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Motivation

« Make use of large collection of (already existing) data to understand
where deficiencies in nuclear data & critical experiments may reside

 Use new MCNPG6 / Whisper-1.1 features
 Data from ICSBEP handbook and DICE database can be utilized

« Machine learning is current “hot topic”

» Explore these methods to hopefully learn something new that can be used
to supplement expert knowledge and judgement

» Very interested and motivated summer student (P. Grechanuk, OSU)

* For criticality safety, we may want to explore new methods to:
* Find similarity between applications and experiments
» Calculate bias for a new application
* Provide feedback to the nuclear data community



Background
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Background
MCNPG6 / Sensitivity Profiles

 Use MCNP6 perturbation/sensitivity features
« Can compute profiles of ke — nuclear data sensitivity profiles
« How does a relative change in the cross section impact kes of the system?
_ Ak/k
Sk’a ~ Aoc/o

« For a single system, these (energy-dependent) profiles are unique
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Background
Criticality Safety / Whisper-1.1
f\pplic;gtion VICNPE

| > = E ,@ Monte Carlo

Criticality Calculation

Nuclear
Cross-section
Data

—.»-».M Application
Sensitivity Profile

Lk
\
L

Nuclear
Cross-section
Covariance
Data

Whisper

‘ SU-based Pattern matching —

Analysis application sensitivity profile
/ i vs catalog

Select similar experiments

3 ‘_,. "\

- Statistical analysis to
Catalog of sensitivity USL determine bias & uncertainty
profiles for 1000s of Upper Subcritical Limit & extra margin

experiments for criticality safety analysis




How Can Machine Learning Methods be Applied to
Support Nuclear Data?

 Need Data to Feed the Machine Learning Methods
* Whisper-1.1 provides:
« Statistical analysis methods to determine baseline USLs
» Covariance data for nuclear cross-sections (use is limited)
* Most importantly, a catalogue of 1100+ ICSBEP benchmarks
« Each benchmark contains sensitivity profiles for
a) each isotope in the benchmark (~170 unique isotopes across the catalogue)
b) 12 reactions per isotope
c) 44 energy bins per reaction
+ Total of nearly ~90,000 unique isotope-reaction-energy sensitivity coefficients

« Questions

» Using only the sensitivity profiles, for an unknown application, can machine
learning methods help in ...

« predicting bias (calculation — experiment)? (regression)
+ finding similar benchmarks? (clustering)
« adjusting cross sections to reduce biases? (optimization)



K.¢s Bias Predictions &
Feature Importance
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Machine Learning

Machine learning algorithms can be used to find “hidden” patterns in
data that are not necessarily obvious

Can be used to cluster data or to build a regression model

@ of

Estimated number of clusters: 3

Some
nomenclature:
features = x
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Image obtained from Wikipedia's Linear Regression page

In this case, we want to “predict”’ something: given x, what is f(x)?
@ The first objective is to predict k. bias (calculation — experiment)




Machine Learning
k.« Bias Prediction

U-238: total cross-section sensitivity
OECD/NEA UACSA Benchmark Phase lIl.1
0.03

* Prediction of Bias using Sensitivity Profiles | |
 Sensitivity profiles are readily available, Si;’o ) “
 Bias, B, known for Whisper benchmarks, S . . 'f

: . E -0.02 | ,4 |}
- = Lkt — kt e
B; = calc kel‘p = %’ I
5 Goal iS to prediCt bias: ::4j . i ..- -
o~ ( | B | |
BZ ! f(Sk;’a') -00?8_10 1e-08 We-nsN ' Eo.rc;s‘o(:d " 0.01 1

* Regression Trees
« Atree-like model of decisions based on the features e
 All features are considered to split the data | | s
» Splits are chosen to minimize a cost function 7l - f \

(i.e. mean-square error) N~ ol o W
W W W W W urvival Kate
* Random FOI'eSt Image obtained from

https://algobeans.com /2016 /07 /27 /decision-trees-tutorial

« Ensemble of regression trees
« Random subset of data in each trees and subset of features in each split
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Machine Learnin
9 Bias Accuracy Metrics

