ya.

/—7

» Los Alamos
NATIONAL LABORATORY
————— (37.0%4) ~

LA-UR-19-20291

Approved for public release; distribution is unlimited.

Title:

Author(s):

Intended for:

Issued:

A Python Script to Convert MCNP Unstructured Mesh Elemental Edit
Output Files to XML-based VTK Files

Kulesza, Joel A.
McClanahan, Tucker Caden

Report

2019-11-13 (rev.2)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher

recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its

technical correctness.

A Python Script to Convert MCNP Unstructured Mesh Elemental Edit Output Files to
XML-based VTK Files

Joel A. Kulesza and Tucker C. McClanahan
Monte Carlo Methods, Codes, and Applications Group
X Computational Physics Division

Los Alamos National Laboratory

September 23, 2019

1 Introduction

This report provides a Python script to convert an MCNP® [1] ASCII unstructured mesh (UM) elemental
edit output (EEOUT) file [2]| geometry and results to an ASCII XML-based unstructured mesh VTK (.vtu)
file [3, Section 19.3]. The resulting VTK file can be directly visualized with applications such as ParaView [4]
and Vislt [5]. This report also describes accompanying verification work that shows the script performing as
required. However, users of the enclosed script must still verify that the script is behaving correctly for their

own work.

This report is organized as follows: Section 2 describes how to execute the enclosed script and its resulting
output, Section 3 gives requirements of the script, Section 4 describes design and implementation considerations,
and Section 5 describes verification testing performed to demonstrate that the requirements in Section 3 are
met. The script itself is listed in Appendix A and provided as a PDF attachment for convenience. Select files
used in testing are listed in Appendix B. For convenience, Appendix C provides several ParaView macros
that the first author has found useful.

An early version of the enclosed script was distributed, to a limited extent, to MCNP UM analysts within Los
Alamos National Laboratory. This document is the result of several requests for the script from the MCNP
UM user community outside Los Alamos National Laboratory. This script is thus provided now as a stopgap
measure until such functionality is provided by a compiled application that provides superior speed and a
robust verification and validation basis (e.g., via um_post_op or MCNPTools [6]) or until MCNP UM output

is produced in a format that can be directly visualized.

Revision 1 of this document incorporates changes to the script that gracefully handle NaN and extreme value

(10%190 and beyond) edit quantities. If a NaN is encountered, a warning is issued and it is converted to 10308,

Furthermore, all Float32-valued VTK fields have been converted to Float64.

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC, manager and operator
of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to Triad
National Security, LLC, including the use of the® designation as appropriate. Any questions regarding licensing, proper use,
and/or proper attribution of Triad National Security, LLC marks should be directed to trademarks@lanl.gov.

LA-UR-19-20291, Rev. 2 1 of 37

Revision 2 of this document incorporates changes to the script that handle the processing of energy and/or
time bins along with their errors and totals. The result is a file with multiple datasets corresponding to each

energy/time/error/total bin.
2 Script Usage

The enclosed script, named Convert_MCNP_eeout_to_VTK.py, is executed from the terminal command line
followed by the filename of the EEOUT file as, for example:

1| python3 Convert_MCNP_eeout_to_VTK.py test.eeout

Output to the terminal will be of the form:

1| Processing test.eeout...

2 Found 1 edit(s).

Processing FLUX_4 edit...

4 Processing & Validating EDIT_4_RESULT...

Maximum value: 2.86644e-01
6 Minimum non-zero value: 4.78513e-07
7 Minimum value: 0.00000e+00

The label EDIT_4_RESULT is expanded to the name of the resulting dataset including time/energy identifiers.
The maximum, minimum non-zero, and minimum values are provided for two reasons. First, the maximum
and minimum non-zero values give appropriate bounds for setting color scales when log-scaling is used.
Second, one can use the minimum value as a sanity check. If the minimum is non-zero, then it should be the
same as the minimum non-zero value. If the minimum is zero, some elements may not have had particles
enter them so the user should confirm that results are appropriate. In this example, the EEOUT file name
is test.eeout so the resulting ASCII XML-based unstructured mesh VITK will be automatically named

test.eeout.vtu. If this file exists, it will be overwritten without warning.
3 Functional and Performance Requirements

The functional requirements for this script are:

1. The script shall be able to convert arbitrary combinations of parts containing first- and second-order
tetrahedral, pentahedral, and hexahedral geometry elements from the EEOUT file produced by MCNP
code version 6.2 to an XML-based unstructured mesh VTK (.vtu) file.

2. The resulting .vtu file shall be ASCII, serial-formatted, and entirely self-contained. As such, it can
be readily interrogated by a user with a text editor and loaded in a visualization application such as
ParaView or Vislt without additional post-processing. This script is only required to work with ASCII
EEOUT files, which is the default output format.

3. The script shall be able to convert element-wise edits and optionally enabled corresponding relative
uncertainties from EEOUT to .vtu.

LA-UR-19-20291, Rev. 2 2 of 37

4. The script shall be able to convert element-wise volume, density, and materials from EEOUT to .vtu.

5. The script shall be able to convert element-wise edits that are binned in energy and/or time along with

their corresponding relative uncertainties and totals from EEOUT to .vtu.

There are no firm performance requirements. However, this script should be able to process EEOUT files

containing millions of elements without undue slowness.
4 Design and Implementation

Because this script was developed for personal use by the first author, speed of development and flexibility
were informal design and implementation requirements. Accordingly, the Python language was selected and
an evolutionary development approach was used. The script does not leverage object-oriented functionality;
however, it is recommended that a data structure be constructed to represent the EEOUT information in the
future. As the script was used, it was checked by the authors on a case-by-case basis. This report is the first
time substantial verification is performed. Despite the verification work in this report, it is incumbent on the

user of the enclosed script to still verify that results are correct on a case-by-case basis.

This script is Python 3 compliant (most recently executed with Python version 3.7.2 provided by Homebrew!
on macOS version 10.12.6). Furthermore, it was an informal goal that minimal Python modules be required
so the script would be as portable as possible. As such, this script only depends on the os, re, and sys
modules. Because of the Python 3 compliance and minimal number of module dependencies, the enclosed

script should work with any recent Python 3 interpreter on any operating system.
5 Testing

A collection of 216 individual calculations is used to verify that this script fulfills requirements 1-4 in
Section 3. The 216 separate MCNP calculations consist of all permutations of UM cells composed of first-

and second-order tetrahedral, pentahedral, and hexahedral elements within a three pseudo-cell analysis.

Each calculation features a UM three-cell geometry composed of a 50 x 50 x 50-mm cube with an adjacent
right-triangular prism and semicylindrical cap. The geometry is shown in Fig. 1. The cube is composed
of 2°2Cf at 15.1 g-em ™3 with fission disabled (with MCNP input: nonu), the triangular prism is 27Al at
2.6989 g-cm ™3, and the cylindrical cap is water at 0.998207 g-cm~3. A spontaneous-fission neutron source is
distributed throughout the cube using the MCNP UM volumer capability and is assigned a 2°2Cf Watt fission
spectrum (with MCNP input: spl -3 1.180000 1.03419). An example input file is given in Listing 2.

Four elemental edit outputs are specified with embee cards:

embee4:n embed=1
embeel4:n embed=1 errors=yes
embee6:n embed=1

embeel6:n embed=1 errors=yes

Thttps://brew.sh/

LA-UR-19-20291, Rev. 2 3 of 37

https://brew.sh/

50mm

R25mm

50mm 50mm X 45°

.

50mm 50mm

Figure 1: Test Case Geometry

LA-UR-19-20291, Rev. 2 4 of 37

This collection of elemental edits provides UM element-wise F4- and F6-type edits (corresponding to track-
length and energy-deposition tallies) both with and without associated relative uncertainties in the resulting

EEOUT file. By default, element-wise material, volume, and density values are available in the EEOUT file.

Following each MCNP calculation, three steps are used to verify that requirements 1-4 are met. First, each
EEOUT file is converted to a .vtu file using the script in Listing 1 [Req. 1|. Next, each .vtu is loaded in
ParaView [Req. 2|. Finally, the element-wise results [Req. 3|, associated relative uncertainties (if applicable)
[Req. 3], material numbers [Req. 4], densities [Req. 4], and volumes [Req. 4] are visualized. Examples of the

visualized quantities are given in Fig. 2 for a variety of element-type combinations.

In order to test the energy and/or time binning functionality of this script, 6 individual calculations are used
to verify that the script fulfills requirement 5 in Section 3. The 6 calculations include all permutations of
time and energy binning, with and without relative errors. Each test calculation includes a 1 x 1 x 1-cm
cube represented by 8 hexahedral mesh elements, and the cube is centered about the origin. The geometry is
shown in Fig. 3. The cube is composed of 27Al at 2.7 g-cm™3. A point source of neutrons located at the
point (12.071, 12.071, 12.071) with arbitrary energy and time distributions that are detailed in Appendix B.3.
A similar procedure to verify the energy/time binning test cases as stated above was followed for each test

case. Fig. 4 shows some examples of energy and time bins plotted in ParaView.
5.1 Comments on Performance

This script is also tested on a UM terrain geometry that contains approximately 10 million elements (with
approximately 3 million nodes) with 2 elemental edits and required up to 16 GB of free RAM. The conversion
process from EEOUT to VTK takes approximately 4 minutes. Loading and viewing the resulting .vtu file
in ParaView takes approximately 1 minute. The resulting geometry shaded by UM element volume is shown

in Fig. 5. This level of performance is deemed acceptable.
6 Conclusions

The test case results given in Section 5 demonstrate that the script fulfills the requirements stipulated in
Section 3. While verification of the script is still incumbent on the user on a case-by-case basis, this document
suggests that it is implemented correctly and should properly convert MCNP code version 6.2 elemental edit
output files to XML-based unstructured VTK (.vtu) files.

