
LA-UR-19-20291
Approved for public release; distribution is unlimited.

Title: A Python Script to Convert MCNP Unstructured Mesh Elemental Edit
Output Files to XML-based VTK Files

Author(s): Kulesza, Joel A.
McClanahan, Tucker Caden

Intended for: Report

Issued: 2019-11-13 (rev.2)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

A Python Script to Convert MCNP Unstructured Mesh Elemental Edit Output Files to
XML-based VTK Files

Joel A. Kulesza and Tucker C. McClanahan

Monte Carlo Methods, Codes, and Applications Group

X Computational Physics Division

Los Alamos National Laboratory

September 23, 2019

1 Introduction

This report provides a Python script to convert an MCNP R© [1] ASCII unstructured mesh (UM) elemental
edit output (EEOUT) file [2] geometry and results to an ASCII XML-based unstructured mesh VTK (.vtu)
file [3, Section 19.3]. The resulting VTK file can be directly visualized with applications such as ParaView [4]
and VisIt [5]. This report also describes accompanying verification work that shows the script performing as
required. However, users of the enclosed script must still verify that the script is behaving correctly for their
own work.

This report is organized as follows: Section 2 describes how to execute the enclosed script and its resulting
output, Section 3 gives requirements of the script, Section 4 describes design and implementation considerations,
and Section 5 describes verification testing performed to demonstrate that the requirements in Section 3 are
met. The script itself is listed in Appendix A and provided as a PDF attachment for convenience. Select files
used in testing are listed in Appendix B. For convenience, Appendix C provides several ParaView macros
that the first author has found useful.

An early version of the enclosed script was distributed, to a limited extent, to MCNP UM analysts within Los
Alamos National Laboratory. This document is the result of several requests for the script from the MCNP
UM user community outside Los Alamos National Laboratory. This script is thus provided now as a stopgap
measure until such functionality is provided by a compiled application that provides superior speed and a
robust verification and validation basis (e.g., via um_post_op or MCNPTools [6]) or until MCNP UM output
is produced in a format that can be directly visualized.

Revision 1 of this document incorporates changes to the script that gracefully handle NaN and extreme value
(10±100 and beyond) edit quantities. If a NaN is encountered, a warning is issued and it is converted to 10308.
Furthermore, all Float32-valued VTK fields have been converted to Float64.

MCNP R© and Monte Carlo N-Particle R© are registered trademarks owned by Triad National Security, LLC, manager and operator
of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to Triad
National Security, LLC, including the use of the R© designation as appropriate. Any questions regarding licensing, proper use,
and/or proper attribution of Triad National Security, LLC marks should be directed to trademarks@lanl.gov.

LA-UR-19-20291, Rev. 2 1 of 37

Revision 2 of this document incorporates changes to the script that handle the processing of energy and/or
time bins along with their errors and totals. The result is a file with multiple datasets corresponding to each
energy/time/error/total bin.

2 Script Usage

The enclosed script, named Convert_MCNP_eeout_to_VTK.py, is executed from the terminal command line
followed by the filename of the EEOUT file as, for example:

1 python3 Convert_MCNP_eeout_to_VTK.py test.eeout

Output to the terminal will be of the form:

1 Processing test.eeout ...
2 Found 1 edit(s).
3 Processing FLUX_4 edit ...
4 Processing & Validating EDIT_4_RESULT ...
5 Maximum value: 2.86644e-01
6 Minimum non -zero value: 4.78513e-07
7 Minimum value: 0.00000e+00

The label EDIT_4_RESULT is expanded to the name of the resulting dataset including time/energy identifiers.
The maximum, minimum non-zero, and minimum values are provided for two reasons. First, the maximum
and minimum non-zero values give appropriate bounds for setting color scales when log-scaling is used.
Second, one can use the minimum value as a sanity check. If the minimum is non-zero, then it should be the
same as the minimum non-zero value. If the minimum is zero, some elements may not have had particles
enter them so the user should confirm that results are appropriate. In this example, the EEOUT file name
is test.eeout so the resulting ASCII XML-based unstructured mesh VTK will be automatically named
test.eeout.vtu. If this file exists, it will be overwritten without warning.

3 Functional and Performance Requirements

The functional requirements for this script are:

1. The script shall be able to convert arbitrary combinations of parts containing first- and second-order
tetrahedral, pentahedral, and hexahedral geometry elements from the EEOUT file produced by MCNP
code version 6.2 to an XML-based unstructured mesh VTK (.vtu) file.

2. The resulting .vtu file shall be ASCII, serial-formatted, and entirely self-contained. As such, it can
be readily interrogated by a user with a text editor and loaded in a visualization application such as
ParaView or VisIt without additional post-processing. This script is only required to work with ASCII
EEOUT files, which is the default output format.

3. The script shall be able to convert element-wise edits and optionally enabled corresponding relative
uncertainties from EEOUT to .vtu.

LA-UR-19-20291, Rev. 2 2 of 37

4. The script shall be able to convert element-wise volume, density, and materials from EEOUT to .vtu.

5. The script shall be able to convert element-wise edits that are binned in energy and/or time along with
their corresponding relative uncertainties and totals from EEOUT to .vtu.

There are no firm performance requirements. However, this script should be able to process EEOUT files
containing millions of elements without undue slowness.

4 Design and Implementation

Because this script was developed for personal use by the first author, speed of development and flexibility
were informal design and implementation requirements. Accordingly, the Python language was selected and
an evolutionary development approach was used. The script does not leverage object-oriented functionality;
however, it is recommended that a data structure be constructed to represent the EEOUT information in the
future. As the script was used, it was checked by the authors on a case-by-case basis. This report is the first
time substantial verification is performed. Despite the verification work in this report, it is incumbent on the
user of the enclosed script to still verify that results are correct on a case-by-case basis.

This script is Python 3 compliant (most recently executed with Python version 3.7.2 provided by Homebrew1

on macOS version 10.12.6). Furthermore, it was an informal goal that minimal Python modules be required
so the script would be as portable as possible. As such, this script only depends on the os, re, and sys

modules. Because of the Python 3 compliance and minimal number of module dependencies, the enclosed
script should work with any recent Python 3 interpreter on any operating system.

5 Testing

A collection of 216 individual calculations is used to verify that this script fulfills requirements 1–4 in
Section 3. The 216 separate MCNP calculations consist of all permutations of UM cells composed of first-
and second-order tetrahedral, pentahedral, and hexahedral elements within a three pseudo-cell analysis.

Each calculation features a UM three-cell geometry composed of a 50× 50× 50-mm cube with an adjacent
right-triangular prism and semicylindrical cap. The geometry is shown in Fig. 1. The cube is composed
of 252Cf at 15.1 g·cm−3 with fission disabled (with MCNP input: nonu), the triangular prism is 27Al at
2.6989 g·cm−3, and the cylindrical cap is water at 0.998207 g·cm−3. A spontaneous-fission neutron source is
distributed throughout the cube using the MCNP UM volumer capability and is assigned a 252Cf Watt fission
spectrum (with MCNP input: sp1 -3 1.180000 1.03419). An example input file is given in Listing 2.

Four elemental edit outputs are specified with embee cards:

1 embee4:n embed=1
2 embee14:n embed =1 errors=yes
3 embee6:n embed=1
4 embee16:n embed =1 errors=yes

1https://brew.sh/

LA-UR-19-20291, Rev. 2 3 of 37

https://brew.sh/

Figure 1: Test Case Geometry

LA-UR-19-20291, Rev. 2 4 of 37

This collection of elemental edits provides UM element-wise F4- and F6-type edits (corresponding to track-
length and energy-deposition tallies) both with and without associated relative uncertainties in the resulting
EEOUT file. By default, element-wise material, volume, and density values are available in the EEOUT file.

Following each MCNP calculation, three steps are used to verify that requirements 1–4 are met. First, each
EEOUT file is converted to a .vtu file using the script in Listing 1 [Req. 1]. Next, each .vtu is loaded in
ParaView [Req. 2]. Finally, the element-wise results [Req. 3], associated relative uncertainties (if applicable)
[Req. 3], material numbers [Req. 4], densities [Req. 4], and volumes [Req. 4] are visualized. Examples of the
visualized quantities are given in Fig. 2 for a variety of element-type combinations.

In order to test the energy and/or time binning functionality of this script, 6 individual calculations are used
to verify that the script fulfills requirement 5 in Section 3. The 6 calculations include all permutations of
time and energy binning, with and without relative errors. Each test calculation includes a 1 × 1 × 1-cm
cube represented by 8 hexahedral mesh elements, and the cube is centered about the origin. The geometry is
shown in Fig. 3. The cube is composed of 27Al at 2.7 g·cm−3. A point source of neutrons located at the
point (12.071, 12.071, 12.071) with arbitrary energy and time distributions that are detailed in Appendix B.3.
A similar procedure to verify the energy/time binning test cases as stated above was followed for each test
case. Fig. 4 shows some examples of energy and time bins plotted in ParaView.

5.1 Comments on Performance

This script is also tested on a UM terrain geometry that contains approximately 10 million elements (with
approximately 3 million nodes) with 2 elemental edits and required up to 16 GB of free RAM. The conversion
process from EEOUT to VTK takes approximately 4 minutes. Loading and viewing the resulting .vtu file
in ParaView takes approximately 1 minute. The resulting geometry shaded by UM element volume is shown
in Fig. 5. This level of performance is deemed acceptable.

6 Conclusions

The test case results given in Section 5 demonstrate that the script fulfills the requirements stipulated in
Section 3. While verification of the script is still incumbent on the user on a case-by-case basis, this document
suggests that it is implemented correctly and should properly convert MCNP code version 6.2 elemental edit
output files to XML-based unstructured VTK (.vtu) files.

References

[1] C. J. Werner, J. Armstrong, F. B. Brown, J. S. Bull, L. Casswell, L. J. Cox, D. Dixon, R. A.
Forster, J. T. Goorley, H. G. Hughes, J. Favorite, R. Martz, S. G. Mashnik, M. E. Rising, C. J.
Solomon, A. Sood, J. E. Sweezy, A. Zukaitis, C. Anderson, J. S. Elson, J. W. Durkee, R. C. Johns,
G. W. McKinney, G. E. McMath, J. S. Hendricks, D. B. Pelowitz, R. E. Prael, T. E. Booth, M. R.
James, M. L. Fensin, T. A. Wilcox, and B. C. Kiedrowski, “MCNP User’s Manual, Code Version 6.2,”
Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-29981, Oct. 2017.
URL: http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-29981

[2] R. L. Martz, “The MCNP6 Book On Unstructured Mesh Geometry: User’s Guide For MCNP 6.2,”

LA-UR-19-20291, Rev. 2 5 of 37

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-29981

(a) embee14 Results, Linear Elements (b) embee14 Uncertainties, Linear Elements

(c) embee16 Results, Quadratic Elements (d) embee16 Uncertainties, Quadratic Ele-
ments

(e) Elemental Volumes, Linear Elements (f) Elemental Volumes, Quadratic Elements

(g) Elemental Material Numbers (h) Elemental Mass Densities

Figure 2: Example Visualization Results

LA-UR-19-20291, Rev. 2 6 of 37

Figure 3: Binning Test Case Geometry

(a) Energy Bin 2 Results (b) Energy Bin 3 Results

(c) Time Bin 2 Results (d) Time Bin 3 Results

Figure 4: Example Visualization Results for Energy/Time Bins

LA-UR-19-20291, Rev. 2 7 of 37

Figure 5: UM Terrain Demonstration, Shaded by UM Element Volume, ~10 Million Elements

Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-22442, Mar. 2017.
URL: http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-22442

[3] L. S. Avila, U. Ayachit, S. Barré, J. Baumes, F. Bertel, R. Blue, D. Cole, D. DeMarle, B. Geveci, W. A.
Hoffman, B. King, K. Krishnan, C. C. Law, K. M. Martin, W. McLendon, P. Pebay, N. Russell, W. J.
Schroeder, T. Shead, J. Shepherd, A. Wilson, and B. Wylie, The VTK User’s Guide, 11th ed. Kitware,
Inc., 2010. URL: http://www.vtk.org/vtk-users-guide/

[4] U. Ayachit, The ParaView Guide, community ed., L. Avila, K. Osterdahl, S. McKenzie, and S. Jordan,
Eds. Kitware, Inc., Jun. 2018. URL: https://www.paraview.org/paraview-guide/

[5] “VisIt User’s Manual,” Lawrence Livermore National Laboratory, Livermore, CA, USA, Tech. Rep.
UCRL-SM-220449, Oct. 2005. URL: https://wci.llnl.gov/simulation/computer-codes/visit/manuals

[6] C. J. Solomon, C. R. Bates, and J. A. Kulesza, “The MCNPTools Package: Installation and Use,” Los
Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-21779, Mar. 2017.

