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Abstract

This report presents a brief description of all high-energy event generators used by MCNP6,
namely, of the intranuclear cascade models (INC); Fermi breakup models; coalescence mod-
els; preequilibrium nuclear reactions; evaporation reactions; and of the fission reaction mod-
els.
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1 Event Generators Overview

MCNP6 uses by default the latest version of the cascade-exciton model (CEM) [1, 2, 3] as
incorporated in its event generator CEM03.03 [1] to simulate reactions induced by nucleons,
pions, and photons at energies up to 4.5 GeV and the Los Alamos version of the quark-gluon
string model (LAQGSM) [3, 4, 5] as implemented in the code LAQGSM03.03 [5] to simulate
such reactions at higher energies, as well as reactions induced by other elementary particles
and nuclei with energies up to ∼ 1 TeV/nucleon. MCNP6 also can use the intra-nuclear cas-
cade (INC) developed at Liege (INCL), version 4.2 [6], merged with the evaporation/fission
models ABLA [7] to describe reactions induced by nucleons, pions, and d, t, 3He, and 4He
at energies up to ∼ 1 GeV. MCNP6 uses also by default the Bertini INC [8] to simulate
reactions on light nuclei with A < 12 and reactions induced by elementary particles at ener-
gies below ∼ 4.5 GeV (at higher energies, it uses LAQGSM03.03), as well as the INC from
ISABEL [9] to simulate by default reactions induced by antinucleons and d, t, 3He, and 4He
at energies below ∼ 940 MeV (at higher energies, it uses LAQGSM03.03).

After the INC stage of reactions, CEM and LAQGSM simulate the second stage of re-
actions with their own exciton model of pre-equilibrium reactions, namely using the latest
version of the Modified Exciton Model (MEM) [10, 11]. as implemented in CEM03.03 [1].
Bertini INC and ISABEL simulate this second stage of reactions with the Multistage Pree-
quilibrium Model (MPM) version of the exciton model [12], or, may neglect of this stage of
reactions, if required so in the MCNP6 input file. INCL does not use any preequilibrium
models.

CEM and LAQGSM have their own evaporation and fission models, while Bertini INC
and ISABEL use the EVAP [13]–[17] evaporation model as it was implemented in LAHET
[18], merged with the ORNL [19] and the RAL [20] fission models.

If the mass number, A, of the residual nucleus after the INC (or after any other stages
of reactions, in the case of CEM and LAQGSM) is A ≤ 12, then all event generators use the
Fermi break-up model [21] (slightly different in different event generators) to simulate the
remaining of nuclear reaction instead of using the preequilibrium and evaporation models.

CEM and LAQGSM event generators use also the coalescence model [22] to simulate
production of energetic d, t, 3He, and 4He from coalescence of INC-emitted nucleons.

The following sections present briefly all these nuclear reaction models.

2 The Intra-Nuclear Cascade (INC) Models

The inelastic interaction of a high-energy particle with a nucleus, and even more the collisions
of two nuclei, is a very complex and multi-faceted phenomenon whose analytical description
encounters considerable difficulties [23, 24].

The INC approach was apparently first developed by Goldberger [25], who in turn based
his work on the ideas of Serber [26], who regarded intranuclear cascades as a series of suc-
cessive quasi-free collisions of the fast primary particle with the individual nucleons of the
nucleus.

Let us recall here the main basic assumptions of the INC, following [23, 24]. The main
condition for the applicability of the intranuclear-cascade model is that the DeBroglie wave-
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length λ– of the particles participating in the interaction be sufficiently small: It is necessary
that for most of these particles λ– be less than the average distance between the intranuclear
nucleons ∆ ∼ 10−13 cm. Only in this case does the particle acquire quasi-classical features
and can we speak approximately of particle trajectory and two-particle collisions inside the
nucleus. It is clear that for this to be the case the primary particle kinetic energy T must
be greater than several tens of MeV.

Another important condition for applicability of the INC is the requirement that the time
in which an individual two-particle intranuclear collision occurs on the average, τ ∼ 10−23

sec, be less than the time interval between two such consecutive interactions

∆t = l/c & 4πR3/3Aσc & 3 · 10−22/σ (mb) sec,

where l is the mean range of the cascade particle before the interaction, c is the velocity of
light, R = r0A

1/3 is the mean radius of the nucleus, and σ is the cross section for interaction
with an intranuclear nucleon. This permits the interaction of the incident particle with the
nucleus to be reduced to a set of individual statistically independent intranuclear collisions.

The requirement τ < ∆t is equivalent to the requirement that the intranuclear interaction
cross section be sufficient small: σ . 100ξ mb, where the coefficient ξ ∼ 1.

Since the energy of the particles participating in the cascade is rather large, as a rule
significantly greater than the binding energy of the intranuclear nucleons, the same char-
acteristics can be used for interaction of cascade particles inside the nucleus as for the
interaction of free particles. The effect of other intranuclear nucleons is taken into account
by introduction of some average potential V , and also by the action of the Pauli principle.1

We can say that a high-energy particle which has entered the nucleus passes through a
gas of free nucleons, producing a cascade (avalanche) of secondary particles. A fraction of
these secondary particles leaves the nucleus, and the remaining fraction is absorbed, exciting
the nucleus to some energy E∗.

Following [23, 24], after the choice of a nuclear model and an algorithm for determina-
tion of the elementary particles involved in the INC with the intranuclear nucleons (for this
purpose it is necessary to store in the computer memory the values of the integrated cross
sections for elastic and inelastic interactions σel(T ) and σin(T )), calculation of the intranu-
clear cascade can be carried out according to the scheme shown in Fig. 1. The turquoise
boxes 1, 2, 4, 5, 8–10, 12, and 14 in the diagram denote operations which are definite logically
closed parts of the INC code. The yellow boxes 3, 6, 7, 11, and 13 denote logical operations
which control the various branchings of the code (transfer conditions).

Box 1 takes into account the change in primary-particle momentum due to the effect
of the intranuclear potential and to refraction and reflection of the DeBroglie wave of the
particle at the nuclear boundary.

In box 2 is chosen the momentum and isospin (proton or neutron) of the intranuclear
nucleon with which the interaction occurs (for brevity we will call this nucleon the “partner”),
and from the given elementary cross section σtot(t) = σel(t) + σin(t) (where t is the relative

1The nucleus is considered to be a degenerate Fermi gas of nucleons enclosed in the nuclear volume.
According to the Pauli principle the nucleons, after an intranuclear collision, must have energy above the
Fermi energy; otherwise such an interaction is forbidden. The action of the Pauli principle leads in effect to
an increase of the mean free path of fast particles inside the nucleus.
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Figure 1: Flow chart for the intranuclear cascade calculation.

energy of the primary particle and the partner taking part in the intranuclear motion) the
mean free path of the particle in nuclear matter L = L(σtot) is calculated and the point of
interaction is determined.

Box 3 tests whether this point of interaction is inside the nucleus. If it is not, then the
particle is assumed to have passed through the nucleus without interaction. The ratio of the
number of such particles to the total number of interactions considered with the nucleus Ntot

obviously characterizes the reaction cross section σin(t).
If the point of interaction is inside the nucleus, then the type of interaction: elastic or

inelastic, is determined from the known cross sections σel(t) and σin(t) in box 4.
In box 5 the secondary-particle characteristics are determined in accordance with the

type of interaction selected (the nature, number, energy, and the emission angle).
Box 6 is a test of whether the Pauli principle is satisfied. Interactions which do not

satisfy this principle are considered forbidden and the particle trajectory is followed beyond
the point of the forbidden interaction.
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In box 7 the particle energy T is compared with some initially specified cutoff energy Tcut
which determinates whether this particle is sufficiently energetic (T > Tcut) to take further
part in development of the intranuclear cascade or whether its energy is so small (T ≤ Tcut
that the particle is simply absorbed by the nucleus. In the first case the particle is followed
further as was described above. (For this the parameters of all cascade particles with energy
T > Tcut are stored in the memory in box 8 and later the cascade calculation is repeated for
each of them in turn by going to boxes 9 and 2.) In the second case the INC treatment of this
particle is terminated; if this particle is a nucleon, in box 10 it contributes to the energy of
the residual nucleus and become an exciton to be further treated by a preequilibrium model
of nuclear reactions in box 12.

The calculation is carried out until all particles are absorbed or leave the nucleus. The
operations in boxes 8, 9, and 11 are responsible for this. If the history of one particle which
entered the nucleus had been completed (i.e., if the computer memory is empty; see box 11),
a possible preequilibrium, followed by evaporation/fission, or/and Fermi breakup stage of
this event is simulated in box 12 until the excitation energy of the residual nucleus is below
the binding energy of a neutron or other particles that could be emitted from this nucleus,
then, the history of the next particle (i.e., next “event”) is simulated (boxes 13 and 14), and
so forth, until all events are simulated and we get the needed statistics.

Any cascade calculation at not very high energies where it is still possible to neglect
many-particle interactions and the change in density of the intranuclear nucleons can be
fitted into the general scheme shown in Fig. 2. The specific form of the box operations and
their complexity are determined by the choice of the nuclear model and by the number and
variety of elementary processes which it is considered necessary to take into account in a
given calculation. The individual boxes can be studied in more detail in Refs. [27, 28], as
well as in the already old, but still one of the best monographs on the INC and other nuclear
reaction models [23], we highly recommend to readers interested in details of high-energy
nuclear reactions. Many specific details on the INC of CEM03.03, LAQGSM03.03, Bertini
model, ISABEL, and INCL4.2 are provided in the following subsections.

2.1 The INC of CEM03.03

The intranuclear cascade model in CEM03.03 is based on the standard (non-time-dependent)
version of the Dubna cascade model [23, 24, 27, 28]. All the cascade calculations are carried
out in a three-dimensional geometry. The nuclear matter density ρ(r) is described by a Fermi
distribution with two parameters taken from the analysis of electron-nucleus scattering,
namely

ρ(r) = ρp(r) + ρn(r) = ρ0{1 + exp[(r − c)/a]} , (1)

where c = 1.07A1/3 fm, A is the mass number of the target, and a = 0.545 fm. For
simplicity, the target nucleus is divided by concentric spheres into seven zones in which the
nuclear density is considered to be constant. The energy spectrum of the target nucleons
is estimated in the perfect Fermi-gas approximation with the local Fermi energy TF (r) =
~2[3π2ρ(r)]2/3/(2mN), where mN is the nucleon mass. An example of the nucleon density
and the Fermi energy used by CEM03.03 to calculate nuclear reactions on 208Pb can be find
in Fig. 3 of Ref. [3].
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The influence of intranuclear nucleons on the incoming projectile is taken into account by
adding to its laboratory kinetic energy an effective real potential V , as well as by considering
the Pauli principle which forbids a number of intranuclear collisions and effectively increases
the mean free path of cascade particles inside the target. For incident nucleons V ≡ VN(r) =
TF (r) + ε, where TF (r) is the corresponding Fermi energy and ε is the binding energy of the
nucleons. For pions, CEM03.03 uses a square-well nuclear potential with the depth Vπ ' 25
MeV, independently of the nucleus and pion energy, as was done in the initial Dubna INC
[23, 24].

The interaction of the incident particle with the nucleus is approximated as a series of
successive quasi-free collisions of the fast cascade particles (N , π, or γ) with intranuclear
nucleons:

NN → NN, NN → πNN, NN → π1, · · · , πiNN , (2)

πN → πN, πN → π1, · · · , πiN (i ≥ 2) . (3)

In the case of pions, besides the elementary processes (3), CEM03.03 also takes into
account pion absorption on nucleon pairs

πNN → NN. (4)

The momenta of the two nucleons participating in the absorption are chosen randomly from
the Fermi distribution, and the pion energy is distributed equally between these nucleons in
the center-of-mass system of the three particles participating in the absorption. The direction
of motion of the resultant nucleons in this system is taken as isotropically distributed in space.
The effective cross section for absorption is related (but not equal) to the experimental cross
sections for pion absorption by deuterons.

In the case of photonuclear reactions [29], CEM03.03 follows the ideas of the photonuclear
version of the Dubna INC proposed initially in Ref. [30] to describe photonuclear reactions
at energies above the Giant Dipole Resonance (GDR) region [31]. [At photon energies
Tγ = 10–40 MeV, the DeBroglie wavelength λ– is of the order of 20–5 fm, greater than the
average inter-nucleonic distance in the nucleus; the photons interact with the nuclear dipole
resonance as a whole, thus the INC is not applicable.] Below the pion-production threshold,
the Dubna INC considers absorption of photons on only “quasi-deuteron” pairs according to
the Levinger model [32]:

σγA = L
Z(A− Z)

A
σγd , (5)

where A and Z are the mass and charge numbers of the nucleus, L ≈ 10, and σγd is the total
photo-absorption cross section on deuterons as defined from experimental data.

At photon energies above the pion-production threshold, the Dubna INC considers pro-
duction of one or two pions; the specific mode of the reaction is chosen by the Monte-Carlo
method according to the partial cross sections (defined from available experimental data):

γ + p → p+ π0 , (6)

→ n+ π+ , (7)

→ p+ π+ + π− , (8)

→ p+ π0 + π0 , (9)

→ n+ π+ + π0 . (10)
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The cross sections of γ+n interactions are derived from consideration of isotopic invariance,
i.e. it is assumed that σ(γ + n) = σ(γ + p). The Compton effect on intranuclear nucleons is
neglected, as its cross section is less than ≈ 2% of other reaction modes (see, e.g. Fig. 6.13
in Ref. [33]). The Dubna INC does not consider processes involving production of three and
more pions; this limits the model’s applicability to photon energies Tγ . 1.5 GeV [for Tγ
higher than the threshold for three-pion production, the sum of the cross sections (8)–(10)
is assumed to be equal to the difference between the total inelastic γ + p cross section and
the sum of the cross sections of the two-body reactions (6)–(7)].

The integral cross sections for the free NN , πN , and γN interactions (2)–(10) are ap-
proximated in the Dubna INC model [23] used in the CEM95 [34] version of CEM and its
predecessors using a special algorithm of interpolation/extrapolation through a number of
picked points, mapping as well as possible the experimental data. This was done very accu-
rately by the group of Prof. Barashenkov using all experimental data available at that time.
Currently the experimental data on cross sections is much more complete than at that time;
therefore, for CEM03.03, revised approximations of all the integral elementary cross sections
have been developed (see details in [35, 29]). So far, for CEM03.03, new approximations for
34 different types of elementary cross sections induced by nucleons, pions, and gammas have
been developed. Integral cross sections for other types of interactions taken into account in
CEM03.03 are calculated from isospin considerations using the former as input.

Examples of several compiled experimental cross sections together with the new approxi-
mations used in CEM03.03 and the old approximations from CEM95 [34] are shown in Fig. 2.
More similar results can by found in Refs. [3, 35].

The kinematics of two-body elementary interactions and absorption of photons and pions
by a pair of nucleons is completely defined by a given direction of emission of one of the
secondary particles. The cosine of the angle of emission of secondary particles in the c.m.
system is calculated by the Dubna INC [23] as a function of a random number ξ, distributed
uniformly in the interval [0,1] as

cos Θ = 2ξ1/2

[
N∑
n=0

anξ
n + (1−

N∑
n=0

an)ξN+1

]
− 1 , (11)

where N = M = 3,

an =
M∑
k=0

ankT
k
i . (12)

The coefficients ank were fitted to the then available experimental data at a number of
incident kinetic energies Ti, then interpolated and extrapolated to other energies (see details
in [23, 30, 31] and references therein). The distribution of secondary particles over the
azimuthal angle ϕ is assumed isotropic. For elementary interactions with more than two
particles in the final state, the Dubna INC uses the statistical model to simulate the angles
and energies of products (see details in [23]).