References

[1] C. J. Werner, J. Armstrong, F. B. Brown, J. S. Bull, L. Casswell, L. J. Cox, D. Dixon, R. A.
Forster, J. T. Goorley, H. G. Hughes, J. Favorite, R. Martz, S. G. Mashnik, M. E. Rising, C. J.
Solomon, A. Sood, J. E. Sweezy, A. Zukaitis, C. Anderson, J. S. Elson, J. W. Durkee, R. C. Johns,
G. W. McKinney, G. E. McMath, J. S. Hendricks, D. B. Pelowitz, R. E. Prael, T. E. Booth, M. R.
James, M. L. Fensin, T. A. Wilcox, and B. C. Kiedrowski, “MCNP User’s Manual, Code Version 6.2,”
Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-29981, Oct. 2017.
URL: http://permalink.lanl.gov/object /tr?what=info:lanl-repo/lareport/LA-UR-17-29981

[2] R. L. Martz, “The MCNP6 Book On Unstructured Mesh Geometry: User’s Guide For MCNP 6.2,”

LA-UR-19-20291, Rev. 2 5 of 37

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-29981

— 23002

EDIT_14_RESULT_TIVE_BIN_1_MAX_IIME_1.0D0E-+33_ENERGY_BIN_|_MAX_ENERGY_1 005436
EDIT_14_ERROR_TIVE_BIN. 1LMAX_TIVE_] 0002+ 33_ENERGY_BIN_1_WAX_ ENERGY_ 000136

2 owss P s
v ¥
X &
(a) embeel4d Results, Linear Elements (b) embeeld Uncertainties, Linear Elements
El
- e: e
¥ ¢ E
& 3 &
(c) embeel6 Results, Quadratic Elements (d) embeel6 Uncertainties, Quadratic Ele-
ments
) Elemental Volumes, Linear Elements (f) Elemental Volumes, Quadratic Elements
5 B
i » :
o < 2
(g) Elemental Material Numbers (h) Elemental Mass Densities

Figure 2: Example Visualization Results

LA-UR-19-20291, Rev. 2 6 of 37

I'(lcm ,_l

1cm

Figure 3: Binning Test Case Geometry

EDIT_4_RESULT_TIME_BIN_1_MAX_TIME_1.000E+33_ENERGY_BIN_2 MAX_ENERGY._1.000E-02 ” EDIT_4 RESULTTIME BIN_1_MAX_TIME_1 000E+33 ENERGY_BIN_3 MAX_ENERGY_1 000E-01
248407 290+ 346407 39407 440307 490407 540407596407 6.6E40 408007 450407 56407 407 6ev] 65e%07 7e+0] 756407 8es07 BIEWT

206407

(a) Energy Bin 2 Results (b) Energy Bin 3 Results

EDIT_4_RESULT_TIME_BIN_3_MAX_TIME_1.000+08_ENERGY_BIN_1_MAX_ENERGY__|.000€+36
260407 310407 360407 410407 460007 51e%07 SBENO7

.
(d) Time Bin 3 Results

000E+36 o
216007

EDIT_4_RESULT_TIME_BIN_2_MAX_TIME_1.000€+02_ENERGY_BIN_1_MAX_ENERGY_|
380407 430407 480407 530407 580407

336007

(¢) Time Bin 2 Results

Figure 4: Example Visualization Results for Energy/Time Bins

LA-UR-19-20291, Rev. 2 7 of 37

Figure 5: UM Terrain Demonstration, Shaded by UM Element Volume, ~10 Million Elements

Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-22442, Mar. 2017.
URL: http://permalink.lanl.gov/object /tr?what=info:lanl-repo/lareport /LA-UR-17-22442

[3] L. S. Avila, U. Ayachit, S. Barré, J. Baumes, F. Bertel, R. Blue, D. Cole, D. DeMarle, B. Geveci, W. A.
Hoffman, B. King, K. Krishnan, C. C. Law, K. M. Martin, W. McLendon, P. Pebay, N. Russell, W. J.
Schroeder, T. Shead, J. Shepherd, A. Wilson, and B. Wylie, The VTK User’s Guide, 11th ed. Kitware,
Inc., 2010. URL: http://www.vtk.org/vtk-users-guide/

[4] U. Ayachit, The ParaView Guide, community ed., L. Avila, K. Osterdahl, S. McKenzie, and S. Jordan,
Eds. Kitware, Inc., Jun. 2018. URL: https://www.paraview.org/paraview-guide/

[5] “VisIt User’s Manual,” Lawrence Livermore National Laboratory, Livermore, CA, USA, Tech. Rep.
UCRL-SM-220449, Oct. 2005. URL: https://wci.llnl.gov/simulation/computer-codes/visit /manuals

[6] C. J. Solomon, C. R. Bates, and J. A. Kulesza, “The MCNPTools Package: Installation and Use,” Los
Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-17-21779, Mar. 2017.

[7] J. L. Alwin, J. B. Spencer, and G. A. Failla, “Criticality Acccident Alarm System (CAAS) CSG-UM
Hybrid Example,” Los Alamos National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-18-24235,
May 2018. URL: http://permalink.lanl.gov/object /tr?what=info:lanl-repo/lareport/LA-UR-18-24235

LA-UR-19-20291, Rev. 2 8 of 37

http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-17-22442
http://www.vtk.org/vtk-users-guide/
https://www.paraview.org/paraview-guide/
https://wci.llnl.gov/simulation/computer-codes/visit/manuals
http://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-18-24235

A Script Source Code

The source code for the script described herein is given in Listing 1. For convenience, it is also provided as an

attachment to this PDF, which can be accessed using Adobe Acrobat through the menu path shown in Fig. 6.

Window Help

Rotate View
Page Navigation

Page Display
Zoom

Tools

\d V VvV VY

Show/Hide Navigation Panes

Ul Articles

i v Tools Pane {F4
Display Theme > | Toolbar ltems Q) v Attachments
Read Mode ~3H Page Controls > ﬂ Bookmarks
Full Screen Mode sgL v Menu Bar 0 #M a I —
Tracker... Button Labels -
Rulers & Grids > Destinations
Read Out Loud > Cursor Coordinates g Layers
Compare Files ' E
Model Tree
% Order
@ Page Thumbnails
(%, Signatures
% Tags
Hide Navigation Pane F4
Reset Panes

Figure 6: Adobe Acrobat Menu Path to Access PDF Attachments

LA-UR-19-20291, Rev. 2 9 of 37

G A9y ‘1620%-6T-UN-V'T

L€ 30 01

Listing 1: Script Source Code

#!/usr/bin/env python

H OH OH OH OH OH OH OH OH OH OH OH OH H HEH HEH HEH HEHEH HE R H HE K R

Execute as: Convert_MCNP_eeout_to_VTK.py <file.eeout>

Code: Convert_MCNP_eeout_to_VTK, version 1.2.0

Authors: Joel A. Kulesza (jkulesza@lanl.gov)
Tucker C. McClanahan (tcmcclan@lanl.gov)
Monte Carlo Methods, Codes & Applications
X Computational Physics Division

Los Alamos National Laboratory

Copyright (c) 2019 Triad National Security, LLC. All rights reserved.

This material was produced under U.S. Government contract 89233218NCA000001
for Los Alamos National Laboratory, which is operated by Triad National
Security, LLC for the U.S. Department of Energy. The Government is granted
for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable worldwide license in this material to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five
(5) years after February 14, 2018, subject to additional five-year worldwide
renewals, the Government is granted for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license in this material to
reproduce, prepare derivative works, distribute copies to the public, perform
publicly and display publicly, and to permit others to do so. NEITHER THE
UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR TRIAD NATIONAL
SECURITY, LLC, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS , OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

import os

import re

import sys

#

Find the start and end positions for the first matching sublist in a list.

def find_sublist(sl, 1):

#
#

sll=len(sl)
for ind in (i for i,e in enumerate(1) if e == s1[0]):
if(1[ind:ind+sll] == sl):
return ind,ind+sll-1

Extract a certain number of entries (length) following a sublist (sublist) for

a given input list (inlist).

G A9y ‘1620%-6T-UN-V'T

LEJOTT

86

def extract_sublist_entries(sublist, length, inlist):
1pl = find_sublist(sublist, inlist)[1] + 1
1p2 = 1pl + length
return inlist[1lpl:1p2]

Calculate the connected nodes for various element types.

def calculate_connectivity_list_length(e_types):

connectivity_list_length = []
for e in e_types:
if(e == 242):
connectivity_list_length.append(4)
elif (e == ’57):
connectivity_list_length.append(6)
elif(e == 267):
connectivity_list_length.append(8)
elif (e == 214>):
connectivity_list_length.append(10)
elif (e == 215’):
connectivity_list_length.append(15)
elif(e == 216’):

connectivity_list_length.append(20)
return connectivity_list_length

Convert eeout element types to VTK element types.
def calculate_vtk_e_types(e_types):

vtk_e_types = []

for e in e_types:

if(e == 247):
vtk_e_types.append(210’)
elif (e == ’5’):
vtk_e_types.append(213’)
elif(e == 26’):
vtk_e_types.append(2127)
elif (e == 214>):
vtk_e_types.append(’24°)
elif (e == 2157):
vtk_e_types.append(’26°)
elif (e == 2167):

vtk_e_types.append(257)

return vtk_e_types

Create flat list of 3D vertices from individual coordinate 1lists.
def create_vertices(xs, ys, zs):

v = [1

for n,x in enumerate(xs):

v.append(xs[n])

G A9y ‘1620%-6T-UN-V'T

Le¥ozct

v.append(ys[n])
v.append(zs[n])

return (v)

Reformat list to print its elements nicely within the XML file.
def pretty_print_list(indent, cols, colwidths, inlist):
pretty_list_string = indent * ’ ’
for n,i in enumerate(inlist):
pretty_list_string += str(i).rjust(colwidths) + 7 ~
if(n % cols == cols - 1):
pretty_list_string += ’\n’ + indent * ’>
pretty_list_string += ’\n’

return pretty_list_string

Perform various sanity checks on edit results.
def perform_edit_checks(edit_values, total_elements, check_gap = True):
found_negative = False
found_nan = False
max_val = -1e308
min_nz_val = 1e308

min_val = 1e308

Custom float conversion for Fortran-formatted numbers missing an "e" and
with three digits in the exponent.
def floatf(x):
try:
rv = float(x)
except:
rv = float(x[0:-4] + ’e’ + x[-4:1)

return rv

edit_values = [floatf(i) for i in edit_values]
if (len(edit_values) == total_elements + 1):
gap_value = edit_values[0]

if (gap_value > 0 and check_gap):
print (>WARNING: gap value: {:}’.format(gap_value))
else:
print (*ERROR: Unexpected edit length, exiting’)

exit ()
The first edit entry is for gaps --- discard for plotting.
edit_values = edit_values[1:]

for ev in edit_values:
if(ev < 0 and found_negative == False)
print (>WARNING: Negative edit entry found.’)