K.t Blas Prediction Results Model RMSE  MAE
Random Forest (I)  0.00499 0.00350
» With the bias known for all of the AdaBoost (1) 0.00498  0.00352
Whisper-1.1 catalogue cases, the Random Forest (D) 0.00572  0.00397
generalized model predictions AdaBoost (D) 0.00537  0.00374
(comparison of known bias to [=energy-integrated sensitivities

predicted bias) are promising D=energy-dependent sensitivities

Comparison of Adaboost Bias vs. Real Bias

* This leads us to believe that
sensitivity profiles, given that .| .
they are unique for each
individual benchmark case, can
be used to as a feature in 0.01
machine learning methods to
prediction the bias in a similar
system of interest 001 1

—0.02 A1

e Real Bias
e Adaboost Bias

0.02

0.00 A

« What else can be learned from —0.031
the machine learning methods? 0 200 400 600 800 1000
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k.« Bias Prediction Feature Importance

 From the machine learning
methods, feature importance
can be used to identify what
nuclear data is cause for bias
predictions

Top 10 Important Features using
the SHAP metric on a bias model
constructed from only 233U
solution benchmarks

« Shapley Additive exPlanation Isotope Reaction Energy

19 -
(SHAP) metric for feature 19F elast}c 2.48 — 3.00 MeV
F elastic 1.40 — 1.85 MeV

importance
'mp ¢ _ 2TAl elastic 0.55 — 3.00 keV
 For each benchmark, estimate 19F  ipelastic  3.00 — 4.80 MeV
the additive contribution to the 19F  inelastic 1.85 — 2.35 MeV
predicted bias for each feature 9F  pgamma 25.0 — 100. keV
 For global importance, assess 23U nu,total  30.0 — 100. eV
the mean absolute additive 9F  elastic  400. — 900. keV
contribution across observations 225U nu,total  10.0 — 30.0 eV
5
. “A Unified Approach to U nu,¢total 100. — 550. eV

Interpreting Model Predictions”
Lundberg, Lee (2017)




Criticality Benchmark
Clustering
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Machine Learning

Machine learning algorithms can be used to find “hidden” patterns in
data that are not necessarily obvious

Can be used to cluster data or to build a regression model

@ ON

Estimated number of clusters: 3

Some
nomenclature:
features = x

10

-20 -10 10 20 30 40 50 60

=2 =1 @ 1 2 Image obtained from Wikipedia's Linear Regression page

In this case, we want to group together similar benchmarks: given x,
what group (cluster) do | belong to?

The second objective is to cluster together similar benchmarks
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Machine Learning
Criticality BenCh mark CIUStering U-238: total cross-section sensitivity

OECD/NEA UACSA Benchmark Phase .1

0.03 T
TSUNAMI-3D —=- -~
MCNPE - m--

» Clustering is used to find inherent
relationships in the data

» Objects in the same cluster are more similar to
each other than those in other clusters

 Used to find groups of benchmarks that have
similar sensitivity profiles, S,ZC’J

keff Sensitivity / Lethargy

-0.06 I i i
1e-10 1e-08 1e-06 0.0001 0.01

 Affinity propagation works the best on the
sensitivities
» Based on the concept of message passing 21
between clusters
» Does not require number of clusters a priori

* Finds ‘exemplars’ representative of the cluster

Estimated number of clusters: 3

 Goal is to observe how the machine learning _|
clustering compares to the ICSBEP

classification of benchmarks
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Machine Learning

Criticality Benchmark
Clustering Results

* Finds 24 clusters ranging in
population from 2 to 133

» Segregated mainly based on materials
present and spectrum

Bias Across Clusters

6]
0.03 A
0.02 1 w ¥
©
0.01 - o ® ®
T
@ 0.00 - ‘ e
L
® o)
—-0.01 4
—0.02 -
)
—0.03 A o
0 200 400 600 800 1000
Benchmark

« Can these clusters be used in some
way?