For the improved version of the INC in CEM03.03, currently available experimental
data and recently published systematics proposed by other authors have been used and new
approximations have been developed for the angular and energy distributions of particles
produced in nucleon-nucleon and photon-proton interactions.
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So, for pp, np, and nn interactions at energies up to 2 GeV, the authors of CEM03.03
did not have to develop their own approximations analogous to the ones described by Eqs.
(11) and (12), since reliable systematics have been developed recently by Cugnon et al. for
the Liege INC [6], then improved still further by Duarte for the BRIC code [36]; they simply
incorporated into CEM03.03 the systematics by Duarte [36].

Examples of angular distributions of secondary particles from np reactions at several
energies are shown in Fig. 3. The new approximations reproduce the experimental data
much better than the old Dubna INC used in the previous CEM code versions (and in
several other codes developed from the Dubna INC).

In the case of γp reactions (6) and (7), CEM03.03 choses another way: Instead of fitting
the parameters an from Eq. (11) at different Eγ where measured data were found (see, e.g.,
Fig. 4) and finding the energy dependence of parameters ank in Eq. (12) using the values
obtained for an, CEM took advantage of the event generator for γp and γn reactions from
the Moscow INC [38] kindly sent by Dr. Igor Pshenichnov to the authors of CEM.

9



That event generator includes a data file with smooth approximations through presently
available experimental data at 50 different gamma energies from 117.65 to 6054 MeV (in
the system where the p or n interacting with γ is at rest) for the c.m. angular distributions
dσ/dΩ of secondary particles as functions of Θ tabulated for values of Θ from 0 to 180 deg.,
with the step ∆Θ = 10 deg., for 60 different channels of γp and γn reactions considered by
the Moscow INC (see details in [38]). The authors of CEM use part of that data file with
data for reactions (6) and (7), and have written an algorithm to simulate unambiguously
dσ/dΩ and to choose the corresponding value of Θ for any Eγ, using a single random number
ξ uniformly distributed in the interval [0,1]. This is straightforward due to the fact that the
function ξ(cos Θ)

ξ(cos Θ) =

cos Θ∫
−1

dσ/dΩ d cos Θ
/ 1∫
−1

dσ/dΩ d cos Θ

is a smooth monotonic function increasing from 0 to 1 as cos Θ varies from -1 to 1. Naturally,
when Eγ differs from the values tabulated in the data file, CEM performs first the needed
interpolation in energy. This procedure is used to describe in CEM03.03 angular distribu-
tions of secondary particles from reactions (6) and (7), as well as for isotopically symmetric
reactions γ + n→ n+ π0 and γ + n→ p+ π−.

Examples of eight angular distributions of π+ from γp→ π+n as functions of Θπ
c.m.s are

presented in Fig. 4. It can be seen that the approximations developed in CEM03.03 (solid
histograms) agree much better with the available experimental data than the old Dubna INC
approximations (11)–(12) used in all predecessors of CEM03 (dashed histograms).

The analysis of experimental data has shown that the channel (8) of two-pion photo-
production proceeds mainly through the decay of the ∆++ isobar listed in the last Review
of Particle Physics by the Particle Data Group as having the mass M = 1232 MeV

γ + p → ∆++ + π− ,

∆++ → p+ π+ , (13)

whereas the production cross section of other isobar components
(

3
2
, 3

2

)
are small and can

be neglected. The Dubna INC uses the Lindenbaum-Sternheimer resonance model [39] to
simulate the reaction (13). In this model, the mass of the isobar M is determined from the
distribution

dW

dM
∼ F (E,M)σ(M) , (14)

where E is the total energy of the system, F is the two-body phase space of the isobar and
π− meson, and σ is the isobar production cross section which is assumed to be equal to the
cross section for elastic π+p scattering.

The c.m. emission angle of the isobar is approximated using Eqs. (11) and (12) with the
coefficients ank listed in Tab. 3 of Ref. [31]; isotropy of the decay of the isobar in its c.m.
system is assumed.

In order to calculate the kinematics of the non-resonant part of the reaction (8) and the
two remaining three-body channels (9) and (10), the Dubna INC uses the statistical model.
The total energies of the two particles (pions) in the c.m. system are determined from the
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distribution
dW

dEπ1dEπ2
∼ (E − Eπ1 − Eπ2)Eπ1Eπ2/E , (15)

and that of the third particle (nucleon, N) from conservation of energy. The actual simulation
of such reactions is done as follows: Using a random number ξ, the energy of the first pion
is simulated in the beginning using

Eπ1 = mπ1 + ξ(Emax
π1
−mπ1),

where
Emax
π1

= [E2 +m2
π1
− (mπ2 +mN)2]/2E.

Then, energy of the second pion Eπ2 is simulated the according to Eq. (15) using the Monte-
Carlo rejection method. The energy of the nucleon is calculated as EN = E − Eπ1 − Eπ2 ,
following which a checking is performed to make sure that the “triangle law” for momenta

|pπ1 − pπ2| ≤ pN ≤ |pπ1 + pπ2|

is fulfilled, otherwise this sampling is rejected and the procedure is repeated. The angles Θ
and ϕ of the pions are sampled assuming an isotropic distribution of particles in the c.m.
system,

cos Θπ1 = 2ξ1 − 1, cos Θπ2 = 2ξ2 − 1, ϕπ1 = 2πξ3, ϕπ2 = 2πξ4,

and the angles of the nucleon are defined from momentum conservation, ~pN = −(~pπ1 + ~pπ2).
More details on the new CEM approximations for differential elementary cross sections may
be found in [29, 37].

The Pauli exclusion principle at the cascade stage of the reaction is handled by assuming
that nucleons of the target occupy all the energy levels up to the Fermi energy. Each
simulated elastic or inelastic interaction of the projectile (or of a cascade particle) with
a nucleon of the target is considered forbidden if the “secondary” nucleons have energies
smaller than the Fermi energy. If they do, the trajectory of the particle is traced further
from the forbidden point and a new interaction point, a new partner and a new interaction
mode are simulated for the traced particle, etc., until the Pauli principle is satisfied or the
particle leaves the nucleus.

In this version of the INC, the kinetic energy of the cascade particles is increased or
decreased as they move from one of the seven potential regions (zones) to another, but
their directions remain unchanged. That is, in such calculations, refraction or reflection
of cascade nucleons at potential boundaries is neglected. CEM03.03 allows to take into
account refractions and reflections of cascade nucleons at potential boundaries; for this,
one needs to change the value of the parameter irefrac from 0 to 1 in the subroutine
initial. But this option provides somewhat worse overall agreement of calculations with
some experimental data, therefore the option of no refractions/reflections was chosen as the
default in CEM03.03.

The INC in CEM does not take into account the so-called “trawling” effect [23]. That
is, in the beginning of the simulation of each event, the nuclear density distributions for the
protons and neutrons of the target are calculated according to Eq. (1) and a subsequent
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decrease of the nuclear density with the emission of cascade particles is not taken into
account. Detailed analyses of different characteristics of nucleon- and pion-induced reactions
for targets from C to Am have shown that this effect may be neglected at incident energies
below about 5 GeV in the case of heavy targets like actinides and below about 1 GeV for light
targets like carbon. At higher incident energies the progressive decrease of nuclear density
with the development of the intranuclear cascade has a strong influence on the calculated
characteristics and this effect has to be taken into account [23]. Therefore, MCNP6 uses
as default CEM03.03 only at projectile energies below 4.5 GeV (for incident nucleons) and
switches to simulations using LAQGSM03.03, which considers the “trawling” effect, at higher
energies of transported particles.

An important ingredient of the CEM is the criterion for transition from the intranuclear
cascade to the preequilibrium model. In conventional cascade-evaporation models (like the
Bertini INC [8]), fast particles are traced down to some minimal energy, the cutoff energy
Tcut (or one compares the duration of the cascade stage of a reaction with a cutoff time, in
“time-like” INC models, such as the Liege INC [6]). This cutoff is usually less than ' 10
MeV above the Fermi energy, below which particles are considered to be absorbed by the
nucleus. The CEM uses a different criterion to decide when a primary particle is considered
to have left the cascade.

An effective local optical absorptive potential Wopt. mod.(r) is defined from the local inter-
action cross section of the particle, including Pauli-blocking effects. This imaginary potential
is compared to one defined by a phenomenological global optical model Wopt. exp.(r). CEM
characterizes the degree of similarity or difference of these imaginary potentials by the pa-
rameter

P =| (Wopt. mod. −Wopt. exp.)/Wopt. exp. | . (16)

When P increases above an empirically chosen value, the particle leaves the cascade, and
is then considered to be an exciton. From a physical point of view, such a smooth transition
from the cascade stage of the reaction seems to be more attractive than the “sharp cut-
off” method. In addition, as was shown in Ref. [2], this improves the agreement between
the calculated and experimental spectra of secondary nucleons, especially at low incident
energies and backward angles of the detected nucleons (see e.g., Figs. 3 and 11 of Ref. [2]).
More details about this feature in the CEM03.03 INC can be found in Refs. [2, 3].

Beside the changes to the Dubna INC mentioned above, a number of other improvements
and refinements have been made in the INC of CEM03.03, such as imposing momentum-
energy conservation for each simulated event (the Monte-Carlo algorithm used in several
initial versions of CEM provided momentum-energy conservation only statistically, on the
average, but not exactly for each simulated event) and using real binding energies for nucleons
in the cascade instead of the approximation of a constant separation energy of 7 MeV used
in early versions of the CEM.

In addition, in CEM03.03, many algorithms used in the Monte-Carlo simulations in many
subroutines have also been improved, decreasing the computing time by up to a factor of
6 for heavy targets, which is very important when performing practical simulations with
MCNP6 for complex applications.

It should be mentioned that in the CEM the initial configuration for the preequilibrium
decay (number of excited particles and holes, i.e. excitons n0 = p0 + h0, excitation energy

12



E∗0 , linear momentum P 0, and angular momentum L0 of the nucleus) differs significantly
from that usually postulated in other exciton models. Many calculations have shown that
the distributions of residual nuclei remaining after the cascade stage of the reaction, i.e.
before the preequilibrium emission, with respect to n0, p0, h0, E∗0 , P 0, and L0 are rather
broad (see Ref. [3] and references therein for more details) .

2.2 The INC of LAQGSM

The INC of LAQGSM03.03 is described with a recently improved version [5, 40] of the time-
dependent intranuclear cascade model developed initially at JINR in Dubna, often referred
to in the literature as the Dubna intranuclear Cascade Model, DCM (see [41] and references
therein). The DCM models interactions of fast cascade particles (“participants”) with nu-
cleon spectators of both the target and projectile nuclei and includes as well interactions of
two participants (cascade particles). It uses experimental cross sections at energies below
4.5 GeV/nucleon, or those calculated by the Quark-Gluon String Model, QGSM (see Refs.
[42, 43, 44, 45] and references therein) at higher energies to simulate angular and energy
distributions of cascade particles, and also considers the Pauli exclusion principle.

In contrast to the CEM03.03 version of the INC described above, DCM uses a continuous
nuclear density distribution (instead of the approximation of several concentric zones, where
inside each the nuclear density is considered to be constant); therefore, it does not need to
consider refraction and reflection of cascade particles inside or on the border of a nucleus. It
also keeps track of the time of an intranuclear collision and of the depletion of the nuclear
density during the development of the cascade (the so-called “trawling effect” mentioned
above) and takes into account the hadron formation time (see Fig. 5).

In the INC used in LAQGSM03.03, all the new approximations developed recently for
the INC of CEM03.03 to describe total cross sections and elementary energy and angular
distributions of secondary particles from hadron-hadron interactions have been incorporated.
Then, a new high-energy photonuclear reaction model based of the event generators for γp
and γn reactions from the Moscow INC [38] kindly provided by Dr. Igor Pshenichnov to the
authors of LAQGSM, and on the latest photonuclear version of CEM [29] was developed and
incorporated [40] into the INC of LAQGSM, which allows to calculate reactions induced by
photons with energies of up to tens of GeV.

The 56 channels to consider γp elementary interactions during the cascade stage of reac-
tions, and 56 channels for γn interactions incorporated in LAQGSM03.03 are listed in Table
1.

To describe the two-body channels #1–14, LAQGSM03.03 uses part of a file containing
smooth approximations through presently available experimental data sent by Dr. Pshenich-
nov to the authors of LAQGSM. However, in LAQGSM, its own algorithms have been devel-
oped and its own routines were written to simulate unambiguously dσ/dΩ and to choose the
corresponding value of Θ for any Eγ, using a single random number ξ uniformly distributed
in the interval [0,1], as described in [29] and in previous subsection. Fig. 6 shows examples
of angular distributions of π0 from γp → π0p interactions as functions of Θπ

c.m.s at eight
different photon energies as simulated by the LAQGSM routines compared with available
experimental data.

To describe the channels #15–21 with two and three pions in the final state, LAQGSM
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uses the γp and γn event generators provided by Dr. Pshenichnov, but uses its own interpo-
lation for integral cross sections. No examples of cross sections for these channels are shown
here, as LAQGSM03.03 reproduces all the results by Pshenichnov et al. shown in Figs. 6
and 8 of Ref. [38].

Finally, to describe the multi-pion channels #22–56, LAQGSM03.03 uses the isospin
statistical model as realized in the γp and γn event generators provided by Dr. Pshenichnov
and described in details in [38], without any changes. For channels #22–56, LAQGSM03.03
reproduces exactly the results by Pshenichnov et al. as published in Ref. [38], therefore no
examples of such results are shown here.

After the bombarding photon is absorbed by two nucleons or interacts inelastically with a
nucleon according the channels #1–56, LAQGSM gets inside the nucleus several “secondary”
cascade nucleons, pions, or other mesons and resonances listed in Table 1, depending on which
channel is simulated from the corresponding cross sections at the given photon energy to
actually occur. These “secondary” cascade particles interact further with intranuclear nucle-
ons or leave the nucleus, depending on their coordinates and momenta. The further behavior
of the reaction starting from this stage, after the photon had “disappeared”, is described by
LAQGSM03.03 exactly the same way as for any other types of reactions, induced, e.g., by
nucleons or heavy ions.

In the latest version of LAQGSM, LAQGSM03.03 [5], the INC was modified for a better
description of nuclear reactions at very high energies (above 20 GeV/nucleon), namely:

1) The latest fits to currently available evaluated experimental databases for the total
and elastic π+p, π−p, pp, and pn cross sections (see the last edition of the Review of Particle
Physics (Particle Data Group) and references therein) have been incorporated into LAQGSM.
LAQGSM03.03 uses now these approximations at energies above 20–30 GeV, and its own
approximations developed for CEM03.03 [1] at lower energies.

2) Initially, LAQGSM was used only at energies below ∼ 800 GeV. In [5], the possibility
of using LAQGSM03.03 at ultra-relativistic energies, above 1 TeV, was studied. It was
found that to describe ultra-high energy reactions, the value of the parameter σ⊥ = 0.51
GeV/c in the transverse momentum distribution of the constituent quarks of QGSM (see
Eq. (12) in [4] or Eq. (10) in Ref. [45]) has to be increased. As shown in Fig. 7, to describe
properly p + p interactions at

√
s = 200 GeV, which corresponds to Tp ' 21314 GeV, we

need to use σ⊥ = 2.0 GeV/c. In other words, to be able to describe well with LAQGSM
reactions induced by intermediate and high energy projectiles as well as reactions induced by
ultra-relativistic energy projectiles, we need to use an energy dependent average transverse
momentum parameter σ⊥ increasing with the projectile energy from 0.51 GeV/c at Tp ≤ 200
GeV [4] to σ⊥ ' 2 GeV/c at Tp ' 21 TeV.