G A9y ‘1620%-6T-UN-V'T

LEJO €T

139

140

found_negative = True

if(ev != ev and found_nan == False):
print (WARNING: NaN edit entry found. Setting to 1e308.°)
found_nan = True

if(ev < min_nz_val and ev > 0.0): min_nz_val = ev

if(ev < min_val): min_val = ev

if (ev > max_val): max_val = ev

if (True):

[1e308 if ev !=

found_nan ==

edit_values = ev else ev for ev in edit_values]

print (Maximum value: {:.5e}’.format(max_val))
print (Minimum positive value: {:.5e}’.format(min_nz_val))
print (° Minimum value: {:.5e}’.format(min_val))
edit_values = [’{:.5e}’.format(i) for i in edit_values]

return edit_values
Separate into list and parse into results and relative uncertainties, if
appropriate.
def get_results(edit_values, total_elements):
edit_results = []
edit_values.split (’DATA SETS’) [1:]
[tmp[i] for i in range(len(tmp)) if
[[’RESULT’, ’TIME’] if ’RESULT TIME’

edit_number,

tmp =
edit_sets = >RESULT SQR TIME BIN’ not in tmpl[ill
sublists = in edit_sets[i] else [’REL’, ’ERROR’,
count = -1
for s in sublists:
count += 1
edit_data = total_elements + 1 + 26,
Get supplemental edit-identifying information.
edit_data[2]
edit_data[7]
edit_data[16]
edit_datal[21]

extract_sublist_entries(s,

time_bin =
time_value =
erg_bin =
erg_value =

Construct unique name.

edit_name =
edit_number, s[-2], time_bin, time_value, erg_bin, erg_value)

Extract only edit data values and validate.

edit_data = edit_datal[26:]

print (Processing & Validating {:}...’.format(edit_name))

(not ’ERROR’

perform_edit_checks(edit_data, total_elements,

edit_data])

check_gap =
edit_data =

in s) # Don’t check gap for error arrays.
check_gap)

edit_results.append([edit_name,

>TIME’] for i in range(len(edit_sets))]

edit_sets[count].split())

PEDIT_{:}_{:}_TIME_BIN_{:}_MAX_TIME_{:}_ENERGY_BIN_{:}_MAX_ENERGY_{:}’.format(\

G A9y ‘1620%-6T-UN-V'T

LEJO VI

189
190
191
192
193
194
195
196
197
198
199

200

return edit_results

HARFARAHARARARARARARBHARBAARRFRBRFRBAARAS R BB R RS R BASRRARRAFRRAARASRRAS R RS BHASRBHHS

import __main__ as main

if (__name__ == ’__main__’ and hasattr(main, ’__file__’)):

Validate command line arguments.
if(len(sys.argv) != 2):
print (’ERROR: Incorrect number of command line arguments provided (’
+ str(len(sys.argv)) + ’); those provided:’)
print (sys.argv)
exit ()

if (not os.path.isfile(sys.argv[1 1)):
print (’ERROR: MCNP EEQUT file not found.’)

exit ()
infilename = sys.argv[1]
print (’Processing {:}...’.format(infilename))
with open (infilename, ’r’) as myfile:

eeout = myfile.read()

Determine number of nodes and cells.

nodes = int(re.search(r’NUMBER OF NODES\s*:\s+(\d+)’, eeout).group(1)
tetsl = int(re.search(r’NUMBER OF 1st TETS\s*:\s+(\d+)’, eeout).group(1)
pentsl = int(re.search(r’NUMBER OF 1st PENTS\s*:\s+(\d+)’, eeout).group(1)
hexsl = int(re.search(r’NUMBER OF 1st HEXS\s*:\s+(\d+)’, eeout).group(1)
tets2 = int(re.search(r’NUMBER OF 2nd TETS\s*:\s+(\d+)’, eeout).group(1)
pents2 = int(re.search(r’NUMBER OF 2nd PENTS\s*:\s+(\d+)’, eeout).group(1)
hexs2 = int(re.search(r’NUMBER OF 2nd HEXS\s*:\s+(\d+)’, eeout).group(1)
total_elements = tetsl + pentsl + hexsl + tets2 + pents2 + hexs2

Retrieve edit information.
edit_list = re.findall(r’ (DATA OUTPUT PARTICLE.*?)\n’, eeout, re.S)

print(> Found {:} edit(s).’.format(len(edit_list)))

Capture edit data for use later.
eeout_edits = re.search(r’(DATA OUTPUT.x?7)CENTROIDS’, eeout, re.S).group(1)

Capture header information.

eeout_header = re.search(r’(.*?)NODES X’, eeout, re.S).group(1)

R N N Sl

G A9y ‘1620%-6T-UN-V'T

L€ 30 &1

eeout_header = re.sub(r’\s+\n’, ’\n’, eeout_header)
eeout_header = re.sub(r’\n+’, ’\n’, eeout_header)
eeout_header = re.sub(r’~’, ’# ’, eeout_header)
eeout_header = re.sub(r’\n’, ’\n# ’, eeout_header)

Reformat eeout to list to permit easy reading of list data.

eeout = eeout.replace(’\n’, 77)
eeout = eeout.split(> 7)
eeout = list(filter(Nome, eeout))

Remove head of file to make matching easier.

eeout =

eeout [find_sublist([

>NODES’, ’X’, °(cm)’], eeout)[0]: 1]

Find the list positions for the first and last nodes.

X_coords =
y_coords =
z_coords =
e_types =
e_materials =

extract_
extract_
extract._
extract_

extract_

[’NODES’,
[’NODES’>, °Y’,
[’NODES’, ’2°7,
[’ELEMENT’,
[’ELEMENT’,

’(cm)],
>(em)],
’(cm)],
TYPE’], total_elements,
>MATERIAL’],

sublist_entries(X0, nodes, eeout)

sublist_entries (nodes, eeout)

sublist_entries (nodes, eeout)

sublist_entries (

sublist_entries (total_elements,

Process connectivity list.

connectivity_list_elements =

connectivities = []

if (

if (

if (

if (

if (

if (

24

connectivities +=

in e_types):

[>CONNECTIVITY?’,

4 x e_types.count (

757
connectivities +=

in e_types):

[CONNECTIVITY’,

6 * e_types.count (

?67
connectivities +=

in e_types):

[>CONNECTIVITY?’,

8 * e_types.count(

314>

connectivities +=

in e_types):

[>CONNECTIVITY?’,
10 * e_types.count (

1150
connectivities +=

in e_types):

[>CONNECTIVITY?’,
15 * e_types.count (

716)
connectivities +=

in e_types):

[’CONNECTIVITY’,

calculate_connectivity_list_length(e_types)

extract_sublist_entries(
>DATA’, °1ST’, °O0RDER’,
’4°), eeout)

>TETS’, ’ELEMENT’, ’0ORDERED?’

extract_sublist_entries(
>DATA’, °1ST’, °O0RDER’,

’5°), eeout)

>PENTS’, ’ELEMENT’, ’O0ORDERED’

extract_sublist_entries(
>DATA’, °1ST’, °O0RDER’,

’6°), eeout)

>HEXS’, ’ELEMENT’, ’0RDERED?

extract_sublist_entries(
>DATA’, °2ND’, °O0RDER’,
’14°), eeout)

>TETS’, ’ELEMENT’, ’0RDERED?

extract_sublist_entries(
’DATA®, ’2ND’, ’ORDER’,
152), eeout)

>PENTS’>, ’ELEMENT’, °’O0ORDERED’

extract_sublist_entries(

>DATA’, ’2ND’, ’ORDER’, ’HEXS’, ’ELEMENT’, ’O0ORDERED’

eeout)

eeout)

1,

1,

1,

1,

1,

1,

G A9y ‘1620%-6T-UN-V'T

L€ 30 91

20 * e_types.count(16’), eeout)
extract_sublist_entries(
[’DENSITY’, ’(gm/cm~3)’ 1,

total_elements,

densities =
eeout)
extract_sublist_entries(

[>VOLUMES?’, ’(cm~3)’ 1],

total_elements,

volumes =

eeout)

Create list of vertices from individual coordinate lists.

vertices = create_vertices(x_coords, y_coords, z_coords)

Subtract one from all vertex IDs in the connectivity list (to make
zero-indexed).

[str(int(x) -

connectivities = 1) for x in connectivities 1]

Accumulate offset list. Reproduce np.cumsum to avoid NumPy dependency.
def cumsum(inlist):
[o1

for n,i in enumerate(inlist):

cumlist =

cumlist.append(cumlist[n] + inlist[n])
return cumlist[1:]
offsets = cumsum(connectivity_list_elements)
offsets = [str(x) for x in offsets]
Convert eeout element types to VTK element types.
vtk_e_types = calculate_vtk_e_types(e_types)
Open up output vtu (unstructured mesh VTK) file.

f = open(infilename + ’.vtu’, ’w’)
Write header comments

if (False):

(but a long header does not work), default: off.

[f.write(’<!-- > + 1 + 2> -->\n’) for 1 in eeout_header.split(’\n’)
f.write(’<!--2> + ’\n’)

f.write(80 * ’#’ + ’\n’)

f.write(’# EEOUT Header Follows’ + ’\n’)

f.write(80 * ’#’ + ’\n’)

f.write(eeout_header + ’\n’)

f.write(80 * ’#’ + ’\n’)

f.write(’-->> + ’\n’)

f.write(’<VTKFile type="UnstructuredGrid"
<UnstructuredGrid>’ + ’\n?’)

+ str(nodes) +

version="0.1"
f.write(
<Piece NumberOfPoints="?

f.write(>" NumberOfCells="’

byte_order="LittleEndian">’ +

]

’\n’)

+ str(total_elements) +

Ins

+

)\nﬁ

)

G A9y ‘1620%-6T-UN-V'T

LEJO LT

Output edit information.

uncertainties. Edits may be binned by energy and/or time.
if(len(edit_list) > 0):

for e in edit_list:
re.search(r’PARTICLE (\d+)’, e).
re.search(r’TYPE (.*%7)$’, e).group(
re.search(r’TYPE x7_(\d+)$’,
Processing {:} edit...’.format(edit_type

particle_type =
edit_type =
edit_number =
print (

myregex =
edit_data = re.S).
edit_number,

re.search(myregex, eeout_edits,

edit_results = get_results(edit_data,

for er in edit_results:

f.write(° <CellData Scalars="scalars">’ + ’\n’)

f.write(2 <DataArray type="Int32" Name="material" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 10, 5, e_materials))

f.urite(</DataArray>’ + ’\n’)

f.write(? <DataArray type="Float64" Name="density" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 5, 13, densities))

f.urite(</DataArray>’ + ’\n’)

f.write(2 <DataArray type="Float64" Name="volume" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 5, 13, volumes))

f.write(</DataArray>’ + ’\n’)

Edits may have corresponding relative

group(1)
1)

e).group(1)

))

>({:}.%?) (:?7DATA OUTPUT PARTICLE|$)’.format(e)

group(1)
total_elements)

f.write(2 <DataArray type="Float64" Name="’ + er[0]+ ’" format="ascii">’
f.write(pretty_print_list(10, 5, 13, er[1]))

f.write(2 </DataArray>’ + ’\n’)

f.write(</CellData>’ + ’\n’)

f.write(<Points>’ + ’\mn’)

f.write(<DataArray type="Float64" NumberOfComponents="3" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 3, 13, vertices))

f.urite(° </DataArray>’ + ’\n’)

f.urite(</Points>’ + ’\mn’)

f.write(<Cells>’ + ’\n’)

f.write(<DataArray type="Int32" Name="connectivity" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 8, 5, connectivities))

f.write(</DataArray>’ + ’\n’)

f.write(<DataArray type="Int32" Name="offsets" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 10, 5, offsets))

f.urite(</DataArray>’ + ’\n’)

f.write(? <DataArray type="UInt8" Name="types" format="ascii">’ + ’\n’)
f.write(pretty_print_list(10, 20, 2, vtk_e_types))

f.write(’ </DatalArray>’ + ’\n’)

f.write(° </Cells>’ + ’\n’)

f.urite(</Piece>’ + ’\n’)

f.write(> </UnstructuredGrid>’ + ’\n’)

+

7\117

)

G A9y ‘1620%-6T-UN-V'T

L€ 3O 8T

368
369

370

f.urite(

f.close()

’</VTKFile >’

+

)\n:

)

B Test Case Files

This appendix provides various files associated with the test cases. They are provided as examples and to

aide in reproducing some of the verification work herein.
B.1 Test Case Example Files (Only Linear Hexahedral Elements)

An example MCNP input using only linear hexahedral elements is given in Listing 2 and the corresponding

Abaqus mesh input file is given in Listing 3.

