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Background & Introduction

Primary objective: Show a procedure to create analytic benchmarks for
Monte Carlo mean and variance (e.g., with uncollided importance splitting)

Secondary objective: Reinforce relationship between adjoint and forward transport
quantities calculated deterministically and with Monte Carlo

I Analog Monte Carlo: all statistical moments are equal (iff w0 = 1)
I For fair non-analog (using variance reduction) Monte Carlo calculations

I The first statistical moment, M1 (P0), is preserved
I Higher moments, Mm>1 (P0), are modified

I Predictable via the History-score Moment Equations (HSMEs)
I Prior work for various variance reduction techniques includes

I Exponential transform (Sarkar and Prasad, 1979)
I Importance splitting (Booth and Cashwell, 1979)
I Weight windows (Solomon et al., 2014)
I DXTRAN (Kulesza et al., 2018)
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Background on History-score Moment Equations (HSMEs)

I History-score Probability Density Function (HSPDF) describes all
possible random walks

ψ (P0, s) = ψabsorption (P0, s) +ψscattering (P0, s) +ψsurf. crossing (P0, s) + · · ·
I HSMEs compute the statistical moments of the HSPDF

Mm (P0) =

ˆ
ds sm ψ (P0, s)

I Generally, the first two statistical moments are of the most interest
I M1 (P0) is comparable to the adjoint flux solution for the system
I M2 (P0) is a flux-like quantity representing the second-scoring moment

of histories for a given position in phase space P
I Detector behavior is calculated with inner products and the forward

source similar to adjoint transport

Dm =

ˆ
dP0 S (P0) Mm (P0) =⇒ µ̂ =

ˆ
dP0 S (P0) M1 (P0)
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Benchmarking Procedure Overview

1. Define problem of interest and limiting assumptions
2. Construct the HSPDF describing all possible random walks
3. Calculate the first two statistical moments of the HSPDF with the HSMEs

I Don’t forget how lower moments act as sources to higher moments!
4. Compute the Monte Carlo behavior from the two statistical moments

µ̂ =

ˆ
dP0 S (P0) M1 (P0) , (1)

σ̂2 =

ˆ
dP0 S (P0) M2 (P0)− ( µ̂ )2 . (2)

I This computation can be performed
I Analytically with the HSMEs (confirmed numerically herein)
I Directly with a forward approach (similar to DSA, Burn (1995))
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Motivating Problem Summary

I Integer-only (2 : 1) splitting
I Non-integer splitting via additional sampling has been demonstrated

previously (Booth and Cashwell, 1979; Solomon et al., 2014)
I Monoenergetic homogeneous pure absorber; Σt = Σa

I Monodirectional; 0 < µ ≤ 1
I The previous two items guarantee no importance rouletting

I Also create the most simple, non-trivial, case for analysis

x

0 x1 x2 X

Forward
Source, S

Leakage
Tally

+µ +µ

Region 1
Imp. = 1

Region 2
Imp. = 2

Region 3
Imp. = 4
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Analytic Adjoint-transport Approach, M1, Region 3

System

Solution

−µ∂M1

∂x
+ ΣtM1 = 0 , x2 ≤ x ≤ X, (3a)

M1 (X,w) = δ (w − w0) (3b)

M1 (x,w) = δ (w − w0) exp

(
Σt

µ
(x−X)

)
(4)

x

M1 (x,w)

w x1 x2 X

w0

w0/2

w0/4

w0
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Analytic Adjoint-transport Approach, M1, Region 2

System

Solution

−µ∂M1

∂x
+ ΣtM1 = 0 , x1 ≤ x < x2, (5a)

lim
ε→0+

M1 (x2 − ε, w) = 2M1 (x2, w) δ (w − w0/2) /δ (w − w0) (5b)

M1 (x,w) = 2δ
(
w − w0

2

)
exp

(
Σt

µ
(x−X)

)
(6)

x

M1 (x,w)

w x1 x2 X

w0

w0/2

w0/4

M1 (x2, w0)

