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Diagnostics for Undersampling and Clustering in Monte Carlo Criticality Calculations 
 

Forrest B. Brown,  Colin J. Josey 
Monte Carlo Methods, Codes, & Applications Group, LANL 

 
 
1.0 Introduction 
 
For the past 40 years, it has been known from the theoretical work of Gelbard [1] and Brissenden [2] 
that the results from Monte Carlo (MC) criticality calculations are biased if the number of neutrons 
per generation is not sufficiently large. The computed k-effective eigenvalue will be lower than the 
actual eigenvalue, and the computed eigenfunction will be too low in high-importance regions and 
too high in low-importance regions. This difficulty is commonly called the undersampling problem for 
criticality calculations. The biases for undersampling were confirmed for practical, realistic problems 
with modern MC codes by Brown [3]. The solution to undersampling is simple – use a larger number 
of neutrons per generation to reduce the biases to levels that are negligible.  
 
Over the past few years, the OECD-NEA-WPNCS Expert Group on Advanced Monte Carlo Techniques 
(EGAMCT) [4,5,6] investigated an extreme form of undersampling called clustering. When the 
number of neutrons per generation is small, neutrons in successive generations tend to group 
together (cluster) due to correlations, and the clusters tend to migrate through the problem space.  
 
While the problems of undersampling and clustering are well known and well understood 
theoretically, there were no existing diagnostics for MC codes to determine whether a given 
calculation is using sufficient neutrons per generation to eliminate these problems. That is, no tools 
were available to diagnose biases due to undersampling or clustering. The tools described herein 
resolve this longstanding problem by providing 2 robust methods for detecting undersampling and 
clustering in MC criticality calculations.  
 
The diagnosis of undersampling and clustering is part of a larger effort to thoroughly overhaul the 
calculational methods for criticality problems, providing for automated sampling of the initial fission 
distribution, acceleration of the iteration convergence process, automated detection of convergence 
in the iterations and starting of the active tally cycles, and the diagnosis of undersampling. All of 
these new methods have been prototyped in a local modified version of mcnp6.2 [7] and tested on a  
variety of critical systems. 
 
1.1 Background on MC Criticality Calculations 
 
The biases due to undersampling and the manifestation of clustering in extreme cases are strictly 
artifacts of the calculational algorithm used to solve MC criticality calculations. A generation-based 
iteration scheme is used, and the neutron population is renormalized between successive iterations, 
as shown in Figure 1.  
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Each generation is started with the same 
total number of neutrons N (or 
equivalently for MCNP, total weight) and a 
number of neutrons N’ is produced. N’ is a 
stochastic variable, hence the 
renormalization to N neutrons for the 
next generation is a biased process. 
Further, the renormalization reduces the 
number of independent neutron fission 
chains, introducing correlation [8]. The 
correlation manifests as clustering for very 
low N. 
 
The bias in k-effective introduced by the 
renormalization process is negative and 
proportional to 1/N. For small to 
moderate sized problems, it has been 

shown that using N > 10,000 neutrons per generation effectively removes the bias in k-effective [3]. 
For larger physical systems, 100,000 or 1 M or more neutrons per generation may be needed.  The 
eigenfunction (i.e., fission distribution) is also biased proportional to 1/N, with additional 
complications of being too low in high-importance regions and too high in low-importance regions.  
 
The MC iteration scheme begins with an initial guess for k-effective and the fission distribution. 
Iterations (called inactive cycles) are performed without tallies until k-effective and the fission 
distribution have converged to their stationary state. After convergence, tallies are turned on, and 
iterations (called active cycles) are continued until sufficiently small uncertainties are obtained for 
desired results. Concerns for the different phases of the MC iteration process are illustrated in Figure 
2 [3]. The diagnostic tests for undersampling cannot be performed until after k-effective and the 
fission distribution have converged to their stationary states.  

