6 r=rtpe01 z

When the mcplot> prompt shows up, specify the tally (tally 1) and a tally fluctuation chart (tfc=m)
with the command shown below:

tally 1 tfc=m

To end the session, give the command shown below:
exit

12

4.2.3 Cross-Section Plotting—MCPLOT Utility
In the example that follows, a simple neutron transport problem is used and the default particle type in use
is neutrons (par=n).

Run the executable (mcnp6) and specify the input file (i=inp01), the cross-section file
(xsdir=testdir1), and the options to process input (i), process cross sections (x), and enable cross-
section plotting (z) with the command shown below:

../../bin/mcnp6 i=inp01 xsdir=testdir1 ixz

When the mcplot> prompt shows up, specify appropriate commands and values from the input file inp01
(e.g., material 1 (xs=m1) and reaction identifier 1 (mt=1)) with the command shown below:

xs=m1 mt=1

Try another plot at the mcplot> prompt (e.g., material 2 (xs=m2) and reaction identifier 2 (mt=2)) with the
command shown below:

xs=m2 mt=2

To end the session, give the command as shown below:
exit

 MODIFYING THE SOURCE CODE

To make local changes to a copy of MCNP6, simply edit the appropriate source files. A partial directory
source code structure for MCNP6 follows:

Source/
Makefile (the controlling Makefile)
Visual_Studio/ (Microsoft Visual Studio files)
X11R6/ (X11 header and library files)
config/ (build configuration files)
cgm/
dedx/
hexs/
import/
incl_abla/
lcs/
llnlfiss/
Makefile
regl/
src/

Except for config/, Visual_Studio/, and X11R6/, these directories contain source files used to build
MCNP6. All of the Fortran source files are in the free-form (F90) style. The cgm/, and llnlfiss/
directories contain mostly C++ source files.

If you need to make changes to existing files, edit them and leave them in their current locations.

13

Note: Before making any changes to the MCNP6 distribution, backup the original files for recovery and
for comparison. It is necessary to have an unmodified copy of the entire distribution to generate and/or
apply patches.

If you add new files, they will be automatically included in builds if you follow these steps:

1. Create the new file conforming to the Fortran free-style format and place it in the Source/src/
directory. The name of new Fortran files should be of the form <name>.F90. The uppercase F90
suffix indicates the file should be preprocessed before (or during) compilation.

2. In Source/, type 'make realclean' to prepare for a full rebuild. This cleans the entire
distribution tree.

Note: All source code files (.F90, .f90, .F, .f, .c, .cpp, etc.) are found and included in the build. So
do not leave files in the listed source directories you do not need, such as copies of unmodified files.

When your changes are ready, change into the Source/ directory and type "make build". Added files (or
modifications that affect dependencies) will be automatically found and included. Be sure to clean the
directory before the first build to ensure your files are included. You can include additional build options,
as needed.

 REFERENCES

BRO06 F.B. Brown, "The makxsf Code with Doppler Broadening", LA-UR-06-7002 (2006). Included in the
MCNP Reference Collection (https://laws.lanl.gov/vhosts/mcnp.lanl.gov/references.shtml).

MCN17 MCNP Team,"MCNP6.2.0 Release Testing", LA-UR-17-25000 (2017). Included in the MCNP
Reference Collection.

STA98 R. M. Stallman and R. McGrath, GNU MAKE, Free Software Foundation, Boston, MA (JULY 1998).
See http://www.gnu.org.

STA02a Richard Stallman, Paul Visscher, Bret Smith, and Luis M. Arteaga, "GNU’s not Unix!" October 22,
2002. See http://www.gnu.org/software.

STA02b Richard Stallman, Bob Chassell, Melissa Weishaus, Roland McGrath, and Paul D. Smith, GNU make,
Version 3.80 (stable), Free Software Foundation, Inc., Boston, MA (October 2002).

IOS04 "Information technology - Programming languages - Fortran - Part 1: Base Language", International
Organization for Standardization, ISO/IEC FCD 1539-1:2004(E), (November, 2004)

https://laws.lanl.gov/vhosts/mcnp.lanl.gov/references.shtml
http://www.gnu.org/
http://www.gnu.org/software

	1. Introduction
	2. Configuring and Building MCNP6
	2.1 The CONFIG make variable
	2.2 Building MCNP6 with Make3F
	2.3 Parallelism Support Software
	2.3.1 Installing MPI Software
	2.3.2 Building MCNP6 with MPI

	2.4 Building MCNP6 on Specific Platforms
	2.4.1 Linux4F
	2.4.2 Mac OsX
	2.4.3 Cygwin (Windows)
	2.4.4 Visual Studio (Windows)

	2.5 The Source Directory
	2.6 Source/Config Directory
	2.7 MCNP620/Utilities DIRECTORY
	2.8 Testing/Regression Directory

	3. Additional Software
	3.1 Installing a Linux Emulator for Windows—Cygwin
	3.2 Installing Plotting Software—X-Windows Client

	4. Testing
	4.1 Test Execution
	4.2 Testing the Plotter
	4.2.1 Geometry Plotting—PLOT Utility
	4.2.2 Tally Plotting—MCPLOT Utility
	4.2.3 Cross-Section Plotting—MCPLOT Utility

	5. Modifying the Source Code
	6. References

