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Pavel Grechanuk

September 1, 2017

1 Introduction

For many real-world applications in radiation transport where simulations are compared to exper-

imental measurements, like in nuclear criticality safety, the bias (simulated - experimental keff )

in the calculation is an extremely important quantity used for code validation. The objective of

this project is to accurately predict the bias of MCNP6 [1] criticality calculations using machine

learning (ML) algorithms, with the intention of creating a tool that can complement the current

nuclear criticality safety methods. In the latest release of MCNP6, the Whisper tool [2] is available

for criticality safety analysts and includes a large catalogue of experimental benchmarks, sensitivity

profiles, and nuclear data covariance matrices. This data, coming from 1100+ benchmark cases, is

used in this study of ML algorithms for criticality safety bias predictions.

Machine learning methods use algorithms which learn from data, and are subsequently able

to make predictions based on new never before seen instances. A type of machine learning called

supervised learning feeds the solutions, called labels, to the algorithm with the training data. A

common supervised learning task is regression, which tries to predict a numeric value (example:

home value) based on a given set of features (example: number of bedrooms, year of construction,

square footage, etc.). Typically a machine learning algorithm performs best when there is a large

quantity of data available. If the training sample is too small, the data is non-representative of the

whole picture, and the algorithm under-performs. This can also occur with a large dataset, if the

data is not sampled properly (sampling bias).

Typically the data fed to a machine learning algorithm is split into a test and training set.

The standard practice is to train on approximately 80% of the data, and evaluate the model on

the remaining 20%. The error rate on the testing set is called the generalization error, which tells

you the error rate to expect from your model on instances it has never encountered before. The

best way to evaluate the performance of a model is using a technique called cross validation. This

method works by splitting up the training set into a certain number of subsets (called folds), and

the model is evaluated on one fold and trained on the remaining. This is done for every possible

combination until every fold has been evaluated, with the other folds acting as training data. The

measures of fit from each round are averaged to calculate a more representative value of model

generalization error.
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2 Methods

The sensitivity vectors generated by MCNP6, which describe how keff is impacted by the nuclear

data of a given application, are chosen as the features, due to the assumption that they inherently

carry enough information to characterize a system, and consequently can be used to find patterns

that influence bias (simulated - experimental keff ). The main challenge of preparing the data was

that the sensitivity vector length varied between test cases, since they have different materials and

reactions, but ML algorithms require that the features all be the same shape. The solution was to

find all of the unique isotope reaction pairs (2040 of them), and to create a template onto which

all of the sensitivity vectors for each test case are written to. There are 44 energy bins in each

sensitivity vector and 2040 individual isotope reaction pairs, so each test case has 89,760 features

associated with it, and since there are 1,100 cases this means the algorithm must process almost

100 million data points during training. The models were also evaluated on a modified set of

sensitivity vectors, where the sensitivity values for each isotope reaction are summed over energy.

This removes the energy dependence, making it so that the models are trained on the benchmark’s

sensitivity to each isotope reaction. Consequently, this reduces the number of features to 2,040 per

benchmark, which significantly reduces training time and speeds up optimization.

Ten fold cross validation was used to evaluate the mean average error (MAE) and the root

mean squared error (RMSE) of each algorithm to find the best one. Every model has a set of

hyper-parameters that act as tuning nobs, which affect the performance of the model drastically.

To find the ideal set of hyper-parameters, a grid search was performed in which the cross validation

scores were computed for different combinations of parameter values specified by a grid.

2.1 Decision Trees

Decision Trees are very powerful machine learning algorithms that are used for regression and

classification. Scikit-Learn, an open source machine learning module in Python [3], uses the Clas-

sification and Regression Tree (CART) algorithm to "grow" decision trees [4]. The algorithm first

takes the training data, and tries to split it into two subsets using a feature k and a threshold t.

This is a numerical procedure where many threshold points are tested based on a feature in order

to minimize a cost function, which for regression is either the mean squared error or the mean

absolute error.