[7] J. L. Alwin, J. B. Spencer, and G. A. Failla, “Criticality Acccident Alarm System (CAAS) CSG-UM
Hybrid Example,” Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-18-24235,
May 2018. URL: http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-24235

LA-UR-19-20291, Rev. 2 8 of 37

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-22442
http://www.vtk.org/vtk-users-guide/
https://www.paraview.org/paraview-guide/
https://wci.llnl.gov/simulation/computer-codes/visit/manuals
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-24235

A Script Source Code

The source code for the script described herein is given in Listing 1. For convenience, it is also provided as an
attachment to this PDF, which can be accessed using Adobe Acrobat through the menu path shown in Fig. 6.

Figure 6: Adobe Acrobat Menu Path to Access PDF Attachments

LA-UR-19-20291, Rev. 2 9 of 37

Listing 1: Script Source Code
1 #!/usr/bin/env python
2 #
3 # Execute as: Convert_MCNP_eeout_to_VTK.py <file.eeout >
4 #
5 # Code: Convert_MCNP_eeout_to_VTK , version 1.2.0
6 #
7 # Authors: Joel A. Kulesza (jkulesza@lanl.gov)
8 # Tucker C. McClanahan (tcmcclan@lanl.gov)
9 # Monte Carlo Methods , Codes & Applications

10 # X Computational Physics Division
11 # Los Alamos National Laboratory
12 #
13 # Copyright (c) 2019 Triad National Security , LLC. All rights reserved.
14 #
15 # This material was produced under U.S. Government contract 89233218 NCA000001
16 # for Los Alamos National Laboratory , which is operated by Triad National
17 # Security , LLC for the U.S. Department of Energy. The Government is granted
18 # for itself and others acting on its behalf a paid -up , nonexclusive ,
19 # irrevocable worldwide license in this material to reproduce , prepare
20 # derivative works , and perform publicly and display publicly. Beginning five
21 # (5) years after February 14, 2018, subject to additional five -year worldwide
22 # renewals , the Government is granted for itself and others acting on its behalf
23 # a paid -up, nonexclusive , irrevocable worldwide license in this material to
24 # reproduce , prepare derivative works , distribute copies to the public , perform
25 # publicly and display publicly , and to permit others to do so. NEITHER THE
26 # UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY , NOR TRIAD NATIONAL
27 # SECURITY , LLC , NOR ANY OF THEIR EMPLOYEES , MAKES ANY WARRANTY , EXPRESS OR
28 # IMPLIED , OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY ,
29 # COMPLETENESS , OR USEFULNESS OF ANY INFORMATION , APPARATUS , PRODUCT , OR PROCESS
30 # DISCLOSED , OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
31 # RIGHTS.
32

33 import os
34 import re
35 import sys
36

37 # Find the start and end positions for the first matching sublist in a list.
38 def find_sublist(sl , l):
39 sll=len(sl)
40 for ind in (i for i,e in enumerate(l) if e == sl[0]):
41 if(l[ind:ind+sll] == sl):
42 return ind ,ind+sll -1
43

44 # Extract a certain number of entries (length) following a sublist (sublist) for
45 # a given input list (inlist).

L
A
-U

R
-19-20291,

R
ev.

2
10

of
37

46 def extract_sublist_entries(sublist , length , inlist):
47 lp1 = find_sublist(sublist , inlist)[1] + 1
48 lp2 = lp1 + length
49 return inlist[lp1:lp2]
50

51 # Calculate the connected nodes for various element types.
52 def calculate_connectivity_list_length(e_types):
53 connectivity_list_length = []
54 for e in e_types:
55 if(e == ’4’):
56 connectivity_list_length.append(4)
57 elif(e == ’5’):
58 connectivity_list_length.append(6)
59 elif(e == ’6’):
60 connectivity_list_length.append(8)
61 elif(e == ’14’):
62 connectivity_list_length.append(10)
63 elif(e == ’15’):
64 connectivity_list_length.append(15)
65 elif(e == ’16’):
66 connectivity_list_length.append(20)
67 return connectivity_list_length
68

69 # Convert eeout element types to VTK element types.
70 def calculate_vtk_e_types(e_types):
71 vtk_e_types = []
72 for e in e_types:
73 if(e == ’4’):
74 vtk_e_types.append(’10’)
75 elif(e == ’5’):
76 vtk_e_types.append(’13’)
77 elif(e == ’6’):
78 vtk_e_types.append(’12’)
79 elif(e == ’14’):
80 vtk_e_types.append(’24’)
81 elif(e == ’15’):
82 vtk_e_types.append(’26’)
83 elif(e == ’16’):
84 vtk_e_types.append(’25’)
85 return vtk_e_types
86

87 # Create flat list of 3D vertices from individual coordinate lists.
88 def create_vertices(xs, ys , zs):
89 v = []
90 for n,x in enumerate(xs):
91 v.append(xs[n])

L
A
-U

R
-19-20291,

R
ev.

2
11

of
37

92 v.append(ys[n])
93 v.append(zs[n])
94 return(v)
95

96 # Reformat list to print its elements nicely within the XML file.
97 def pretty_print_list(indent , cols , colwidths , inlist):
98 pretty_list_string = indent * ’ ’
99 for n,i in enumerate(inlist):

100 pretty_list_string += str(i).rjust(colwidths) + ’ ’
101 if(n % cols == cols - 1):
102 pretty_list_string += ’\n’ + indent * ’ ’
103 pretty_list_string += ’\n’
104 return pretty_list_string
105

106 # Perform various sanity checks on edit results.
107 def perform_edit_checks(edit_values , total_elements , check_gap = True):
108 found_negative = False
109 found_nan = False
110 max_val = -1e308
111 min_nz_val = 1e308
112 min_val = 1e308
113

114 # Custom float conversion for Fortran -formatted numbers missing an "e" and
115 # with three digits in the exponent.
116 def floatf(x):
117 try:
118 rv = float(x)
119 except:
120 rv = float(x[0:-4] + ’e’ + x[-4:])
121 return rv
122

123 edit_values = [floatf(i) for i in edit_values]
124

125 if(len(edit_values) == total_elements + 1):
126 gap_value = edit_values[0]
127 if(gap_value > 0 and check_gap):
128 print(’WARNING: gap value: {:}’.format(gap_value))
129 else:
130 print(’ERROR: Unexpected edit length , exiting ’)
131 exit()
132

133 # The first edit entry is for gaps --- discard for plotting.
134 edit_values = edit_values[1:]
135 for ev in edit_values:
136 if(ev < 0 and found_negative == False):
137 print(’WARNING: Negative edit entry found.’)

L
A
-U

R
-19-20291,

R
ev.

2
12

of
37

138 found_negative = True
139 if(ev != ev and found_nan == False):
140 print(’WARNING: NaN edit entry found. Setting to 1e308.’)
141 found_nan = True
142 if(ev < min_nz_val and ev > 0.0): min_nz_val = ev
143 if(ev < min_val): min_val = ev
144 if(ev > max_val): max_val = ev
145

146 if(found_nan == True):
147 edit_values = [1e308 if ev != ev else ev for ev in edit_values]
148

149 print(’ Maximum value: {:.5e}’.format(max_val))
150 print(’ Minimum positive value: {:.5e}’.format(min_nz_val))
151 print(’ Minimum value: {:.5e}’.format(min_val))
152

153 edit_values = [’{:.5e}’.format(i) for i in edit_values]
154

155 return edit_values
156

157 # Separate into list and parse into results and relative uncertainties , if
158 # appropriate.
159 def get_results(edit_values , edit_number , total_elements):
160 edit_results = []
161 tmp = edit_values.split(’DATA SETS’)[1:]
162 edit_sets = [tmp[i] for i in range(len(tmp)) if ’RESULT SQR TIME BIN’ not in tmp[i]]
163 sublists = [[’RESULT ’, ’TIME’] if ’RESULT TIME’ in edit_sets[i] else [’REL’, ’ERROR ’, ’TIME’] for i in range(len(edit_sets))]
164 count = -1
165 for s in sublists:
166 count += 1
167 edit_data = extract_sublist_entries(s, total_elements + 1 + 26, edit_sets[count].split())
168 # Get supplemental edit -identifying information.
169 time_bin = edit_data [2]
170 time_value = edit_data [7]
171 erg_bin = edit_data [16]
172 erg_value = edit_data [21]
173

174 # Construct unique name.
175 edit_name = ’EDIT_ {:}_{:} _TIME_BIN_ {:} _MAX_TIME_ {:} _ENERGY_BIN_ {:} _MAX_ENERGY_ {:}’.format(\
176 edit_number , s[-2], time_bin , time_value , erg_bin , erg_value)
177

178 # Extract only edit data values and validate.
179 edit_data = edit_data [26:]
180 print(’ Processing & Validating {:}... ’.format(edit_name))
181 check_gap = (not ’ERROR’ in s) # Don’t check gap for error arrays.
182 edit_data = perform_edit_checks(edit_data , total_elements , check_gap)
183 edit_results.append([edit_name , edit_data])

L
A
-U

R
-19-20291,

R
ev.