Finally, the algorithms of many LAQGSM INC routines were changed and some INC
routines were rewritten, which speeded up the code significantly; some preexisting bugs in
the DCM were fixed; many useful comments were added [5].

More details on the INC of LAQGSM03.03 may be found in Refs. [5, 4, 40, 42, 43, 44, 45].
Many examples of results by LAQGSM03.03 are presented in Refs. [3, 5, 40, 47, 48, 49, 50,
51].
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2.3 The INC of the Bertini Model

It should be noted that there are several, and quite different, versions of the INC developed
by Dr. Hugo Bertini at ORNL. A good review on this point and the corresponding references
may be found in the Handbook of Spallation Research by Filges and Goldenbaum [52].
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Figure 2: Comparison of eight experimental total γ + p(d) cross sections with the old ap-
proximations used in the Dubna INC [23] and with the approximations incorporated into the
CEM03.03 code. The red curve gives the code results using parabolic interpolation, while
the blue solid curve uses linear interpolation between our tabulated points. Where no blue
curve is visible, it is coincident with the red curve. References to experimental data shown
by black and green circles may be found in Ref. [29]. The green circles show recent experi-
mental data that became available to the authors of CEM03.03 after the fit published in Ref.
[29] was completed; Although these recent data agree reasonably well with the CEM03.03
approximations, a refitting would slightly improve the agreement.
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at photon energies from 200 MeV to 1.52 GeV. The dashed lines show the old approximations
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CEM03.03 and LAQGSM03.03 codes. References to experimental data shown by symbols
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Figure 5: An illustrative scheme of a target nucleus, of interaction points of cascade particles
(participants) with intranuclear nucleons (spectators), and of selection of the corresponding
time of such interactions, as performed in the INC used in LAQGSM.
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Table 1: Channels of elementary γN interactions taken into account in LAQGSM03.03

# γp-interactions γn-interactions
1 γp→ π+n γn→ π−p
2 γp→ π0p γn→ π0n
3 γp→ ∆++π− γn→ ∆+π−

4 γp→ ∆+π0 γn→ ∆0π0

5 γp→ ∆0π+ γn→ ∆−π+

6 γp→ ρ0p γn→ ρ0n
7 γp→ ρ+n γn→ ρ−p
8 γp→ ηp γn→ ηn
9 γp→ ωp γn→ ωn

10 γp→ ΛK+ γn→ ΛK0

11 γp→ Σ0K+ γn→ Σ0K0

12 γp→ Σ+K0 γn→ Σ−K+

13 γp→ η′p γn→ η′n
14 γp→ φp γn→ φn
15 γp→ π+π−p γn→ π+π−n
16 γp→ π0π+n γn→ π0π−p
17 γp→ π0π0p γn→ π0π0n
18 γp→ π0π0π0p γn→ π0π0π0n
19 γp→ π+π−π0p γn→ π+π−π0n
20 γp→ π+π0π0n γn→ π−π0π0p
21 γp→ π+π+π−n γn→ π+π−π−p
22 γp→ π0π0π0π0p γn→ π0π0π0π0n
23 γp→ π+π−π0π0p γn→ π+π−π0π0n
24 γp→ π+π+π−π−p γn→ π+π+π−π−n
25 γp→ π+π0π0π0n γn→ π−π0π0π0p
26 γp→ π+π+π−π0n γn→ π+π−π−π0p
27 γp→ π0π0π0π0π0p γn→ π0π0π0π0π0n
28 γp→ π+π−π0π0π0p γn→ π+π−π0π0π0n
29 γp→ π+π+π−π−π0p γn→ π+π+π−π−π0n
30 γp→ π+π0π0π0π0n γn→ π−π0π0π0π0p
31 γp→ π+π+π−π0π0n γn→ π+π−π−π0π0p
32 γp→ π+π+π+π−π−n γn→ π+π+π−π−π−p
33 γp→ π0π0π0π0π0π0p γn→ π0π0π0π0π0π0n
34 γp→ π+π−π0π0π0π0p γn→ π+π−π0π0π0π0n
35 γp→ π+π+π−π−π0π0p γn→ π+π+π−π−π0π0n
36 γp→ π+π+π+π−π−π−p γn→ π+π+π+π−π−π−n
37 γp→ π+π0π0π0π0π0n γn→ π−π0π0π0π0π0p
38 γp→ π+π+π−π0π0π0n γn→ π+π−π−π0π0π0p
39 γp→ π+π+π+π−π−π0n γn→ π+π+π−π−π−π0p
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Table 1: (continuation). Channels of elementary γN interactions taken into account in
LAQGSM03.03

# γp-interactions γn-interactions

40 γp→ π0π0π0π0π0π0π0p γn→ π0π0π0π0π0π0π0n
41 γp→ π+π−π0π0π0π0π0p γn→ π+π−π0π0π0π0π0n
42 γp→ π+π+π−π−π0π0π0p γn→ π+π+π−π−π0π0π0n
43 γp→ π+π+π+π−π−π−π0p γn→ π+π+π+π−π−π−π0n
44 γp→ π+π0π0π0π0π0π0n γn→ π−π0π0π0π0π0π0p
45 γp→ π+π+π−π0π0π0π0n γn→ π+π−π−π0π0π0π0p
46 γp→ π+π+π+π−π−π0π0n γn→ π+π+π−π−π−π0π0p
47 γp→ π+π+π+π+π−π−π−n γn→ π+π+π+π−π−π−π−p
48 γp→ π0π0π0π0π0π0π0π0p γn→ π0π0π0π0π0π0π0π0n
49 γp→ π+π−π0π0π0π0π0π0p γn→ π+π−π0π0π0π0π0π0n
50 γp→ π+π+π−π−π0π0π0π0p γn→ π+π+π−π−π0π0π0π0n
51 γp→ π+π+π+π−π−π−π0π0p γn→ π+π+π+π−π−π−π0π0n
52 γp→ π+π+π+π+π−π−π−π−p γn→ π+π+π+π+π−π−π−π−n
53 γp→ π+π0π0π0π0π0π0π0n γn→ π−π0π0π0π0π0π0π0p
54 γp→ π+π+π−π0π0π0π0π0n γn→ π+π−π−π0π0π0π0π0p
55 γp→ π+π+π+π−π−π0π0π0n γn→ π+π+π−π−π−π0π0π0p
56 γp→ π+π+π+π+π−π−π−π0n γn→ π+π+π+π−π−π−π−π0p

MCNP6 does not use the latest version in the Bertini INC as published by Hugo Bertini or
its extension to higher energies and to handle reactions induced by projectiles not considered
by the original Bertini INC developed recently by younger authors for GEANT4 in C++
(see, e.g., [53] and references therein). Instead, just like its precursors MCNPX [54] and
LAHET [18], MCNP6 uses an “intermediate” version of the Bertini INC as implemented
initially in the FORTRAN code MECC-7 [55, 56] and used in the transport code HETC
[57].

The MECC-7 version of the Bertini INC is based mostly on the original publications
by Hugo Bertini [8, 58, 59] and is described also in Ref. [17]. The Bertini INC describes
interactions induced by nucleons below 3.5 GeV and the pion interactions up to 2.5 GeV;
a scaling law approximation is used to continue the interaction energy to arbitrarily high
energies, although a reasonable upper limit is about 10 GeV. In the version of the Bertini
INC as implemented in LAHET, and later in MCNPX, and, finally, in MCNP6, a special
care was taken by Dick Prael to make sure that it does not crash the code even when it
is used for very light target-nuclei and/or at incident energies where the assumptions of
the model are not well grounded. Although we can not expect very good predictions from
such “difficult” simulations, it was proved that Bertini INC handles them without crashes,
providing still reasonable results. For this reason, Bertini INC is set as the default option
in MCNP6 to simulate reactions on very light nuclei, like H, d, t, 3He, and 4He at arbitrary
energies (particle-nucleon interactions at energies above 4.5 GeV are simulated by default in
MCNP6 with LAQGSM).
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In a way, MECC-7 is similar to the initial Dubna INC [23, 24] used by the early versions
of CEM and discussed above. More than this, these two INC models were compared by
their authors and developers in Ref. [60]. The most important differences are in details of
how the nuclear density and Fermi momenta are described, how the free particle-particle
cross sections are approximated, and when the INC stage of reactions is assumed to be
completed. So, Bertini INC models the target nucleus as consisting of three concentric
spheres (“three zones”). The Fermi gas model is used to describe the Fermi momenta of
intranuclear nucleons; the Pauli exclusion principle is taken into account. The INC process
starts when a nucleon or pion projectile hits a nucleon in the target-nucleus and produces
“secondary particles”. The history of each particle is followed until it either escapes from
the nucleus or its energy becomes below a “cutoff energy”, which, in general, is taken to be
half of the Coulomb barrier of the surface of the nucleus. The energy is different for different
types of projectiles and can be found, e.g., in Ref. [17]. At this point the energy conservation
of the cascade process is verified. The binding energy of the most loosely bound nucleon is
taken to be 8 MeV in the Bertini INC and is assumed to be the same for all three zones and
for all nuclei. Relativistic kinematics is used throughout the Bertini INC. More details on
the Bertini INC can be found in Refs. [8, 17, 52, 58, 59, 60].

2.4 The INC of ISABEL

The second model, from a historical point of view, migrated to MCNP6 via MCNPX [54]
from LAHET [18] is the ISABEL INC [9, 61]. ISABEL is the default option in MCNP6 for
reactions induced by d, t, 3He, 4He, and antinucleons at energies up to about 1 GeV per
nucleon. If specified in the MCNP6 input file, ISABEL can be used to also simulate reactions
induced by nucleons, pions, kaons, and light-ions at energies below 1 GeV/nucleon. Just like
Bertini INC [8], ISABEL can be used in MCNP6 with or without taking into account the
preequilibrium reactions as described by MPM [12]. By default, after MPM, ISABEL is
followed by the evaporation model EVAP [14]-[17] and the fission model RAL [20] (or the
ORNL fission code HETFIS [19], if required so in the MCNP6 input file).

The ISABEL INC model [9, 61] is an extension by Yariv and Frankel [9] of the VEGAS
code [62]. It has the capability of treating nucleus-nucleus as well as particle-nucleus inter-
actions. It allows for interactions (“cascade-cascade”) between particles both of which are
excited above the Fermi sea [63]. The nuclear density is represented by up to 16 density
steps, rather than three as is in the Bertini INC [8] or seven in CEM03.03 [1]. It also allows
antiproton annihilation [64], with emission of kaons and pions. In MCNP6, just like in its
precursors MCNPX and LAHET, only projectiles with A ≤ 4 are allowed for ISABEL.

Below, we provide a little more information about the physical assumptions and actual
implementation of ISABEL, following mainly Ref. [61].

ISABEL is a “time-like-basis” Monte Carlo realization of an INC model for hadron-
nucleus and nucleus-nucleus collisions. Hadrons included are nucleons, pions, anti-nucleons,
and kaons. ISABEL is a direct generalization of the VEGAS [62] and ISOBAR [65] INC
codes. As in ISOBAR [65], pion production and absorption modes are included in ISABEL
via the ∆33 resonance (pion-nucleon isobar) formation in nucleon-nucleon scattering

N1 +N2 ⇐⇒ ∆33 , (17)
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∆33 ⇐⇒ π +N . (18)

As does CEM03.03, the original VEGAS [62] code uses the nuclear charge distribution
obtained from the analysis of electron-nucleus scattering data, described by Eq. 1, with the
same values for parameters c and a.

A step-function distribution is used to approximate the nuclear charge distribution. The
nucleus is divided into several (usually 8 or 16) concentric regions, each of constant density.
The ratio of proton to neutron density is assumed to be Z/(A− Z) in all the regions.

The momentum distribution of nucleons in the nucleus is assumed to be that of degenerate
Fermi gas with the same Fermi energy as discussed above for CEM03.03.

Due to the variation of the Fermi energy, the nuclear potentials of the protons and
neutrons differ in the various density regions:

Vi = TFi
+ (Separation Energy) . (19)

The average pion potential is uncertain, and may be set to a constant, but because of
the short pion mean free path, is generally ignored in ISABEL calculations. The average
potential that the ∆ feels is even more uncertain, and is taken after [66] as:

V∆++ = Vp; V∆+ = Vp +
(Vp + Vn)

3
; V∆0 +

(Vp + Vn)

3
= Vn; V∆− = Vn . (20)

Conservation of energy and momentum requires that the kinetic energy of the particles
and their direction change as they cross density region boundary (refraction). If the im-
pact angle at the region boundary is greater that the critical angle the particle is reflected.
However, as pointed out in [62], “full” refraction gives generally worse results than particle
kinetic energy correction without direction change, just as discussed above for CEM03.03.
It was speculated [62] that in order to treat properly the refraction one should introduce en-
ergy dependence of the nuclear potential, as indicated by optical potential models. ISABEL
may be used with the option of “full refraction” or just proper kinetic energy corrections on
region boundaries. There is no option for energy dependent potential.

The Coulomb interactions between the target nucleus and the incident or emitted charged
particle is explicitly considered in one way only: The refraction, or simple energy correction,
of the particles entering or leaving the nuclear boundary is calculated taking into account
the Coulomb potential there.

The nucleon-nucleon cross sections used in ISABEL are the on-mass-shell free nucleon-
nucleon cross sections. Parameterization of [65] is used for the total, σtot, elastic, σel, and
inelastic (pion production), σinel, cross sections. Parameterization of [67] is used for the
elastic scattering angular distribution, dσel/dΩ.

The types of outgoing nucleon and ∆ in inelastic scattering, Eq. (17), are determined
by isotopic spin considerations [68]. The mass of the ∆3,3 is chosen, according to Ref. [66],
from the (normalized) distribution:

P (m∆, E
N+N
cm ) = const.× σπ

++p
tot (EN+N

cm )× F (m∆, E
N+N
cm ) ,

mπ +mN < m∆ < mπ +mN + 500 MeV , (21)
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where F is the two body phase factor for the produced N + ∆. The angular distribution of
the outgoing (N,∆) is uncertain, and is taken, tentatively, from the distribution P (coscm) =
0.25 + 0.75× (coscm)2.

The types of outgoing nucleons in “pion capture” scattering, Eq. (18), are determined
by isotopic spin considerations [68]. The capture cross sections used were calculated from
the inverse process with the aid of the principle of detailed balance [68], using the one-pion-
exchange model for ∆ production process [39].

The ∆ charge exchange process, ∆ +N → ∆
′
+N

′
, is considered as a two step process:

first ∆ decays into pion and nucleon and another nucleon absorbs the pion to become a
“charge exchanged” ∆ as shown schematically in Fig. 8.

The types of outgoing particles, are determined by isotopic spin considerations and the
cross sections were calculated using the experimental π-N cross sections [39, 68]. Though,
in principle, both the mass and charge of the ∆ may change in this process, the assumption
is made that the mass of the ∆ does not change.

For processes involving intermediate ∆, π+N → ∆→ π
′
+N

′
, the relevant cross sections

were calculated from the experimental πN scattering data [69]. If, after being created, ∆
“charge exchanges” – it decays isotropically. However, if the ∆ decays without intermediate
interaction – the code calculates correctly the π +N → π

′
+N

′
kinematics.