Once the dataset is split into two, the subsets undergo the same operation, until the algorithm

can not find a split that would reduce the cost function. This eventually leads to a decision tree

that has many branches (node splits) and leaves (node ends). The model works by starting at the

top of the tree, and undergoing logical operators at each branch node until arriving at a leaf node

which has an associated value with it. Decision trees are used in this study due to their superior

performance and simplicity when compared to other regression models. There are a variety of

subclasses of decision trees, and many of them were tested to find the one with the lowest error

rate.
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A very useful feature of decision trees is that they can effectively calculate the importance of

each feature on the estimated value. The most important features are more likely to appear near

the root of the tree, while the less important features will appear further down the tree. Scikit

Learn automatically estimates the feature importance by computing the average depth of each

feature across all of the tress. The importance can be thought of as the influence of each isotope

reaction pair on whether bias is present. Since the features are broken into 44 energy groups, the

importance of each isotope reaction can be analyzed at the energy level, and this provides insight

into what cross sections or physics models can be improved in MCNP to reduce bias. A script was

written to show the most important isotope reaction pair sensitivities on influencing bias, and the

most important isotope reaction pairs at the thermal, intermediate, and fast energies.

2.2 Artificial Neural Networks

Artificial neural networks (ANNs) were also investigated for this task, as they are very powerful

algorithms used for everything from computer vision, to speech recognition, to playing complicated

games like Go. Given sufficient training samples and a large enough network, ANNs are able to

model any continuous function. No matter how complicated the function is (many inputs, many

outputs), it is guaranteed that there is a neural network that can approximate the output for every

input. An ANN is composed of connected units called artificial neurons, which transmit signals

to other neurons. The receiving neurons process the signal using an activation function, and then

send it downstream. The neurons and the connections between them have a weight that is modified

during training using a back propagation algorithm. Typically neural networks are built in layers:

the first layer having the same number of neurons as features, then one or more hidden layers of

neurons, and the final output layer which has as many neurons as the output of the function that

is being approximated. Typically the performance of an ANN is increased by adding more hidden

neurons, as they allow the model to learn more complicated relationships.

The process of training an ANN will be explained as simply as possible in the next section;

the intricate details and mathematics are outside the scope of this paper and can be found in

K. Hornik’s, et al. paper [5]. For each training instance the network feeds the data through the

network and calculates the output of every neuron in each consecutive layer. The output error is

measured at the output (difference between the actual and predicted values), and the influence of

each neuron in the preceding layer on the error of the output neurons is calculated. The network

then calculates how much of these error contributions came from each neuron in the previous layer,

and so forth until the network reaches the input layer. This process measures the error gradient

across all network connections by effectively propagating the error gradient backwards through

the network [6]. Finally all of the connection weights are slightly adjusted using the propagated

error gradient to produce a better model. This process is iterated until the output error does not

decrease significantly.
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3 Results - Decision Trees

3.1 Adaboost Regression Trees

The AdaBoost regressor is unique in that it goes through multiple iterations where the next itera-

tion tries to correct the predecessor by paying more attention to the instances that the predecessor

made mistakes on. The way the method works is by first training a decision tree, and making

predictions on a subset of the training set. From the first iteration the weighted predictor er-

ror is calculated, from which a predictor weight is extracted (see [7] or [8] for the mathematics).

Using the predictor weight the instance weights are adjusted and the misclassified instances are

boosted. The next iteration is trained on the data with the new weights, the new predictor weight

is calculated, the feature weights are updated, another predictor is trained, and so on.

The process is repeated until the desired number of iterations is reached. To make the pre-

dictions on new instances the algorithm calculates the predictions of every predictor, weighs them

using their predictor weights, and calculates the mean. This method of grouping many predictors

to make a single estimate is called ensemble learning. The performance of the ensemble model is

often superior than the performance of any individual tree, which can be attributed to the ’wisdom

of the crowd’ effect. This method produces results more accurate than the standard decision tree

model, due to being an ensemble and increasingly focusing on the cases that it gets wrong. The

performance statistics are summarized in Table 1.

Features MAE RMSE

89,760 0.00396 0.00576

2,040 0.00385 0.00549

Table 1: Statistics for Adaboost regressor from 10 fold cross validation.

From Table 1 it can be seen that including all of the data points produces a marginally better

model. The mean squared error for the Adaboost regressor using 2,040 features, and a histogram

of the difference between predicted and actual bias can be seen in Figure 1.
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Figure 1: Mean squared error (left), and histogram of prediction errors (right) for the Adaboost

regressor, obtained from 10 fold cross validation.

Looking at the histogram it can be seen that the error on the predictions forms a normal

distribution. There are a multitude of factors which affect the error rate, and due to the central

limit theorem we can assume that the sum of the individual effects will tend to form a normal

distribution, which they appear to do. An identical plot is generated for the larger data set and

can be seen in Figure 2. Both models have a similar performance, and they seem to make mistakes

on the same cases.
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Figure 2: Mean squared error (left), and histogram of prediction errors (right) for the Adaboost

regressor, obtained from 10 fold cross validation.