2
13

of
37

184

185 return edit_results
186

187 ##
188

189 import __main__ as main
190 if(__name__ == ’__main__ ’ and hasattr(main , ’__file__ ’)):
191

192 # Validate command line arguments.
193 if(len(sys.argv) != 2):
194 print(’ERROR: Incorrect number of command line arguments provided (’
195 + str(len(sys.argv)) + ’); those provided:’)
196 print(sys.argv)
197 exit()
198

199 if(not os.path.isfile(sys.argv[1])):
200 print(’ERROR: MCNP EEOUT file not found.’)
201 exit()
202

203 infilename = sys.argv [1]
204

205 print(’Processing {:}... ’.format(infilename))
206

207 with open (infilename , ’r’) as myfile:
208 eeout = myfile.read()
209

210 # Determine number of nodes and cells.
211 nodes = int(re.search(r’NUMBER OF NODES\s*:\s+(\d+)’, eeout).group(1))
212 tets1 = int(re.search(r’NUMBER OF 1st TETS\s*:\s+(\d+)’, eeout).group(1))
213 pents1 = int(re.search(r’NUMBER OF 1st PENTS\s*:\s+(\d+)’, eeout).group(1))
214 hexs1 = int(re.search(r’NUMBER OF 1st HEXS\s*:\s+(\d+)’, eeout).group(1))
215 tets2 = int(re.search(r’NUMBER OF 2nd TETS\s*:\s+(\d+)’, eeout).group(1))
216 pents2 = int(re.search(r’NUMBER OF 2nd PENTS\s*:\s+(\d+)’, eeout).group(1))
217 hexs2 = int(re.search(r’NUMBER OF 2nd HEXS\s*:\s+(\d+)’, eeout).group(1))
218 total_elements = tets1 + pents1 + hexs1 + tets2 + pents2 + hexs2
219

220 # Retrieve edit information.
221 edit_list = re.findall(r’(DATA OUTPUT PARTICLE .*?)\n’, eeout , re.S)
222

223 print(’ Found {:} edit(s).’.format(len(edit_list)))
224

225 # Capture edit data for use later.
226 eeout_edits = re.search(r’(DATA OUTPUT .*?) CENTROIDS ’, eeout , re.S).group(1)
227

228 # Capture header information.
229 eeout_header = re.search(r’(.*?) NODES X’, eeout , re.S).group(1)

L
A
-U

R
-19-20291,

R
ev.

2
14

of
37

230 eeout_header = re.sub(r’\s+\n’, ’\n’, eeout_header)
231 eeout_header = re.sub(r’\n+’, ’\n’, eeout_header)
232 eeout_header = re.sub(r’^’, ’# ’, eeout_header)
233 eeout_header = re.sub(r’\n’, ’\n# ’, eeout_header)
234

235 # Reformat eeout to list to permit easy reading of list data.
236 eeout = eeout.replace(’\n’, ’’)
237 eeout = eeout.split(’ ’)
238 eeout = list(filter(None , eeout))
239

240 # Remove head of file to make matching easier.
241 eeout = eeout[find_sublist([’NODES’, ’X’, ’(cm)’], eeout)[0]:]
242

243 # Find the list positions for the first and last nodes.
244 x_coords = extract_sublist_entries([’NODES ’, ’X’, ’(cm)’], nodes , eeout)
245 y_coords = extract_sublist_entries([’NODES ’, ’Y’, ’(cm)’], nodes , eeout)
246 z_coords = extract_sublist_entries([’NODES ’, ’Z’, ’(cm)’], nodes , eeout)
247 e_types = extract_sublist_entries([’ELEMENT ’, ’TYPE’], total_elements , eeout)
248 e_materials = extract_sublist_entries([’ELEMENT ’, ’MATERIAL ’], total_elements , eeout)
249

250 # Process connectivity list.
251 connectivity_list_elements = calculate_connectivity_list_length(e_types)
252 connectivities = []
253 if(’4’ in e_types):
254 connectivities += extract_sublist_entries(
255 [’CONNECTIVITY ’, ’DATA’, ’1ST’, ’ORDER’, ’TETS’, ’ELEMENT ’, ’ORDERED ’],
256 4 * e_types.count(’4’), eeout)
257 if(’5’ in e_types):
258 connectivities += extract_sublist_entries(
259 [’CONNECTIVITY ’, ’DATA’, ’1ST’, ’ORDER’, ’PENTS’, ’ELEMENT ’, ’ORDERED ’],
260 6 * e_types.count(’5’), eeout)
261 if(’6’ in e_types):
262 connectivities += extract_sublist_entries(
263 [’CONNECTIVITY ’, ’DATA’, ’1ST’, ’ORDER’, ’HEXS’, ’ELEMENT ’, ’ORDERED ’],
264 8 * e_types.count(’6’), eeout)
265 if(’14’ in e_types):
266 connectivities += extract_sublist_entries(
267 [’CONNECTIVITY ’, ’DATA’, ’2ND’, ’ORDER’, ’TETS’, ’ELEMENT ’, ’ORDERED ’],
268 10 * e_types.count(’14’), eeout)
269 if(’15’ in e_types):
270 connectivities += extract_sublist_entries(
271 [’CONNECTIVITY ’, ’DATA’, ’2ND’, ’ORDER’, ’PENTS’, ’ELEMENT ’, ’ORDERED ’],
272 15 * e_types.count(’15’), eeout)
273 if(’16’ in e_types):
274 connectivities += extract_sublist_entries(
275 [’CONNECTIVITY ’, ’DATA’, ’2ND’, ’ORDER’, ’HEXS’, ’ELEMENT ’, ’ORDERED ’],

L
A
-U

R
-19-20291,

R
ev.

2
15

of
37

276 20 * e_types.count(’16’), eeout)
277

278 densities = extract_sublist_entries(
279 [’DENSITY ’, ’(gm/cm^3)’],
280 total_elements , eeout)
281

282 volumes = extract_sublist_entries(
283 [’VOLUMES ’, ’(cm^3)’],
284 total_elements , eeout)
285

286 # Create list of vertices from individual coordinate lists.
287 vertices = create_vertices(x_coords , y_coords , z_coords)
288

289 # Subtract one from all vertex IDs in the connectivity list (to make
290 # zero -indexed).
291 connectivities = [str(int(x) - 1) for x in connectivities]
292

293 # Accumulate offset list. Reproduce np.cumsum to avoid NumPy dependency.
294 def cumsum(inlist):
295 cumlist = [0]
296 for n,i in enumerate(inlist):
297 cumlist.append(cumlist[n] + inlist[n])
298 return cumlist [1:]
299 offsets = cumsum(connectivity_list_elements)
300 offsets = [str(x) for x in offsets]
301

302 # Convert eeout element types to VTK element types.
303 vtk_e_types = calculate_vtk_e_types(e_types)
304

305 # Open up output vtu (unstructured mesh VTK) file.
306 f = open(infilename + ’.vtu’, ’w’)
307

308 # Write header comments (but a long header does not work), default: off.
309 if(False):
310 [f.write(’<!-- ’ + l + ’ -->\n’) for l in eeout_header.split(’\n’)]
311 f.write(’<!--’ + ’\n’)
312 f.write(80 * ’#’ + ’\n’)
313 f.write(’# EEOUT Header Follows ’ + ’\n’)
314 f.write(80 * ’#’ + ’\n’)
315 f.write(eeout_header + ’\n’)
316 f.write(80 * ’#’ + ’\n’)
317 f.write(’-->’ + ’\n’)
318

319 f.write(’<VTKFile type=" UnstructuredGrid" version ="0.1" byte_order =" LittleEndian">’ + ’\n’)
320 f.write(’ <UnstructuredGrid >’ + ’\n’)
321 f.write(’ <Piece NumberOfPoints ="’ + str(nodes) + ’" NumberOfCells ="’ + str(total_elements) + ’">’ + ’\n’)

L
A
-U

R
-19-20291,

R
ev.

2
16

of
37

322 f.write(’ <CellData Scalars =" scalars">’ + ’\n’)
323 f.write(’ <DataArray type="Int32" Name=" material" format ="ascii">’ + ’\n’)
324 f.write(pretty_print_list(10, 10, 5, e_materials))
325 f.write(’ </DataArray >’ + ’\n’)
326 f.write(’ <DataArray type=" Float64" Name=" density" format ="ascii">’ + ’\n’)
327 f.write(pretty_print_list(10, 5, 13, densities))
328 f.write(’ </DataArray >’ + ’\n’)
329 f.write(’ <DataArray type=" Float64" Name=" volume" format ="ascii">’ + ’\n’)
330 f.write(pretty_print_list(10, 5, 13, volumes))
331 f.write(’ </DataArray >’ + ’\n’)
332

333 # Output edit information. Edits may have corresponding relative
334 # uncertainties. Edits may be binned by energy and/or time.
335 if(len(edit_list) > 0):
336 for e in edit_list:
337 particle_type = re.search(r’PARTICLE : (\d+)’, e).group(1)
338 edit_type = re.search(r’TYPE : (.*?)$’, e).group(1)
339 edit_number = re.search(r’TYPE : .*?_(\d+)$’, e).group(1)
340 print(’ Processing {:} edit ...’.format(edit_type))
341 myregex = ’({:}.*?) (:? DATA OUTPUT PARTICLE|$)’.format(e)
342 edit_data = re.search(myregex , eeout_edits , re.S).group(1)
343 edit_results = get_results(edit_data , edit_number , total_elements)
344 for er in edit_results:
345 f.write(’ <DataArray type=" Float64" Name="’ + er[0]+ ’" format ="ascii">’ + ’\n’)
346 f.write(pretty_print_list(10, 5, 13, er[1]))
347 f.write(’ </DataArray >’ + ’\n’)
348

349 f.write(’ </CellData >’ + ’\n’)
350 f.write(’ <Points >’ + ’\n’)
351 f.write(’ <DataArray type=" Float64" NumberOfComponents ="3" format ="ascii">’ + ’\n’)
352 f.write(pretty_print_list(10, 3, 13, vertices))
353 f.write(’ </DataArray >’ + ’\n’)
354 f.write(’ </Points >’ + ’\n’)
355 f.write(’ <Cells >’ + ’\n’)
356 f.write(’ <DataArray type="Int32" Name=" connectivity" format ="ascii">’ + ’\n’)
357 f.write(pretty_print_list(10, 8, 5, connectivities))
358 f.write(’ </DataArray >’ + ’\n’)
359 f.write(’ <DataArray type="Int32" Name=" offsets" format ="ascii">’ + ’\n’)
360 f.write(pretty_print_list(10, 10, 5, offsets))
361 f.write(’ </DataArray >’ + ’\n’)
362 f.write(’ <DataArray type="UInt8" Name=" types" format ="ascii">’ + ’\n’)
363 f.write(pretty_print_list(10, 20, 2, vtk_e_types))
364 f.write(’ </DataArray >’ + ’\n’)
365 f.write(’ </Cells >’ + ’\n’)
366 f.write(’ </Piece >’ + ’\n’)
367 f.write(’ </UnstructuredGrid >’ + ’\n’)

L
A
-U

R
-19-20291,

R
ev.

2
17

of
37

368 f.write(’</VTKFile >’ + ’\n’)
369

370 f.close()

L
A
-U

R
-19-20291,

R
ev.

2
18

of
37

B Test Case Files

This appendix provides various files associated with the test cases. They are provided as examples and to
aide in reproducing some of the verification work herein.

B.1 Test Case Example Files (Only Linear Hexahedral Elements)

An example MCNP input using only linear hexahedral elements is given in Listing 2 and the corresponding
Abaqus mesh input file is given in Listing 3.

LA-UR-19-20291, Rev. 2 19 of 37

Listing 2: Test Case MCNP Input File (Only Linear Hexahedral Elements)
1 No description for this unstructured mesh file
2 c
3 c Created from file : test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
4 c Using data cards file: std_datacards.mcnp.inp
5 c Created on : 1- 9-2019 @ 6:42:36
6 c
7 c
8 c PSEUDO CELLS
9 01 1 -15.1000 0 u=1

10 02 2 -2.69890 0 u=1
11 03 3 -0.998207 0 u=1
12 04 0 0 u=1
13 c
14 c LEGACY CELLS
15 05 0 -99 fill=1
16 06 0 99
17

18 c
19 c SURFACES
20 99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00
21

22 c
23 c DATA CARDS
24 embed1 meshgeo=abaqus
25 mgeoin=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
26 meeout=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.eeout
27 length= 1.00000E-01
28 background= 4
29 matcell= 1 1 2 2 3 3
30 c
31 embee4:n embed=1
32 c
33 sdef pos= volumer
34 c
35 erg=d1
36 sp1 -3 1.18 1.03419
37 nonu
38 c
39 mode n
40 c
41 m1 98252 1.0 $ californium -252
42 c $ density: 15.1 g/cc
43 c $ composition assumed; density from crc handbook
44 c
45 m2 13027 1.0 $ aluminum

L
A
-U

R
-19-20291,

R
ev.