The energy dependant ∆ width is parameterized according to [66].
A pictorial example of an event simulated by ISABEL is shown on Fig. 9.
As mentioned above, ISABEL is a “time-like” type of INC. The most important advan-

tage of the time-like basis Monte Carlo procedure is the possibility of changing the global
properties of the system as the interaction proceeds. As a cascade develops, the density in the
participating Fermi seas is depleted. Since the detailed nature of the density rearrangement
is unknown, ISABEL addopted two extreme prescriptions:

Fast rearrangement. After each collision with a target partner, the density distribution
ρi of the “partner type” (i denotes proton or neutron) in the target is instantaneously and
uniformly reduced for the whole nucleus. In addition “distance restriction” is usually applied
— any given particle is not allowed to interact within a distance smaller than some rmin,i
from its last interaction. There are few options for rmin,i, that should be close to di, the
average (local) interparticle distance in the Fermi sea, and may depend on the local density
of protons or neutrons.

Slow rearrangement. After each collision, a hole of radius rmin is punched in the
density distribution configuration space around the position of the interaction. No more
interactions are allowed in this hole. The holes may be either isospin dependant or isospin
independent, i.e. ISABEL may punch them for protons and neutrons independently, with
possibly different rmin,i or punch holes for nucleons using common rmin. The slow rearrange-
ment prescription with isospin dependant holes and rmin,i = 1.1 fm was found to be the best
and was addopted as the default option in ISABEL.

The depletion of the Fermi seas affects the Pauli blocking. Two options for dealing with
Pauli blocking are included in ISABEL:

Full Pauli blocking. After each interaction cascade nucleons are tested for Pauli princi-
ple violation. If cascade nucleon energy is lower than the target Fermi energy – the interaction
is forbidden.

Partial Pauli blocking. After each interaction proton and neutron Fermi sea depletion
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factors (ratio of actual to original number of particles in the Fermi sea) is calculated. If the
energy of a cascade proton (neutron) generated in an interaction is lower than the target
Fermi energy, a random number is compared to the depletion factor, and only if it is smaller
– the reaction is forbidden. Intuitively, as the Fermi sea is depleted, cascade particle are
allowed to fill the “empty” states below the Fermi energy. In such approximation, this
depletion of the Fermi sea is “global” – it does not depend on position or energies of the
particles lifted from the Fermi sea or those trying to fall into it. Pauli blocking contributes
to extension of the mean free path, Λ, of nucleons and to prolongation of the lifetime of ∆
in the nucleus (since it is forbidden to decay into a nucleon violating the Pauli principle).

In the particle-nucleus collision the Fermi sea of the target nucleus is treated as a con-
tinuous density distribution, whereas the incoming and the “cascade” particles are discrete
particles of well defined position and momentum. In the nucleus-nucleus collision one has
two Fermi seas interacting with each other and hence the following prescription is used: For
the purpose of calculating the interactions between nucleons of the projectile Fermi sea and
the nucleons in the target Fermi sea the projectile Fermi sea is assumed to consist of a gas
of discrete particles whose positions in space and momenta are randomly chosen from the
appropriate distribution. However for the purpose of calculating interaction between the
(discrete) “cascade” particles and the Fermi sea of the projectile or target, the latter two
distributions are considered continuous. This procedure was chosen in order to calculate the
collision in the same manner as was done in the particle-nucleus INC calculation. It ensures
the equal treatment of projectile and target, i.e. the Lorentz invariance of the calculation.

The INC model of nucleus-nucleus collisions involves a large number of “cascade” par-
ticles. The evolving particle density outside the target and projectile Fermi seas in such
an interaction is high, and the relative distances between the energetic particles are quite
small. The scattering between pairs of “cascade” particles, neglected in the VEGAS model
[62] and early version of ISABEL, cannot be justified, and may lead to disagreement with
experiments. The introduction of “cascade-cascade” interactions [63] led to significant im-
provement of the model.

The “cascade-cascade” interactions are treated, once again, as interactions of a discrete
particle with continuous density. Each cascade particle is represented, in its rest-frame, by a
spherical Gaussian density distribution ρ(r) centered at its discrete position with standard
deviation of 1 fm. Each cascade particle may thus interact with the continuous Fermi sea
of the target and projectile and the continuous distribution of its fellow cascade particles.
The only restriction is that two given cascade particles cannot interact more than once, until
at least one of them interacted with a third particle. The interacting cascade particles are
brought to common position and the reaction kinematics is calculated with “zero range.”
This procedure conserves energy and momentum in each cascade-cascade interaction, but
only “on the average” conserves angular momentum in cascade-cascade interactions.

In ISABEL, the projectile and target nucleons are initially bound in their respective
nuclei by real potential wells (approximated by step-function distributions) that are uniquely
determined for a degenerate Fermi gas by the nuclear density. Since the potential energy
of a particle can not be transformed covariantly from one Lorentz frame to another, the
projectile nucleons (i.e. projectile Fermi sea nucleons and cascade nucleons with momentum
lower in the projectile frame of reference than in the target frame of reference) are assumed
to feel the projectile potential while they are in the projectile volume and are treated as
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free nucleons outside this volume. They do not feel the target potential. Similarly, the
target nucleons feel the target potential while they are in the target volume and are treated
as free nucleons outside this volume. After an interaction between target and projectile
nucleons, the identity of the outgoing nucleons is determined according to their momentum
relative to the projectile and the target frames. This procedure might be considered a crude
approximation to a velocity dependent potential that vanishes for high velocities.

The residual excitation energies, linear and angular momenta of the target and projectile
are calculated summing the hole and “below cutoff particle” energies and momenta and may
be processed by a deexcitation code. The projectile velocity is kept constant during the
collision, the recoil being calculated at the end.

More details on ISABEL can be found in [9, 61, 63, 64] and refrences therein.

2.5 The INC of INCL4.2

At present, MCNP6 uses the “standard” INCL4.2 version [6, 70] of the INC model developed
at the university of Liege (INCL) by Prof. Joseph Cugnon and his students in collabora-
tion with colleagues from CEA Saclay, France. INCL4.2 can describe successfully reactions
induced by nucleons, pions, and complex particles d, t, 3He, and 4He at energies up to sev-
eral GeV. In MCNP6, INCL4.2 is always followed by the ABLA code developed at GSI [7]
to describe the evaporation and fission (if the nucleus is heavy enoug to fission) stages of
reactions, independently of what users would chose for the evaporation and fission models
in their MCNP6 input files. INCL4.2 does not consider excplicitely preequilibrium reactions
after the INC stage of reactions. Newer and better versions of both INCL and ABLA are
planned for incorporating in future versions of MCNP6.

Below, we provide a little more information about the physical assumptions and actual
implementation of INCL4.2, following mainly Ref. [70].

The basic premises of the INCL model are schematically illustrated in Fig. 10. Particles
are moving freely between instantaneous events and are called “avatars” (to distinguish from
the usual meaning of “event,” namely a complete simulation or “realization” of the reaction).
These avatars can be of three types: two-body collision, decay and transmission or reflection
at the nuclear periphery. In INCL4.2, only three types of particles are considered: nucleons
(n, p), ∆-isobars (4 charge states) and pions (3 charge states). The target is composed of
pointlike particles. All particles are followed in space-time and are propagated in single steps
between avatars, on a manner described below. The simulation is stopped according to a
selfconsistent criterion, which constitutes a unique feature of INCL4.2. The properties of the
exit channel are recorded and are transferred to an evaporation/fission module (ABLA).

In INCL4.2, before starting simulation of a reaction, the nucleons of the target are po-
sitioned at random, according to a distribution f(r) which follows nuclear density (i.e.
with the same shape), taken from electron scattering measurements. For target mass
A > 27, a Woods-Saxon distribution is used up to a maximum distance Rmax, fixed to
R0 + 8a. For 6 < A < 27, a “modified harmonic oscillator” distribution is adopted and
for A < 6, Gaussian density distributions are used. The values of R0 and a are taken
from electron scattering measurements and parametrized, for convenience, from Al to U, as
R0 = (2.745× 10−4AT + 1.063)A

1/3
T fm, a = 0.510 + 1.63× 10−4AT fm, and AT is the target

mass number.
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Nucleon momenta are taken at random in a sphere of radius pF , the Fermi momentum,
equal to 270 MeV/c, a value corresponding to normal nuclear matter. The same distribution
is used for protons and neutrons.

Actually, momentum and position are not taken independently. Momentum p is generated
first at random and the position is taken at random inside a sphere of radius R(p), which is
implicitly given by:

(
p

pF

)3

= − 1

3N

Rmax∫
0

df(r)

dr
r3dr , (22)

where N is a normalization constant

N =

Rmax∫
0

f(r)r2dr . (23)

R(p) is an increasing function going from 0 at p = 0 to Rmax at p = pF . It is shown
in Ref. [6] that this procedure amounts to requiring that the nucleons with momentum
contained in the interval [p, p + dp] are contributing to the density profile by a horizontal
slab corresponding to the vertical coordinates R(p) and R(p + dp), as shown in Fig. 11,
or equivalently that nucleons with momentum p do not propagate farther than R(p). The
procedure is also equivalent to a phase space joint distribution function of the form

dn

d3~rd3~p
∼ θ(R(p)− r)θ(pF − p)

R(p)3
, (24)

where θ(x) is the Heaviside function. Although this distribution obviously generates correla-
tions between r and p coordinates, it nevertheless yields the constant Fermi gas distribution
and the r-space distribution f(r) after integration over ~r and ~p, respectively, as demonstrated
in Ref. [6]. There are no other correlations. There is no attempt to have zero total mo-
mentum (

∑
~p = 0) location of the barycenter at the origin (

∑
~r = 0) nor zero total angular

momentum (
∑
~r × ~p = 0).

All target particles are sitting in a (fixed and constant) attractive square potential well,
with a momentum-dependent radius R(p) and a depth V0. The function R(p) is such that,
in absence of collisions, nucleons are moving while the average (over events) spatial and
momentum distributions remain unaffected. It is clear from Fig. 11 that nucleons can be
divided into groups of particles with the same momentum occupying given spheres in r-space.
In absence of collisions, the distribution in r- and p-space remains the same on the average
(this is a well-known property of a system of billiard board particles with initial momentum
and directions at random bouncing elastically on the interior surface of a sphere). In other
words, this indicates that particles with momentum larger than pF experience a potential
well with radius Rmax (as for p = pF ).

The r − p correlations introduced in INCL4.2 are not of the conventional type. They
comply with the fact that high (kinetic) energy particles can propagate farther out than low
energy particles, as they should, in accordance with the standard shell-model. In contrast
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with the latter, particles keep the same momentum, be they in the center or in the (allowed)
surface region of the nucleus.

The projectile-nucleon is incoming along the z-direction and is given at random in the
xy-plane an impact parameter b inside a circle of radius Rmax = R0 + 8a. A sphere of the
same radius centered on the middle of the target is defined as the “volume of calculation.”
Nothing happens to the particles outside this volume. At t = 0 (beginning of the calculation),
the incoming nucleon is positioned at the surface of the volume of calculation. As described
above, this is also the surface of the potential well felt by this particle. It is considered
that at t = 0, the incident nucleon has just entered the well. Therefore its total energy
has increased by the value of the potential depth V0 and its momentum has been increased
accordingly (direction is not changed; no reflection, no refraction in the entrance channel).
The choice of bmax guarantees a good compromise between computational efficiency and
accurate evaluation of the total reaction cross section. Indeed only a small fraction (10−4)
of the interacting events beyond bmax is missed.

For an incident pion, the procedure is the same, except that the pion does not experience
any average potential. For an incident light ion (d, t, 3He, and 4He), the procedure is more
involved. First the incident ion has to be generated. In the rest frame of the latter, nucleons
are given positions and momenta at random according to Gaussian laws, with rms values
given in Table 1 of Ref. [6]. The values of the Gaussian parameters are either taken from
the Paris potential for the deuteron, and from experiment or from realistic wave functions,
for the other ions. In this case,

∑
~r = 0 and

∑
~p = 0 are imposed, simply by choosing

the values for the last nucleon appropriately, possibly after a renewed generation of the first
ones. The maximum impact parameter is taken as bmax defined above plus the rms radius
of the ion. The transverse position of the ion center of mass is taken randomly in a circle of
radius equal to this new value. The ion is then Lorentz-contracted along the collision axis
and the longitudinal position of the ion is chosen in such a way that one of the nucleons
is just touching the “interaction volume,” the other ones being outside. The ion is then
“boosted”: 4-momenta undergo the Lorentz transformation corresponding to the velocity of
the incident ion. They are finally corrected in order to comply with the energy content of
the incoming ion.

At t = 0, all nucleons are set in motion with their initial velocity and are assumed to
follow straight-line trajectories until an avatar occurs, i.e. until two of them achieve their
minimum distance of approach, or until one of them hits the nuclear surface, or until a ∆-
resonance decays. Due to the straight-line trajectories, the times at which these events occur
can be predicted. The smallest of these times is selected and the particles are propagated in
a single step. The simplicity of this propagation is a particular feature of the INCL model.
After the occurrence of an avatar, straight-line motion is resumed until the next avatar, and
so on. The process is followed up and terminated according to a criterion explained below.

Inelastic nucleon-nucleon collisions are dominated by the production of pions. At incident
energies T ≤ 2 GeV, there are good indications that pion production results from the
production of a ∆-resonance followed by its decay. Although the ∆-resonance is short-lived,
it has a good chance to interact with another nucleon before decaying. The philosophy
of the standard INCL model is to propagate the ∆-isobars (instead of describing the NN
inelastic collisions by the asymptotic channels in free space). Therefore, the following possible
reactions are considered
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NN → NN , NN → N∆, N∆→ N∆, ∆∆→ ∆∆, πN → ∆ . (25)

For any of the incident channels (NN , N∆, ∆∆), the final channel is selected at random,
by the standard method of comparing a random number with the ratio between elastic and
inelastic cross sections. The relevant cross sections, as parameterized in INCL4.2, as well
as the angular distributions, are given in Refs. [6, 71]. Elastic NN cross sections are of
course taken directly from experiment. The NN → N∆ cross section is taken as equal to
the experimental inelastic NN cross section (pp and np, the nn cross section is taken equal
to the pp cross section). The N∆ → NN cross section is taken from the previous one by
detailed balance:

σN∆→NN(s) = fcorr
1

2

(
pNN
pN∆

)2
1

1 + δNN
σNN→N∆(s) . (26)

In this equation, valid for definite charge states of the particles, pab is the momentum of the
particles in the c.m.

pab = pab(s) =
[ (s− (ma +mb)

2) (s− (ma −mb)
2) ]

1/2

2
√
s

, (27)

the 1/2 factor comes from the spin degeneracies and the Kronecker symbol applies to the
isospin states of the nucleons.

The N∆ → N∆ and ∆∆ → ∆∆ cross sections are taken as equal to the NN elastic
cross section at the same c.m. energy.

Due to the fermionic nature of the particles, the collision probability may be diminished
as a consequence of the Pauli principle. Although it is a purely quantum effect, the reduction
may fortunately be expressed in terms of phase space density. In INCL4, Pauli blocking is
implemented in this spirit.

Let consider as an example the case of two body collisions a + b → c + d with two
nucleons in the final state and let ~ri and ~pi (i = c, d) denote the positions and momenta of
the nucleons just after the realization of the collision (the avatar). Phase space occupation
probabilities fi are estimated by counting the nucleons lying in phase space in a small test
volume centered of the representative point of nucleon i in phase space. They are given by:

fi =
1

2

(2π~)3

4π
3
r3
PB

4π
3
p3
PB

∑
k 6=i

θ(rPB − |~rk − ~ri|) θ(pPB − |~pk − ~pi|) , (28)

where the summation runs over nucleons of the same isospin state as nucleon i and where
θ is the Heaviside function. The factor 1/2 stands for spin degeneracy (nucleon spin is not
considered). The parameters rPB and pPB define the size of the test volume (an hypersphere)
in phase space. They should not be too small, otherwise the estimated occupation probability
can be vanishing almost all the time and they should not be too large, otherwise the variations
of the occupation probability in the occupied phase space can be missed. In INCL4, rPB
and pPB have been taken just large enough for results (in typical cases) to be more or less
insensitive to moderate modifications on these parameters: rPB = 3.18 fm and pPB = 200
MeV/c, which corresponds to ∼ 2.3 natural units of phase space. We remind that in the
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ground state of normal nuclear matter there is one nucleon (of given spin and isospin) per
natural unit. It is generally considered that there cannot be more than one particle per unit
phase space in any circumstance and that this density is more or less achieved in the ground
state of actual (at least heavy) nuclei.