 

 
 

Figure 1. MC iteration scheme 

 

 
 

Figure 2. Concerns in MC Criticality Calculations 
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In the present work, we are concerned with diagnosing biases in k-effective and the fission 
distribution due to undersampling. Figures 3-5 are examples of the biases and clustering in a standard 
PWR model for different numbers of neutrons per generation [3]. Figure 3 clearly shows the 
nonconservative bias in k-effective and the 1/N dependence (indicated by the red dashed line). For 
this problem, at least 5,000 neutrons/cycle are needed to reduce the bias in k-effective to a negligible 
level compared to problem statistics.  Figure 4 shows the corresponding bias in the fission 
distribution as a function of neutrons/cycle. For small N, there are significant biases in shape, with 
too few fissions in important regions and too many fissions in unimportant regions. With 10,000-
20,000 neutrons/cycle, the shape bias is reduced and within problem statistics. A good analyst would 
use 50,000, 100,000, or more neutrons/cycle to avoid issues with biased fission distribution shapes. It 
is important to note that the biases illustrated in Figures 3 and 4 will not go away even if an infinite 
number of cycles are run. The biases are strictly due to the renormalization that is performed every 
cycle, and depend on N, the number of neutrons/cycle. The biases do not depend on the number of 
active cycles that are run in a problem. Thus, running an infinite number of neutrons with small N will 
still result in significant biases in k-effective and the shape of the fission distribution. The Figure 5 
illustrates the extreme cases of undersampling, where clearly visible clusters of neutrons form and 
migrate through the problem space. Even with 10,000 neutrons/cycle, close examination of the 
fission distribution shows high and low spots migrating around, even though there are no large gaps, 
indicating that there is some undersampling.  
 
The discussion above applies equally well to every criticality problem run with Monte Carlo using 
power iteration. Figures 3-5 illustrate the effects of the renormalization biases. Until now, there have 
been no reliable tests or metrics for diagnosing undersampling. The analysis and computer resources 
required for generating Figures 3-5 for a particular problem are prohibitive for routine, daily use of 
Monte Carlo for criticality calculations.  
 

Nucl. Sci. Eng., 149, 38- Nucl. Sci. Eng., 149, 38-50 (2005). 

 
 

Figure 3. Example of bias in k-effective due to undersampling 

× 
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1.2 Background on Shannon Entropy 
 
The Shannon entropy, H, of the fission neutron 
distribution was developed and introduced into 
MCNP to provide a metric for assessing 
convergence of the iteration process in criticality 
calculations [9,10]. H is computed at the end of 
each iteration and plotted vs iteration; when H 
has converged, the fission distribution has 
converged and active cycles can begin. (k-
effective converges in fewer iterations, as 
discussed in [10].)  
 
To compute H, a grid covering all fissile regions 
is superimposed on the problem, and the 
number of source neutrons from fission are 
counted in each of the grid regions. After 
conversion to probabilities, pi, H is computed as 

H=	−	∑ 		𝑝& 	log* 𝑝&+
&,-  

where B is the number of bins in the mesh 
(pilog2 pi = 0 when pi=0). H is a convex function, 
with a minimum value of 0 (for all neutrons in 
the same bin) and a maximum value of log2 B 
(for neutrons uniformly distributed among bins).  

 
 

Figure 4. Example of bias in the fission distribution due to undersampling 

 
 
Figure 5. Example of clustering in the fission 
                 distribution due to undersampling 
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Usually run
with 100k 
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(or more)

no clustering
in routine

calculations

!F = 19.1 cm
cycles to coalesce
to 1 chain =  696

Whole-core,
with fuel in

100 cm axial,
324 x 324 x 100

!F = 19.1 cm
cycles to coalesce
to 1 chain =  1061

!F = 19.1 cm
cycles to coalesce
to 1 chain =  91

!F = 19.1 cm
cycles to coalesce
to 1 chain =  65

10,000 neutrons/cycle

!F = 19.1 cm
cycles to coalesce
to 1 chain =  >> 4000
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When the use of Shannon entropy for 
assessing convergence was first 
introduced, there was the assumption that 
the number of neutrons in a generation 
was much larger than the number of bins, 
so that the resultant pi values accurately 
represented the fission neutron 
distribution and were not “too noisy.” A 
simple thought experiment illustrates the 
difficulties that arise when the number of 
neutrons is small: Consider a 
homogeneous fissionable material in a 
cube with reflecting boundaries, a 
Shannon entropy mesh with 10 x 10 x 10 
bins, and 1,000 neutrons/generation. 
Since the exact theoretical neutron 

distribution is known for this system (i.e., a uniform distribution), the true value of the Shannon 
entropy is known, H = log2 1000 = 9.97. If all neutrons are distributed uniformly, 1 per mesh bin, then 
H = 9.97, the correct maximum value. If there are 2 neutrons in every other bin, 500 clusters of 2, 
then H = 8.97. For 250 clusters of 4, H = 7.97; for 125 clusters of 8, H = 6.97; etc. For all of the 
neutrons in 1 bin, 1 cluster of 1000, H = 0. Clustering reduces the computed value of H. Further, when 
there are clusters of neutrons migrating through a problem, the computed values of H for successive 
cycles will vary in a much noisier manner as the clusters partially cross into different sets of bins in 
the mesh. This is illustrated in Figure 6, based on MCNP calculations with different numbers of 
neutrons per generation. As the number of neutrons per generation increases, the computed H 
approaches the correct value and exhibits less noise. 
 