Using the built in features in Scikit Learn the importance of each isotope reaction was calculated

for both data sets, and can the top 10 can be found in Table 2. The importance across all reactions

adds up to unity, so the numbers are the relative importance of the reaction’s influence on bias.
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89,760 Features 2,040 Features

92232.80c total nu, 0.101553 92232.80c total nu, 0.094887

6000.80c elastic, 0.063773 92232.80c fission, 0.075492

94239.80c ngamma, 0.063368 92233.80c ngamma, 0.062631

6000.80c ngamma, 0.061759 8016.80c elastic, 0.033377

92232.80c elastic, 0.059249 6000.80c ngamma, 0.029548

poly.20t inelastic, 0.037004 92234.80c ngamma, 0.026564

92232.80c fission, 0.028408 92232.80c n2n, 0.022677

8016.80c elastic, 0.028022 92232.80c ngamma, 0.020410

92234.80c ngamma, 0.018935 poly.20t inelastic, 0.017924

94240.80c elastic, 0.018753 6000.80c nalpha, 0.015111

Table 2: Top ten relative importances of each isotope reaction to the Adaboost regressor on

calculating bias.

Many of the reactions with the highest importance are shared among the two models which is

expected, as the main difference is the form of the sensitivity vectors. The features that are not

shared among the top ten between the two datasets are marked in bold. The model trained on

2,040 features only sees the integral importance of each reaction, and the energy dependence of

the sensitivity vector is lost.

3.2 Random Forest Decision Trees

The random forest regressor is an ensemble method that trains a number of decision trees each

on a random subsets of the data, with the intention of reducing over-fitting. The individual trees

also differ because instead of looking for the best feature to split the tree, it searches through a

random subset of features to find the best split. This introduces extra randomness into the decision

trees, and results in an increased tree diversity. This ultimately trades a higher bias for a reduced

variance, which reduces over-fitting and most often results in a better overall model. The statistics

for this model can be seen in Table 3.

Features MAE RMSE

89,760 0.00397 0.00572

2,040 0.00374 0.00537

Table 3: Statistics for Random Forest regressor from 10 fold cross validation.

The random forest model slightly under-performs compared against the Adaboost regressor,

and by looking at the mean squared error plot in Figure 3 (2,040 features), it can be seen that

both algorithms make mistakes on the same cases (the order is the same).
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Figure 3: Mean squared error (left), and histogram of prediction errors (right), obtained from 10

fold cross validation.

It can be seen that the difference between the real and predicted bias forms a normal distribu-

tion. This same plot is recreated for the dataset with 89,760 features, and can be seen in figure

4.
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Figure 4: Mean squared error (left), and histogram of prediction errors (right), obtained from 10

fold cross validation.

The order of cases between the two data sets is the same, and it can be seen that the average

magnitude of errors from the both models is relatively similar. It can also be seen that both models

make errors on the same cases, which will be discussed in the Discussion section. The importance

of each feature was calculated for both models and the top ten most important features can be

found in the Table 4.
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89,760 Features 2,040 Features

92233.80c n,gamma, 0.043283 92234.80c total nu, 0.025210

92233.80c total nu, 0.036926 92234.80c fission, 0.023612

92233.80c fission, 0.036024 92234.80c n,gamma, 0.021593

6000.80c n,gamma, 0.027969 92232.80c total nu, 0.018872

6000.80c elastic, 0.024428 92232.80c n,gamma, 0.017970

92234.80c n,gamma, 0.024359 6000.80c n,gamma, 0.017487

94239.80c fission, 0.021407 9019.80c n,p, 0.017361

94239.80c n,gamma, 0.021331 92233.80c n,gamma, 0.017193

94239.80c total nu, 0.020735 92233.80c inelastic, 0.017156

9019.80c elastic, 0.018545 9019.80c n,alpha, 0.016872

Table 4: Relative importances of each isotope reaction to the Random Forest regressor on calcu-

lating bias.

The importances of these features differ from the Adaboost case, because of the way the Ran-

dom Forest randomly samples features from the whole feature set. This spreads out the relative

importance, since instead of looking for the best feature for a split from all of the features, the

model selects one from a random subset of features. This generates a variety of trees who each

focus on a subset of the total features to make their predictions. Due to the larger dataset incorpo-

rating energy dependence, the relative importance of each reaction can be found by energy group.