2
20

of
37

46 c $ density: 2.6989 g/cc
47 c $ composition & density from pnnl -15870 , rev. 1
48 c
49 m3 1001 0.666657 $ water , liquid @ 23.15 deg -c
50 8016 0.333343 $ density: 0.998207 g/cc
51 mt3 lwtr .10 $ composition & density from pnnl -15870 , rev. 1
52 c
53 imp:n 1 1 1 1 1 0
54 c
55 embee14:n embed =1 errors=yes
56 embee6:n embed=1
57 embee16:n embed =1 errors=yes
58 c
59 rand gen=2 seed =12345
60 print
61 nps 1e6

Listing 3: Test Case Abaqus Mesh Input File (Only Linear Hexahedral Elements)
1 *Heading
2 ** Job name: test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq Model name: Model -1
3 ** Generated by: Abaqus/CAE 2018
4 *Preprint , echo=NO , model=NO, history=NO, contact=NO
5 **
6 ** PARTS
7 **
8 *Part , name=Cube
9 *Node

10 1, 25., 25., 25.
11 2, 0., 25., 25.
12 3, -25., 25., 25.
13 4, 25., 0., 25.
14 5, 0., 0., 25.
15 6, -25., 0., 25.
16 7, 25., -25., 25.
17 8, 0., -25., 25.
18 9, -25., -25., 25.
19 10, 25., 25., 0.
20 11, 0., 25., 0.
21 12, -25., 25., 0.
22 13, 25., 0., 0.
23 14, 0., 0., 0.
24 15, -25., 0., 0.
25 16, 25., -25., 0.
26 17, 0., -25., 0.
27 18, -25., -25., 0.

L
A
-U

R
-19-20291,

R
ev.

2
21

of
37

28 19, 25., 25., -25.
29 20, 0., 25., -25.
30 21, -25., 25., -25.
31 22, 25., 0., -25.
32 23, 0., 0., -25.
33 24, -25., 0., -25.
34 25, 25., -25., -25.
35 26, 0., -25., -25.
36 27, -25., -25., -25.
37 *Element , type=C3D8
38 1, 4, 5, 2, 1, 13, 14, 11, 10
39 2, 5, 6, 3, 2, 14, 15, 12, 11
40 3, 7, 8, 5, 4, 16, 17, 14, 13
41 4, 8, 9, 6, 5, 17, 18, 15, 14
42 5, 13, 14, 11, 10, 22, 23, 20, 19
43 6, 14, 15, 12, 11, 23, 24, 21, 20
44 7, 16, 17, 14, 13, 25, 26, 23, 22
45 8, 17, 18, 15, 14, 26, 27, 24, 23
46 *Nset , nset=Set_material_tally_source_1 , generate
47 1, 27, 1
48 *Elset , elset=Set_material_tally_source_1 , generate
49 1, 8, 1
50 *End Part
51 **
52 *Part , name=Right_Triangle
53 *Node
54 1, 75., -25., -25.
55 2, 25., -25., 25.
56 3, 25., -25., -25.
57 4, 50., -25., 0.
58 5, 25., -25., 0.
59 6, 50., -25., -25.
60 7, 42.6746407 , -25., -7.3253603
61 8, 75., 0., -25.
62 9, 25., 0., 25.
63 10, 25., 0., -25.
64 11, 50., 0., 0.
65 12, 25., 0., 0.
66 13, 50., 0., -25.
67 14, 42.6746407 , 0., -7.3253603
68 15, 75., 25., -25.
69 16, 25., 25., 25.
70 17, 25., 25., -25.
71 18, 50., 25., 0.
72 19, 25., 25., 0.
73 20, 50., 25., -25.

L
A
-U

R
-19-20291,

R
ev.

2
22

of
37

74 21, 42.6746407 , 25., -7.3253603
75 *Element , type=C3D8
76 1, 5, 7, 6, 3, 12, 14, 13, 10
77 2, 7, 5, 2, 4, 14, 12, 9, 11
78 3, 7, 4, 1, 6, 14, 11, 8, 13
79 4, 12, 14, 13, 10, 19, 21, 20, 17
80 5, 14, 12, 9, 11, 21, 19, 16, 18
81 6, 14, 11, 8, 13, 21, 18, 15, 20
82 *Nset , nset=Set_material_tally_2 , generate
83 1, 21, 1
84 *Elset , elset=Set_material_tally_2 , generate
85 1, 6, 1
86 *End Part
87 **
88 *Part , name=Semicircular_Cap
89 *Node
90 1, 25., -25., 25.
91 2, -25., -25., 25.
92 3, 17.6776695 , -25., 42.6776695
93 4, 0., -25., 50.
94 5, -17.6776695 , -25., 42.6776695
95 6, 0., -25., 25.
96 7, 25., 0., 25.
97 8, -25., 0., 25.
98 9, 17.6776695 , 0., 42.6776695
99 10, 0., 0., 50.

100 11, -17.6776695 , 0., 42.6776695
101 12, 0., 0., 25.
102 13, 25., 25., 25.
103 14, -25., 25., 25.
104 15, 17.6776695 , 25., 42.6776695
105 16, 0., 25., 50.
106 17, -17.6776695 , 25., 42.6776695
107 18, 0., 25., 25.
108 *Element , type=C3D8
109 1, 4, 3, 1, 6, 10, 9, 7, 12
110 2, 4, 6, 2, 5, 10, 12, 8, 11
111 3, 10, 9, 7, 12, 16, 15, 13, 18
112 4, 10, 12, 8, 11, 16, 18, 14, 17
113 *Nset , nset=Set_material_tally_3 , generate
114 1, 18, 1
115 *Elset , elset=Set_material_tally_3 , generate
116 1, 4, 1
117 *End Part
118 **
119 **

L
A
-U

R
-19-20291,

R
ev.

2
23

of
37

120 ** ASSEMBLY
121 **
122 *Assembly , name=Assembly
123 **
124 *Instance , name=Cube -1, part=Cube
125 *End Instance
126 **
127 *Instance , name=Right_Triangle -1, part=Right_Triangle
128 *End Instance
129 **
130 *Instance , name=Semicircular_Cap -1, part=Semicircular_Cap
131 *End Instance
132 **
133 *End Assembly
134 **
135 ** MATERIALS
136 **
137 *Material , name=Material_Al_2
138 *Density
139 -2.6989,
140 *Material , name=Material_Cf -252_1
141 *Density
142 -15.1,
143 *Material , name=Material_H2O_3
144 *Density
145 -0.998207 ,

L
A
-U

R
-19-20291,

R
ev.

2
24

of
37

B.2 Test Case Example Files (Mixed Linear and Quadratic Elements)

An example MCNP input using a variety of linear and quadratic hexahedral and pentahedral elements is
given in Listing 4 and the corresponding Abaqus mesh input file is given in Listing 5.

LA-UR-19-20291, Rev. 2 25 of 37

Listing 4: Test Case MCNP Input File (Mixed Linear and Quadratic Elements)
1 No description for this unstructured mesh file
2 c
3 c Created from file : test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
4 c Using data cards file: std_datacards.mcnp.inp
5 c Created on : 1- 9-2019 @ 6:42:36
6 c
7 c
8 c PSEUDO CELLS
9 01 1 -15.1000 0 u=1

10 02 2 -2.69890 0 u=1
11 03 3 -0.998207 0 u=1
12 04 0 0 u=1
13 c
14 c LEGACY CELLS
15 05 0 -99 fill=1
16 06 0 99
17

18 c
19 c SURFACES
20 99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00
21

22 c
23 c DATA CARDS
24 embed1 meshgeo=abaqus
25 mgeoin=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
26 meeout=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.eeout
27 length= 1.00000E-01
28 background= 4
29 matcell= 1 1 2 2 3 3
30 c
31 embee4:n embed=1
32 c
33 sdef pos= volumer
34 c
35 erg=d1
36 sp1 -3 1.18 1.03419
37 nonu
38 c
39 mode n
40 c
41 m1 98252 1.0 $ californium -252
42 c $ density: 15.1 g/cc
43 c $ composition assumed; density from crc handbook
44 c
45 m2 13027 1.0 $ aluminum

L
A
-U

R
-19-20291,

R
ev.

2
26

of
37

46 c $ density: 2.6989 g/cc
47 c $ composition & density from pnnl -15870 , rev. 1
48 c
49 m3 1001 0.666657 $ water , liquid @ 23.15 deg -c
50 8016 0.333343 $ density: 0.998207 g/cc
51 mt3 lwtr .10 $ composition & density from pnnl -15870 , rev. 1
52 c
53 imp:n 1 1 1 1 1 0
54 c
55 embee14:n embed =1 errors=yes
56 embee6:n embed=1
57 embee16:n embed =1 errors=yes
58 c
59 rand gen=2 seed =12345
60 print
61 nps 1e6

Listing 5: Test Case Abaqus Mesh Input File (Mixed Linear and Quadratic Elements)
1 *Heading
2 ** Job name: test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq Model name: Model -1
3 ** Generated by: Abaqus/CAE 2018
4 *Preprint , echo=NO , model=NO, history=NO, contact=NO
5 **
6 ** PARTS
7 **
8 *Part , name=Cube
9 *Node

10 1, 25., 25., 25.
11 2, 0., 25., 25.
12 3, -25., 25., 25.
13 4, 25., 0., 25.
14 5, 0., 0., 25.
15 6, -25., 0., 25.
16 7, 25., -25., 25.
17 8, 0., -25., 25.
18 9, -25., -25., 25.
19 10, 25., 25., 0.
20 11, 0., 25., 0.
21 12, -25., 25., 0.
22 13, 25., 0., 0.
23 14, 0., 0., 0.
24 15, -25., 0., 0.
25 16, 25., -25., 0.
26 17, 0., -25., 0.
27 18, -25., -25., 0.

L
A
-U

R
-19-20291,

R
ev.