It should be clear from the thought experiment and the results shown in Figure 6 that, if an exact (or 
at least better) solution for the fission distribution is available, it can be used to compute a reference 
H that can be compared with the actual H for the neutron distribution in the calculation. Significant 
difference between H for the reference solution and H for the actual neutron distribution is an 
indicator of clustering. 
 
2.0 Diagnostic Tests for Undersampling/clustering in Criticality Calculations 
 
The discussion and examples in previous sections provide motivation for 2 types of statistical testing 
to diagnose the effects of undersampling. One type of test would examine the shape of the fission 
distribution compared to some reference solution. If the shapes of the 2 distributions do not match 
within some tolerance, then there are probably biases due to undersampling. The second type of test 
would compute some metrics for the neutron distribution and a reference distribution, such as 
Shannon entropy or relative entropy (i.e., the Kullback-Leibler discrepancy), and use the metrics for 
assessing undersampling effects. These tests could be used both for assessing convergence of k-
effective and the fission distribution and for detecting undersampling. For convergence issues, the 
statistical tests would be performed during inactive cycles. For undersampling issues, the statistical 
tests would be performed only during active cycles (i.e., after convergence). 

 
 

Figure 6. Plots of H vs cycle, 
      for model problem with different N 
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In References [11-13], a number of statistical tests were proposed based on information theory, 
involving the use of Shannon entropy, Kullback-Leibler discrepancy, and other schemes. At the time 
there was unfortunately no means for obtaining a reference solution prior to determining 
convergence. The proposed methods involved saving all tally results from all cycles, running a large 
number of cycles, and then doing posterior analysis to determine convergence and diagnose 
undersampling. The complexity of the methods raised issues (e.g., how many cycles must be run to 
collect information for the posterior analysis), and the computer resource requirements were 
prohibitive (e.g., for problems with large tally sets of 100s of GB or more, saving all the tallies for 100s 
or 1000s the cycles is clearly prohibitive for routine calculations). The reference solution was 
obtained by assuming that the last half of the cycles were converged (a questionable assumption for 
some problems), and that the average for the last half of the problem provided an accurate reference 
solution for use in statistical testing. In addition, such a reference solution would still exhibit 
undersampling biases. 
 
Several years after the work described in [11-13], a new method for obtaining a reference solution 
was developed – the sparse-storage fission matrix method. The fission matrix method using sparse-
storage is described in detail in references [14, 15] and an update on the current status is in 
preparation [16]. References [14, 15] demonstrated that the fission matrix method provides an 
accurate solution to the k-eigenvalue criticality problem if the mesh spacing is fine enough that the 
“flat-source” approximation is valid. The use of a sparse-storage scheme solved the longstanding 
difficulty of prohibitive memory requirements for the matrix, such that there are now no memory-
size limits. Reference [16] provides details on the current status, including the physics-based method 
for assuring that the mesh is chosen appropriately, fine enough to provide accuracy, but not so fine 
that statistical tallies for the matrix elements introduce too much noise.  
 
The present work is based largely on the ideas developed in [11-13], with a reference solution 
provided by the sparse-storage fission matrix method [14, 15, 16], and additional testing based on 
traditional statistical methods for comparing distributions. The tests proposed for diagnosing 
convergence of the iteration process will be discussed in a separate report. In the present work, the 
discussion below targets the diagnosis of undersampling in Monte Carlo criticality calculations. 
 
In the sections below, 2 different tests are described for diagnosing the presence of 
undersampling/clustering problems. It is assumed in all that follows that convergence to the 
stationary state was reliably detected and that all cycles are active cycles.  
 

• The first test involves comparing the average Shannon entropy for a block of cycles to the 
Shannon entropy for the cumulative fission source for the block. If these 2 estimates of 
Shannon entropy differ, then it is likely that undersampling/clustering is present. This test 
involves only information that is already present in MCNP or any other MC code (e.g., Tripoli, 
Scale, Serpent, MC21, etc.).  