LA-UR-19-20291, Rev. 2 19 of 37

G A9y ‘1620%-6T-UN-V'T

L€ 30 0T

Listing 2: Test Case MCNP Input File (Only Linear Hexahedral Elements)

No description for this unstructured mesh file

c
¢ Created from file : test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
¢ Using data cards file: std_datacards.mcnp.inp

¢ Created on : 1- 9-2019 @ 6:42:36

c

c
c PSEUDO CELLS

01 1 -15.1000 0 u=1

02 2 -2.69890 0 u=1

03 3 -0.998207 0 u=1

04 0 0 u=1

c

c LEGACY CELLS

05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c

c DATA CARDS

embedl meshgeo=abaqus
mgeoin=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
meeout=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.eeout
length= 1.00000E-01
background= 4
matcell= 1 1 2 2 3 3

c

embee4:n embed=1

c

sdef pos= volumer

c

erg=dl
spl -3 1.18 1.03419
nonu
c
mode n
c
mil 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
@ $ composition assumed; density from crc handbook

c
m2 13027 1.0 $ aluminum

G A9y ‘1620%-6T-UN-V'T

L€ 30 1T

60

61

c $ density: 2.6989 g/cc
@ $ composition & density from pnnl-15870, rev.
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev.
c
imp:n 1 1 1 1 10
c

embeel4:n embed=1 errors=yes
embee6:n embed=1

embeel6:n embed=1 errors=yes
c

rand gen=2 seed=12345

print

nps 1le6

Listing 3: Test Case Abaqus Mesh Input File (Only Linear Hexahedral Elements)

*Heading

** Job name: test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq Model name: Model-1
*x Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

% %

*xx PARTS

% %

*Part, name=Cube

*Node
1, 25., 25., 25.
By O 25., 25.
3, -25., 25., 25.
4, 25., P 25.
5, 0., 0., 25.
By -256., P 25.
7, 25., -25., 25
8, O -26., 25
9, -25., -25., 25.
10, 25., 25., 0.
11, 0., 25., 0.
12, -256. , 25. , 0.
13, 25., 0., 0.
14, 0., 0., 0.
15, -25., 0., 0.
16, 25., -25., 0.
17, 0., -25., 0.
18, -25., -25., 0.

G A9y ‘1620%-6T-UN-V'T

L€ Jo e

19, 25., 25., -25.
20, ©s p 25., -256.
21, -25., 25., -25.
22, 25., O -256.
23, 0., 0., -25.
24, -256., O -25.
25, 25., -25., -25.
26, s p -256., -25.
27, -25., -25., -25.

*Element , type=C3D8

i, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate
1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

1, 8, 1
*End Part
* %k

*Part, name=Right_Triangle

*Node
1, 75., -25., -25.
2 25., -25., 25.
3, 25., -25., -25.
4, 50., -25., 0.
5, 25., -25., 0.
6, 50., -25., -25.
7, 42.6746407, -25., -7.3253603
8, 75., (OFS -25.
9, 25., 0., 25.
10, 25., (OFIS -25.
11, 50., 0., 0.
12, 25,1, @6 5 0.
13, 50., 0., -25.
14, 42.6746407 , OF -7.3253603
15, 75., 25., -25.
16, 25., 25., 25.
17, 25., 25., -25.
18, 50., 25., 0.
19, 25., 25., 0.

20, 50., 25., -25.

G A9y ‘1620%-6T-UN-V'T

L€ 3o €T

21, 42.6746407, 25., -7.3253603

*Element , type=C3D8

i, &5, 7, 6, 3, 12, 14, 13, 10

2, 7, 5, 2, 4, 14, 12, 9, 11

3, 7, 4, 1, 6, 14, 11, 8, 13

4, 12, 14, 13, 10, 19, 21, 20, 17

5, 14, 12, 9, 11, 21, 19, 16, 18

6, 14, 11, 8, 13, 21, 18, 15, 20

*Nset, nset=Set_material_tally_2, generate

l, 2, 1

*Elset, elset=Set_material_tally_2, generate

1, 6, 1
*End Part
* %

*Part, name=Semicircular_Cap

*Node
1, 25., -25., 25.
2, -25., -25., 25.
3, 17.6776695, -25., 42.6776695
4, 0., -25., 50.
5, -17.6776695, -25., 42.6776695
6, s p -25., 25.
7, 25., 0., 25.
8, -25., OFS 25.
9, 17.6776695, 0., 42.6776695
10, s p OF 50.
11, -17.6776695, 0., 42.6776695
12, s p OFS 25.
13, 25., 25., 25.
14, -25., 25., 25.
15, 17.6776695, 25., 42.6776695
16, 0., 25., 50.
17, -17.6776695, 25., 42.6776695
18, 0., 25., 25.

*Element , type=C3D8

i, 4, 3, 1, 6, 10, 9, 7, 12

2, 4, 6, 2, 5, 10, 12, 8, 11

3, 10, 9, 7, 12, 16, 15, 13, 18

4, 10, 12, 8, 11, 16, 18, 14, 17

*Nset, nset=Set_material_tally_3, generate
1, 18, 1

*Elset, elset=Set_material_tally_3, generate

1, 4, 1
*End Part
* %

*%

G A9y ‘1620%-6T-UN-V'T

LEJO VT

** ASSEMBLY
* %k

*Assembly , name=Assembly

* %

*Instance, name=Cube-1, part=Cube

*End Instance

* %k

*Instance, name=Right_Triangle-1,

*End Instance

* %

*Instance, name=Semicircular_Cap-1,

*End Instance

* %k

*End Assembly

* %k

** MATERIALS

* %

*Material, name=Material_Al_2

*Density
-2.6989,

*Material, name=Material_Cf -252_1

*Density
-15.1,

*Material , name=Material_H20_3

*Density

-0.998207,

part=Right_Triangle

part=Semicircular_Cap

B.2 Test Case Example Files (Mixed Linear and Quadratic Elements)

An example MCNP input using a variety of linear and quadratic hexahedral and pentahedral elements is

given in Listing 4 and the corresponding Abaqus mesh input file is given in Listing 5.

LA-UR-19-20291, Rev. 2 25 of 37

G A9y ‘1620%-6T-UN-V'T

L€ 30 9¢

Listing 4: Test Case MCNP Input File (Mixed Linear and Quadratic Elements)

No description for this unstructured mesh file

c
¢ Created from file : test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
¢ Using data cards file: std_datacards.mcnp.inp

¢ Created on : 1- 9-2019 @ 6:42:36

c

c
c PSEUDO CELLS

01 1 -15.1000 0 u=1

02 2 -2.69890 0 u=1

03 3 -0.998207 0 u=1

04 0 0 u=1

c

c LEGACY CELLS

05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c

c DATA CARDS

embedl meshgeo=abaqus
mgeoin=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
meeout=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.eeout
length= 1.00000E-01
background= 4
matcell= 1 1 2 2 3 3

c

embee4:n embed=1

c

sdef pos= volumer

c

erg=dl
spl -3 1.18 1.03419
nonu
c
mode n
c
mil 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
@ $ composition assumed; density from crc handbook

c
m2 13027 1.0 $ aluminum

G A9y ‘1620%-6T-UN-V'T

L€ 30 LT

60

61

c $ density: 2.6989 g/cc
@ $ composition & density from pnnl-15870, rev.
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev.
c
imp:n 1 1 1 1 10
c

embeel4:n embed=1 errors=yes
embee6:n embed=1

embeel6:n embed=1 errors=yes
c

rand gen=2 seed=12345

print

nps 1le6

Listing 5: Test Case Abaqus Mesh Input File (Mixed Linear and Quadratic Elements)

*Heading

** Job name: test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq Model name: Model-1
*x Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

% %

*xx PARTS

% %

*Part, name=Cube

*Node
1, 25., 25., 25.
By O 25., 25.
3, -25., 25., 25.
4, 25., P 25.
5, 0., 0., 25.
By -256., P 25.
7, 25., -25., 25
8, O -26., 25
9, -25., -25., 25.
10, 25., 25., 0.
11, 0., 25., 0.
12, -256. , 25. , 0.
13, 25., 0., 0.
14, 0., 0., 0.
15, -25., 0., 0.
16, 25., -25., 0.
17, 0., -25., 0.
18, -25., -25., 0.

G A9y ‘1620%-6T-UN-V'T

L€ 30 8¢

19, 25., 25., -25.
20, ©s p 25., -256.
21, -25., 25., -25.
22, 25., O -256.
23, 0., 0., -25.
24, -256., O -25.
25, 25., -25., -25.
26, s p -256., -25.
27, -25., -25., -25.

*Element , type=C3D8

i, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate
1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

1, 8, 1
*End Part
* %k

*Part, name=Right_Triangle

*Node
1, 75., -25., -25.
2 25., -25., 25.
3, 25., -25., -25.
4, 50., -25., 0.
5, 25., -25., 0.
6, 50., -25., -25.
7, 75., 0., -25.
8, 25., (OFS 25.
9, 25., 0., -25.
10, 50., OF 0.
11, 25., 0., 0.
12, 50., @6 5 -25.
13, 75., 25., -25.
14, 2579 2509 25 o
15, 25., 25., -25.
16, 50., 25., 0.
17, 25., 25., 0.
18, 50., 25., -25.

*Element , type=C3D6
1, 3, 4, 6, 9, 10, 12

G A9y ‘1620%-6T-UN-V'T

L€ JO 6C

2, 65, 2, 4, 11, 8, 10

3, 4, 3, 5, 10, 9, 11

4, 4, 1, 6, 10, 7, 12

5, 9, 10, 12, 15, 16, 18

6, 11, 8, 10, 17, 14, 16

7, 10, 9, 11, 16, 15, 17

8, 10, 7, 12, 16, 13, 18

*Nset, nset=Set_material_tally_2,

1, 18, 1
*Elset, elset=Set_material_tally_2,
1, 8, 1

*End Part

* %

*Part, name=Semicircular_Cap

*Node
i 25., -26.,
2, -25., -25.,
3, 17.6776695, -25.,
4, 0., -25.,
5, -17.6776695, -25.,
6, 0., -25.,
7, 25., OFS
8, -25., 0.,
9, 17.6776695, OF
10, 0., 0.,
11, -17.6776695, OF
12, 0., 0.,
i85 25., 25.,
14, -25., 25.,
15, 17.6776695, 25.,
16, 0., 25.,
17, -17.6776695, 25.,
18, 0., 25.,
19, 0., -25.,
20, 8.83883476, -25.,
21, 9.56708622, -25.,
22, 9.56708527, 0.,
23, 8.83883476, OF
24, 0., 0.,
25, 17.6776695, -12.5,
26, 0., -12.5,
27, OF -12.5,
28, -8.83883476, -25.,
29, -9.56708622, -25.,
30, -9.56708527, 0.,
31, -8.83883476, P

generate

generate

25.