2
27

of
37

28 19, 25., 25., -25.
29 20, 0., 25., -25.
30 21, -25., 25., -25.
31 22, 25., 0., -25.
32 23, 0., 0., -25.
33 24, -25., 0., -25.
34 25, 25., -25., -25.
35 26, 0., -25., -25.
36 27, -25., -25., -25.
37 *Element , type=C3D8
38 1, 4, 5, 2, 1, 13, 14, 11, 10
39 2, 5, 6, 3, 2, 14, 15, 12, 11
40 3, 7, 8, 5, 4, 16, 17, 14, 13
41 4, 8, 9, 6, 5, 17, 18, 15, 14
42 5, 13, 14, 11, 10, 22, 23, 20, 19
43 6, 14, 15, 12, 11, 23, 24, 21, 20
44 7, 16, 17, 14, 13, 25, 26, 23, 22
45 8, 17, 18, 15, 14, 26, 27, 24, 23
46 *Nset , nset=Set_material_tally_source_1 , generate
47 1, 27, 1
48 *Elset , elset=Set_material_tally_source_1 , generate
49 1, 8, 1
50 *End Part
51 **
52 *Part , name=Right_Triangle
53 *Node
54 1, 75., -25., -25.
55 2, 25., -25., 25.
56 3, 25., -25., -25.
57 4, 50., -25., 0.
58 5, 25., -25., 0.
59 6, 50., -25., -25.
60 7, 75., 0., -25.
61 8, 25., 0., 25.
62 9, 25., 0., -25.
63 10, 50., 0., 0.
64 11, 25., 0., 0.
65 12, 50., 0., -25.
66 13, 75., 25., -25.
67 14, 25., 25., 25.
68 15, 25., 25., -25.
69 16, 50., 25., 0.
70 17, 25., 25., 0.
71 18, 50., 25., -25.
72 *Element , type=C3D6
73 1, 3, 4, 6, 9, 10, 12

L
A
-U

R
-19-20291,

R
ev.

2
28

of
37

74 2, 5, 2, 4, 11, 8, 10
75 3, 4, 3, 5, 10, 9, 11
76 4, 4, 1, 6, 10, 7, 12
77 5, 9, 10, 12, 15, 16, 18
78 6, 11, 8, 10, 17, 14, 16
79 7, 10, 9, 11, 16, 15, 17
80 8, 10, 7, 12, 16, 13, 18
81 *Nset , nset=Set_material_tally_2 , generate
82 1, 18, 1
83 *Elset , elset=Set_material_tally_2 , generate
84 1, 8, 1
85 *End Part
86 **
87 *Part , name=Semicircular_Cap
88 *Node
89 1, 25., -25., 25.
90 2, -25., -25., 25.
91 3, 17.6776695 , -25., 42.6776695
92 4, 0., -25., 50.
93 5, -17.6776695 , -25., 42.6776695
94 6, 0., -25., 25.
95 7, 25., 0., 25.
96 8, -25., 0., 25.
97 9, 17.6776695 , 0., 42.6776695
98 10, 0., 0., 50.
99 11, -17.6776695 , 0., 42.6776695

100 12, 0., 0., 25.
101 13, 25., 25., 25.
102 14, -25., 25., 25.
103 15, 17.6776695 , 25., 42.6776695
104 16, 0., 25., 50.
105 17, -17.6776695 , 25., 42.6776695
106 18, 0., 25., 25.
107 19, 0., -25., 37.5
108 20, 8.83883476 , -25., 33.8388367
109 21, 9.56708622 , -25., 48.0969887
110 22, 9.56708527 , 0., 48.0969887
111 23, 8.83883476 , 0., 33.8388367
112 24, 0., 0., 37.5
113 25, 17.6776695 , -12.5, 42.6776695
114 26, 0., -12.5, 50.
115 27, 0., -12.5, 25.
116 28, -8.83883476 , -25., 33.8388367
117 29, -9.56708622 , -25., 48.0969887
118 30, -9.56708527 , 0., 48.0969887
119 31, -8.83883476 , 0., 33.8388367

L
A
-U

R
-19-20291,

R
ev.

2
29

of
37

120 32, -17.6776695 , -12.5, 42.6776695
121 33, -12.5, -25., 25.
122 34, -23.0969887 , -25., 34.5670853
123 35, -23.0969868 , 0., 34.5670891
124 36, -12.5, 0., 25.
125 37, -25., -12.5, 25.
126 38, 12.5, -25., 25.
127 39, 23.0969887 , -25., 34.5670853
128 40, 23.0969868 , 0., 34.5670891
129 41, 12.5, 0., 25.
130 42, 25., -12.5, 25.
131 43, 9.56708622 , 25., 48.0969887
132 44, 8.83883476 , 25., 33.8388367
133 45, 0., 25., 37.5
134 46, 17.6776695 , 12.5, 42.6776695
135 47, 0., 12.5, 50.
136 48, 0., 12.5, 25.
137 49, -9.56708622 , 25., 48.0969887
138 50, -8.83883476 , 25., 33.8388367
139 51, -17.6776695 , 12.5, 42.6776695
140 52, -23.0969887 , 25., 34.5670853
141 53, -12.5, 25., 25.
142 54, -25., 12.5, 25.
143 55, 23.0969887 , 25., 34.5670853
144 56, 12.5, 25., 25.
145 57, 25., 12.5, 25.
146 *Element , type=C3D15
147 1, 4, 3, 6, 10, 9, 12, 21, 20, 19, 22, 23, 24, 26, 25, 27
148 2, 5, 4, 6, 11, 10, 12, 29, 19, 28, 30, 24, 31, 32, 26, 27
149 3, 2, 5, 6, 8, 11, 12, 34, 28, 33, 35, 31, 36, 37, 32, 27
150 4, 3, 1, 6, 9, 7, 12, 39, 38, 20, 40, 41, 23, 25, 42, 27
151 5, 10, 9, 12, 16, 15, 18, 22, 23, 24, 43, 44, 45, 47, 46, 48
152 6, 11, 10, 12, 17, 16, 18, 30, 24, 31, 49, 45, 50, 51, 47, 48
153 7, 8, 11, 12, 14, 17, 18, 35, 31, 36, 52, 50, 53, 54, 51, 48
154 8, 9, 7, 12, 15, 13, 18, 40, 41, 23, 55, 56, 44, 46, 57, 48
155 *Nset , nset=Set_material_tally_3 , generate
156 1, 57, 1
157 *Elset , elset=Set_material_tally_3 , generate
158 1, 8, 1
159 *End Part
160 **
161 **
162 ** ASSEMBLY
163 **
164 *Assembly , name=Assembly
165 **

L
A
-U

R
-19-20291,

R
ev.

2
30

of
37

166 *Instance , name=Cube -1, part=Cube
167 *End Instance
168 **
169 *Instance , name=Right_Triangle -1, part=Right_Triangle
170 *End Instance
171 **
172 *Instance , name=Semicircular_Cap -1, part=Semicircular_Cap
173 *End Instance
174 **
175 *End Assembly
176 **
177 ** MATERIALS
178 **
179 *Material , name=Material_Al_2
180 *Density
181 -2.6989,
182 *Material , name=Material_Cf -252_1
183 *Density
184 -15.1,
185 *Material , name=Material_H2O_3
186 *Density
187 -0.998207 ,

L
A
-U

R
-19-20291,

R
ev.

2
31

of
37

B.3 Test Case Example Files (Energy/Time Binning)

An example MCNP input using time only, energy only and time and energy bins are given in Listing 6 and
the corresponding Abaqus mesh input file is given in Listing 7.

LA-UR-19-20291, Rev. 2 32 of 37

Listing 6: Test Case MCNP Input File (Energy/Time Binning)
1 Simple Al Cube
2 c ----------------------------- Cell Cards ---------------------------------- 80
3 1 1 -2.7 0 u=1
4 2 0 0 u=1 $ background
5 18 0 100 -101 102 -103 104 -105 fill=1 $ fill cell
6 19 0 (-100:101: -102:103: -104:105)
7 c --------------------------- End Cell Cards -------------------------------- 80
8

9 c ---------------------------- Surface Cards -------------------------------- 80
10 c
11 100 px -130
12 101 px 130
13 102 py -130
14 103 py 130
15 104 pz -130
16 105 pz 130
17 c -------------------------- End Surface Cards ------------------------------ 80
18

19 c ----------------------------- Data Cards ---------------------------------- 80
20 c Embedded Geometry Specification
21 embed1 meshgeo=abaqus mgeoin=Simple_Example.abaq
22 meeout=Simple_Example.eeout
23 filetype=ascii
24 background =2
25 matcell= 1 1
26 c
27 c Materials
28 m1 13027 -1.0
29 mode n
30 c
31 c Cell Importances
32 imp:n 1 1 1 0
33 c
34 c Source Definition
35 sdef pos 12.071 12.071 12.071 erg=d2 wgt=1E12 tme= d1
36 si1 1.0 1E2
37 sp1 0 1
38 si2 1E-3 1E-2 1E-1 1E0
39 sp2 0 1 2 3
40 c
41 nps 1E7
42 prdmp j 1E8 1 2 1E8
43 print
44 c Histories (or Computer Time Cutoff)
45 embee4:n embed=1

L
A
-U

R
-19-20291,

R
ev.

2
33

of
37

46 embtb4 1.0 1E2
47 embeb4 1E-3 1E-2 1E-1 1E0
48 c
49 c --------------------------- End Data Cards -------------------------------- 80
50 c End MCNP Input

Listing 7: Test Case Abaqus Input File (Energy/Time Binning)
1 *Heading
2 ** Job name: Job -1 Model name: Model -1
3 ** Generated by: Abaqus/CAE 2018
4 *Preprint , echo=NO , model=NO, history=NO, contact=NO
5 **
6 ** PARTS
7 **
8 *Part , name=Simple_Example
9 *Node

10 1, 0.500843108 , 0.500843108 , 0.5
11 2, 0.500843108 , 0., 0.5
12 3, 0.500843108 , -0.500843108 , 0.5
13 4, 0.500843108 , 0.500843108 , 0.
14 5, 0.500843108 , 0., 0.
15 6, 0.500843108 , -0.500843108 , 0.
16 7, 0.500843108 , 0.500843108 , -0.5
17 8, 0.500843108 , 0., -0.5
18 9, 0.500843108 , -0.500843108 , -0.5
19 10, 0., 0.500843108 , 0.5
20 11, 0., 0., 0.5
21 12, 0., -0.500843108 , 0.5
22 13, 0., 0.500843108 , 0.
23 14, 0., 0., 0.
24 15, 0., -0.500843108 , 0.
25 16, 0., 0.500843108 , -0.5
26 17, 0., 0., -0.5
27 18, 0., -0.500843108 , -0.5
28 19, -0.500843108 , 0.500843108 , 0.5
29 20, -0.500843108 , 0., 0.5
30 21, -0.500843108 , -0.500843108 , 0.5
31 22, -0.500843108 , 0.500843108 , 0.
32 23, -0.500843108 , 0., 0.
33 24, -0.500843108 , -0.500843108 , 0.
34 25, -0.500843108 , 0.500843108 , -0.5
35 26, -0.500843108 , 0., -0.5
36 27, -0.500843108 , -0.500843108 , -0.5
37 *Element , type=C3D8R
38 1, 10, 11, 14, 13, 1, 2, 5, 4

L
A
-U

R
-19-20291,

R
ev.

2
34

of
37

39 2, 11, 12, 15, 14, 2, 3, 6, 5
40 3, 13, 14, 17, 16, 4, 5, 8, 7
41 4, 14, 15, 18, 17, 5, 6, 9, 8
42 5, 19, 20, 23, 22, 10, 11, 14, 13
43 6, 20, 21, 24, 23, 11, 12, 15, 14
44 7, 22, 23, 26, 25, 13, 14, 17, 16
45 8, 23, 24, 27, 26, 14, 15, 18, 17
46 *Nset , nset=Simple_Box_material_tally_001 , generate
47 1, 27, 1
48 *Elset , elset=Simple_Box_material_tally_001 , generate
49 1, 8, 1
50 ** Section: Section -1
51 *Solid Section , elset=Simple_Box_material_tally_001 , material=Material -1
52 *End Part
53 **
54 **
55 ** ASSEMBLY
56 **
57 *Assembly , name=Assembly
58 **
59 *Instance , name=Simple_Example -1, part=Simple_Example
60 *End Instance
61 ,
62 **
63 *End Assembly
64 **
65 ** MATERIALS
66 **
67 *Material , name=Material -1
68 *Density
69 -1.,

L
A
-U

R
-19-20291,

R
ev.