 
• The second test presumes that a reference solution for the fission source distribution is 

present, one that is not subject to source renormalization bias. For MCNP, the reference 
solution for the fission source distribution is provided by the sparse-storage fission matrix 
method. When an accurate reference solution for the fission source distribution is available, 
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biases in the source shape due to the renormalization process can be readily diagnosed. 
(While this test can be used with MCNP6, other MC codes may not have capabilities for 
producing the fission matrix, or may be memory-limited due to not having a sparse-storage 
scheme capable of providing a suitably accurate fission matrix.) 

 
2.1 Undersampling Diagnostic Based on Jenson’s Inequality and Shannon Entropy 
 
Jensen’s inequality [17] states that for any continuous convex function f(x), the following is true: 
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The quantity in brackets on the left is simply the Shannon entropy for the single cycle (k), which will 
be denoted as H(k). The righthand side is the Shannon entropy of neutron distribution accumulated 
over the entire block of L cycles, denoted as HL.  That is, on the left side, the Shannon entropy is 
computed for each single cycle and then averaged over the block; on the right side, the neutron 
distribution is first averaged over the block of cycles, and then the Shannon entropy is computed 
once for the block.  Thus, 

1
𝐿3𝐻(5)

6

5,-

					≤ 						𝐻6 

This inequality reflects the fact that there is less information about the source distribution in any 
single cycle than in a block of L cycles. If undersampling is present, and especially if there is significant 
clustering, the H(k) values for cycles in the block will vary. Clusters or just high/low regions will shift 
with iterations in the block, resulting in noisy and low values for the H(k). HL, however, is computed at 
the end of the block, after accumulating the fission neutrons for all L cycles in the block. It will be less 
sensitive to clustering (i.e., clustering effects will average out as they move around). Note that if there 
are sufficient neutrons per cycle such that undersampling/clustering are not significant, all H(k)  will 
(approximately) equal HL, and the equality will (approximately) hold. 
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Based on the above discussion, the following is proposed as a test for undersampling/clustering in 
MCNP criticality problems: 
 

• After active cycles have begun, a block of L consecutive cycles is examined. Currently, L=10 is 
recommended. Shannon entropy for the block is computed in 2 ways: First, H(k) is determined 
for each cycle in the block and then averaged to determine < H(k)> for the block. Second, the 
fission neutron source distribution for each of the L cycles in the block is accumulated, 
normalized, and then used to determine HL for the block. 

 
• If < H(k)> differs significantly from HL, then a warning is issued to alert the end-user that 

undersampling/clustering may be present and that more neutrons/cycle should be used for 
the problem. 

 
• The tolerance band e1 for  (< H(k)> - HL)/ HL, the relative difference in the 2 entropy estimates, 

is arbitrary for now. A value of e1=1% for the tolerance limit on the relative difference in 
entropy has worked well in practical testing on a variety of problems. 

 
This test for undersampling/clustering has been implemented and tested on a variety of problems in 
a local version of mcnp6 and has worked very well in testing. For problems where the warning is 
issued, problems were rerun with more neutrons/cycle. If the tests were still not passed, the 
neutrons/cycle was again increased and the problem was rerun, repeating this process until the tests 
were passed. For most problems tested, 50k – 100k neutrons/cycle was sufficient to pass the test. 
Rarely, more than 100k neutrons/cycle are required, typically for very large problems or loosely 
coupled problems.  
 
Comment is in order concerning the values chosen for L and e1. In nearly all testing to date, L=10 and 
e1=1% have been used. If a larger value is chosen for L, then a smaller value for e may be appropriate. 
Choosing too large a value for L may delay the testing, since it is performed only at the end of a block 
of L cycles, and some computer time may be wasted. Choosing too small a value for L risks unreliable 
testing results due to statistical noise in computing < H(k)>. Choosing e1 too small risks unnecessary 
and unwarranted warnings, while too large results in possibly not detecting the presence of 
undersampling/clustering.   
 
2.2 Undersampling Diagnostic Based on Shannon Entropy and the Fission Matrix Eigenfunction 
 
For the present work, we assume that the fission matrix eigenfunction is a nearly “exact” 
representation of the fission neutron distribution. (Even if not exact, it provides a more accurate 
solution than the MC fission neutron distribution, since it is cumulative over all cycles, including 
inactive cycles.) What matters for diagnosing undersampling/clustering is the fact that the fission 
matrix eigenfunction does not involve the renormalization process that occurs at the end of each 
neutron generation. The fission matrix is accumulated over all cycles without renormalization (except 
the first cycle, which is used to obtain physics parameters for establishing sufficient meshing), while 
the fission neutron distribution is renormalized after each cycle. The renormalization process is the 
cause of the undersampling biases in k-effective and the fission neutron distribution.  
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Based on the above discussion, the following is proposed as a test for undersampling/clustering in 
MCNP criticality problems: 
 

• After active cycles have begun, a block of L consecutive cycles is examined. Currently, L=10 
is recommended. During the block, the fission neutron source starting each cycle is 
accumulated, and at the end of the block used to compute Shannon entropy for the block, 
HL. (This is the same quantity as HL in the previous section.) 