25.
6776695
50.
6776695
25.

25.

25.
6776695
50.
6776695
25.

25.

25.
6776695
50.
6776695
25.
37.5
8388367
0969887
0969887
8388367
37.5
6776695
50.

25.
8388367
0969887
0969887
8388367

42.

42.

42.

42.

42.

42.

33.
48.
48.
33.

42.

33.
48.
48.
33.

G A9y ‘1620%-6T-UN-V'T

L€ Jo 0€

158
159
160
161
162
163
164

165

32, -17.6776695,
33, -12.5,
34, -23.0969887,
35, -23.0969868,

36, -12.5,
37, -25.,
38, 12.5,

39, 23.0969887,
40, 23.0969868,
a1, 12.5,
42, 25.,
43, 9.56708622,
44, 8.83883476,

45, 0.,
46, 17.6776695,
47, s p
48, 0.,

49, -9.56708622,
50, -8.83883476,
51, -17.6776695,
52, -23.0969887,

53, -12.5,
54, -25.,
55, 23.0969887,
56, 12.5,
57, 25.,

*Element , type=C3D15

i, 4, 3, 6, 10, 9,
2, 5, 4, 6, 11, 10,
3, 2, 5, 6, 8, 11,
4, 3, 1, 6, 9, 7,
5, 10, 9, 12, 16, 15,
6, 11, 10, 12, 17, 16,
7, 8, 11, 12, 14, 17,
8 9, 7, 12, 15, 13,
*

s
Nset, nset=Set_material_tally_3,

i, 67, 1

*Elset, elset=Set_material_tally_3,

1, 8, 1
*End Part
% %
* %k
**x ASSEMBLY
* %k

12,
12,
12,
12,
18,
18,
18,
18,

*Assembly , name=Assembly

*%

21,
29,
34,
39,
22,
30,
35,
40,

-12.5,

12.5,
12.5,
12.5,

25.
25.

>

>

12.5,

25.
25.

>

5

12.5,

25.
25.

5

>

12.5,

20,
19,
28,
38,
23,
24,
31,
41,

19,
28,
33,
20,
24,
31,
36,
23,

42.6776695
25.
34.5670853
34.5670891
25.

25.

25.
34.5670853
34.5670891
25.

25.
48.0969887
33.8388367
37.5
42.6776695
50.

25.
48.0969887
33.8388367
42.6776695
34.5670853
25.

25.
34.5670853
25.

25.

22, 23, 24,
30, 24, 31,
35, 31, 36,
40, 41, 23,
43, 44, 45,
49, 45, 50,
52, 50, 53,
55, 56, 44,

generate

generate

26,
32,
37,
25,
a7,
51,
54,
46,

25,
26,
32,
42,
46,

51,
57,

27
27
27
27
48
48
48
48

G A9y ‘1620%-6T-UN-V'T

L€ Jo 1€

*Instance,

name=Cube -1, part=Cube

*End Instance

*%

*Instance,

name=Right_Triangle-1,

*End Instance

* %

*Instance,

name=Semicircular_Cap-1,

*End Instance

*%

*End Assembly

* %

** MATERIALS

* %
*Material,
*Density
-2.6989,
*Material,
*Density
-15.1,
*Material,
*Density
-0.998207,

name=Material_Al_2

name=Material_Cf -252_1

name=Material _H20_3

part=Right_Triangle

part=Semicircular_Cap

B.3 Test Case Example Files (Energy/Time Binning)

An example MCNP input using time only, energy only and time and energy bins are given in Listing 6 and

the corresponding Abaqus mesh input file is given in Listing 7.

LA-UR-19-20291, Rev. 2 32 of 37

G A9y ‘1620%-6T-UN-V'T

L€ Jo ge

Listing 6: Test Case MCNP Input File (Energy/Time Binning)

Simple Al Cube

1 1 -2.7 0 u=1

2 0 0 u=1 $ background

18 0 100 -101 102 -103 104 -105 £il1l=1 $ fill cell

19 0 (-100:101:-102:103:-104:105)

(4 ceococococcoeocoooEc o oa0 End CelCard sl === o 80

R e Data Cards ---------------——~——~—~—~—~—~—~—~—~—~—~—~—~—~—~—— 80

¢ Embedded Geometry Specification

embedl meshgeo=abaqus mgeoin=Simple_Example.abaq
meeout=Simple_Example.eeout
filetype=ascii
background=2
matcell= 1 1

c

c Materials

mil 13027 -1.0

mode n

c

c Cell Importances

imp:n 1 1 1 0

c

c Source Definition

sdef pos 12.071 12.071 12.071 erg=d2 wgt=1E12 tme= dil

sil 1.0 1E2

spl 0 1

si2 1E-3 1E-2 1E-1 1EO

sp2 0 1 2 3

c

nps 1E7

prdmp j 1E8 1 2 1E8

print

¢ Histories (or Computer Time Cutoff)

embee4:n embed=1

G A9y ‘1620%-6T-UN-V'T

LEJo e

embtb4 1.0 1E2
embeb4 1E-3 1E-2 1E-1 1EO

¢ End MCNP Input

Listing 7: Test Case Abaqus Input File (Energy/Time Binning)

*Heading
Job-1 Model name: Model-1
Abaqus/CAE 2018

** Job name:

** Generated by:

*Preprint, echo=N0O, model=NO, history=NO,
* %k

**% PARTS

* %k

*Part, name=Simple_Example

*Node

.500843108, 0.500843108,
.500843108, OF
.500843108, -0.500843108,
.500843108, 0.500843108,
.500843108, 0.,
.500843108, -0.500843108,
.500843108, 0.500843108,
.500843108, 0.,
.500843108, -0.500843108,

00 N o O W N
©O O © ©O © © O © ©o

10, 0., 0.500843108,
11, 0., 0.,
12, 0., -0.500843108,
13, 0., 0.500843108,
14, 0., 0.,
15, 0., -0.500843108,
16, 0., 0.500843108,
17, 0., 0.,
18, 0., -0.500843108,
19, -0.500843108, 0.500843108,
20, -0.500843108, 0.,
21, -0.500843108, -0.500843108,
22, -0.500843108, 0.500843108,
23, -0.500843108, 0.,
24, -0.500843108, -0.500843108,
256, -0.500843108, 0.500843108,
26, -0.500843108, 0.,
27, -0.500843108, -0.500843108,
*Element , type=C3D8R
i, 10, 11, 14, 13, 1, 2, 5, 4

contact=N0

o
S LB o2 B© A TG A NG L BN@ 1 B

-0.
-0.
-0.

o
[SANNNC A BN B B B |

-0.5
-0.5
-0.5

G A9y ‘1620%-6T-UN-V'T

L€ Jo g€

2, 11, 12, 15, 14, 2, 3,
3, 13, 14, 17, 16, 4, 5,
4, 14, 15, 18, 17, 5, 6,
5, 19, 20, 23, 22, 10, 11,
6, 20, 21, 24, 23, 11, 12,
7, 22, 23, 26, 25, 13, 14,
8, 23, 24, 27, 26, 14, 15,
*Nset ,
1y, 31, 1
*Elset,

1, 8, 1
** Section: Section-1
*Solid Section,
*End Part
* %

* %

** ASSEMBLY
* %
*Assembly , name=Assembly
* %k
*Instance,
*End Instance
* %k

*End Assembly
* 5k

** MATERIALS
* %k
*Material, name=Material -1
*Density

-1.,

6,
8,
9,
14,
15,
17,
18,

5
7
8
13
14
16
17

nset=Simple_Box_material_tally_001,

elset=Simple_Box_material_tally_001,

name=Simple_Example -1,

generate

generate

elset=Simple_Box_material_tally_001,

part=Simple_Example

material=Material -1

~ S I O T

o0

wo o e

C ParaView Macros

This appendix provides several ParaView macros that the first author has found useful when visualizing
MCNP output. All macros have been tested with ParaView version 5.6.0.

Listing 8 provides a macro to adjust the lighting from strictly diffuse (the default) to strictly ambient. This
eliminates the ability to observe shadows; however, the resulting color palette is directly correlated to the

color bar as demonstrated in Fig. 7.
Listing 9 simply reloads all files in the pipeline.

Listing 10 applies several filters to illustrate material boundaries. This can be particularly useful when
drawing multiple datasets with geometry and results overlaid. An example of this macro applied to UM
geometry is shown in Fig. 8, which shows neutron flux 3-D contours and associated statistical uncertainties

at a particular elevation with the geometry boundaries to orient the viewer [7].

Listing 8: ParaView Macro to Make Lighting Strictly Ambient

from paraview.simple import *

Originally from: https://www.cfd-online.com/Forums/openfoam-paraview/92638-dark-areas-paraview.html
Updated for Paraview 5.6.0.

asrc = GetActiveSource ()
rv = GetActiveViewOrCreate (’RenderView’)
asrcd = GetDisplayProperties(asrc, view=rv)

asrcd.Ambient = 1.0
asrcd.Diffuse = 0.0

Listing 9: ParaView Macro to Reload all Data Files

from paraview.simple import *
for k,v in GetSources().items ():
ReloadFiles (v)

Listing 10: ParaView Macro to Draw Material Boundary Lines

from paraview.simple import *

t = GetActiveSource ()

e = ExtractSurface(Input = t)
f = FeatureEdges(Input = e)

r = GetActiveView ()

HideAll (r)

Show (f, r)

r.Update ()

LA-UR-19-20291, Rev. 2 36 of 37

material
material

Yo X
(a) Strictly Diffuse (b) Strictly Ambient

Figure 7: Diffuse vs. Ambient Lighting Effect on Data Field Visualization vs. Color Bar Representation

[1.0e-01

=
o
£
-~ 0075 =
=)
S
—0.050 9
=
[
(]
' [0.025 Z
[a]
%o
o~

0.0e+00
5
~ 1.0e+00 &
= =
—20e1 S
—10el 3
—5.0e2 2
2.0e2 s
1.0e2 =
r0es &
1.0e3 9
5.0e-4 =
E
1.0e-04 £
Z.