Cluster

0

1

Number of Cases

33

11

38

133

10

60

29

Benchmark Types

heu-met-fast

heu-met-fast, heu-met-mixed

heu-met-fast

heu-met-fast

heu-met-inter

heu-sol-therm, leu-comp-therm, u233-comp-therm
heu-met-fast, ieu-met-fast

leu-comp-therm, heu-comp-therm, heu-met-therm
heu-comp-therm, leu-comp-therm, heu-sol-therm
leu-comp-therm, heu-sol-therm

heu-sol-therm, leu-sol-therm

mix-comp-fast

mix-met-fast

pu-sol-therm, mix-sol-therm, mix-comp-therm
pu-comp-mixed, pu-sol-therm

pu-comp-mixed, pu-met-fast

pu-met-fast, mix-met-fast

pu-sol-therm, mix-sol-therm, mix-comp-therm
pu-sol-therm, mix-sol-therm,

u233-met-fast

u233-sol-therm, u233-sol-inter

u233-sol-therm

u233-sol-therm

u233-sol-therm, u233-comp-therm




- - Cluster Number of Cases Benchmark Types
Machine Learning

0 33

Criticality Benchmark 1w
Clustering Results L
Cluster Number of Cases
19 10
20 45
21 10

60

29

heu-met-fast

heu-met-fast, heu-met-mixed

heu-met-fast

ICSBEP Benchmark r-I‘ype
u233-met-fast

u233-sol-therm, u233-sol-inter
u233-sol-therm

u233-sol-therm
u233-sol-therm, u233-comp-therm

mix-met-fast
pu-sol-therm, mix-sol-therm, mix-comp-therm
0.01 - : . X
pu-comp-mixed, pu-sol-therm
C ; :
m 0.00 pu-comp-mixed, pu-met-fast
pu-met-fast, mix-met-fast
—0.01 A
pu-sol-therm, mix-sol-therm, mix-comp-therm
—0.02 pu-sol-therm, mix-sol-therm,
—0.03 ( u233-met-fast
T T T T _ 4
0 200 400 600 4 u233-sol-therm, u233-sol-inter
Benchmark

u233-sol-therm

u233-sol-therm

u233-sol-therm, u233-comp-therm
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Machine Learning
Clustering Applications

« Can train and test on a few clusters at a time
» Well populated classes of benchmarks skew the overall model

« Training and testing on a subset of the data leads to a more specialized
and accurate model

* This has been done (results not shown here)

» More accurate model <« More accurate feature importance

« Can use clustering to find similar benchmarks for:
« Benchmark selection for statistical analysis in Whisper

* Use in place of ¢, (correlation coefficient) as similarity measure

« Finding regions in sensitivity space that are sparse (more benchmarks
needed, see cluster #11 with mix-comp-fast on previous slide)

 When looking at the nuclear data adjustment methods (on the following
slides), a model based on a few clusters is used




Nuclear Data
Adjustment




Los Alamos National Laboratory

Machine Learning

Machine learning algorithms can be used to find “hidden” patterns in
data that are not necessarily obvious

Can be used to cluster data or to build a regression model

Estimated number of clusters: 3

@

@ of

Some
nomenclature:
features = x

10
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o S .
.

-20 -10 10 20 30 40 50 60

-2 -1 0 1 2 Image obtained from Wikipedia's Linear Regression page

In this case, the objective is to optimize cross section perturbations
using information from both @ and @
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Machine Learning e o,

0.03

Nuclear Data Adjustment -l B e

0.01

« Using the sensitivities, Sii,g - cross sections
can be adjusted in order to reduce k¢ bias

-0.02 |-

keff Sensitivity / Lethargy

-0.03

« Can be done by Generalized Linear Least
Squares Method (GLLSM)

-0.05 |-

 GLLSM used in Whisper to calculate MOSgyata :

Neutron Energy (MeV)

20 15 u233-sol-therm, u233-sok-inter
* Look at only U233 solution clusters — EE ot
22 60 1233-sol-therm