 
• The fission matrix equations are solved to determine the eigenvalue and fundamental-

mode eigenfunction. Then the Shannon entropy of the fission matrix eigenfunction, HFM, is 
computed. 

 
• If the relative difference between HL and HFM is greater than some tolerance e2, then the 

shapes of the neutron distribution and fission matrix eigenfunction are different, 
indicating that renormalization biases are present for the neutron distribution due to 
undersampling. A warning is issued to alert the end-user that undersampling/clustering 
may be present and that more neutrons/cycle should be used for the problem. 

 
• The tolerance band e2 for  (HL-HFM)/ HFM, the relative difference in the 2 entropy estimates, 

is arbitrary for now. A value of e2=1% for the tolerance limit on the relative difference in 
entropy has worked well in practical testing on a variety of problems. 

 
As for the diagnostic test described in Section 2.1, the values of L and  e2 are somewhat arbitrary, but 
values of L=10 and e2=1% have worked effectively in testing to date. The remarks in Section 2.1 apply 
as well to the tradeoffs in selecting L and  e2 – extreme values may result in misdiagnosis. 
 
3.0 Conclusions and Further Work 
 
Section 2 has described the statistical tests performed during active cycles of an MCNP criticality 
problem, as implemented in a local version of MCNP6.  
 
These diagnostic tests have been applied to an assortment of criticality problems, including: a 2D 
PWR model, the ATR (advanced test reactor), the 3D Kord Smith Challenge problem (OECD-NEA 3D 
reactor computer-performance benchmark), the August Winkelman research reactor, the ICSBEP 
benchmark case LEU-COMP-THERM-078 (a Sandia experiment), a large 3D storage pool with 
checkerboard arrangement (OECD-NEA EG on source convergence benchmark), a 400 cm tall single 
reactor fuel-pin unit cell with reflecting boundary conditions, and the Whitesides problem (k-effective 
of the world). In all cases tested the diagnostic tests for undersampling/clustering were effective. 
Following the warning advice, increasing the number of neutrons/cycle to larger values resulted in 
passing the tests (no warning issued).  
 
Results from preliminary testing are very encouraging, and further work is underway to provide a set 
of test problems, results for various neutrons/cycle, and the effectiveness of the statistical tests for 
undersampling. 
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It should be noted that the manual approach to undersampling – increase the neutrons/cycle and 
rerun, repeat as needed – could be automated. That will likely happen after more experience is 
gained with the undersampling tests. For now, just diagnosing the undersampling is a significant 
advance. 
 
Obviously further work is needed, including: 

• Apply the tests to many more criticality problems. Many more ordinary cases as well as odd-
ball cases need to be tested.  

• For cases that indicate the presence of undersampling, obtain plots of the differences 
between the fission matrix eigenfunction and the MC neutron distribution, to assess whether 
the tests are too stringent or not stringent enough. 

• To confirm the validity of the fission matrix eigenfunction used in the tests, compare it to 
problems run with very large numbers of neutrons/cycle. (This is strictly validation of the 
fission matrix methodology, a separate task from diagnosing undersampling. But the 2 
methods overlap.) 

• Vary the parameters L, e1, and e2 and assess the sensitivity and reliability of the tests for a 
variety of cases. This could involve, for example, running high-precision MC calculations with 
millions of neutrons/cycle to provide a brute-force reference solution, and then comparing to 
results from many independent replica calculations with fewer neutrons/cycle. 

• While bias in the k-effective eigenvalue due to undersampling can be quantified, the theory 
associated with biases in the eigenfunction shape is extremely complex. It is possible, but not 
likely, that extremely thorough and deep exploration of the Brissenden and Gelbard theory 
papers may yet provide a means for characterizing the biases in eigenfunction shape. If so, 
there may be some theoretical basis for selecting the parameters L, e1, and e2, or for 
additional diagnostic procedures. 
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