Figure 8: Concurrent Visualization of Geometry, Results, and Associated Statistical Uncertainties

LA-UR-19-20291, Rev. 2 37 of 37

	1 Introduction
	2 Script Usage
	3 Functional and Performance Requirements
	4 Design and Implementation
	5 Testing
	5.1 Comments on Performance

	6 Conclusions
	A Script Source Code
	B Test Case Files
	B.1 Test Case Example Files (Only Linear Hexahedral Elements)
	B.2 Test Case Example Files (Mixed Linear and Quadratic Elements)
	B.3 Test Case Example Files (Energy/Time Binning)

	C ParaView Macros

from paraview.simple import *

Originally from: https://www.cfd-online.com/Forums/openfoam-paraview/92638-dark-areas-paraview.html
Updated for Paraview 5.6.0.
asrc = GetActiveSource()
rv = GetActiveViewOrCreate('RenderView')
asrcd = GetDisplayProperties(asrc, view=rv)
asrcd.Ambient = 1.0
asrcd.Diffuse = 0.0

#!/usr/bin/env python
#
Execute as: Convert_MCNP_eeout_to_VTK.py <file.eeout>
#
Code: Convert_MCNP_eeout_to_VTK, version 1.2.0
#
Authors: Joel A. Kulesza (jkulesza@lanl.gov)
Tucker C. McClanahan (tcmcclan@lanl.gov)
Monte Carlo Methods, Codes & Applications
X Computational Physics Division
Los Alamos National Laboratory
#
Copyright (c) 2019 Triad National Security, LLC. All rights reserved.
#
This material was produced under U.S. Government contract 89233218NCA000001
for Los Alamos National Laboratory, which is operated by Triad National
Security, LLC for the U.S. Department of Energy. The Government is granted
for itself and others acting on its behalf a paid-up, nonexclusive,
irrevocable worldwide license in this material to reproduce, prepare
derivative works, and perform publicly and display publicly. Beginning five
(5) years after February 14, 2018, subject to additional five-year worldwide
renewals, the Government is granted for itself and others acting on its behalf
a paid-up, nonexclusive, irrevocable worldwide license in this material to
reproduce, prepare derivative works, distribute copies to the public, perform
publicly and display publicly, and to permit others to do so. NEITHER THE
UNITED STATES NOR THE UNITED STATES DEPARTMENT OF ENERGY, NOR TRIAD NATIONAL
SECURITY, LLC, NOR ANY OF THEIR EMPLOYEES, MAKES ANY WARRANTY, EXPRESS OR
IMPLIED, OR ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT, OR PROCESS
DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE PRIVATELY OWNED
RIGHTS.

import os
import re
import sys

Find the start and end positions for the first matching sublist in a list.
def find_sublist(sl, l):
 sll=len(sl)
 for ind in (i for i,e in enumerate(l) if e == sl[0]):
 if(l[ind:ind+sll] == sl):
 return ind,ind+sll-1

Extract a certain number of entries (length) following a sublist (sublist) for
a given input list (inlist).
def extract_sublist_entries(sublist, length, inlist):
 lp1 = find_sublist(sublist, inlist)[1] + 1
 lp2 = lp1 + length
 return inlist[lp1:lp2]

Calculate the connected nodes for various element types.
def calculate_connectivity_list_length(e_types):
 connectivity_list_length = []
 for e in e_types:
 if(e == '4'):
 connectivity_list_length.append(4)
 elif(e == '5'):
 connectivity_list_length.append(6)
 elif(e == '6'):
 connectivity_list_length.append(8)
 elif(e == '14'):
 connectivity_list_length.append(10)
 elif(e == '15'):
 connectivity_list_length.append(15)
 elif(e == '16'):
 connectivity_list_length.append(20)
 return connectivity_list_length

Convert eeout element types to VTK element types.
def calculate_vtk_e_types(e_types):
 vtk_e_types = []
 for e in e_types:
 if(e == '4'):
 vtk_e_types.append('10')
 elif(e == '5'):
 vtk_e_types.append('13')
 elif(e == '6'):
 vtk_e_types.append('12')
 elif(e == '14'):
 vtk_e_types.append('24')
 elif(e == '15'):
 vtk_e_types.append('26')
 elif(e == '16'):
 vtk_e_types.append('25')
 return vtk_e_types

Create flat list of 3D vertices from individual coordinate lists.
def create_vertices(xs, ys, zs):
 v = []
 for n,x in enumerate(xs):
 v.append(xs[n])
 v.append(ys[n])
 v.append(zs[n])
 return(v)

Reformat list to print its elements nicely within the XML file.
def pretty_print_list(indent, cols, colwidths, inlist):
 pretty_list_string = indent * ' '
 for n,i in enumerate(inlist):
 pretty_list_string += str(i).rjust(colwidths) + ' '
 if(n % cols == cols - 1):
 pretty_list_string += '\n' + indent * ' '
 pretty_list_string += '\n'
 return pretty_list_string

Perform various sanity checks on edit results.
def perform_edit_checks(edit_values, total_elements, check_gap = True):
 found_negative = False
 found_nan = False
 max_val = -1e308
 min_nz_val = 1e308
 min_val = 1e308

 # Custom float conversion for Fortran-formatted numbers missing an "e" and
 # with three digits in the exponent.
 def floatf(x):
 try:
 rv = float(x)
 except:
 rv = float(x[0:-4] + 'e' + x[-4:])
 return rv

 edit_values = [floatf(i) for i in edit_values]

 if(len(edit_values) == total_elements + 1):
 gap_value = edit_values[0]
 if(gap_value > 0 and check_gap):
 print('WARNING: gap value: {:}'.format(gap_value))
 else:
 print('ERROR: Unexpected edit length, exiting')
 exit()

 # The first edit entry is for gaps --- discard for plotting.
 edit_values = edit_values[1:]
 for ev in edit_values:
 if(ev < 0 and found_negative == False):
 print('WARNING: Negative edit entry found.')
 found_negative = True
 if(ev != ev and found_nan == False):
 print('WARNING: NaN edit entry found. Setting to 1e308.')
 found_nan = True
 if(ev < min_nz_val and ev > 0.0): min_nz_val = ev
 if(ev < min_val): min_val = ev
 if(ev > max_val): max_val = ev

 if(found_nan == True):
 edit_values = [1e308 if ev != ev else ev for ev in edit_values]

 print(' Maximum value: {:.5e}'.format(max_val))
 print(' Minimum positive value: {:.5e}'.format(min_nz_val))
 print(' Minimum value: {:.5e}'.format(min_val))

 edit_values = ['{:.5e}'.format(i) for i in edit_values]

 return edit_values

Separate into list and parse into results and relative uncertainties, if
appropriate.
def get_results(edit_values, edit_number, total_elements):
 edit_results = []
 tmp = edit_values.split('DATA SETS')[1:]
 edit_sets = [tmp[i] for i in range(len(tmp)) if 'RESULT SQR TIME BIN' not in tmp[i]]
 sublists = [['RESULT', 'TIME'] if 'RESULT TIME' in edit_sets[i] else ['REL', 'ERROR', 'TIME'] for i in range(len(edit_sets))]
 count = -1
 for s in sublists:
 count += 1
 edit_data = extract_sublist_entries(s, total_elements + 1 + 26, edit_sets[count].split())
 # Get supplemental edit-identifying information.
 time_bin = edit_data[2]
 time_value = edit_data[7]
 erg_bin = edit_data[16]
 erg_value = edit_data[21]

 # Construct unique name.
 edit_name = 'EDIT_{:}_{:}_TIME_BIN_{:}_MAX_TIME_{:}_ENERGY_BIN_{:}_MAX_ENERGY_{:}'.format(\
 edit_number, s[-2], time_bin, time_value, erg_bin, erg_value)

 # Extract only edit data values and validate.
 edit_data = edit_data[26:]
 print(' Processing & Validating {:}...'.format(edit_name))
 check_gap = (not 'ERROR' in s) # Don't check gap for error arrays.
 edit_data = perform_edit_checks(edit_data, total_elements, check_gap)
 edit_results.append([edit_name, edit_data])

 return edit_results

##

import __main__ as main
if(__name__ == '__main__' and hasattr(main, '__file__')):

 # Validate command line arguments.
 if(len(sys.argv) != 2):
 print('ERROR: Incorrect number of command line arguments provided ('
 + str(len(sys.argv)) + '); those provided:')
 print(sys.argv)
 exit()

 if(not os.path.isfile(sys.argv[1])):
 print('ERROR: MCNP EEOUT file not found.')
 exit()

 infilename = sys.argv[1]

 print('Processing {:}...'.format(infilename))

 with open (infilename, 'r') as myfile:
 eeout = myfile.read()

 # Determine number of nodes and cells.
 nodes = int(re.search(r'NUMBER OF NODES\s*:\s+(\d+)', eeout).group(1))
 tets1 = int(re.search(r'NUMBER OF 1st TETS\s*:\s+(\d+)', eeout).group(1))
 pents1 = int(re.search(r'NUMBER OF 1st PENTS\s*:\s+(\d+)', eeout).group(1))
 hexs1 = int(re.search(r'NUMBER OF 1st HEXS\s*:\s+(\d+)', eeout).group(1))
 tets2 = int(re.search(r'NUMBER OF 2nd TETS\s*:\s+(\d+)', eeout).group(1))
 pents2 = int(re.search(r'NUMBER OF 2nd PENTS\s*:\s+(\d+)', eeout).group(1))
 hexs2 = int(re.search(r'NUMBER OF 2nd HEXS\s*:\s+(\d+)', eeout).group(1))
 total_elements = tets1 + pents1 + hexs1 + tets2 + pents2 + hexs2

 # Retrieve edit information.
 edit_list = re.findall(r'(DATA OUTPUT PARTICLE.*?)\n', eeout, re.S)

 print(' Found {:} edit(s).'.format(len(edit_list)))

 # Capture edit data for use later.
 eeout_edits = re.search(r'(DATA OUTPUT.*?)CENTROIDS', eeout, re.S).group(1)

 # Capture header information.
 eeout_header = re.search(r'(.*?)NODES X', eeout, re.S).group(1)
 eeout_header = re.sub(r'\s+\n', '\n', eeout_header)
 eeout_header = re.sub(r'\n+', '\n', eeout_header)
 eeout_header = re.sub(r'^', '# ', eeout_header)
 eeout_header = re.sub(r'\n', '\n# ', eeout_header)

 # Reformat eeout to list to permit easy reading of list data.
 eeout = eeout.replace('\n', '')
 eeout = eeout.split(' ')
 eeout = list(filter(None, eeout))

 # Remove head of file to make matching easier.
 eeout = eeout[find_sublist(['NODES', 'X', '(cm)'], eeout)[0]:]

 # Find the list positions for the first and last nodes.
 x_coords = extract_sublist_entries(['NODES', 'X', '(cm)'], nodes, eeout)
 y_coords = extract_sublist_entries(['NODES', 'Y', '(cm)'], nodes, eeout)
 z_coords = extract_sublist_entries(['NODES', 'Z', '(cm)'], nodes, eeout)
 e_types = extract_sublist_entries(['ELEMENT', 'TYPE'], total_elements, eeout)
 e_materials = extract_sublist_entries(['ELEMENT', 'MATERIAL'], total_elements, eeout)

 # Process connectivity list.
 connectivity_list_elements = calculate_connectivity_list_length(e_types)
 connectivities = []
 if('4' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'TETS', 'ELEMENT', 'ORDERED'],
 4 * e_types.count('4'), eeout)
 if('5' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'PENTS', 'ELEMENT', 'ORDERED'],
 6 * e_types.count('5'), eeout)
 if('6' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '1ST', 'ORDER', 'HEXS', 'ELEMENT', 'ORDERED'],
 8 * e_types.count('6'), eeout)
 if('14' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'TETS', 'ELEMENT', 'ORDERED'],
 10 * e_types.count('14'), eeout)
 if('15' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'PENTS', 'ELEMENT', 'ORDERED'],
 15 * e_types.count('15'), eeout)
 if('16' in e_types):
 connectivities += extract_sublist_entries(
 ['CONNECTIVITY', 'DATA', '2ND', 'ORDER', 'HEXS', 'ELEMENT', 'ORDERED'],
 20 * e_types.count('16'), eeout)

 densities = extract_sublist_entries(
 ['DENSITY', '(gm/cm^3)'],
 total_elements, eeout)

 volumes = extract_sublist_entries(
 ['VOLUMES', '(cm^3)'],
 total_elements, eeout)