2
35

of
37

C ParaView Macros

This appendix provides several ParaView macros that the first author has found useful when visualizing
MCNP output. All macros have been tested with ParaView version 5.6.0.

Listing 8 provides a macro to adjust the lighting from strictly diffuse (the default) to strictly ambient. This
eliminates the ability to observe shadows; however, the resulting color palette is directly correlated to the
color bar as demonstrated in Fig. 7.

Listing 9 simply reloads all files in the pipeline.

Listing 10 applies several filters to illustrate material boundaries. This can be particularly useful when
drawing multiple datasets with geometry and results overlaid. An example of this macro applied to UM
geometry is shown in Fig. 8, which shows neutron flux 3-D contours and associated statistical uncertainties
at a particular elevation with the geometry boundaries to orient the viewer [7].

Listing 8: ParaView Macro to Make Lighting Strictly Ambient
1 from paraview.simple import *
2

3 # Originally from: https :// www.cfd -online.com/Forums/openfoam -paraview /92638 -dark -areas -paraview.html
4 # Updated for Paraview 5.6.0.
5 asrc = GetActiveSource ()
6 rv = GetActiveViewOrCreate(’RenderView ’)
7 asrcd = GetDisplayProperties(asrc , view=rv)
8 asrcd.Ambient = 1.0
9 asrcd.Diffuse = 0.0

Listing 9: ParaView Macro to Reload all Data Files
1 from paraview.simple import *
2 for k,v in GetSources ().items ():
3 ReloadFiles(v)

Listing 10: ParaView Macro to Draw Material Boundary Lines
1 from paraview.simple import *
2

3 t = GetActiveSource ()
4 e = ExtractSurface(Input = t)
5 f = FeatureEdges(Input = e)
6 r = GetActiveView ()
7 HideAll(r)
8 Show(f, r)
9 r.Update ()

LA-UR-19-20291, Rev. 2 36 of 37

(a) Strictly Diffuse (b) Strictly Ambient

Figure 7: Diffuse vs. Ambient Lighting Effect on Data Field Visualization vs. Color Bar Representation

Figure 8: Concurrent Visualization of Geometry, Results, and Associated Statistical Uncertainties

LA-UR-19-20291, Rev. 2 37 of 37

	1 Introduction
	2 Script Usage
	3 Functional and Performance Requirements
	4 Design and Implementation
	5 Testing
	5.1 Comments on Performance

	6 Conclusions
	A Script Source Code
	B Test Case Files
	B.1 Test Case Example Files (Only Linear Hexahedral Elements)
	B.2 Test Case Example Files (Mixed Linear and Quadratic Elements)
	B.3 Test Case Example Files (Energy/Time Binning)

	C ParaView Macros

from paraview.simple import *

Originally from: https://www.cfd-online.com/Forums/openfoam-paraview/92638-dark-areas-paraview.html
Updated for Paraview 5.6.0.
asrc = GetActiveSource()
rv = GetActiveViewOrCreate('RenderView')
asrcd = GetDisplayProperties(asrc, view=rv)
asrcd.Ambient = 1.0
asrcd.Diffuse = 0.0

#!/usr/bin/env python
#
Execute as: Convert_MCNP_eeout_to_VTK.py <file.eeout>
#
Code: Convert_MCNP_eeout_to_VTK, version 1.2.0
#
Authors: Joel A. Kulesza (jkulesza@lanl.gov)
Tucker C. McClanahan (tcmcclan@lanl.gov)
Monte Carlo Methods, Codes & Applications
X Computational Physics Division
Los Alamos National Laboratory
#
Copyright (c) 2019 Triad National Security, LLC. All rights reserved.
#
This material was produced under U.S. Government contract 89233218NCA000001
for Los Alamos National Laboratory, which is operated by Triad National
Security, LLC for the U.S. Department of Energy. The Government is granted
for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable worldwide license in this material to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five
(5) years after February 14, 2018, subject to additional five-year worldwide
renewals, the Government is granted for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license in this material to
reproduce, prepare derivative works, distribute copies to the public, perform
publicly and display publicly, and to permit others to do so. NEITHER THE
UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR TRIAD NATIONAL
SECURITY, LLC, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

import os
import re
import sys

Find the start and end positions for the first matching sublist in a list.
def find_sublist(sl, l):
 sll=len(sl)
 for ind in (i for i,e in enumerate(l) if e == sl[0]):
 if(l[ind:ind+sll] == sl):
 return ind,ind+sll-1

Extract a certain number of entries (length) following a sublist (sublist) for
a given input list (inlist).
def extract_sublist_entries(sublist, length, inlist):
 lp1 = find_sublist(sublist, inlist)[1] + 1
 lp2 = lp1 + length
 return inlist[lp1:lp2]

Calculate the connected nodes for various element types.
def calculate_connectivity_list_length(e_types):
 connectivity_list_length = []
 for e in e_types:
 if(e == '4'):
 connectivity_list_length.append(4)
 elif(e == '5'):
 connectivity_list_length.append(6)
 elif(e == '6'):
 connectivity_list_length.append(8)
 elif(e == '14'):
 connectivity_list_length.append(10)
 elif(e == '15'):
 connectivity_list_length.append(15)
 elif(e == '16'):
 connectivity_list_length.append(20)
 return connectivity_list_length

Convert eeout element types to VTK element types.
def calculate_vtk_e_types(e_types):
 vtk_e_types = []
 for e in e_types:
 if(e == '4'):
 vtk_e_types.append('10')
 elif(e == '5'):
 vtk_e_types.append('13')
 elif(e == '6'):
 vtk_e_types.append('12')
 elif(e == '14'):
 vtk_e_types.append('24')
 elif(e == '15'):
 vtk_e_types.append('26')
 elif(e == '16'):
 vtk_e_types.append('25')
 return vtk_e_types

Create flat list of 3D vertices from individual coordinate lists.
def create_vertices(xs, ys, zs):
 v = []
 for n,x in enumerate(xs):
 v.append(xs[n])
 v.append(ys[n])
 v.append(zs[n])
 return(v)

Reformat list to print its elements nicely within the XML file.
def pretty_print_list(indent, cols, colwidths, inlist):
 pretty_list_string = indent * ' '
 for n,i in enumerate(inlist):
 pretty_list_string += str(i).rjust(colwidths) + ' '
 if(n % cols == cols - 1):
 pretty_list_string += '\n' + indent * ' '
 pretty_list_string += '\n'
 return pretty_list_string

Perform various sanity checks on edit results.
def perform_edit_checks(edit_values, total_elements, check_gap = True):
 found_negative = False
 found_nan = False
 max_val = -1e308
 min_nz_val = 1e308
 min_val = 1e308

 # Custom float conversion for Fortran-formatted numbers missing an "e" and
 # with three digits in the exponent.
 def floatf(x):
 try:
 rv = float(x)
 except:
 rv = float(x[0:-4] + 'e' + x[-4:])
 return rv

 edit_values = [floatf(i) for i in edit_values]

 if(len(edit_values) == total_elements + 1):
 gap_value = edit_values[0]
 if(gap_value > 0 and check_gap):
 print('WARNING: gap value: {:}'.format(gap_value))
 else:
 print('ERROR: Unexpected edit length, exiting')
 exit()

 # The first edit entry is for gaps --- discard for plotting.
 edit_values = edit_values[1:]
 for ev in edit_values:
 if(ev < 0 and found_negative == False):
 print('WARNING: Negative edit entry found.')
 found_negative = True
 if(ev != ev and found_nan == False):
 print('WARNING: NaN edit entry found. Setting to 1e308.')
 found_nan = True
 if(ev < min_nz_val and ev > 0.0): min_nz_val = ev
 if(ev < min_val): min_val = ev
 if(ev > max_val): max_val = ev

 if(found_nan == True):
 edit_values = [1e308 if ev != ev else ev for ev in edit_values]

 print(' Maximum value: {:.5e}'.format(max_val))
 print(' Minimum positive value: {:.5e}'.format(min_nz_val))
 print(' Minimum value: {:.5e}'.format(min_val))

 edit_values = ['{:.5e}'.format(i) for i in edit_values]

 return edit_values

Separate into list and parse into results and relative uncertainties, if
appropriate.
def get_results(edit_values, edit_number, total_elements):
 edit_results = []
 tmp = edit_values.split('DATA SETS')[1:]
 edit_sets = [tmp[i] for i in range(len(tmp)) if 'RESULT SQR TIME BIN' not in tmp[i]]
 sublists = [['RESULT', 'TIME'] if 'RESULT TIME' in edit_sets[i] else ['REL', 'ERROR', 'TIME'] for i in range(len(edit_sets))]
 count = -1
 for s in sublists:
 count += 1
 edit_data = extract_sublist_entries(s, total_elements + 1 + 26, edit_sets[count].split())
 # Get supplemental edit-identifying information.
 time_bin = edit_data[2]
 time_value = edit_data[7]
 erg_bin = edit_data[16]
 erg_value = edit_data[21]

 # Construct unique name.
 edit_name = 'EDIT_{:}_{:}_TIME_BIN_{:}_MAX_TIME_{:}_ENERGY_BIN_{:}_MAX_ENERGY_{:}'.format(\
 edit_number, s[-2], time_bin, time_value, erg_bin, erg_value)

 # Extract only edit data values and validate.
 edit_data = edit_data[26:]
 print(' Processing & Validating {:}...'.format(edit_name))
 check_gap = (not 'ERROR' in s) # Don't check gap for error arrays.
 edit_data = perform_edit_checks(edit_data, total_elements, check_gap)
 edit_results.append([edit_name, edit_data])

 return edit_results

##

import __main__ as main
if(__name__ == '__main__' and hasattr(main, '__file__')):

 # Validate command line arguments.
 if(len(sys.argv) != 2):
 print('ERROR: Incorrect number of command line arguments provided ('
 + str(len(sys.argv)) + '); those provided:')
 print(sys.argv)
 exit()

 if(not os.path.isfile(sys.argv[1])):
 print('ERROR: MCNP EEOUT file not found.')
 exit()

 infilename = sys.argv[1]

 print('Processing {:}...'.format(infilename))

 with open (infilename, 'r') as myfile:
 eeout = myfile.read()

 # Determine number of nodes and cells.
 nodes = int(re.search(r'NUMBER OF NODES\s*:\s+(\d+)', eeout).group(1))
 tets1 = int(re.search(r'NUMBER OF 1st TETS\s*:\s+(\d+)', eeout).group(1))
 pents1 = int(re.search(r'NUMBER OF 1st PENTS\s*:\s+(\d+)', eeout).group(1))
 hexs1 = int(re.search(r'NUMBER OF 1st HEXS\s*:\s+(\d+)', eeout).group(1))
 tets2 = int(re.search(r'NUMBER OF 2nd TETS\s*:\s+(\d+)', eeout).group(1))
 pents2 = int(re.search(r'NUMBER OF 2nd PENTS\s*:\s+(\d+)', eeout).group(1))
 hexs2 = int(re.search(r'NUMBER OF 2nd HEXS\s*:\s+(\d+)', eeout).group(1))
 total_elements = tets1 + pents1 + hexs1 + tets2 + pents2 + hexs2