The top ten most important reactions separated by energy group can be found in Table 5.

Thermal (0 - 0.625 ev) Intermediate (1.0 ev - 0.1 Mev) Fast (0.4 Mev - 20 Mev)

6000.80c n,gamma, 0.014562 92233.80c n,gamma, 0.018457 92233.80c fission, 0.015264

92233.80c total nu, 0.011437 92233.80c fission, 0.015724 92233.80c inelastic, 0.013543

92233.80c n,gamma, 0.010641 92233.80c total nu, 0.012844 92233.80c n,gamma, 0.012739

92234.80c n,gamma, 0.009479 92234.80c n,gamma, 0.011945 92233.80c total nu, 0.012644

1001.80c n,gamma, 0.009069 94239.80c n,gamma, 0.011687 9019.80c inelastic, 0.010355

poly.20t inelastic, 0.008879 6000.80c n,gamma, 0.008924 6000.80c elastic, 0.009997

be.20t elastic, 0.008204 94239.80c total nu, 0.008325 92233.80c fission chi, 0.008758

94239.80c n,gamma, 0.007522 94239.80c fission, 0.008208 92234.80c total nu, 0.008494

94239.80c fission, 0.007427 6000.80c elastic, 0.007817 92234.80c fission, 0.008008

9019.80c n,gamma, 0.007201 92232.80c total nu, 0.006668 1001.80c elastic, 0.007938

Table 5: Top ten relative importances of each isotope reaction energy group to the Random Forest

regressor on calculating bias. These importances make physical sense, capture at low energies,

capture and fission for actinides at intermediate energies, inelastic scattering and fission at high

energies.

It can be seen that all three energy groups have important cases that are used to predict bias.
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The uranium and plutonium isotopes are marked in bold, and it can be seen that they are prevalent

across all three energy groups, which makes sense since this benchmark suite primarily deals with

those metals. An interesting note is that the neutron gamma reactions have a large importance

across the thermal and intermediate energy groups.

3.3 Extremely Randomized Trees

The extra trees method is identical to the random forest ensemble method in the fact that it uses

a random subset of the features at every split. The main difference is that extra randomness is

inserted by also searching for the best slit using random thresholds for the features. A model using

these more randomized trees is called an extremely randomized tree ensemble. This model again

trades increased bias for a reduced variance, and it often performs very similarly to the random

forest model. The performance of the model is summarized in Table 6.

Features MAE RMSE

89,760 0.00413 0.00596

2,040 0.00393 0.00572

Table 6: Statistics for Extremely Randomized Trees regressor from 10 fold cross validation.

Again this model performs very similarly to the other decision tree regressors, primarily since

they are all based of the same algorithm (CART). The plot of the squared errors and error distri-

bution for the 2,040 feature dataset can be seen in Figure 5.
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Figure 5: Mean squared error (left), and histogram of prediction errors (right), obtained from 10

fold cross validation.

An identical plot for the larger data set can be seen in Figure 6, and again the models are very

similar.
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Figure 6: Mean squared error (left), and histogram of prediction errors (right), obtained from 10

fold cross validation.

The relative importances of the features can be seen in Table 7

89,760 Features 2,040 Features

92232.80c fission, 0.057565 92232.80c total nu, 0.043314

92232.80c total nu, 0.057309 92232.80c fission, 0.034945

92232.80c n,gamma, 0.049576 6000.80c inelastic, 0.028446

6000.80c n,gamma, 0.026784 92232.80c n2n, 0.024835

92233.80c fission, 0.023372 92232.80c n,gamma, 0.023902

94239.80c total nu, 0.021561 92233.80c n,gamma, 0.015658

94239.80c n,gamma, 0.018211 92235.80c total nu, 0.014238

92233.80c total nu, 0.015394 6000.80c n,gamma, 0.013787

92233.80c n,gamma, 0.015269 92234.80c n,gamma, 0.013068

9019.80c n,gamma, 0.015244 94239.80c n,gamma, 0.012768

Table 7: Relative importances of each isotope reaction to the Extra Trees regressor on calculating

bias.

All three models share some of the same isotope reactions in the top ten important features,

which indicates that those reactions have the most importance. Some of the most common reactions

among the top ten important features from the models involve n, gamma reactions for U-233, U-

234, U-232, and carbon.