23 29 1u233-sol-therm, u233-comp-therm

« Build a random forest model to predict the

kes bias within these clusters soope  Headhon Mnargy

I9F  elastic  2.48 — 3.00 MeV
R elastic 1.40 — 1.85 MeV

. : 2TAl  elastic  0.55 — 3.00 keV
* Find the most important features to — 19F  inelastic  3.00 — 4.80 MeV

predicting the bias > 9% ipelastic 1.85 — 2.35 MeV
9F  ngamma 25.0 — 100. keV

235U nu,total  30.0 — 100. eV
" . 5 19 lasti 400. — 900. keV

« Apply genetic algorithm to optimize 2357 nﬁsoézl 10.0 — 30.0 e{;

perturbations of the most important features 25U  nuytotal  100. — 550. €V




Machine Learning
Nuclear Data Adjustment

« Applied genetic algorithm
Minimize bias for specific clusters of benchmarks
« Only perturb the most important cross sections to predicting bias

A ]C i Ao
cale — calc k,o| o
* Population: / Isotope Reaction Energy
- - TP F  elastic  2.48 — 3.00 MeV
[ ]

Array of potential perturbations (individuals) 9P dlagtic 140 — 1.85 MV

Bounded by 3 standard deviations “TAl - elastic  0.55 - 3.00 keV

_ ] o i YF  inelastic  3.00 — 4.80 MeV

» Top 100 important reactions to predicting bias 9% inelastic  1.85 — 2.35 MeV

 Only top 10 important reactions shown in the table = 2;595 n,gatmgnf» 288 - 188 k%V
nu,tota. 0 - . €

19 elastic 400. — 900. keV

. . . 25U nutotal  10.0 — 30.0 eV
 Fitness Function: 250 nutotal  100. — 550. ¢V

« Squared error between perturbed and experimental
Kot across all benchmarks

Cost = Zf ( pert kozsch)
B 2000
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Nuclear Data Adjustment Initial Results

* Distribution of k.« bias for selected 233U solution clusters is far more
Gaussian after cross section perturbation optimization

Bias Distribution before Optimization Bias Distribution after Optimization
17.5 A1
17.5 A1
15.0 A1
15.0 A1
125 1 125 1
100 - 10.0 -
75 1 715 1
5.0 1 5.0 1
25 1 25 1
00 - 00 T T
-0.03 -0.02 -0.01 0.00 001 0.02 -0.03 -0.02 -0.01 0.00 0.01 0.02
Bias Bias

 MAE reduced by 33.3% from 0.00842 to 0.00561
« RMSE reduced by 34.6 % from 0.01111 to 0.00723
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Machine Learning

Nuclear Data Adjustment Initial Results

» Adjusted Nuclear Data for top 10 important features

Isotope Reaction Energy GA Perturbation, Ao /o
9F elastic 2.48 — 3.00 MeV 0.27726
YUEF  elastic  1.40 — 1.85 MeV 0.24301

2TA1  elastic  0.55 — 3.00 keV -0.02295
I9F  jnelastic  3.00 — 4.80 MeV 0.37294
YF  inelastic 1.85 — 2.35 MeV 0.33434
YF  n,gamma 25.0 - 100. keV -0.07822

235U nu,total  30.0 — 100. eV 0.00047
I9F  elastic  400. — 900. keV 0.18738

235U  nu,total  10.0 — 30.0 eV -0.00285

235U nu,total  100. — 550. eV 0.00309

- Are these suggested nuclear data perturbations realistic?
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Reality
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9F Total & exp. data (zoomed)

1 1 1 1 1 1 1 I | 1

» e ENDRUE. ST LB TN Total is very well measured
2 terer .
¢ 1976 Larson E7.0 could be even too high
o0 |- if Abfalterer data are followed |
instead of Larson.
A
P Total accuracy ~3%
0
- 10 ]
=, k- -
3] L .
@
) = —
(@) = 4
m 1
2 -
1 1 1 1 1 1 1 I 1 1
0.5 1 2
Incident Energy (MeV)
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19 elastic - ML proposes increases by ~18-27%