 # Create list of vertices from individual coordinate lists.
 vertices = create_vertices(x_coords, y_coords, z_coords)

 # Subtract one from all vertex IDs in the connectivity list (to make
 # zero-indexed).
 connectivities = [str(int(x) - 1) for x in connectivities]

 # Accumulate offset list. Reproduce np.cumsum to avoid NumPy dependency.
 def cumsum(inlist):
 cumlist = [0]
 for n,i in enumerate(inlist):
 cumlist.append(cumlist[n] + inlist[n])
 return cumlist[1:]
 offsets = cumsum(connectivity_list_elements)
 offsets = [str(x) for x in offsets]

 # Convert eeout element types to VTK element types.
 vtk_e_types = calculate_vtk_e_types(e_types)

 # Open up output vtu (unstructured mesh VTK) file.
 f = open(infilename + '.vtu', 'w')

 # Write header comments (but a long header does not work), default: off.
 if(False):
 [f.write('<!-- ' + l + ' -->\n') for l in eeout_header.split('\n')]
 f.write('<!--' + '\n')
 f.write(80 * '#' + '\n')
 f.write('# EEOUT Header Follows' + '\n')
 f.write(80 * '#' + '\n')
 f.write(eeout_header + '\n')
 f.write(80 * '#' + '\n')
 f.write('-->' + '\n')

 f.write('<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian">' + '\n')
 f.write(' <UnstructuredGrid>' + '\n')
 f.write(' <Piece NumberOfPoints="' + str(nodes) + '" NumberOfCells="' + str(total_elements) + '">' + '\n')
 f.write(' <CellData Scalars="scalars">' + '\n')
 f.write(' <DataArray type="Int32" Name="material" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 10, 5, e_materials))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Float64" Name="density" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, densities))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Float64" Name="volume" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, volumes))
 f.write(' </DataArray>' + '\n')

 # Output edit information. Edits may have corresponding relative
 # uncertainties. Edits may be binned by energy and/or time.
 if(len(edit_list) > 0):
 for e in edit_list:
 particle_type = re.search(r'PARTICLE : (\d+)', e).group(1)
 edit_type = re.search(r'TYPE : (.*?)$', e).group(1)
 edit_number = re.search(r'TYPE : .*?_(\d+)$', e).group(1)
 print(' Processing {:} edit...'.format(edit_type))
 myregex = '({:}.*?)(:?DATA OUTPUT PARTICLE|$)'.format(e)
 edit_data = re.search(myregex, eeout_edits, re.S).group(1)
 edit_results = get_results(edit_data, edit_number, total_elements)
 for er in edit_results:
 f.write(' <DataArray type="Float64" Name="' + er[0]+ '" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 5, 13, er[1]))
 f.write(' </DataArray>' + '\n')

 f.write(' </CellData>' + '\n')
 f.write(' <Points>' + '\n')
 f.write(' <DataArray type="Float64" NumberOfComponents="3" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 3, 13, vertices))
 f.write(' </DataArray>' + '\n')
 f.write(' </Points>' + '\n')
 f.write(' <Cells>' + '\n')
 f.write(' <DataArray type="Int32" Name="connectivity" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 8, 5, connectivities))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="Int32" Name="offsets" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 10, 5, offsets))
 f.write(' </DataArray>' + '\n')
 f.write(' <DataArray type="UInt8" Name="types" format="ascii">' + '\n')
 f.write(pretty_print_list(10, 20, 2, vtk_e_types))
 f.write(' </DataArray>' + '\n')
 f.write(' </Cells>' + '\n')
 f.write(' </Piece>' + '\n')
 f.write(' </UnstructuredGrid>' + '\n')
 f.write('</VTKFile>' + '\n')

 f.close()

from paraview.simple import *
for k,v in GetSources().items():
 ReloadFiles(v)

from paraview.simple import *

t = GetActiveSource()
e = ExtractSurface(Input = t)
f = FeatureEdges(Input = e)
r = GetActiveView()
HideAll(r)
Show(f, r)
r.Update()

Simple Al Cube
c ----------------------------- Cell Cards ---------------------------------- 80
1 1 -2.7 0 u=1
2 0 0 u=1 $ background
18 0 100 -101 102 -103 104 -105 fill=1 $ fill cell
19 0 (-100:101:-102:103:-104:105)
c --------------------------- End Cell Cards -------------------------------- 80

c ---------------------------- Surface Cards -------------------------------- 80
c
100 px -130
101 px 130
102 py -130
103 py 130
104 pz -130
105 pz 130
c -------------------------- End Surface Cards ------------------------------ 80

c ----------------------------- Data Cards ---------------------------------- 80
c Embedded Geometry Specification
embed1 meshgeo=abaqus mgeoin=Simple_Example.abaq
 meeout=Simple_Example.eeout
 filetype=ascii
 background=2
 matcell= 1 1
c
c Materials
m1 13027 -1.0
mode n
c
c Cell Importances
imp:n 1 1 1 0
c
c Source Definition
sdef pos 12.071 12.071 12.071 erg=d2 wgt=1E12 tme= d1
si1 1.0 1E2 1E8 1E9 1E10
sp1 0 1 1 1 1
si2 1E-3 1E-2 1E-1 1E0
sp2 0 1 2 3
c
nps 1E6
prdmp j 1E8 1 2 1E8
print
c Histories (or Computer Time Cutoff)
embee4:n embed=1
c embtb4 1.0 1E2
embeb4 1E-3 1E-2 1E-1 1E0
c
c --------------------------- End Data Cards -------------------------------- 80
c End MCNP Input

*Heading

** Job name: Job-1 Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Simple_Example

*Node

 1, 0.500843108, 0.500843108, 0.5

 2, 0.500843108, 0., 0.5

 3, 0.500843108, -0.500843108, 0.5

 4, 0.500843108, 0.500843108, 0.

 5, 0.500843108, 0., 0.

 6, 0.500843108, -0.500843108, 0.

 7, 0.500843108, 0.500843108, -0.5

 8, 0.500843108, 0., -0.5

 9, 0.500843108, -0.500843108, -0.5

 10, 0., 0.500843108, 0.5

 11, 0., 0., 0.5

 12, 0., -0.500843108, 0.5

 13, 0., 0.500843108, 0.

 14, 0., 0., 0.

 15, 0., -0.500843108, 0.

 16, 0., 0.500843108, -0.5

 17, 0., 0., -0.5

 18, 0., -0.500843108, -0.5

 19, -0.500843108, 0.500843108, 0.5

 20, -0.500843108, 0., 0.5

 21, -0.500843108, -0.500843108, 0.5

 22, -0.500843108, 0.500843108, 0.

 23, -0.500843108, 0., 0.

 24, -0.500843108, -0.500843108, 0.

 25, -0.500843108, 0.500843108, -0.5

 26, -0.500843108, 0., -0.5

 27, -0.500843108, -0.500843108, -0.5

*Element, type=C3D8R

1, 10, 11, 14, 13, 1, 2, 5, 4

2, 11, 12, 15, 14, 2, 3, 6, 5

3, 13, 14, 17, 16, 4, 5, 8, 7

4, 14, 15, 18, 17, 5, 6, 9, 8

5, 19, 20, 23, 22, 10, 11, 14, 13

6, 20, 21, 24, 23, 11, 12, 15, 14

7, 22, 23, 26, 25, 13, 14, 17, 16

8, 23, 24, 27, 26, 14, 15, 18, 17

*Nset, nset=Simple_Box_material_tally_001, generate

 1, 27, 1

*Elset, elset=Simple_Box_material_tally_001, generate

 1, 8, 1

** Section: Section-1

*Solid Section, elset=Simple_Box_material_tally_001, material=Material-1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Simple_Example-1, part=Simple_Example

*End Instance

,

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material-1

*Density

-1.,

*Heading

** Job name: test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Cube

*Node

 1, 25., 25., 25.

 2, 0., 25., 25.

 3, -25., 25., 25.

 4, 25., 0., 25.

 5, 0., 0., 25.

 6, -25., 0., 25.

 7, 25., -25., 25.

 8, 0., -25., 25.

 9, -25., -25., 25.

 10, 25., 25., 0.

 11, 0., 25., 0.

 12, -25., 25., 0.

 13, 25., 0., 0.

 14, 0., 0., 0.

 15, -25., 0., 0.

 16, 25., -25., 0.

 17, 0., -25., 0.

 18, -25., -25., 0.

 19, 25., 25., -25.

 20, 0., 25., -25.

 21, -25., 25., -25.

 22, 25., 0., -25.

 23, 0., 0., -25.

 24, -25., 0., -25.

 25, 25., -25., -25.

 26, 0., -25., -25.

 27, -25., -25., -25.

*Element, type=C3D8

1, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate

 1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

 1, 8, 1

*End Part

**

*Part, name=Right_Triangle

*Node

 1, 75., -25., -25.

 2, 25., -25., 25.

 3, 25., -25., -25.

 4, 50., -25., 0.

 5, 25., -25., 0.

 6, 50., -25., -25.

 7, 75., 0., -25.

 8, 25., 0., 25.

 9, 25., 0., -25.

 10, 50., 0., 0.

 11, 25., 0., 0.

 12, 50., 0., -25.

 13, 75., 25., -25.

 14, 25., 25., 25.

 15, 25., 25., -25.

 16, 50., 25., 0.

 17, 25., 25., 0.

 18, 50., 25., -25.

*Element, type=C3D6

1, 3, 4, 6, 9, 10, 12

2, 5, 2, 4, 11, 8, 10

3, 4, 3, 5, 10, 9, 11

4, 4, 1, 6, 10, 7, 12

5, 9, 10, 12, 15, 16, 18

6, 11, 8, 10, 17, 14, 16

7, 10, 9, 11, 16, 15, 17

8, 10, 7, 12, 16, 13, 18

*Nset, nset=Set_material_tally_2, generate

 1, 18, 1

*Elset, elset=Set_material_tally_2, generate

 1, 8, 1

*End Part

**

*Part, name=Semicircular_Cap

*Node

 1, 25., -25., 25.

 2, -25., -25., 25.

 3, 17.6776695, -25., 42.6776695

 4, 0., -25., 50.

 5, -17.6776695, -25., 42.6776695

 6, 0., -25., 25.

 7, 25., 0., 25.

 8, -25., 0., 25.

 9, 17.6776695, 0., 42.6776695

 10, 0., 0., 50.

 11, -17.6776695, 0., 42.6776695

 12, 0., 0., 25.

 13, 25., 25., 25.