3.4 Including Simulated k in Training

The whole goal of this project is to predict the bias using sensitivity vectors, and in order to generate

the vectors a MCNP simulation must be run, which also generates ksimulated. The simulated keff

value is another piece of information that can be used as a feature to improve the accuracy of the

model. There is a strong linear relationship between computational bias and ksim, which can be
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seen in Figure 7.
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Figure 7: Bias vs ksim for all the cases in the Whisper library.

A new dataset was created with ksim included, so the two datasets now have 2,041 and 89,761

features respectively (ksim followed by the sensitivity vector). The decision tree algorithms were

trained on the new dataset, and the performance improved as can be seen in Table 8.

Model MAE RMSE

Adaboost (L) 0.00102 0.00217

Random Forest (L) 0.00253 0.00415

Extra Trees (L) 0.00326 0.00484

Adaboost (S) 0.00103 0.00216

Random Forest (S) 0.00251 0.00397

Extra Trees (S) 0.00340 0.00497

Table 8: Statistics for decision tree models with ksim in training, from 10 fold cross validation

(S = 2,041, and L = 89,761 features).

The Adaboost model performs the best for both datasets, while the performance of the other

models improves marginally. It is interesting to note that the performance of the other models

does not improve significantly with the addition of ksim, this is particularly interesting since there

is such a strong linear relationship between bias and keff . To find the cause of this the feature

importances for ksim were investigated and can be seen in Table 9.

Model Feature Importance of ksim

Adaboost 0.868030

Random Forest 0.156393

Extra Trees 0.144139

Table 9: Relative importances of ksim in the different models.
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From the table is can be seen that the Adaboost model seems to be over fitting to the ksim

bias relationship. Even though it’s performance statistics are better than the other models, it is

unlikely to generalize well to cases that lie outside of the ksim bias line. It seems that the Adaboost

model iteratively strengthened the weight of ksim to the point that the model is over-fitting on

ksim and disregarding the other features. The Random Forest and Extra Trees models avoid this

because they randomly sample features from the feature set for every tree that they grow, and as

such they are much more likely to generalize well to cases that lie outside of the linear bias ksim

relationship.

4 Results - Neural Networks

A large variety of neural networks were trained and evaluated using Scikit - Learn to find the

best one. A variety of activation functions for the neurons, back propagation learning algorithms,

and other hyper parameters were tuned to find the most accurate model. The best assortment

of hyperparameters was found using a grid search, and they are the neuron exponential linear

activation function, the adadelta learning algorithm, and a learning rate of 0.01. Another factor

that was considered was the shape of the hidden layers. The smaller dataset was used because the

networks take a lengthy amount of time to train. Even when using thirty nodes on the computing

servers, it still takes over 5 hours to train a single network, and much longer to perform cross

validation. The input and output layers of every model is the same, with the primary variation

being the shape and number of neurons in the hidden layers. The performance of the two best

models is summarized in Table 10. (I’m working on adding another one Mike.)

Hidden Layers Shape MAE RMSE

1020, 510, 255, 128, 64, 32, 16 3.63348 ∗ 10−5 5.36915 ∗ 10−5

Table 10: Statistics for neural networks, from 10 fold cross validation. Data flows from left to

right.

The performance of the the neural networks is superb, however they are essentially black boxes,

when compared to decision trees. It is virtually impossible to understand why neural networks

make the predictions that they do, while for decision trees you can actually visualize the tree

and see how each node is split on the features. However the utility of these models should not

be overlooked just because it is not clear how they make their predictions, since they are very

accurate at predicting the bias of a criticallity calculation. An interesting note is that the relative

errors that the neural networks make are uncorrelated with the errors of the decision trees, as can

be seen in Figures 8 & 9 .
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Figure 8: The errors among the different cases for the most accurate random forest model.

Figure 9: The errors among the different cases for the most accurate neural network model.