2M1 (x2, w0)

w0
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Analytic Adjoint-transport Approach, M1, Region 1

System

Solution

−µ∂M1

∂x
+ ΣtM1 = 0 , 0 ≤ x < x1, (7a)

lim
ε→0+

M1 (x1 − ε, w) = 2M1 (x1, w) δ (w − w0/4) /δ (w − w0/2) (7b)

M1 (x,w) = 4δ
(
w − w0

4

)
exp

(
Σt

µ
(x−X)

)
(8)

x

M1 (x,w)

w x1 x2 X

w0

w0/2

w0/4

M1 (x1,w0/2)

2M1 (x1,w0/2)

w0
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Analytic Adjoint-transport Approach, M2, Region 3

System

Solution

−µ∂M2

∂x
+ ΣtM2 = 0 , x2 ≤ x ≤ X, (9a)

M2 (X,w) = δ (w − w0) (9b)

M2 (x,w) = δ (w − w0) exp

(
Σt

µ
(x−X)

)
(10)

x

M2 (x,w)

w x1 x2 X

w0

w0/2

w0/4
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Analytic Adjoint-transport Approach, M2, Region 2

System

Solution

−µ∂M2

∂x
+ ΣtM2 = 0 , x1 ≤ x < x2, (11a)

lim
ε→0+

M2 (x2 − ε, w) = 2M2 (x2, w)
δ (w − w0/2)

δ (w − w0)
+ 2 [M1 (x2, w)]2︸ ︷︷ ︸

Q2(x2,w)

(11b)

M2 (x,w) = 2δ
(
w − w0

2

)
exp

(
Σt
µ

(x−X)

)[
1 + exp

(
Σt
µ

(x2 −X)

)]
(12)

x

M2 (x,w)

w x1 x2 X

w0

w0/2

w0/4

Effect of
Q2 (x2, w)
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Analytic Adjoint-transport Approach, M2, Region 1

System

Solution

−µ
∂M2

∂x
+ ΣtM2 = 0 , 0 ≤ x < x1, (13a)

lim
ε→0+

M2 (x1 − ε, w) = 2M2 (x1, w)
δ (w − w0/4)

δ (w − w0/2)
+ 2 [M1 (x1, w)]2 (13b)

M2 (x,w) = 4δ

(
w −

w0

4

)
exp

(
Σt

µ
(x−X)

)[
1 + 2 exp

(
Σt

µ
(x1 −X)

)
+ exp

(
Σt

µ
(x2 −X)

)]
(14)

x

M2 (x,w)

w x1 x2 X

w0

w0/2

w0/4

Effect of
Q2 (x1, w)
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Overview of Solution Methods

I Analytically compute M1 (x) and M2 (x):

M1 (x = 0) = exp
(
−3
√

3
)
≈ 5.53783× 10−3 (15)

and

M2 (x = 0)

=
1

4
exp

(
−5
√

3
)(

2 + exp
(√

3
)

+ exp
(

2
√

3
))

≈ 1.71607× 10−3. (16)

I Numerically with a single COVRT calculation
I Numerically with a series of forward MCNP calculations

I Yields “correct” value at x = 0
I Provides sanity check along traverse in 0 < x < 2
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Moment Traverses
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Summary & Future Work

I Summary:
I Demonstrated a procedure to predict Monte Carlo mean and variance

I This work focuses on a HSME-based approach
I Alternative approaches are available

I Showed relationship between adjoint/forward deterministic and Monte
Carlo solutions for both mean and variance

I Future work:
I Develop analytic benchmark with scattering (also importance

rouletting)
I Already available numerically (just ask), but not analytically
I Must “iterate” scattering source to convergence

I Identify other scenarios of interest and define corresponding
benchmarks
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Demo: M1 (x) and M2 (x), 0 Collisions, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 1 Collision, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 2 Collisions, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 3 Collisions, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 4 Collisions, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 5 Collisions, Σt = Σs = 1 cm-1
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Demo: M1 (x) and M2 (x), 50 Collisions, Σt = Σs = 1 cm-1
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