The collision will be allowed stochastically with a probability P = (1−fc) (1−fd). Pauli
blocking is not applied to ∆-isobars (for a collision with a ∆ and a nucleon in the final state,
there is only one blocking factor ). On the other hand, it is enforced for nucleons issued from
∆-decays.

An original feature of INCL4.2 is the consistent determination of the stopping time, i.e.
the time at which the cascade should be stopped. A criterion has been adopted which is
based on physical results concerning the time-dependence of several key physical quantities
when averaged over events. Examples are given in Fig. 12 below. One can see that both
the excitation energy of the target nucleus and the average kinetic energy of the ejectiles
assume large values at early times, decrease rapidly until some time, after which they vary
much more slowly. The time derivative of the excitation energy and the anisotropy of the
momentum distribution of the participants sitting inside the target, offer a similar pattern
with a rapid variation followed by a much slower one. For all of them, the change of regime
occurs at the same time, defined within a few fm/c. This observation suggests that the
regime of fast variation, typical of a cascade, gives place at a rather well defined time to
a regime of softer variation, typical of an evaporation. In INCL4.2, the cascade is stopped
at this common time, called the stopping time tstop. It has been sampled once for all and
parameterized as

tstop = fstop tc

(
AT
208

)0.16

, (29)

with fstop = 1 and tc = 70 fm/c. This parametric form seems reasonable for the range of
energy and target mass under interest, but may be improved at the border of this range, by
using another value for fstop.

An event is stopped when the clock for a foreseen avatar gives a time larger than tstop.
Some events may be stopped earlier. An event may be stopped at the very beginning, if the
initial time list for the collision avatars is empty. This happens mainly for peripheral events.
Such a event is named a void event. An event may also terminate at a time earlier than tstop
if the list of times becomes empty when it is updated. In a no-void event, it may happen
that no collision has taken place (due to Pauli blocking for instance) and that the incident
particle has left the interaction volume with its incident energy. Such events, together with
the void events are named “transparent event.” The other events are called “interacting
events.” Transparent events are just disregarded (but they are counted for cross section
evaluation, see later). The other events, after they are stopped, may possibly be completed
by the decay of the remaining ∆-isobars, if any. The Pauli blocking is not applied in this
case and the resulting nucleons are considered as belonging to the remnant.

It is instructive to detail how INCL4.2 handles conservation laws. The most important
conservation laws can in general be formulated as follows:

AP + AT = Aej + Arem , (30)

ZP + ZT = Zej + Zπ + Zrem , (31)
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~pP + ~pT = ~pej + ~pπ + ~prem , (32)

TP = Kej +Wπ + Trec + E∗ + S , (33)

~lP = ~lej + ~lπ + ~lrem + ~l∗ , (34)

for baryon number, charge, momentum, energy and angular momentum, respectively. Let
consider a projectile P colliding with a target T and generating baryonic ejectiles, pions
and a remnant (the remaining nucleus at the end of the cascade). In Eq. (33), Kej is the
kinetic energy of the ejectiles, Wπ is the total energy of the pions, Trec is the recoil energy
of the remnant, E∗ is the excitation energy of the remnant, and S is the separation energy
(i.e. minus the Q-value of the reaction). Strictly speaking, energy conservation law should
include rest mass energies. They have been eliminated from Eq. (33) owing to the use of
Eq. (30). The other notations are self-explanatory.

In INCL4.2, conservation laws (30), (31), and (33) are exactly fulfilled. On the contrary,
momentum (Eq. (32)) and angular momentum (Eq. (34)) are not conserved. Momentum is
conserved during collisions but not at the entrance or exit of particles. Angular momentum
is not conserved, even at the level of the collisions. However, the results of the cascade can
be used to evaluate with reasonable accuracy the momentum, angular momentum and recoil
energy of the remnant.

More details on INCL4.2 can be found in [6, 52, 70, 71] and references therein.

3 Preequilibrium Reactions

As discussed in the previous section, the intranuclear cascade models are used to describe
the so-called “fast”, or “energetic”, or “direct” stages of nuclear reactions. It is believed that
such processes occur during the first ∼ 10−23−10−20 seconds of reactions, during which only
“direct” interactions of the projectile or of “secondary” cascade particles with intranuclear
nucleons take place. Such a treatment of reactions is well grounded at bombarding energies
of the order of ∼ 100 MeV and higher and is not expected to work well at lower energies.

At the other extreme, at low energies of only a few tens of MeV and lower, it is usually
assumed that the projectile is captured by the target nucleus, and that the resulting “com-
pound nucleus” attains statistical equilibrium without prior particle emission. The decay of
the long-lived (∼ 10−18 − 10−16 sec) compound nucleus may then be treated by equilibrium
statistical mechanics. The deexcitation of compound nuclei is believed to take place via
“evaporation” of particles and light fragments, or via fission, if the nucleus is heavy enough
to fission. Such reactions are discussed in the next sections.

From a general logical point of view, it is hard to understand that we may have only
“fast” or “energetic” and “slow” or “low-energy” interactions, and nothing in between them.
It is natural to expect that an intermediate stage, both from the point of view of the time
of interaction and of the energy involved, should exist. Such intermediate reactions should
occur before the equilibrium compound nucleus is created, therefore, can be called as “pree-
quilibrium” reactions.

Most important, from an experimental point of view, in many spectra, continuous high
energy components were observed that were consistent neither with predictions of the com-
pound nucleus (evaporation/fission) model nor with existing direct reaction (or INC) models.
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In recent decades, these phenomena have been treated by classical or quantum preequilibrium
models that formulate the decay into the continuum of a system with an initial partition of
projectile energy between relatively few (intrinsic) degrees of freedom, progressing through
more complicated configurations until an equilibrium distribution of energy is attained (see,
e.g. Refs. [72] – [75] for good reviews of preequilibrium models).

MCNP6 considers only two classical preequilibrium reaction models, namely: 1) the latest
version of the Modified Exciton Model (MEM) [10, 11] used (always) with the CEM03.03
and LAQGSM03.03 event generators, and 2) the Multistage Preequilibrium Model (MPM)
version of the exciton model [12], used “by default” after the Bertini INC and ISABEL,
but can be omitted, if required so in the MCNP6 input file. INCL4.2 does not use any
preequilibrium models. Below we discuss briefly both MEM and MPM.

3.1 Preequilibrium Reactions in CEM03.03 and LAQGSM03.03

The preequilibrium interaction stage of nuclear reactions is considered by the current CEM
and LAQGSM in the framework of the latest version of the Modified Exciton Model (MEM) [10,
11] as implemented in CEM03.03 [1]. At the preequilibrium stage of a reaction, all possible
nuclear transitions changing the number of excitons n with ∆n = +2,−2, and 0, as well as
all possible multiple subsequent emissions of n, p, d, t, 3He, and 4He are taken into account.
The corresponding system of master equations describing the behavior of a nucleus at the
preequilibrium stage is solved by the Monte-Carlo technique [2].

For a preequilibrium nucleus with excitation energy E and number of excitons n = p+h,
the partial transition probabilities changing the exciton number by ∆n are

λ∆n(p, h, E) =
2π

~
|M∆n|2ω∆n(p, h, E) . (35)

The emission rate of a nucleon of type j into the continuum is estimated according to the
detailed balance principle

Γj(p, h, E) =

E−Bj∫
V c
j

λjc(p, h, E, T )dT ,

λjc(p, h, E, T ) =
2sj + 1

π2~3
µj<j(p, h)

ω(p− 1, h, E −Bj − T )

ω(p, h, E)
Tσinv(T ) , (36)

where sj, Bj, V
c
j , and µj are the spin, binding energy, Coulomb barrier, and reduced mass of

the emitted particle, respectively. The factor <j(p, h) ensures the condition for the exciton
chosen to be the particle of type j and can easily be calculated by the Monte-Carlo technique.

For the inverse cross section, σinv, MEM uses the Dostrovsky’s formula [13] for all emitted
nucleons and complex particles (d, t, 3He, and 4He):

σinv(ε) = σgα

(
1 +

β

ε

)
, (37)

which is often written as

σinv(ε) =

{
σgcn(1 + b/ε) for neutrons
σgcj(1− V/ε) for charged particles ,
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where σg = πR2
d [fm2] is the geometrical cross section. “d” denotes the “daughter” nucleus

with mass and charge numbers Ad and Zd produced from the “parent” nucleus “i” with mass
and charge numbers Ai and Zi after the emission of the particle “j” with mass and charge
numbers Aj and Zj and kinetic energy ε; Rd = r0A

1/3
d , and r0 = 1.5 fm. α and β are defined

as:
α = 0.76 + 2.2Ad MeV,

β =
2.12A

−2/3
d − 0.05

0.76 + 2.2A
−1/3
d

MeV,

and cj is estimated by interpolation of the tabulated values published in Ref. [13].
The Coulomb barrier (in MeV) is estimated as:

V = kjZjZde
2/Rc , (38)

where Rc = r0(A
1/3
d +A

1/3
j ), r0 = 1.5 fm, and the penetrability coefficients kj are calculated

via interpolation of the tabulated values published in Ref. [13].
Assuming an equidistant level scheme with the single-particle density g, the level density

of the n-exciton state can be calculated as [76]

ω(p, h, E) =
g(gE)p+h−1

p!h!(p+ h− 1)!
. (39)

This expression should be substituted into Eq. (36). For the transition rates (35), one needs
the number of states taking into account the selection rules for intranuclear exciton-exciton
scattering. The appropriate formulae have been derived by Williams [77] and later corrected
for the exclusion principle and indistinguishability of identical excitons in Refs. [78, 79]:

ω+(p, h, E) =
1

2
g

[gE −A(p+ 1, h+ 1)]2

n+ 1

[gE −A(p+ 1, h+ 1)

gE −A(p, h)

]n−1

,

ω0(p, h, E) =
1

2
g

[gE −A(p, h)]

n
[p(p− 1) + 4ph+ h(h− 1)] ,

ω−(p, h, E) =
1

2
gph(n− 2) , (40)

whereA(p, h) = (p2+h2+p−h)/4−h/2. By neglecting the difference of matrix elements with
different ∆n, M+ = M− = M0 = M , the value of M for a given nuclear state is estimated
by associating the λ+(p, h, E) transition with the probability for quasi-free scattering of a
nucleon above the Fermi level on a nucleon of the target nucleus:

< σ(vrel)vrel >

Vint
=
π

~
|M |2 g[gE −A(p+ 1, h+ 1)]

n+ 1

[gE −A(p+ 1, h+ 1)

gE −A(p, h)

]n−1

. (41)

Here, Vint is the interaction volume estimated as Vint = 4
3
π(2rc +λ/2π)3, with the de Broglie

wave length λ/2π corresponding to the relative velocity vrel =
√

2Trel/mN . A value of the
order of the nucleon radius is used for rc in the CEM: rc = 0.6 fm.
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The averaging in the left-hand side of Eq. (41) is carried out over all excited states taking
into account the Pauli principle in the approximation

< σ(vrel)vrel >'< σ(vrel) >< vrel > . (42)

The averaged cross section < σ(vrel) > is calculated by the Monte-Carlo simulation method
and by introducing a factor η effectively taking into account the Pauli principle exactly as
is done in the Fermi-gas model.

σ(vrel) =
1

2
[σpp(vrel) + σpn(vrel)]η(TF/T ) , where (43)

η(x) =

{
1− 7

5
x, if x ≤ 0.5 ,

1− 7
5
x+ 2

5
x(2− 1

x
)5/2, if x > 0.5 .

(44)

Here, vrel is the relative velocity of the excited nucleon (exciton) and the target nucleon
in units of the speed of light and T is the kinetic energy of the exciton. The free-particle
interaction cross sections σpp(vrel) and σpn(vrel) in Eq. (43) are estimated using the relations
suggested by Metropolis et al. [80]

σpp(vrel) =
10.63

v2
rel

− 29.92

vrel
+ 42.9 ,

σpn(vrel) =
34.10

v2
rel

− 82.2

vrel
+ 82.2 , (45)

where the cross sections are given in mb.
The relative kinetic energy of colliding particles necessary to calculate < vrel > and the

factor η in Eqs. (43, 44) are estimated in the so-called “right-angle-collision” approxima-
tion [10], i.e. as a sum of the mean kinetic energy of an excited particle (exciton) measured
from the bottom of the potential well Tp = TF + E/n plus the mean kinetic energy of an
intranuclear nucleon partner TN = 3TF/5, that is Trel = Tp + TN = 8TF/5 + E/n.

Combining (35), (39), and (41), the transition rates can be written as:

λ+(p, h, E) =
< σ(vrel)vrel >

Vint
,

λ0(p, h, E) =
< σ(vrel)vrel >

Vint

n+ 1

n

[ gE −A(p, h)

gE −A(p+ 1, h+ 1)

]n+1p(p− 1) + 4ph+ h(h− 1)

gE −A(p, h)
,

λ−(p, h, E) =
< σ(vrel)vrel >

Vint

[ gE −A(p, h)

gE −A(p+ 1, h+ 1)

]n+1ph(n+ 1)(n− 2)

[gE −A(p, h)]2
. (46)

CEM considers the possibility of fast d, t, 3He, and 4He emission at the preequilibrium
stage of a reaction in addition to the emission of nucleons. It is assumed that in the course
of a reaction pj excited nucleons (excitons) are able to condense with probability γj forming
a complex particle which can be emitted during the preequilibrium state. A modification
of Eq. (36) for the complex-particle emission rates is described in detail in Refs. [2]. The
“condensation” probability γj is estimated in those references as the overlap integral of the
wave function of independent nucleons with that of the complex particle (cluster)

γj ' p3
j(Vj/V )pj−1 = p3

j(pj/A)pj−1 . (47)
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This is a rather crude estimate. In the usual way the values γj are taken from fitting the
theoretical preequilibrium spectra to the experimental ones, which gives rise to an additional,
as compared to (47), dependence of the factor γj on pj and excitation energy (see more details
and proper references in [1]).

The single-particle density gj for complex-particle states is found in the CEM by assuming
the complex particles move freely in a uniform potential well whose depth is equal to the
binding energy of this particle in a nucleus [2]

gj(T ) =
V (2sj + 1)(2µj)

3/2

4π2~3
(T +Bj)

1/2 . (48)

This is a rather crude approximation and it does not provide a good prediction of emission
of preequilibrium α particles. In CEM03.03, to improve the description of preequilibrium
complex-particle emission, γj is calculated by multiplying the estimate provided by Eq. (47)
by an empirical coefficient Mj(A,Z, T0) whose values are fitted to available nucleon-induced
experimental complex-particle spectra. More details and proper references on this feature of
CEM03.03 can be found in Refs. [1, 3].