The highest errors for the decision trees are the pink pu-comp and the light blue heu-comp

cases, while the neural networks excel at those cases and have higher relative errors for the red

u233-sol and the brown pu-met cases. The overall error for the neural network is much lower, but

it’s relative error between the cases is much different. The cause of this is not clear, but it provides

an opportunity for a machine learning method called stacking. The idea is to train a ML model on

the outputs of other ML models, with the intention of the top model learning to see what errors

the bottom layer makes, and learns to correct for them. The fact that the errors between the

decision trees and neural networks are uncorrelated provides an opportunity to generate an even

more powerful model. The accurate and precise performance of these models reinforces that the

sensitivity vectors are excellent features in that they carry enough information to fully characterize

a system, which is then used by the models to find patterns which are used to predict the bias

accurately.
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5 Discussion

5.1 Errors

An interesting observation is that many of the decision tree models make mistakes on the same

cases. For example, among the 2,040 dataset there are three cases which have a MSE of greater

than 0.0003 throughout every model. The case with the highest consistent error is the mix-sol-

therm-001-011 which fluctuates around a MSE of 0.001. To begin examining why all of the models

make errors on this case, the bias and keff off all the mix-sol-therm cases was plotted, which can

be seen in Figure 10.
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Figure 10: The mix-sol-therm cases from Whisper along with the case with the most error.

As can be seen by the plot the 001-011 case is quite different than the rest of the mix-sol-therm

benchmarks (much higher keff ), which explains why the models make such large errors on this

case. The problem has a similar sensitivity profile (average cosine similarity of .995 with other

cases), but it is a much larger bias, so the model is confused after being trained on the other cases

with a much lower bias. This reinforces that machine learning algorithms do not perform well

on instances that are very dissimilar to the training set. For this case, the sensitivity vectors are

not adequate to reliably predict bias, since the case is much different than the cases which have

similar sensitivity vectors. Additionally the error is compounded by the small sample size, as there

are only 21 mix-sol-therm cases, which is a tiny sample size by machine learning standards. By

removing the 001-011 case from the dataset the performance of the random forest regressor on

2,040 features reduces the MSE by 4.5%.

Another instance on which the models make large errors on is the heu-met-fast-057-003 case.

In this instance the bias lies relatively outside of the main cases, which can be seen by figure 11.
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Figure 11: The heu-met-fast cases from Whisper along with the case with the most error.

There are only five heu-met-fast cases with a keff greater than 1.01, which is fairly small sample,

and their sensitivity vectors are different than the other heu-met-fast cases. A good training sample

is extremely important to the resulting accuracy of a ML model. The MSE and the RMSE for

every type of problem with more than 10 instances can be found summarized in Figure 12.
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Figure 12: The MSE from the Random Forest model for every case with more than 10 instances.

The number after the name is the number of cases in that category.
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From the plot it can be seen that the performance on most of the cases is good, while errors

are above the mean for the Pu and heu composites and the mixed and U-233 solution cases. For

cases with less than 68 cases (pu-met-fast) there is increased variance in the errors, so for any

real world applications of these models it should be a rule of thumb to have at least 50 similar

cases. The performance and generalization ability of the decision tree models would improve, if

there were more training samples for the rare cases. The performance of these models could also

improve if there were more features to fit the models to, such as the average neutron energy causing

fission, the prompt removal lifetime, the percentages of fissions caused by neutrons in the thermal,

intermediate, and fast neutron ranges, and other data provided by MCNP6 outputs. It is difficult

to predict what features will lead to good results, and the only way to find out is to experiment

and evaluate the models using different features.

5.2 Removing Outliers

The cases on which the models make errors are effectively outliers, since there are not enough

similar cases to make accurate predictions. The increased errors on these cases severely impact

the statistics on the model, especially the rmse as it is very sensitive to outliers. The standard

procedure for dealing with outliers in machine learning is to remove them, so that when the models

are trained they are not skewed. A summary of model performance after removing the top 50 cases

(4.5% of total cases) which produce the highest error can be found in Table 11.

Model Mean Absolute Error Root Mean Squared Error

Adaboost (L) 0.00083 0.00161

Random Forest (L) 0.00210 0.00355

Extra Trees (L) 0.00279 0.00340

Adaboost (S) 0.00077 0.00146

Random Forest (S) 0.00212 0.00296

Extra Trees (S) 0.00256 0.00346

Table 11: Statistics for decision tree models from 10 fold cross validation after removing outliers

(S = 2,041, and L = 89,761 features).

The statistics of the models improves significantly as is expected, since the outliers were the

cases with the greatest error. To better predict on those difficult cases either more training data or

a more complicated model is needed. An interesting note is that of the 50 cases that were excluded

here, 34 are automatically excluded from Whisper for failing the chi squared test and treated as

outliers.