1 Illlllll | IIIIlIlI | llllllll I llllllll Il
102 = RR Fast RR Fast —
50':' ’ ) E
=
E " -
g 20 B
5
= 10 ——
Q - -
) - -
g °F \_/ t | UENDL-4.0 -
G i ENDF/B- - i
21 VIILO ;
1:— =
0‘5- | Illlllll 1 llllllll [l IIIIIIII | llllllll ;
102 101 1 10

Incident Energy (MeV)
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19k inelastic - ML proposes increases 33 & 37%

1 1 lllllll I I lllllll 1

JENDL-4.0
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N
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Cross Section (barns)
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|
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Incident Energy (MeV)
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19F Inelastic (grouped)

T] LI L) L] L) TT L] L L] L L] ] Ll
o | —l
33
'JJ" — 4 — ENDF7
E —iNDL--‘r
g 1} ' ]
§ | 35 37
c% 34 40
g - 41
O 42
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0'2 -l 1 I 1 1 1 L4 111 l 1 1 1 L1 1 1 l 1 ]
Incident Energy (MeV)
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Unitarity problem in adjusted ENDF/B-VII.0 XS (barns)

Energy Groups

19F Reactions
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Adjusting Cross Sections — Results U233 Cluster

Isotope Reaction Energy GA Perturbation, Ao /o
L elastic 2.48 — 3.00 MeV 0.27726
UEF  elastic  1.40 — 1.85 MeV 0.24301

2TAl  elastic  0.55 — 3.00 keV -0.02295
9 jnelastic  3.00 — 4.80 MeV 0.37294
YF  jnelastic 1.85 — 2.35 MeV 0.33434
YF  ngamma 25.0 — 100. keV -0.07822

nu,total  30.0 — 100. eV 0.00047
elastic 400. — 900. keV 0.18738
nu,total  10.0 — 30.0 eV -0.00285
nu,total  100. — 550. eV 0.00309
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235 nu-bar - difference between E7.0 and E8.0

Total nubar
(&
|

10-10 105 1
Energy (MeV)
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235U nu-bar - E8.0 to E7.0 ratio and ML proposed

change
] 1 | L | |||||I 1 I ||||||I 1 | L] ||l||l ] | llllll I LB
1.02— ) ) — 1.02
ENDE/B-VIIIO-U-235
- ENDF/B-VILO:U-235 el
I A ! ]
~ 1.00 * it 1.00
gt T T
= |
T - 0.3% 7
(-]
- - B
0.98 — — 0.98
0.96 |— — 0.96
| L1l L 1l Ll Ll L1 o1 iaii
107 106 105 104 103 102

Energy (MeV)
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Conclusions

« Using MCNPG6 capabilities to calculate nuclear data sensitivity profiles
along with the Whisper-1.1 catalogue of 1100+ criticality safety
benchmarks, several Machine Learning methods were applied to
predict k¢ bias, cluster similar benchmarks together and optimize
perturbations to important cross sections.

* There is no physical support for the proposed changes in the current
ENDF/B '9F evaluation, but...

« ML have pointed out to the file that needs a reevaluation.

« 235U nu-bar results are interesting - ML got right the region which has been
changed in ENDF/B-VIII.0. One change is consistent with E8, the second
is irrelevant, the third in not confirmed by ES8.

ML ( as any other adjustment) might not be reliable if the prior is wrong.




Future Work

* Need to examine all of the Machine Learning results more closely,
especially the initial nuclear data adjustment results

» Comparison to GLLSM is needed

* Inclusion of the nuclear data covariances should be investigated (bounding
by 3 standard deviations is likely not appropriate)

* Using more features of the benchmarks could be explored to see if they
can help in clustering benchmarks or finding systematic outliers

« To get the full story on '°F, still need to investigate ways to include:

* physics (unitarity)
* covariance’s
« angular distributions haven’t been used in ML but might play a role
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Questions?

| 36