CEM and LAQGSM predict forward-peaked (in the laboratory system) angular distribu-
tions for preequilibrium particles. For instance, CEM03.03 assumes that a nuclear state with
a given excitation energy E∗ should be specified not only by the exciton number n but also
by the momentum direction Ω. Following Ref. [81], the master equation (11) from Ref. [2]
can be generalized for this case provided that the angular dependence for the transition rates
λ+, λ0, and λ− (Eq. (46) is factorized. In accordance with Eqs. (41) and (42), in the CEM
it is assumed that

< σ >→< σ > F (Ω) , (49)

where

F (Ω) =
dσfree/dΩ∫
dΩ′dσfree/dΩ′

. (50)

The scattering cross section dσfree/dΩ is assumed to be isotropic in the reference frame of
the interacting excitons, thus resulting in an asymmetry in both the nucleus center-of-mass
and laboratory frames. The angular distributions of preequilibrium complex particles are
assumed [2] to be similar to those for the nucleons in each nuclear state.

This calculation scheme is easily realized by the Monte-Carlo technique. It provides
a good description of double differential spectra of preequilibrium nucleons and a not-so-
good but still satisfactory description of complex-particle spectra from different types of
nuclear reactions at incident energies from tens of MeV to several GeV. For incident en-
ergies below about 200 MeV, Kalbach [82] has developed a phenomenological systematics
for preequilibrium-particle angular distributions by fitting available measured spectra of nu-
cleons and complex particles. As the Kalbach systematics are based on measured spectra,
they describe very well the double-differential spectra of preequilibrium particles and gener-
ally provide a better agreement of calculated preequilibrium complex-particle spectra with
data than does the CEM approach based on Eqs. (49, 50). This is why in CEM03.03 and
LAQGSM03.03, the Kalbach systematics [82] have been incorporated to describe angular
distributions of both preequilibrium nucleons and complex particles at incident energies up
to 210 MeV. At higher energies, we use the CEM approach based on Eqs. (49, 50).
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By “preequilibrium particles” particles which are emitted after the cascade stage of a
reaction but before achieving statistical equilibrium at a time teq are meant, which is fixed
by the condition λ+(neq, E) = λ−(neq, E) from which one can get

neq '
√

2gE . (51)

At t ≥ teq (or n ≥ neq), the behavior of the remaining excited compound nucleus is described
in the framework of both the Weisskopf-Ewing statistical theory of particle evaporation [83]
and fission competition according to Bohr-Wheeler theory [84].

The parameter g entering into Eqs. (46) and (51) is related to the level-density parameter
of single-particle states a = π2g/6. At the preequilibrium stage, the level-density parameter
a is calculated with the approximation derived in Ref. [85] in the form proposed initially by
Ignatyuk et al. [86], following the method by Iljinov et al. [87]:

a(Z,N,E∗) = ã(A)

{
1 + δWgs(Z,N)

f(E∗ −∆)

E∗ −∆

}
, (52)

where
ã(A) = αA+ βA2/3Bs (53)

is the asymptotic Fermi-gas value of the level-density parameter at high excitation energies.
Here, Bs is the ratio of the surface area of the nucleus to the surface area of a sphere of the
same volume (for the ground state of a nucleus, Bs ≈ 1), and

f(E) = 1− exp(−γE) . (54)

E∗ is the total excitation energy of the nucleus, related to the “thermal” energy U by:
U = E∗ − ER −∆, where ER and ∆ are the rotational and pairing energies, respectively.

CEM03.03 uses the shell correction δWgs(Z,N) by Möller et al. [88] and the pairing
energy shifts from Möller, Nix, and Kratz [89]. The values of the parameters α, β, and γ
were derived in Ref. [85] by fitting the the same data analyzed by Iljinov et al. [87] (in Ref.
[85] it was discovered that Iljinov et al. used 11/

√
A for the pairing energies ∆ in deriving

their level-density systematics instead of the value of 12/
√
A stated in Ref. [87]; it was also

found several misprints in the nuclear level-density data shown in their Tables. 1 and 2 used
in the fit):

α = 0.1463, β = −0.0716, and γ = 0.0542 .

Several investigations have shown that the standard version of the CEM [2] provides
an overestimation of preequilibrium particle emission from different reactions we have an-
alyzed (see more details in [90, 91]). One way to solve this problem suggested in Ref. [90]
is to change the criterion for the transition from the cascade stage to the preequilibrium
one, as described in previous section. Another easy way suggested in Ref. [90] to shorten
the preequilibrium stage of a reaction is to arbitrarily allow only transitions that increase
the number of excitons, ∆n = +2, i.e., only allow the evolution of a nucleus toward the
compound nucleus. In this case, the time of the equilibration will be shorter and fewer
preequilibrium particles will be emitted, leaving more excitation energy for the evaporation.
Such a “never-come-back” approach is used by some other exciton models, for instance, by
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the Multistage Preequilibrium Model (MPM) [12] presented in the following subsection. This
approach was used in the CEM2k [90] version of the CEM and it allowed the authors of Ref.
[90] to describe much better the p+A reactions measured at GSI in inverse kinematics at
energies around 1 GeV/nucleon. Nevertheless, the “never-come-back” approach seems un-
physical, therefore CEM and LAQGSM no longer use it at present. The problem of emitting
fewer preequilibrium particles in the CEM is addressed now following Veselský [92]. It is
assumed that the ratio of the number of quasi-particles (excitons) n at each preequilibrium
reaction stage to the number of excitons in the equilibrium configuration neq, corresponding
to the same excitation energy, to be a crucial parameter for determining the probability of
preequilibrium emission Ppre. This probability for a given preequilibrium reaction stage is
evaluated using the formula

Ppre(n/neq) = 1− exp
(
−(n/neq − 1)

2σ2
pre

)
(55)

for n ≤ neq and equal to zero for n > neq. The basic assumption leading to Eq. (55) is that
Ppre depends exclusively on the ratio n/neq. The parameter σpre is a free parameter and it
is assumed no dependence on excitation energy [92]. Test-calculations of several reactions
using different values of σpre show that an overall reasonable agreement with available data
can be obtained using σpre = 0.4–0.5 (see Fig. 11 in Ref. [91]). In CEM03.03, the fixed
value σpre = 0.4 was chosen and Eqs. (51, 55) are used as criteria for the transition from
the preequilibrium stage of reactions to evaporation, instead of using the “never-come-back”
approach along with Eq. (51), as was done in CEM2k.

Algorithms of many preequilibrium routines are changed in CEM03.03 and almost all
these routines are rewritten, which has speeded up the code significantly. Finally, some bugs
were fixed as previously mentioned.

3.2 Preequilibrium Reactions Simulated with the Bertini INC and
ISABEL

The Multistage Preequilibrium Model (MPM) [12] was developed at LANL as a Monte Carlo
implementation of the exciton preequilibrium model which may be used in transport codes
to replace the intranuclear cascade at low energies and, at higher energies, to supplement the
intranuclear cascade as a subsequent preequilibrium emission model before application of the
evaporation model. Initially, MPM was developed in a stand-alone code called PREEQ1;
later, it was implemented in LAHET [18], MCNPX [54], and, finally, in MCNP6. In order
to develop MPM, models and methods used in the well known “analytical” preequilibrium
codes GNASH [93], PRECO [94], and GRYPHON [95] have been supplemented by techniques
peculiar to the Monte Carlo method or dictated by considerations of computing efficiency
when using the Monte Carlo method.

Like MEM [10, 11] discussed in the previous subsection, MPM considers at each pree-
quilibrium stage a possibility of emission of a neutron, proton, deuteron, triton, 3He, or
4He; alternatively, the nuclear configuration may evolve toward an equilibrated compound
nucleus. Actually, from a general physics idea point of view, MPM is quite similar to MEM.
However, these two preequilibrium models differ is several details, the most important dif-
ferences being in:
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1) the master equation describing the evolution of the system;
2) approximation of the transaction matrix element;
3) calculation of the inverse cross sections;
4) level density parameter used in calculations;
5) angular distribution of preequilibrium particles;
6) initial number of excitons after INC.
Below we address briefly all these points as implemented in MPM.
1) In both MEM and MPM, the probability of finding the system at time t in the Eα

state, P (E,α, t), is given by the differential equation:

δP (E,α, t)

δt
=
∑
α 6=α′

[λ(Eα,Eα′)P (E,α′, t)− λ(Eα′, Eα)P (E,α, t)]. (56)

Here λ(Eα,Eα′) is the energy-conserving probability rate, defined in the first-order time-
dependent perturbation theory as

λ(Eα,Eα′) =
2π

~
| < Eα|V |Eα′ > |2ωα(E) . (57)

The matrix element < Eα|V |Eα′ > is believed to be a smooth function of energy, and ωα(E)
is the density of the final states of the system.

As long as the transition probabilities λ(Eα,Eα′) are time-independent, the waiting
time for the system in the Eα state has an exponential distribution (Poisson flow) with
the average lifetime ~/Λ(α,E) = ~/

∑′
α λ(Eα,Eα′). This prompts a simple method of

solving the related system of Eq. (56): simulation of the random process by the Monte-Carlo
technique. In this treatment, it is possible to generalize the exciton model to all nuclear
transitions with ∆n = 0,±2, and the multiple emission of particles and to depletion of
nuclear states due to particle emission. In this case the system (56) becomes [2]:

δP (E,α, t)

δt
= −Λ(n,E)P (E, n, t)

+λ+(n− 2, E)P (E, n− 2, t) + λ0(n,E)P (E, n, t) + λ−(n+ 2, E)P (E, n+ 2, t) (58)

+
∑
j

∫
dT

∫
dE ′λj(n,E, T ) × P (E ′, n+ nj, t)δ(E

′ − E −Bj − T ).

This master equation is written in its general form, as used in MEM. However, in MPM,
it is assumed [12] that:

λ+(n,E) >> λ−(n,E) and that: λ−(n,E) ≈ λ0(n,E) ≈ 0 . (59)

In other words, in contrast to MEM, MPM considers only transactions towards the equili-
bration, with ∆n = +2, and neglects all transactions with ∆n = −2 and ∆n = 0. Note
that this “never-come-back” approach is used also by other preequilibrium models, like in
FLUKA [96], and was used in an older version of CEM, CEM2k [90].

2) As noted above, by neglecting the difference of matrix elements with different ∆n,
M+ = M− = M0 = M , the transaction matrices elements M in MEM is estimated by
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associating the λ+(p, h, E) transition with the probability for quasi-free scattering of a nu-
cleon above the Fermi level on a nucleon of the target nucleus, as defined by Eq. (41). On
the other hand, MPM considers only ∆n = +2 transactions and their matrix elements are
parameterized following Refs. [93, 94] as:

|M2| =
kn

A3E

[
E/n

7 MeV

E/n

2 MeV

]1/2

for E/n < 2 MeV,

=
kn

A3E

[
E/n

7 MeV

]1/2

for 2 MeV ≤ E/n < 7 MeV,

=
kn

A3E
for 7 MeV ≤ E/n < 15 MeV,

=
kn

A3E

[
15 MeV

E/n

]1/2

for 15 MeV ≤ E/n ,

where A, E, and n are the mass number of the nucleus, its excitation energy, and the number
of excitons, respectively. The constant k is taken to be 135 MeV3 [94].

3) For the inverse cross section σinv(ε) ≡ σb(ε), MPM employs the geometric cross section
of reference [94] with a Coulomb barrier penetration factor Tb(ε):

σb(ε) = π(<A1/3
r +Rb + λ(ε)/(2π))2Tb(ε) , (60)

where:
Ar is the mass number of the potential residual nucleus;
< = 1.23 fm;
Rb = 0 for b = n and p;
Rb = 0.8 fm for b = d , t , and 3He;
Rb = 1.2 fm for b =4He;
λ(ε)/(2π) is the (non relativistic) reduced channel wavelength;
Tn(ε) = 1 for neutrons. The Coulomb barrier penetration factor is given by

Tb(ε) = (1− kbVb/ε) , (61)

with the Coulomb energy Vb given by

Vb =
zb(Z − zb)e2

<cA1/3
r +Rb

for <c = 1.70 fm. The factors kb < 1 reflect barrier penetration and are obtained from a
parameterization of the s-wave Coulomb barrier transmission factor at the condition ε = Vb.

4) Like in MEM [10, 11], the level density formulation employed in MPM is that of
Williams [77, 78] (see Eqs. (39) and (40)). But in contrast to MEM, to obtain the single-
particle level density parameter g, MPM uses the energy dependent formulation of Ignatyuk
[86] as implemented in GNASH [93] with the provision that

lim
E→0

g(E) = g0
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where g0 is the level density parameter obtained from Gilbert and Cameron [97].
5) In contrast to MEM [10, 11], the emission of the second and subsequent preequilibrium

particles from the excited nucleus is treated by MPM as isotropic in the center of mass (COM)
system; the assumption is made that memory of the incident particle direction is lost after
the emission of one particle. However, this is not the case for first stage emission. For the
first stage emission, just like MEM does, MPM uses the parameterization of the angular
distribution based on an analysis of experimental data developed by Kalbach [82].

As described in Ref. [82], the probability distribution for µ = cosθ is given by

p(µ) =
a

2 sinh a
[cosh aµ+ Fmsd sinh aµ] , (62)

where θ is the emission angle with respect to the direction of the incident particle. The quan-
tity a is determined by the Kalbach parameterization [82]. The parameter Fmsd is defined
[94] as that fraction of the strength of the emitting state which arises only from unbound
states in the present and all previous exciton configurations. With the more complex pree-
quilibrium model of reference [94], Fmsd may be calculated; in the MPM model, it must be
supplied. In GNASH [93], Fmsd = 1. In a transport code, the completion of an intranu-
clear cascade is equivalent to saying that the system has reached a “bound” configuration;
a subsequent MPM phase would then have Fmsd = 0. When MPM is used as a stand-alone
code, PREEQ1, it is assumed that Fmsd decreases geometrically from Fmsd = 1 in the initial
configuration with exciton number n0 to Fmsd = f = 0.1 at the equilibrium exciton number
nmax

Fmsd = fx , (63)

where

x =
n− n0

nmax − n0

and nmax =
√

1.6gE .

6) MEM is used after the INC of CEM and LAQGSM, which calculate exactly and
provide for MEM the initial number of excited particles p and holes h (n = p + h). With
MPM, the situation is different. Namely, when MPM is used after ISABEL [9], it is possible
to determine explicitly the particle-hole state of the residual nucleus since a count of the
valid excitations from the Fermi sea (and the filling of existing holes) is provided. To define
the initial condition for the MPM, the number of particle-hole pairs is reduced by one for
each intranuclear collision for which both exiting nucleons are below the top of the nuclear
potential well. This method is the only option implemented in MCNP6 to link the MPM
with the ISABEL INC.

In adapting the MPM to the Bertini INC, it has not been possible yet to extract the
same detailed information from the intranuclear cascade history. Consequently, the algo-
rithm which defines the interface between the Bertini INC and the MPM is a rather crude
approximation, intended to permit initial evaluation of the MPM but open to further im-
provement. In this case, the initial condition for the MPM is one particle-hole pair beyond
the minimum particle-hole configuration allowed by the outcome of the intranuclear cascade
(“normal MPM”). For the initial condition algorithm used with the Bertini INC, the user
has a choice of invoking the MPM in one of three optional modes:
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a) the MPM continues from the final state of the INC with the initial condition defined
as above (“normal MPM” used when the parameter ipreq on the LCA MCNP6 input card
has the default value of 1);

b) the INC is used only to determine that an interaction has occurred and the MPM
proceeds from the excited nucleus formed by the absorption of the incident particle (“pure
MPM”) employed when ipreq = 3 and iexisa = 0 on the LCA MCNP6 input card;

c) a random selection is made of one of the above modes at each collision with a probability
P = min[E1/Ec, 1.0] of choosing the “pure MPM” mode, where Ec is the incident energy in
MeV and E1 = 25 MeV (“hybrid MPM”) used when ipreq = 2 and iexisa = 0 on the LCA
MCNP6 input card;

d) ipreq = 0 on the LCA input card tells MCNP6 to not use at all the MPM after INC.
More details on MPM can by found in Refs. [12, 18].