5.3 Feature Importances

Among the expected isotope-reactions that are among the most important to the decision, trees

there are some rare elements like U-234, specifically the neutron gamma reaction. Looking at the
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leu-comp-therm-079-010 case, which is modeling a reactor, the atom density of U-234 is 5.1985e-6
1024atoms

cm3 , while the atom density of the fuel rod is 7.01323699e-2 1024atoms
cm3 , so it makes up about

0.007412 % of the rod. The average non zero sensitivity summed over all energies for that case

is 0.00726, and the sensitivity for the U-234 neutron gamma reaction is .000913, or 12.58% of the

average. The isotope makes up a minuscule proportion of the mass in the rod, and yet it contributes

more to the sensitivity than would be expected. The isotope of U-236 makes up a similar atom

density to U-234 in the fuel rod, and yet the U-234 neutron gamma reaction has three times the

sensitivity of the U-236 neutron gamma reaction. This pattern of low concentration and high

sensitivity would be hard to spot just by looking at the sensitivity profiles, but machine learning

algorithms excel and finding patterns in big data.

Feature importances were also explored using feature ranking with recursive feature elimination

and cross-validated selection of the best number of features (RFECV)[3]. This method works by

first fitting to all of the features, and the two least important features are dropped. This continues

as an iterative process using cross validation at each step to evaluate model performance until

the model stops improving with successive iterations. This removes both redundancy and noise

from the data set, as in the end the model is only trained on the features that are important to

predicting the bias. This was performed using the summed sensitivity vectors with the random

forest regressor excluding ksiml as a feature, and a list of only the crucial features was extracted.

Next the remaining features (1,482 of them) were fed back into a random forest model to find the

feature importances and they can be found in Table 12.

Isotope Reaction Relative Importance

92233.80c n,gamma 0.046818

92232.80c total nu 0.045100

92232.80c fission 0.039334

92234.80c n,gamma 0.035280

6000.80c n,gamma 0.032351

92234.80c fission 0.031656

92234.80c total nu 0.030931

92232.80c n,gamma 0.027735

6000.80c n,alpha 0.025528

6000.80c inelastic 0.024418

Table 12: Top ten relative importances of each isotope reaction to the random forest regressor

after performing RFECV.

Most of these isotope reactions are already in the top ten throughout the importances of the

other models. However, this list is most likely the most accurate when it comes to predicting

feature importances. An interesting note is that there are only four isotopes present in this list

natural carbon, U-232, U-233, U-234. These are the isotopes that should be looked at first, when
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trying to understand the source of bias in MCNP calculations. The feature importances provide

a unique insight into the sensitivity of bias to the various isotope-reaction pairs, and should be

explored further.

The performance of the random forest model with this reduced feature set improved dramati-

cally when compared to the random forest model in section 3.2, which uses all of the features. By

removing the features that were noisy or irrelevant the RMSE dropped from .00545 to 0.00373 a

31% reduction in error. This shows that it is very important to get rid of the irrelevant features as

they have an adverse affect on the overall model performance, and it shows that the models can

produce accurate results even in the absence of ksim in the data. This further reinforces that the

sensitivity vectors are excellent features to use for ML tasks in criticallity calculations.

5.4 Comparing Against Whisper Bias & GLLSM

Whisper calculates bias using extreme value theory (EVT) in order to provide a conservative

estimate for criticallity calculations, in order to provide an adequate margin of safety. The error

statistics for Whisper are relatively large compared to the ML rates, with a RMSE of 0.01329 and

a MAE of 0.00906. Following is a plot comparing the Bias calculated by Whisper against the bias

predicted by the random forest model.

Figure 13: The random forest predictions (left), and the whisper predictions (right).

From the plots it can be seen that Whisper’s predictions are more or less along a straight line

above the actual bias, while the random forest fits the actual bias more closely. This is expected

as Whisper uses EVT to provide a conservative estimate, which tries to be larger than the actual

bias. An interesting note is that whisper and the random forest model make errors on the same

cases. Both of the models under predict the bias for some U-233 solution cases (the peak between

600 and 800), and some of the heu metal cases near the first benchmarks. Overall the random

forest model is using patterns in the sensitivity vectors to make decent predictions, but errs on

many of the more difficult cases, which signals that a more powerful model is needed.

Whisper also uses the generalized linear least squares method (GLLSM) to calculate a mini-

mum margin of sub-criticality due to nuclear data uncertainties. Specifically the GLLSM method

is used to obtain an adjusted nuclear data covariance library, which is then used to modify the
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cross-sections in order to increase the agreement between calculated and experimental keff mea-

surements. This produces a modified value for ksim that is closer to the experimental one, and

has a reduced uncertainty. The resulting bias from the GLLSM method was calculated for the

Whisper dataset and can be seen plotted in Figure 15.