 14, -25., 25., 25.

 15, 17.6776695, 25., 42.6776695

 16, 0., 25., 50.

 17, -17.6776695, 25., 42.6776695

 18, 0., 25., 25.

 19, 0., -25., 37.5

 20, 8.83883476, -25., 33.8388367

 21, 9.56708622, -25., 48.0969887

 22, 9.56708527, 0., 48.0969887

 23, 8.83883476, 0., 33.8388367

 24, 0., 0., 37.5

 25, 17.6776695, -12.5, 42.6776695

 26, 0., -12.5, 50.

 27, 0., -12.5, 25.

 28, -8.83883476, -25., 33.8388367

 29, -9.56708622, -25., 48.0969887

 30, -9.56708527, 0., 48.0969887

 31, -8.83883476, 0., 33.8388367

 32, -17.6776695, -12.5, 42.6776695

 33, -12.5, -25., 25.

 34, -23.0969887, -25., 34.5670853

 35, -23.0969868, 0., 34.5670891

 36, -12.5, 0., 25.

 37, -25., -12.5, 25.

 38, 12.5, -25., 25.

 39, 23.0969887, -25., 34.5670853

 40, 23.0969868, 0., 34.5670891

 41, 12.5, 0., 25.

 42, 25., -12.5, 25.

 43, 9.56708622, 25., 48.0969887

 44, 8.83883476, 25., 33.8388367

 45, 0., 25., 37.5

 46, 17.6776695, 12.5, 42.6776695

 47, 0., 12.5, 50.

 48, 0., 12.5, 25.

 49, -9.56708622, 25., 48.0969887

 50, -8.83883476, 25., 33.8388367

 51, -17.6776695, 12.5, 42.6776695

 52, -23.0969887, 25., 34.5670853

 53, -12.5, 25., 25.

 54, -25., 12.5, 25.

 55, 23.0969887, 25., 34.5670853

 56, 12.5, 25., 25.

 57, 25., 12.5, 25.

*Element, type=C3D15

1, 4, 3, 6, 10, 9, 12, 21, 20, 19, 22, 23, 24, 26, 25, 27

2, 5, 4, 6, 11, 10, 12, 29, 19, 28, 30, 24, 31, 32, 26, 27

3, 2, 5, 6, 8, 11, 12, 34, 28, 33, 35, 31, 36, 37, 32, 27

4, 3, 1, 6, 9, 7, 12, 39, 38, 20, 40, 41, 23, 25, 42, 27

5, 10, 9, 12, 16, 15, 18, 22, 23, 24, 43, 44, 45, 47, 46, 48

6, 11, 10, 12, 17, 16, 18, 30, 24, 31, 49, 45, 50, 51, 47, 48

7, 8, 11, 12, 14, 17, 18, 35, 31, 36, 52, 50, 53, 54, 51, 48

8, 9, 7, 12, 15, 13, 18, 40, 41, 23, 55, 56, 44, 46, 57, 48

*Nset, nset=Set_material_tally_3, generate

 1, 57, 1

*Elset, elset=Set_material_tally_3, generate

 1, 8, 1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Cube-1, part=Cube

*End Instance

**

*Instance, name=Right_Triangle-1, part=Right_Triangle

*End Instance

**

*Instance, name=Semicircular_Cap-1, part=Semicircular_Cap

*End Instance

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material_Al_2

*Density

 -2.6989,

*Material, name=Material_Cf-252_1

*Density

 -15.1,

*Material, name=Material_H2O_3

*Density

 -0.998207,

No description for this unstructured mesh file
c
c Created from file : test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
c Using data cards file: std_datacards.mcnp.inp
c Created on : 1- 9-2019 @ 6:42:36
c
c
c PSEUDO CELLS
01 1 -15.1000 0 u=1
02 2 -2.69890 0 u=1
03 3 -0.998207 0 u=1
04 0 0 u=1
c
c LEGACY CELLS
05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c
c DATA CARDS
embed1 meshgeo=abaqus
 mgeoin=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.inp
 meeout=test_case_01_c_c3d8__r_c3d6__s_c3d15_abaq.eeout
 length= 1.00000E-01
 background= 4
 matcell= 1 1 2 2 3 3
c
embee4:n embed=1
c
sdef pos= volumer
c
 erg=d1
sp1 -3 1.18 1.03419
nonu
c
mode n
c
m1 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
c $ composition assumed; density from crc handbook
c
m2 13027 1.0 $ aluminum
c $ density: 2.6989 g/cc
c $ composition & density from pnnl-15870, rev. 1
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
 8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev. 1
c
imp:n 1 1 1 1 1 0
c
embee14:n embed=1 errors=yes
embee6:n embed=1
embee16:n embed=1 errors=yes
c
rand gen=2 seed=12345
print
nps 1e6

*Heading

** Job name: test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq Model name: Model-1

** Generated by: Abaqus/CAE 2018

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Cube

*Node

 1, 25., 25., 25.

 2, 0., 25., 25.

 3, -25., 25., 25.

 4, 25., 0., 25.

 5, 0., 0., 25.

 6, -25., 0., 25.

 7, 25., -25., 25.

 8, 0., -25., 25.

 9, -25., -25., 25.

 10, 25., 25., 0.

 11, 0., 25., 0.

 12, -25., 25., 0.

 13, 25., 0., 0.

 14, 0., 0., 0.

 15, -25., 0., 0.

 16, 25., -25., 0.

 17, 0., -25., 0.

 18, -25., -25., 0.

 19, 25., 25., -25.

 20, 0., 25., -25.

 21, -25., 25., -25.

 22, 25., 0., -25.

 23, 0., 0., -25.

 24, -25., 0., -25.

 25, 25., -25., -25.

 26, 0., -25., -25.

 27, -25., -25., -25.

*Element, type=C3D8

1, 4, 5, 2, 1, 13, 14, 11, 10

2, 5, 6, 3, 2, 14, 15, 12, 11

3, 7, 8, 5, 4, 16, 17, 14, 13

4, 8, 9, 6, 5, 17, 18, 15, 14

5, 13, 14, 11, 10, 22, 23, 20, 19

6, 14, 15, 12, 11, 23, 24, 21, 20

7, 16, 17, 14, 13, 25, 26, 23, 22

8, 17, 18, 15, 14, 26, 27, 24, 23

*Nset, nset=Set_material_tally_source_1, generate

 1, 27, 1

*Elset, elset=Set_material_tally_source_1, generate

 1, 8, 1

*End Part

**

*Part, name=Right_Triangle

*Node

 1, 75., -25., -25.

 2, 25., -25., 25.

 3, 25., -25., -25.

 4, 50., -25., 0.

 5, 25., -25., 0.

 6, 50., -25., -25.

 7, 42.6746407, -25., -7.3253603

 8, 75., 0., -25.

 9, 25., 0., 25.

 10, 25., 0., -25.

 11, 50., 0., 0.

 12, 25., 0., 0.

 13, 50., 0., -25.

 14, 42.6746407, 0., -7.3253603

 15, 75., 25., -25.

 16, 25., 25., 25.

 17, 25., 25., -25.

 18, 50., 25., 0.

 19, 25., 25., 0.

 20, 50., 25., -25.

 21, 42.6746407, 25., -7.3253603

*Element, type=C3D8

1, 5, 7, 6, 3, 12, 14, 13, 10

2, 7, 5, 2, 4, 14, 12, 9, 11

3, 7, 4, 1, 6, 14, 11, 8, 13

4, 12, 14, 13, 10, 19, 21, 20, 17

5, 14, 12, 9, 11, 21, 19, 16, 18

6, 14, 11, 8, 13, 21, 18, 15, 20

*Nset, nset=Set_material_tally_2, generate

 1, 21, 1

*Elset, elset=Set_material_tally_2, generate

 1, 6, 1

*End Part

**

*Part, name=Semicircular_Cap

*Node

 1, 25., -25., 25.

 2, -25., -25., 25.

 3, 17.6776695, -25., 42.6776695

 4, 0., -25., 50.

 5, -17.6776695, -25., 42.6776695

 6, 0., -25., 25.

 7, 25., 0., 25.

 8, -25., 0., 25.

 9, 17.6776695, 0., 42.6776695

 10, 0., 0., 50.

 11, -17.6776695, 0., 42.6776695

 12, 0., 0., 25.

 13, 25., 25., 25.

 14, -25., 25., 25.

 15, 17.6776695, 25., 42.6776695

 16, 0., 25., 50.

 17, -17.6776695, 25., 42.6776695

 18, 0., 25., 25.

*Element, type=C3D8

1, 4, 3, 1, 6, 10, 9, 7, 12

2, 4, 6, 2, 5, 10, 12, 8, 11

3, 10, 9, 7, 12, 16, 15, 13, 18

4, 10, 12, 8, 11, 16, 18, 14, 17

*Nset, nset=Set_material_tally_3, generate

 1, 18, 1

*Elset, elset=Set_material_tally_3, generate

 1, 4, 1

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Cube-1, part=Cube

*End Instance

**

*Instance, name=Right_Triangle-1, part=Right_Triangle

*End Instance

**

*Instance, name=Semicircular_Cap-1, part=Semicircular_Cap

*End Instance

**

*End Assembly

**

** MATERIALS

**

*Material, name=Material_Al_2

*Density

 -2.6989,

*Material, name=Material_Cf-252_1

*Density

 -15.1,

*Material, name=Material_H2O_3

*Density

 -0.998207,

No description for this unstructured mesh file
c
c Created from file : test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
c Using data cards file: std_datacards.mcnp.inp
c Created on : 1- 9-2019 @ 6:42:36
c
c
c PSEUDO CELLS
01 1 -15.1000 0 u=1
02 2 -2.69890 0 u=1
03 3 -0.998207 0 u=1
04 0 0 u=1
c
c LEGACY CELLS
05 0 -99 fill=1
06 0 99

c
c SURFACES
99 sph 2.50000E+00 0.00000E+00 1.25000E+00 8.07775E+00

c
c DATA CARDS
embed1 meshgeo=abaqus
 mgeoin=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.inp
 meeout=test_case_01_c_c3d8__r_c3d8__s_c3d8__abaq.eeout
 length= 1.00000E-01
 background= 4
 matcell= 1 1 2 2 3 3
c
embee4:n embed=1
c
sdef pos= volumer
c
 erg=d1
sp1 -3 1.18 1.03419
nonu
c
mode n
c
m1 98252 1.0 $ californium-252
c $ density: 15.1 g/cc
c $ composition assumed; density from crc handbook
c
m2 13027 1.0 $ aluminum
c $ density: 2.6989 g/cc
c $ composition & density from pnnl-15870, rev. 1
c
m3 1001 0.666657 $ water, liquid @ 23.15 deg-c
 8016 0.333343 $ density: 0.998207 g/cc
mt3 lwtr.10 $ composition & density from pnnl-15870, rev. 1
c
imp:n 1 1 1 1 1 0
c
embee14:n embed=1 errors=yes
embee6:n embed=1
embee16:n embed=1 errors=yes
c
rand gen=2 seed=12345
print
nps 1e6