4 Evaporation Reactions

After the fast and intermediate stages of nuclear reactions described with a chosen INC
and preequilibrium model, as a rule, we get an excited compound nucleus and its further
deexcitation is calculated with an evaporation model. MCNP6 has and uses three different
evaporation models: 1) an extension of the Generalized Evaporation Model code GEM2
Furihata [99]–[101] used with the CEM03.03 and LAQGSM03.03 event generators (only); 2)
the EVAP [14]-[17] evaporation model used with the Bertini INC [8] and ISABEL [9] models;
3) the ABLA evaporation model [7] merged in MCNP6 with the INCL4.2 intranuclear cascade
code [6], which uses only ABLA, independently of what the users choose for the evaporation
and fission models in their MCNP6 input files.

In the following subsections, all these three evaporation models are briefly reviewed.

4.1 Evaporation Reactions in CEM03.03 and LAQGSM03.03

CEM03.03 and LAQGSM03.03 use an extension of the Generalized Evaporation Model
(GEM) code GEM2 by Furihata [99]–[101] after the preequilibrium stage of reactions to
describe evaporation of nucleons, complex particles, and light fragments heavier than 4He
(up to 28Mg) from excited compound nuclei and to describe their fission, if the compound
nuclei are heavy enough to fission (Z ≥ 65). The GEM is an extension by Furihata of the
Dostrovsky evaporation model [13] as implemented in LAHET [18] to include up to 66 types
of particles and fragments that can be evaporated from an excited compound nucleus plus
a modification of the version of Atchison’s fission model [20] used in LAHET. Many of the
parameters were adjusted by Furihata for a better description of fission reactions when using
it in conjunction with the extended evaporation model.

A very detailed description of the GEM, together with a large amount of results ob-
tained for many reactions using the GEM coupled either with the Bertini or ISABEL INC
models may be found in [99, 100]. Therefore, only the main features of the GEM are pre-
sented here, following mainly [100] and using as well useful information obtained in private
communications with Dr. Furihata.
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Furihata did not change in the GEM the general algorithms used in LAHET to simu-
late evaporation and fission. The decay widths of evaporated particles and fragments are
estimated using the classical Weisskopf-Ewing statistical model [83]. In this approach, the
decay probability Pj for the emission of a particle j from a parent compound nucleus i with
the total kinetic energy in the center-of-mass system between ε and ε+ dε is

Pj(ε)dε = gjσinv(ε)
ρd(E −Q− ε)

ρi(E)
εdε, (64)

where E [MeV] is the excitation energy of the parent nucleus i with mass Ai and charge Zi,
and d denotes a daughter nucleus with mass Ad and charge Zd produced after the emission
of ejectile j with mass Aj and charge Zj in its ground state. σinv is the cross section for the
inverse reaction, ρi and ρd are the level densities [MeV]−1 of the parent and the daughter
nucleus, respectively. gj = (2Sj + 1)mj/π

2~2, where Sj is the spin and mj is the reduced
mass of the emitted particle j. The Q-value is calculated using the excess mass M(A,Z) as
Q = M(Aj, Zj)+M(Ad, Zd)−M(Ai, Zi). In GEM2, four mass tables are used to calculate Q
values, according to the following priorities, where a lower priority table is only used outside
the range of validity of the higher priority one: (1) the Audi-Wapstra mass table [102],
(2) theoretical masses calculated by Möller et al. [88], (3) theoretical masses calculated by
Comay et al. [103], (4) the mass excess calculated using the old Cameron formula [104]. As
does LAHET, GEM2 uses Dostrovsky’s formula [13] to calculate the inverse cross section
σinv for all emitted particles and fragments (see Eqs. (37) and (38) above).

One important new ingredient in GEM2 in comparison with LAHET, which considers
evaporation of only 6 particles (n, p, d, t, 3He, and 4He), is that Furihata includes the
possibility of evaporation of up to 66 types of particles and fragments and incorporates into
GEM2 several alternative sets of parameters b, cj, kj, Rb, and Rc for each particle type.

The 66 ejectiles considered by GEM2 for evaporation are selected to satisfy the following
criteria: (1) isotopes with Zj ≤ 12; (2) naturally existing isotopes or isotopes near the
stability line; (3) isotopes with half-lives longer than 1 ms. All the 66 ejectiles considered by
GEM2 are shown in Table 2.

GEM2 includes several options for the parameter set in expressions (37, 38):
1) The “simple” parameter set is given as cn = cj = kj = 1, b = 0, and Rb = Rc =

r0(A
1/3
j + A

1/3
d ) [fm]; users need to input r0.

2) The “precise” parameter set is used in GEM2 as the default, and this set is used in
CEM03.03.

A) For all light ejectiles up to α (Aj ≤ 4), the parameters determined by Dostrovsky et al.

[13] are used in GEM2, namely: cn = 0.76 + caA
−1/3
d , b = (baA

−2/3
d − 0.050)/(0.76 + caA

−1/3
d )

(and b = 0 for Ad ≥ 192), where ca = 1.93 and ba = 1.66, cp = 1+c, cd = 1+c/2, ct = 1+c/3,
c3He = cα = 0, kp = k, kd = k + 0.06, kt = k + 0.12, k3He = kα − 0.06, where c, k, and kα
are listed in Table 3 for a set of Zd. Between the Zd values listed in Table 3, c, k, and kα
are interpolated linearly.The nuclear distances are given by Rb = 1.5A1/3 for neutrons and
protons, and 1.5(A

1/3
d + A

1/3
j ) for d, t, 3He, and α.

The nuclear distance for the Coulomb barrier is expressed as Rc = Rd + Rj, where
Rd = rc0A

1/3, rc0 = 1.7, and Rj = 0 for protons, and Rj = 1.2 for d, t, 3He, and 4He. We note
that several of these parameters are similar to the original values published by Dostrovsky
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Table 2: The evaporated particles considered by GEM2

Zj Ejectiles
0 n
1 p d t
2 3He 4He 6He 8He
3 6Li 7Li 8Li 9Li
4 7Be 9Be 10Be 11Be 12Be
5 8B 10B 11B 12B 13B
6 10C 11C 12C 13C 14C 15C 16C
7 12N 13N 14N 15N 16N 17N
8 14O 15O 16O 17O 18O 19O 20O
9 17F 18F 19F 20F 21F

10 18Ne 19Ne 20Ne 21Ne 22Ne 23Ne 24Ne
11 21Na 22Na 23Na 24Na 25Na
12 22Mg 23Mg 24Mg 25Mg 26Mg 27Mg 28Mg

Table 3: k, kα, and c parameters used in GEM2

Zd k kα c
≤ 20 0.51 0.81 0.0
30 0.60 0.85 -0.06
40 0.66 0.89 -0.10
≥ 50 0.68 0.93 -0.10

Table 4: kp, cp, kα, and cα parameters from Ref. [13]

Zd kp cp kα cα
10 0.42 0.50 0.68 0.10
20 0.58 0.28 0.82 0.10
30 0.68 0.20 0.91 0.10
50 0.77 0.15 0.97 0.08
≥ 70 0.80 0.10 0.98 0.06
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et al. [13] but not exactly the same. Dostrovsky et al. [13] had ca = 2.2, ba = 2.12, and
rc0 = 1.5. Also, for the k, kα, and c parameters shown in Table 3, they had slightly different
values, shown in Table 4.

B) For fragments heavier than α (Aj ≥ 4), the “precise” parameters of GEM2 use
values by Matsuse et al. [105], namely: cj = k = 1, Rb = R0(Aj) + R0(Ad) + 2.85 [fm],
Rc = R0(Aj) +R0(Ad) + 3.75 [fm], where R0(A) = 1.12A1/3 − 0.86A−1/3.

3) The code GEM2 contains two other options for the parameters of the inverse cross
sections.

A) A set of parameters due to Furihata for light ejectiles in combination with Matsuse’s
parameters for fragments heavier than α. Furihata and Nakamura determined kj for p, d, t,
3He, and α as follows [101]:

kj = c1 log(Zd) + c2 log(Ad) + c3.

The coefficients c1, c2, and c3 for each ejectile are shown in Table 5.

Table 5: c1, c2, and c3 for p, d, t, 3He, and α from [101]

Ejectile c1 c2 c3

p 0.0615 0.0167 0.3227
d 0.0556 0.0135 0.4067
t 0.0530 0.0134 0.4374

3He 0.0484 0.0122 0.4938
α 0.0468 0.0122 0.5120

When these parameters are chosen in GEM2, the following nuclear radius R is used in
the calculation of V and σg:

R =



0 for A = 1 ,
1.2 for 2 ≤ A ≤ 4 ,
2.02 for 5 ≤ A ≤ 6 ,
2.42 for A = 7 ,
2.83 for A = 8 ,
3.25 for A = 9 ,
1.414A

1/3
d + 1 for A ≥ 10 .

B) The second new option in GEM2 is to use Furihata’s parameters for light ejectiles
up to α and the Botvina et al. [106] parameterization for inverse cross sections for heavier
ejectiles. Botvina et al. [106] found that σinv can be expressed as

σinv = σg

{
(1− V/ε) for ε ≥ V + 1 [MeV],
exp[α(ε− V − 1)]/(V + 1) for ε < V + 1 [MeV],

(65)

where
α = 0.869 + 9.91/Zj,

44



V =
ZjZd

rb0(A
1/3
j + A

1/3
d )

,

rb0 = 2.173
1 + 6.103× 10−3ZjZd
1 + 9.443× 10−3ZjZd

[fm].

The expression of σinv for ε < V + 1 shows the fusion reaction in the sub-barrier region.
When using Eq. (65) instead of Eq. (37), the total decay width for a fragment emission
can not be calculated analytically. Therefore, the total decay width must be calculated
numerically and takes much CPU time.

The total decay width Γj is calculated by integrating Eq. (64) with respect to the total
kinetic energy ε from the Coulomb barrier V up to the maximum possible value, (E − Q).
The good feature of Dostrovsky’s approximation for the inverse cross sections, Eq. (37), is
its simple energy dependence that allows the analytic integration of Eq. (64). By using Eq.
(37) for σinv, the total decay width for the particle emission is

Γj =
gjσgα

ρi(E)

∫ E−Q

V

ε
(

1 +
β

ε

)
ρd(E −Q− ε)dε. (66)

The level density ρ(E) is calculated in GEM2 according to the Fermi-gas model using the
expression [97]

ρ(E) =

√
π

12

exp(2
√
a(E − δ))

a1/4(E − δ)5/4
, (67)

where a is the level-density parameter and δ is the pairing energy in MeV. As does LAHET,
GEM2 uses the δ values evaluated by Cook et al. [107]. For those values not evaluated by
Cook et al., δ’s from Gilbert and Cameron [97] are used instead. The simplest option for
the level-density parameter in GEM2 is a = Ad/8 [MeV−1], but the default is the Gilbert-
Cameron-Cook-Ignatyuk (GCCI) parameterization from LAHET [18]:

a = ã
1− e−u

u
+ aI

(
1− 1− e−u

u

)
, (68)

where u = 0.05(E − δ), and

aI = (0.1375− 8.36× 10−5Ad)× Ad,

ã =

{
Ad/8 for Zd < 9 or Nd < 9,
Ad(a

′ + 0.00917S) for others.

For deformed nuclei with 54 ≤ Zd ≤ 78, 86 ≤ Zd ≤ 98, 86 ≤ Nd ≤ 122, or 130 ≤ Nd ≤ 150,
a′ = 0.12 while a′ = 0.142 for other nuclei. The shell corrections S is expressed as a sum of
separate contributions from neutrons and protons, i.e. S = S(Zd) + S(Nd) from [97, 107]
and are tabulated in [99].

The level density is calculated using Eq. (67) only for high excitation energies, E ≥ Ex,
where Ex = Ux + δ and Ux = 2.5 + 150/Ad (all energies are in MeV). At lower excitation
energies, the following [97] is used for the level density:

ρ(E) =
π

12

1

T
exp((E − E0)/T ), (69)
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where T is the nuclear temperature defined as 1/T =
√
a/Ux−1.5/Ux. To provide a smooth

connection of Eqs. (67) and (69) at E = Ex, E0 is defined as E0 = Ex−T (log T −0.25 log a−
1.25 logUx + 2

√
aUx).

For E − Q − V < Ex, substituting Eq. (69) into Eq. (67) we can calculate the integral
analytically, if we neglect the dependence of the level-density parameter a on E:

Γj =
πgjσgα

12ρi(E)
{I1(t, t) + (β + V )I0(t)}, (70)

where I0(t) and I1(t, tx) are expressed as

I0(t) = e−E0/T (et − 1),

I1(t, tx) = e−E0/TT{(t− tx + 1)etx − t− 1},

where t = (E − Q − V )/T and tx = Ex/T . For E − Q − V ≥ Ex, the integral of Eq.
(66) cannot be solved analytically because of the denominator in Eq. (67). However, it is
approximated as

Γj =
πgjσgα

12ρi(E)
[I1(t, tx) + I3(s, sx)e

s + (β + V ){I0(tx)− I2(s, sx)e
s}], (71)

where I2(s, sx) and I3(s, sx) are given by

I2(s, sx) = 2
√

2{s−3/2 + 1.5s−5/2 + 3.75s−7/2 − (s−3/2
x + 1.5s−5/2

x + 3.75s−7/2
x )esx−s},

I3(s, sx) = (
√

2a)−1[2s−1/2 + 4s−3/2 + 13.5s−5/2 + 60.0s−7/2 + 325.125s−9/2

− {(s2 − s2
x)s
−3/2
x + (1.5s2 + 0.5s2

x)s
−5/2
x + (3.75s2 + 0.25s2

x)s
−7/2
x + (12.875s2

+ 0.625s2
x)s
−9/2
x + (59.0625s2 + 0.9375s2

x)s
−11/2
x + (324.8s2

x + 3.28s2
x)s
−13/2
x }esx−s],

with s = 2
√
a(E −Q− V − δ) and sx = 2

√
a(Ex − δ).

The particle type j to be evaporated is selected in GEM2 by the Monte-Carlo method
according to the probability distribution calculated as Pj = Γj/

∑
j Γj, where Γj is given by

Eqs. (70) or (71). The total kinetic energy ε of the emitted particle j and the recoil energy
of the daughter nucleus is chosen according to the probability distribution given by Eq. (64).
The angular distribution of ejectiles is simulated to be isotropic in the center-of-mass system.

According to Friedman and Lynch [108], it is important to include excited states in the
particle emitted via the evaporation process along with evaporation of particles in their
ground states, because it greatly enhances the yield of heavy particles. Taking this into
consideration, GEM2 includes evaporation of complex particles and light fragments both in
the ground states and excited states. An excited state of a fragment is included in calculations
if its half-life T1/2(s) satisfies the following condition:

T1/2

ln 2
>

~
Γ∗j
, (72)

where Γ∗j is the decay width of the excited particle (resonance). GEM2 calculates Γ∗j in the
same manner as for a ground-state particle emission. The Q-value for the resonance emission
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is expressed as Q∗ = Q + E∗j , where E∗j is the excitation energy of the resonance. The spin
state of the resonance S∗j is used in the calculation of gj, instead of the spin of the ground
state Sj. GEM2 uses the ground state masses mj for excited states because the difference
between the masses is negligible.

Instead of treating a resonance as an independent particle, GEM2 simply enhances the
decay width Γj of the ground state particle emission as follows:

Γj = Γ0
j +

∑
n

Γnj , (73)

where Γ0
j is the decay width of the ground state particle emission, and Γnj is that of the nth

excited state of the particle j emission which satisfies Eq. (72).
The total-kinetic-energy distribution of the excited particles is assumed to be the same

as that of the ground-state particle. S∗j , E
∗
j , and T1/2 used in GEM2 are extracted from

the Evaluated Nuclear Structure Data File (ENSDF) database maintained by the National
Nuclear Data Center at Brookhaven National Laboratory [109].