Figure 14: The bias predicted using the GLLSM method compared against the real bias.

These predictions are more accurate than the bias calculated by Whisper’s EVT, but much less

conservative. Just by looking at the graph it is tough to tell if it is better than the random forest

model, but by looking at the summary statistics for all the models in Table 13, it can be seen that

the ML models outperform the GLLSM method.

Model Mean Absolute Error Root Mean Squared Error

Whisper 0.00906 0.01329

GLLSM 0.00645 0.00959

Extra Trees (S) 0.00256 0.00346

Random Forest (S) 0.00212 0.00296

Adaboost (S) 0.00077 0.00146

Neural Network (S) 3.63348 ∗ 10−5 5.36915 ∗ 10−5

Table 13: Statistics for the machine learning models from 10 fold cross validation, GLLSM, and

Whisper.

5.5 Predicting kmeas Instead of Bias

The models were also trained and evaluated with kmeas as the target instead of the bias; the two

targets have the same units, so it was assumed that the results would be very similar. This was

initially done so that a C/E plot could be created in order to visualize the percent difference of the

predictions from experiment. A C/E plot can be found in the following figure for the Adaboost

regressor using all of the features and all of the benchmarks.
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Figure 15: The predicted keff divided by the measured.

It can be seen that for many of the cases the model is very accurate, although the heu-met cases

have a lot of variance. Also the cases of the right side with less similar instances have an increased

variance, which is expected. The 50 cases with the greatest error were removed, the models were

retrained, and the resulting statistics can be found in Table 14.

Model Mean Absolute Error Root Mean Squared Error

Extra Trees (L) 0.00074 0.00133

Random Forest (L) 0.00079 0.00136

Adaboost (L) 0.00057 0.00125

Table 14: Statistics for the decision tree models trained on the large dataset, from 10 fold cross

validation when predicting kmeas.

It came quite as a surprise that the performance of the models predicting kmeas is superior than

those trying to predict bias. The units of both bias and kmeas are the same, so the statistics can

be directly compared. The cause of the increased accuracy is not clear, but I assume it is because

the models learn that the value of kmeas is fairly close to the value of ksim. The models also make

errors on different cases when predicting kmeas as can be seen by Figure 16.
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Figure 16: Errors by benchmark type, when predicting kmeas by the Adaboost model.

For instance the models predicting bias have very high errors on the Pu composite cases while

these models are much more accurate on them. Overall the performance of the models predicting

kmeas is superior than those predicting bias, and they should be used when looking for an accurate

estimation of bias.

6 Conclusion

The mean standard deviation of experimental keff measurements for the benchmarks used in this

study is 0.00328, and the mean absolute error is below that for all of the models. Which means

that on average the error on the predicted bias is less than the uncertainty of the experimental

keff measurements. The accuracy of these models verifies that the sensitivity vectors are able to

characterize a problem effectively, and provide an applicable feature for machine learning algorithms

to predict bias. Machine learning algorithms have shown to be very accurate in predicting bias

by using the sensitivity vectors and ksimulated as features. Additionally the feature importances

from decision trees are able to inform what isotopes and reactions are leading to a divergence

between MCNP6 and experimental keff values. Additional research needs to be done to verify

the predictions of the feature importances, and to investigate the performance of machine learning

algorithms on a more diverse set of benchmarks.
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7 Future Research

• The predictions for the feature importances for the reactions should be explored to see if

they are accurate. They could be compared against the changes that the GLLS method that

whisper uses to reduce uncertainty from cross section data. A perturbation study of the

isotopes cross sections that have high feature importances could be done to see how much

ksim changes.

• A study similar to this should be repeated with more features like the average neutron energy

causing fission, the prompt removal lifetime, the percentages of fissions caused by neutrons

in the thermal, intermediate, and fast neutron ranges, and other data provided by MCNP6

outputs. More benchmarks could also be added for the cases that that number less than 50

so the model’s generalization can be improved.

• Since machine learning methods have shown to be accurate in cases with very large datasets

and challenging problems, it would be interesting to see how well they would perform in

classification of special nuclear material based on detector responses. The outputs by the

Detector Response Function Toolkit could be generated for thousands of cases while varying

the shielding and source to train an algorithm to identify the specific isotopes present and

the enrichment.

• Neural networks and decision trees should be further explored using stacking to see if a better

model can be created.
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