 # Retrieve edit information.
 edit_list = re.findall(r'(DATA OUTPUT PARTICLE.*?)\n', eeout, re.S)

 print(' Found {:} edit(s).'.format(len(edit_list)))

 # Capture edit data for use later.
 eeout_edits = re.search(r'(DATA OUTPUT.*?)CENTROIDS', eeout, re.S).group(1)

 # Capture header information.
 eeout_header = re.search(r'(.*?)NODES X', eeout, re.S).group(1)
 eeout_header = re.sub(r'\s+\n', '\n', eeout_header)
 eeout_header = re.sub(r'\n+', '\n', eeout_header)
 eeout_header = re.sub(r'^', '# ', eeout_header)
 eeout_header = re.sub(r'\n', '\n# ', eeout_header)

 # Reformat eeout to list to permit easy reading of list data.
 eeout = eeout.replace('\n', '')
 eeout = eeout.split(' ')
 eeout = list(filter(None, eeout))

 # Remove head of file to make matching easier.
 eeout = eeout[find_sublist(['NODES', 'X', '(cm)'], eeout)[0]:]

 # Find the list positions for the first and last nodes.
 x_coords = extract_sublist_entries(['NODES', 'X', '(cm)'], nodes, eeout)
 y_coords = extract_sublist_entries(['NODES', 'Y', '(cm)'], nodes, eeout)
 z_coords = extract_sublist_entries(['NODES', 'Z', '(cm)'], nodes, eeout)
 e_types = extract_sublist_entries(['ELEMENT', 'TYPE'], total_elements, eeout)
 e_materials = extract_sublist_entries(['ELEMENT', 'MATERIAL'], total_elements, eeout)

 # Process connectivity list.
 connectivity_list_elements = calculate_connectivity_list_length(e_types)
 connectivities = []
 if('4' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'TETS', 'ELEMENT', 'ORDERED'],
 4 * e_types.count('4'), eeout)
 if('5' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'PENTS', 'ELEMENT', 'ORDERED'],
 6 * e_types.count('5'), eeout)
 if('6' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'HEXS', 'ELEMENT', 'ORDERED'],
 8 * e_types.count('6'), eeout)
 if('14' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'TETS', 'ELEMENT', 'ORDERED'],
 10 * e_types.count('14'), eeout)
 if('15' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'PENTS', 'ELEMENT', 'ORDERED'],
 15 * e_types.count('15'), eeout)
 if('16' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'HEXS', 'ELEMENT', 'ORDERED'],
 20 * e_types.count('16'), eeout)

 densities = extract_sublist_entries(
 ['DENSITY', '(gm/cm^3)'],
 total_elements, eeout)

 volumes = extract_sublist_entries(
 ['VOLUMES', '(cm^3)'],
 total_elements, eeout)

 # Create list of vertices from individual coordinate lists.
 vertices = create_vertices(x_coords, y_coords, z_coords)

 # Subtract one from all vertex IDs in the connectivity list (to make
 # zero-indexed).
 connectivities = [str(int(x) - 1) for x in connectivities]

 # Accumulate offset list. Reproduce np.cumsum to avoid NumPy dependency.
 def cumsum(inlist):
 cumlist = [0]
 for n,i in enumerate(inlist):
 cumlist.append(cumlist[n] + inlist[n])
 return cumlist[1:]
 offsets = cumsum(connectivity_list_elements)
 offsets = [str(x) for x in offsets]

 # Convert eeout element types to VTK element types.
 vtk_e_types = calculate_vtk_e_types(e_types)

 # Open up output vtu (unstructured mesh VTK) file.
 f = open(infilename + '.vtu', 'w')

 # Write header comments (but a long header does not work), default: off.
 if(False):
 [f.write('<!-- ' + l + ' -->\n') for l in eeout_header.split('\n')]
 f.write('<!--' + '\n')
 f.write(80 * '#' + '\n')
 f.write('# EEOUT Header Follows' + '\n')
 f.write(80 * '#' + '\n')
 f.write(eeout_header + '\n')
 f.write(80 * '#' + '\n')
 f.write('-->' + '\n')

 f.write('<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian">' + '\n')
 f.write(' <UnstructuredGrid>' + '\n')
 f.write(' <Piece NumberOfPoints="' + str(nodes) + '" NumberOfCells="' + str(total_elements) + '">' + '\n')
 f.write(' <CellData Scalars="scalars">' + '\n')
 f.write(' <DataArray type="Int32" Name="material" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 10, 5, e_materials))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Float64" Name="density" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, densities))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Float64" Name="volume" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, volumes))
 f.write(' </DataArray>' + '\n')

 # Output edit information. Edits may have corresponding relative
 # uncertainties. Edits may be binned by energy and/or time.
 if(len(edit_list) > 0):
 for e in edit_list:
 particle_type = re.search(r'PARTICLE : (\d+)', e).group(1)
 edit_type = re.search(r'TYPE : (.*?)$', e).group(1)
 edit_number = re.search(r'TYPE : .*?_(\d+)$', e).group(1)
 print(' Processing {:} edit...'.format(edit_type))
 myregex = '({:}.*?)(:?DATA OUTPUT PARTICLE|$)'.format(e)
 edit_data = re.search(myregex, eeout_edits, re.S).group(1)
 edit_results = get_results(edit_data, edit_number, total_elements)
 for er in edit_results:
 f.write(' <DataArray type="Float64" Name="' + er[0]+ '" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, er[1]))
 f.write(' </DataArray>' + '\n')

 f.write(' </CellData>' + '\n')
 f.write(' <Points>' + '\n')
 f.write(' <DataArray type="Float64" NumberOfComponents="3" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 3, 13, vertices))
 f.write(' </DataArray>' + '\n')
 f.write(' </Points>' + '\n')
 f.write(' <Cells>' + '\n')
 f.write(' <DataArray type="Int32" Name="connectivity" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 8, 5, connectivities))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Int32" Name="offsets" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 10, 5, offsets))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="UInt8" Name="types" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 20, 2, vtk_e_types))
 f.write(' </DataArray>' + '\n')
 f.write(' </Cells>' + '\n')
 f.write(' </Piece>' + '\n')
 f.write(' </UnstructuredGrid>' + '\n')
 f.write('</VTKFile>' + '\n')

 f.close()

from paraview.simple import *
for k,v in GetSources().items():
 ReloadFiles(v)

from paraview.simple import *

t = GetActiveSource()
e = ExtractSurface(Input = t)
f = FeatureEdges(Input = e)
r = GetActiveView()
HideAll(r)
Show(f, r)
r.Update()

Simple Al Cube
c ----------------------------- Cell Cards ---------------------------------- 80
1 1 -2.7 0 u=1
2 0 0 u=1 $ background
18 0 100 -101 102 -103 104 -105 fill=1 $ fill cell
19 0 (-100:101:-102:103:-104:105)
c --------------------------- End Cell Cards -------------------------------- 80

c ---------------------------- Surface Cards -------------------------------- 80
c
100 px -130
101 px 130
102 py -130
103 py 130
104 pz -130
105 pz 130
c -------------------------- End Surface Cards ------------------------------ 80

c ----------------------------- Data Cards ---------------------------------- 80
c Embedded Geometry Specification
embed1 meshgeo=abaqus mgeoin=Simple_Example.abaq
 meeout=Simple_Example.eeout
 filetype=ascii
 background=2
 matcell= 1 1
c
c Materials
m1 13027 -1.0
mode n
c
c Cell Importances
imp:n 1 1 1 0
c
c Source Definition
sdef pos 12.071 12.071 12.071 erg=d2 wgt=1E12 tme= d1
si1 1.0 1E2 1E8 1E9 1E10
sp1 0 1 1 1 1
si2 1E-3 1E-2 1E-1 1E0
sp2 0 1 2 3
c
nps 1E6
prdmp j 1E8 1 2 1E8
print
c Histories (or Computer Time Cutoff)
embee4:n embed=1
c embtb4 1.0 1E2
embeb4 1E-3 1E-2 1E-1 1E0
c
c --------------------------- End Data Cards -------------------------------- 80
c End MCNP Input

*Heading

** Job name: Job-1 Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Simple_Example

*Node

 1, 0.500843108, 0.500843108, 0.5

 2, 0.500843108, 0., 0.5

 3, 0.500843108, -0.500843108, 0.5

 4, 0.500843108, 0.500843108, 0.

 5, 0.500843108, 0., 0.

 6, 0.500843108, -0.500843108, 0.

 7, 0.500843108, 0.500843108, -0.5

 8, 0.500843108, 0., -0.5

 9, 0.500843108, -0.500843108, -0.5

 10, 0., 0.500843108, 0.5

 11, 0., 0., 0.5

 12, 0., -0.500843108, 0.5

 13, 0., 0.500843108, 0.

 14, 0., 0., 0.

 15, 0., -0.500843108, 0.

 16, 0., 0.500843108, -0.5

 17, 0., 0., -0.5

 18, 0., -0.500843108, -0.5

 19, -0.500843108, 0.500843108, 0.5

 20, -0.500843108, 0., 0.5

 21, -0.500843108, -0.500843108, 0.5

 22, -0.500843108, 0.500843108, 0.

 23, -0.500843108, 0., 0.

 24, -0.500843108, -0.500843108, 0.

 25, -0.500843108, 0.500843108, -0.5

 26, -0.500843108, 0., -0.5

 27, -0.500843108, -0.500843108, -0.5

*Element, type=C3D8R

1, 10, 11, 14, 13, 1, 2, 5, 4

2, 11, 12, 15, 14, 2, 3, 6, 5

3, 13, 14, 17, 16, 4, 5, 8, 7

4, 14, 15, 18, 17, 5, 6, 9, 8

5, 19, 20, 23, 22, 10, 11, 14, 13

6, 20, 21, 24, 23, 11, 12, 15, 14

7, 22, 23, 26, 25, 13, 14, 17, 16

8, 23, 24, 27, 26, 14, 15, 18, 17

*Nset, nset=Simple_Box_material_tally_001, generate

 1, 27, 1

*Elset, elset=Simple_Box_material_tally_001, generate

 1, 8, 1

** Section: Section-1

*Solid Section, elset=Simple_Box_material_tally_001, material=Material-1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Simple_Example-1, part=Simple_Example

*End Instance

,

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material-1

*Density

-1.,

*Heading

** Job name: test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Cube

*Node

 1, 25., 25., 25.

 2, 0., 25., 25.

 3, -25., 25., 25.

 4, 25., 0., 25.

 5, 0., 0., 25.

 6, -25., 0., 25.

 7, 25., -25., 25.

 8, 0., -25., 25.

 9, -25., -25., 25.

 10, 25., 25., 0.

 11, 0., 25., 0.

 12, -25., 25., 0.

 13, 25., 0., 0.

 14, 0., 0., 0.

 15, -25., 0., 0.

 16, 25., -25., 0.

 17, 0., -25., 0.

 18, -25., -25., 0.

 19, 25., 25., -25.

 20, 0., 25., -25.

 21, -25., 25., -25.

 22, 25., 0., -25.

 23, 0., 0., -25.

 24, -25., 0., -25.

 25, 25., -25., -25.

 26, 0., -25., -25.

 27, -25., -25., -25.

*Element, type=C3D8

1, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate

 1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

 1, 8, 1

*End Part

**

*Part, name=Right_Triangle

*Node

 1, 75., -25., -25.

 2, 25., -25., 25.

 3, 25., -25., -25.

 4, 50., -25., 0.

 5, 25., -25., 0.

 6, 50., -25., -25.

 7, 75., 0., -25.

 8, 25., 0., 25.

 9, 25., 0., -25.

 10, 50., 0., 0.

 11, 25., 0., 0.

 12, 50., 0., -25.

 13, 75., 25., -25.

 14, 25., 25., 25.

 15, 25., 25., -25.

 16, 50., 25., 0.

 17, 25., 25., 0.

 18, 50., 25., -25.

*Element, type=C3D6

1, 3, 4, 6, 9, 10, 12

2, 5, 2, 4, 11, 8, 10

3, 4, 3, 5, 10, 9, 11

4, 4, 1, 6, 10, 7, 12

5, 9, 10, 12, 15, 16, 18

6, 11, 8, 10, 17, 14, 16

7, 10, 9, 11, 16, 15, 17

8, 10, 7, 12, 16, 13, 18

*Nset, nset=Set_material_tally_2, generate

 1, 18, 1

*Elset, elset=Set_material_tally_2, generate

 1, 8, 1

*End Part

**

*Part, name=Semicircular_Cap

*Node

 1, 25., -25., 25.

 2, -25., -25., 25.

 3, 17.6776695, -25., 42.6776695

 4, 0., -25., 50.

 5, -17.6776695, -25., 42.6776695

 6, 0., -25., 25.

 7, 25., 0., 25.

 8, -25., 0., 25.

 9, 17.6776695, 0., 42.6776695

 10, 0., 0., 50.

 11, -17.6776695, 0., 42.6776695

 12, 0., 0., 25.

 13, 25., 25., 25.

 14, -25., 25., 25.

 15, 17.6776695, 25., 42.6776695

 16, 0., 25., 50.

 17, -17.6776695, 25., 42.6776695

 18, 0., 25., 25.

 19, 0., -25., 37.5

 20, 8.83883476, -25., 33.8388367

 21, 9.56708622, -25., 48.0969887

 22, 9.56708527, 0., 48.0969887

 23, 8.83883476, 0., 33.8388367

 24, 0., 0., 37.5

 25, 17.6776695, -12.5, 42.6776695

 26, 0., -12.5, 50.

 27, 0., -12.5, 25.

 28, -8.83883476, -25., 33.8388367

 29, -9.56708622, -25., 48.0969887

 30, -9.56708527, 0., 48.0969887

 31, -8.83883476, 0., 33.8388367

 32, -17.6776695, -12.5, 42.6776695

 33, -12.5, -25., 25.

 34, -23.0969887, -25., 34.5670853

 35, -23.0969868, 0., 34.5670891

 36, -12.5, 0., 25.

 37, -25., -12.5, 25.

 38, 12.5, -25., 25.

 39, 23.0969887, -25., 34.5670853

 40, 23.0969868, 0., 34.5670891

 41, 12.5, 0., 25.

 42, 25., -12.5, 25.

 43, 9.56708622, 25., 48.0969887

 44, 8.83883476, 25., 33.8388367

 45, 0., 25., 37.5

 46, 17.6776695, 12.5, 42.6776695

 47, 0., 12.5, 50.

 48, 0., 12.5, 25.

 49, -9.56708622, 25., 48.0969887

 50, -8.83883476, 25., 33.8388367

 51, -17.6776695, 12.5, 42.6776695

 52, -23.0969887, 25., 34.5670853

 53, -12.5, 25., 25.

 54, -25., 12.5, 25.

 55, 23.0969887, 25., 34.5670853

 56, 12.5, 25., 25.

 57, 25., 12.5, 25.

*Element, type=C3D15

1, 4, 3, 6, 10, 9, 12, 21, 20, 19, 22, 23, 24, 26, 25, 27

2, 5, 4, 6, 11, 10, 12, 29, 19, 28, 30, 24, 31, 32, 26, 27

3, 2, 5, 6, 8, 11, 12, 34, 28, 33, 35, 31, 36, 37, 32, 27

4, 3, 1, 6, 9, 7, 12, 39, 38, 20, 40, 41, 23, 25, 42, 27

5, 10, 9, 12, 16, 15, 18, 22, 23, 24, 43, 44, 45, 47, 46, 48

6, 11, 10, 12, 17, 16, 18, 30, 24, 31, 49, 45, 50, 51, 47, 48

7, 8, 11, 12, 14, 17, 18, 35, 31, 36, 52, 50, 53, 54, 51, 48

8, 9, 7, 12, 15, 13, 18, 40, 41, 23, 55, 56, 44, 46, 57, 48

*Nset, nset=Set_material_tally_3, generate

 1, 57, 1

*Elset, elset=Set_material_tally_3, generate

 1, 8, 1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Cube-1, part=Cube

*End Instance

**

*Instance, name=Right_Triangle-1, part=Right_Triangle

*End Instance

**

*Instance, name=Semicircular_Cap-1, part=Semicircular_Cap

*End Instance

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material_Al_2

*Density

 -2.6989,

*Material, name=Material_Cf-252_1

*Density

 -15.1,

*Material, name=Material_H2O_3

*Density

 -0.998207,

No description for this unstructured mesh file
c
c Created from file : test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
c Using data cards file: std_datacards.mcnp.inp
c Created on : 1- 9-2019 @ 6:42:36
c
c
c PSEUDO CELLS
01 1 -15.1000 0 u=1
02 2 -2.69890 0 u=1
03 3 -0.998207 0 u=1
04 0 0 u=1
c
c LEGACY CELLS
05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c
c DATA CARDS
embed1 meshgeo=abaqus
 mgeoin=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
 meeout=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.eeout
 length= 1.00000E-01
 background= 4
 matcell= 1 1 2 2 3 3
c
embee4:n embed=1
c
sdef pos= volumer
c
 erg=d1
sp1 -3 1.18 1.03419
nonu
c
mode n
c
m1 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
c $ composition assumed; density from crc handbook
c
m2 13027 1.0 $ aluminum
c $ density: 2.6989 g/cc
c $ composition & density from pnnl-15870, rev. 1
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
 8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev. 1
c
imp:n 1 1 1 1 1 0
c
embee14:n embed=1 errors=yes
embee6:n embed=1
embee16:n embed=1 errors=yes
c
rand gen=2 seed=12345
print
nps 1e6

*Heading

** Job name: test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Cube

*Node

 1, 25., 25., 25.

 2, 0., 25., 25.

 3, -25., 25., 25.

 4, 25., 0., 25.

 5, 0., 0., 25.

 6, -25., 0., 25.

 7, 25., -25., 25.

 8, 0., -25., 25.

 9, -25., -25., 25.

 10, 25., 25., 0.

 11, 0., 25., 0.

 12, -25., 25., 0.

 13, 25., 0., 0.

 14, 0., 0., 0.

 15, -25., 0., 0.

 16, 25., -25., 0.

 17, 0., -25., 0.

 18, -25., -25., 0.

 19, 25., 25., -25.

 20, 0., 25., -25.

 21, -25., 25., -25.

 22, 25., 0., -25.

 23, 0., 0., -25.

 24, -25., 0., -25.

 25, 25., -25., -25.

 26, 0., -25., -25.

 27, -25., -25., -25.

*Element, type=C3D8

1, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate

 1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

 1, 8, 1

*End Part

**

*Part, name=Right_Triangle

*Node

 1, 75., -25., -25.

 2, 25., -25., 25.

 3, 25., -25., -25.

 4, 50., -25., 0.

 5, 25., -25., 0.

 6, 50., -25., -25.

 7, 42.6746407, -25., -7.3253603

 8, 75., 0., -25.

 9, 25., 0., 25.

 10, 25., 0., -25.

 11, 50., 0., 0.

 12, 25., 0., 0.

 13, 50., 0., -25.

 14, 42.6746407, 0., -7.3253603

 15, 75., 25., -25.

 16, 25., 25., 25.

 17, 25., 25., -25.

 18, 50., 25., 0.

 19, 25., 25., 0.

 20, 50., 25., -25.

 21, 42.6746407, 25., -7.3253603

*Element, type=C3D8

1, 5, 7, 6, 3, 12, 14, 13, 10

2, 7, 5, 2, 4, 14, 12, 9, 11

3, 7, 4, 1, 6, 14, 11, 8, 13

4, 12, 14, 13, 10, 19, 21, 20, 17

5, 14, 12, 9, 11, 21, 19, 16, 18

6, 14, 11, 8, 13, 21, 18, 15, 20

*Nset, nset=Set_material_tally_2, generate

 1, 21, 1

*Elset, elset=Set_material_tally_2, generate

 1, 6, 1

*End Part

**

*Part, name=Semicircular_Cap

*Node

 1, 25., -25., 25.

 2, -25., -25., 25.

 3, 17.6776695, -25., 42.6776695

 4, 0., -25., 50.

 5, -17.6776695, -25., 42.6776695

 6, 0., -25., 25.

 7, 25., 0., 25.

 8, -25., 0., 25.

 9, 17.6776695, 0., 42.6776695

 10, 0., 0., 50.

 11, -17.6776695, 0., 42.6776695

 12, 0., 0., 25.

 13, 25., 25., 25.

 14, -25., 25., 25.

 15, 17.6776695, 25., 42.6776695

 16, 0., 25., 50.

 17, -17.6776695, 25., 42.6776695

 18, 0., 25., 25.

*Element, type=C3D8

1, 4, 3, 1, 6, 10, 9, 7, 12

2, 4, 6, 2, 5, 10, 12, 8, 11

3, 10, 9, 7, 12, 16, 15, 13, 18

4, 10, 12, 8, 11, 16, 18, 14, 17

*Nset, nset=Set_material_tally_3, generate

 1, 18, 1

*Elset, elset=Set_material_tally_3, generate

 1, 4, 1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Cube-1, part=Cube

*End Instance

**

*Instance, name=Right_Triangle-1, part=Right_Triangle

*End Instance

**

*Instance, name=Semicircular_Cap-1, part=Semicircular_Cap

*End Instance

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material_Al_2

*Density

 -2.6989,

*Material, name=Material_Cf-252_1

*Density

 -15.1,

*Material, name=Material_H2O_3

*Density

 -0.998207,

No description for this unstructured mesh file
c
c Created from file : test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
c Using data cards file: std_datacards.mcnp.inp
c Created on : 1- 9-2019 @ 6:42:36
c
c
c PSEUDO CELLS
01 1 -15.1000 0 u=1
02 2 -2.69890 0 u=1
03 3 -0.998207 0 u=1
04 0 0 u=1
c
c LEGACY CELLS
05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c
c DATA CARDS
embed1 meshgeo=abaqus
 mgeoin=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
 meeout=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.eeout
 length= 1.00000E-01
 background= 4
 matcell= 1 1 2 2 3 3
c
embee4:n embed=1
c
sdef pos= volumer
c
 erg=d1
sp1 -3 1.18 1.03419
nonu
c
mode n
c
m1 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
c $ composition assumed; density from crc handbook
c
m2 13027 1.0 $ aluminum
c $ density: 2.6989 g/cc
c $ composition & density from pnnl-15870, rev. 1
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
 8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev. 1
c
imp:n 1 1 1 1 1 0
c
embee14:n embed=1 errors=yes
embee6:n embed=1
embee16:n embed=1 errors=yes
c
rand gen=2 seed=12345
print
nps 1e6