Note that when including evaporation of up to 66 particles in GEM2, its running time
increases significantly compared to the case when evaporating only 6 particles, up to 4He.
The major particles emitted from an excited nucleus are n, p, d, t, 3He, and 4He. For most
cases, the total emission probability of particles heavier than α is negligible compared to
those for the emission of light ejectiles. Detailed studies of different reactions (see, e.g., [110]
and references therein) shows that if we need only nucleon and complex-particle spectra or
only spallation and fission products and are not interested at all in light fragments, we can
consider evaporation of only 6 types of particles in GEM2 and save much time, getting results
very close to the ones calculated with the more time consuming “66” option. In CEM03.03
and LAQGSM03.03, an input parameter called nevtype was introduced that defines the
number of types of particles to be considered at the evaporation stage. The index of each
type of particle that can be evaporated corresponds to the particle arrangement in Table
2, with values, e.g., of 1, 2, 3, 4, 5, and 6 for n, p, d, t, 3He, and 4He, with succeeding
values up to 66 for 28Mg. For all ten examples of inputs and outputs of CEM03.03 included
in Appendices 1 and 2 of the CEM03.03 User Manual [1], whose results are plotted in the
figures in Appendix 3 of [1], calculations have been performed taking into account only 6
types of evaporated particles (nevtype = 6) as well as with the “66” option (nevtype =
66) and the corresponding computing time is provided for these examples in the captions to
the appropriate figures shown in Appendix 3 of Ref. [1]. The “6” option can be up to several
times faster than the “66” option, providing meanwhile almost the same results.

MCNP6 uses as default nevtype = 66. When MCNP6 users have powerful computers
and do not care much about the computing time needed to complete their simulations, they
may not pay any attention to nevtype and MCNP6 will use its default value of 66. But
if/when MCNP6 users have to simulate very complex systems requiring a huge statistics and
their materials contain a good portion of preactinide nuclei like Au, Pb, or/and Bi, they can
save much computing time by changing the value of nevtype from its default value of 66 to
a smaller value provided on the 11th entry of the LCA card of the MCNP6 input file. In
such cases, it is recommended that users of CEM03.03 and LAQGSM03.03 event generators
of MCNP6 employ the default value of 66 for nevtype only when they are interested in all
fragments heavier than 4He; otherwise, it is recommended to use for the 11th parameter of
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the LCA MCNP6 input file card a value of 6, saving much computing time. Alternatively,
users may choose intermediate values of nevtype, for example 9 if one wants to calculate
the production of 6Li, or 14 for modeling the production of 9Be and lighter fragments and
nucleons only, while still saving computing time compared to running the code with the
maximum value of 66.

4.2 Evaporation Reactions with the Bertini INC and ISABEL

When using the Bertini INC [8] or ISABEL [9], MCNP6 employs after MPM [12] (or after
INC, if no preequilibrium reactions are choosing to be simulated, by using the option iprec
= 0 on the LCA MCNP6 input card) the EVAP [14]-[17] evaporation model as it was im-
plemented in LAHET [18], merged with the RAL [20] and the ORNL [19] fission models.
(Note that Bertini INC and ISABEL can be also used in MCNP6 with the ABLA evapora-
tion/fission model [7], if users chose ievap = 2 on the 7th entry of the LEA MCNP6 input
card. However, this option is not used often, ABLA is merged by default in MCNP6 with
INCL4.2 [6]; ABLA is discussed separately, in the next subsection.)

The EVAP model is used also in the case of incident protons with energies below or of the
order of only several tens of MeV, when the MCNP6 users do not like to use data libraries
(e.g., when the 3rd entry on the phys:h MCNP6 input card is set to 0, i.e., requiring to use
data libraries at energies up to 0 MeV, in other words, to not use them at all) and choose to
start the simulation directly with MPM, without any INC (i.e., when ipreq = 3 and iexisa
= 0 is specified on the LCA MCNP6 input card).

The EVAP evaporation code adopted and modified by Dr. Richard Prael for LAHET [18]
is based on the theory of emission of particles from excited compound nuclei originally due
to Weisskopf and Ewing [83] and implemented in the first Monte Carlo evaporation code by
Dostrovsky et al. [13]. EVAP is often cited in the literature as “the Dresner’s evaporation
model,” because of its implementation in the EVAP code by Dresner in Ref. [14]. However,
it needs to be mentioned that MCNP6 actually does not use the original EVAP code by
Dresner [14], which considers the possibility of evaporation up to 19 types of particles and
light fragments, from n to 10Be (see details in [14]). After the initial implementation by
Dresner [14], EVAP was further revised and improved in Refs. [15, 16, 17, 18]; it considers
now emission of only 6 types of ejectiles, namely: n, p, d, t, 3He, and 4He.

MCNP6 uses the latest version of EVAP. It was described in good detail in the previous
subsection, when discussing the GEM2 code by Furihata [99]–[101] adopted by the CEM03.03
and LAQGSM03.03 event generators of MCNP6, therefore this is not repeated here.

As discussed in the previous subsection, Dr. Shiori Furihata added many additional
options for the calculation of nuclear masses, shell and pairing corrections, inverse cross
sections, Coulomb barriers, and level density parameters in her GEM2 extension of the
EVAP code taken from LAHET. The version of EVAP used in MCNP6 employs only the
“standard” options available in LAHET for these quantities. Namely, it evaluates nuclear
masses using the Audi and Wabstra [102] or Wabstra and Bos [111] mass tables. For nuclei
with Z or N < 13, it uses the shell plus pairing energy corrections by Peele and Aebersold
[112]. The inverse cross sections in EVAP are calculated using the Dostrovsky approximation
[13]. The level density parameter a is calculated in EVAP using the Gilbert-Cameron-Cook-
Ignatyuk (GCCI) parameterization from LAHET [18] defined by Eq. (68).
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More details on the latest version of EVAP used in MCNP6 can be found in Refs. [14,
15, 16, 17, 18, 52].

4.3 Evaporation Reactions Simulated with INCL4.2

The INCL4.2 intranuclear cascade code is merged in MCNP6 only with the ABLA evapo-
ration/fission model [7] and will use only it, independently of what the users choose for the
evaporation and fission models in their MCNP6 input files.

ABLA is similar to many other evaporation/fission codes, but considers evaporation of
only n, p, and α. For many applications, such an approach is good enough, especially if to
consider that ABLA has a reliable fission model. The evaporation of particles is calculated
by ABLA using the Weisskopf and Ewing theory [83].

The emission of a particle j in an evaporation process from the excited nucleus with
neutron number N , proton number Z, angular momentum J , and excitation energy E is
characterized by the emission width Γj which is calculated by the statistical model. The
emission probability of the particle j is determined [7] by:

Wj(N,Z,E) =
Γj(N,Z,E)∑
k Γk(N,Z,E)

, (74)

whereby the angular momentum is not considered explicitly.
The Fermi-gas state density is used in ABLA with shell and pairing corrections as de-

scribed in Refs. [7, 113].
The intrinsic state density is expressed by:

ρintr =

√
π exp(S)

12ã1/4E5/4
, (75)

with the entropy S
S = 2

√
ã(E + δUk(E) + δPh(E)) ,

and the asymptotic level-density parameter ã as given in Ref. [86]

ã = 0.073A MeV−1 + 0.095BSA
2/3 MeV−1 ,

where BS is the dimensionless surface area of a deformed nucleus. For saddle-point shapes,
BS is a function of the fissility parameter [114], while for a spherical ground state BS = 1.
δU is the shell correction as calculated in the finite-range liquid-drop model [88]. k(E) =
1−exp(−γE) with 1/γ = 0.4A4/3/ã describes the damping of the shell effects with excitation
energy. The function k(E) has been adapted to give close agreement with microscopic
calculations of the level density of heavy nuclei [86, 113].

δP = −1

4
∆2g + 2∆

is the effective pairing energy shift with an average pairing gap ∆ = 12/
√
A MeV, and

g = ã6/π is the single-particle level density at the Fermi energy.

h(E) =

{
1−

(
1− E

Ecrit

)2

for E < Ecrit ,

1 for E ≥ Ecrit ,
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h(E) describes the washing out of the pairing correlations with the critical energy Ecrit = 10
MeV. The effective energy E is shifted with respect to the excitation energy E∗ to accom-
modate for the different condensation energies of even-even, odd-mass, and odd-odd nuclei
[7]:

E =

{
E∗ for odd-odd nuclei,
E∗ −∆ for odd-mass nuclei,
E∗ − 2∆ for even-even nuclei.

Collective excitations can contribute considerably to the nuclear level density. The total
level density including collective and intrinsic excitations ρ(E) can be expressed by the
level density of intrinsic excitations ρintr(E) multiplied by a collective enhancement factor
Kcoll(E):

ρ(E) = Kcoll(E)ρintr(E) . (76)

In deformed nuclei the most important contribution to the collective enhancement of the
level density originates from rotational bands, in spherical nuclei the collective enhancement
is caused by vibrational excitations.

For nuclei with a quadrupole deformation |β2| > 0.15, ABLA calculates the rotational
enhancement factor in terms of the spin-cutoff parameter σ⊥:

Krot =

{
(σ2
⊥ − 1)f(E) + 1 for σ2

⊥ > 1 ,
1 for σ2

⊥ ≤ 1 ,

σ2
⊥ =

=⊥T
~2

, (77)

f(E) =
(

1 + exp
(E − Ecr

dcr

))−1

.

Here =⊥ = 2
5
m0AR

2(1 + β2/3) is the rigid-body moment of inertia perpendicular to the
symmetry axis, with A the nuclear mass number, R = 1.2 fm A1/3 the nuclear radius, and m0

the mass unit. T denotes the nuclear temperature. The ground-state quadrupole deformation
β2 is taken from the finite-range liquid-drop model including microscopic corrections [88]
while the saddle-point deformation is taken from the liquid-drop model as given in Ref.
[115].

Eq. (77) is valid for nuclei which are both axially- and mirror-symmetric. For other
symmetry classes (e.g. triaxial shapes), different rotational enhancement factors should be
applied [7], but as the actual ground-state shape of most of the neutron-deficient nuclei
is not known, ABLA uses the expression for axially- and mirror-symmetric shapes as an
approximation. The same symmetry class is used to describe the saddle-point deformations.
The damping of the collective modes with increasing excitation energy is described in ABLA
by a Fermi function with parameters Ecr = 40 MeV, dcr = 10 MeV.

The vibrational enhancement for spherical nuclei is generally smaller than the rotational
enhancement for deformed nuclei. For nuclei with ground-state quadrupole deformation of
|β2| < 0.15, an effective vibrational enhancement factor Kvib(E) is formulated in ABLA on
the basis of the functional dependence of Krot(E):

Kvib = 25β2
effKrot(E) , (78)
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where the dynamical deformation parameter βeff is defined as:

βeff = 0.022 + 0.003∆N + 0.005∆Z ,

where ∆N(∆Z) are the absolute values of the number of neutrons (protons) above or below
the nearest shell closure.

A newer and much better version of ABLA, ABLA07, has been developed recently [116].
It is not implemented yet in MCNP6, but it is planned to be used it in the future.

More details about the collective enhancement and about ABLA can be found in Refs.
[7, 52, 113, 116].

4.4 Emission of Low-Energy Photons with the PHT Model

It should be noted that none of the INC, Fermi break-up, preequilibrium, or/and evap-
oration/fission models of the event generators used in MCNP6 accounts directly for the
production of photons. (We do not mean here production of gammas from the decays of
neutral pions emitted during INC: such gammas are not “direct” and are produced only
during the MCNP6 transport of radiation through the matter.) This is because at high and
intermediate energies the probability of the production of gammas during the INC, Fermi
break-up, preequilibrium, or/and the evaporation/fission stages of a reaction is much lower
than the probability of emission of particles and light fragments, and, as a rule, production
of gammas can be neglected at these stages of reactions (the little possible excitation energy
of residual nuclei after these stages of reaction, below the binding energy of evaporation
particles - of only several MeV, is accounted by MCNP6 as “energy deposition,” so that
there are no problems with the conservation of the energy).

However, there are applications where production of gammas is important and must be
accounted explicitly, especially at not very high incident energies. To address this problem,
MCNP6 uses the PHT model from LAHET [18].

Dr. Richard Prael developed the PHT model and incorporated it in LAHET so that it
accounts production of photons both from the decay of neural pions and from the deexcitation
of residual nuclei produced after the evaporation/fission stages of reactions calculated with
the EVAP [14]-[17] evaporation and RAL [20] or ORNL [19] fission models. From LAHET,
the same procedure migrated later to MCNPX [54], and finally, to MCNP6.

Dr. Franz Gallmeier incorporated [117] an early version of the CEM model into an early
version of MCNPX. By doing so, he merged all subroutines and functions of CEM into a
single module, cemmod.F, and added the PHT model to the CEM module to account for
emission of gammas (let us recall again that the stand-alone CEM03.03 [1] does not account
emission of any gammas). This scheme migrated thereafter to later versions of MCNPX,
and finally, to MCNP6, for all following versions of CEM developed and used in MCNPX/6
after publication of Ref. [117]. It is needed to be mentioned, however, that at the present
time, the PHT model was not merged yet is a similar way with LAQGSM03.03 and with
INCL4.2+ABLA. This is, at present, MCNP6 allows us to account explicitly production
of photons only when using CEM03.03, Bertini INC, and ISABEL models, but not with
LAQGSM03.03 and not with INCL4.2+ABLA.
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Bellow, we present a brief description of the production of low energy gammas by the PHT
model from deexcitation of residual nuclei (we do not discuss here decay of π0), following
mainly Ref. [18].

For the deexcitation of the residual nuclei, PHT assumes that all particle decay modes
have been exhausted; thus gamma emission does not compete with particle emission.

It is assumed that there exists a range of known energy levels, above which there is a
continuum of energy levels with level density given by the Gilbert-Cameron formulae [97].
The library of level data is based on the CDRL82 collection [118], with over 50,000 listed
levels. If the excitation energy of a residual nucleus lies between two levels, it is assigned
randomly to one or the other of the levels with a probability that depends linearly on the
distance from the levels. If the excitation is above the maximum known level, it is assumed
the level is in the continuum.

The probability of a transition between levels is assumed to be proportional to the Weis-
skopf single particle estimates [119, 120] unless specified by the library. For levels in the
continuum and for known levels with unknown spin and parity, a spin state is randomly
assigned using the Gilbert-Cameron [97] spin densities to generate a sampling distribution;
parities, at the present time, are assigned with equal probabilities. For a transition within
the continuum to a state of given spin, the transition probability is also proportional to the
level density for the final spin state.

The gamma cascade proceeds from the above assumptions. For an excitation energy lying
in the continuum, transition to another level in the continuum competes with transitions to
known levels. If the initial excitation energy lies within the known levels, or a level has been
reached by transition from the the continuum, the probability of a transition to lower levels
is obtained from library data if available or from the model otherwise.

The user has the option of selecting the level of the physics model to be used in the
PHT calculation. It is possible to ignore the experimental branching ratios and perform a
pure model calculation. The user may also choose to treat all transitions as E1 transitions,
corresponding to the model previously employed by Troubetzkoy [121].

PHT uses the proper kinematics to obtain the energy and angle distribution for the
pion decay gammas. However, at the present time, the emission of deexcitation gammas is
assumed to be isotropic in the laboratory frame, ignoring nuclear recoil.

The parameter icc of the PHT model defines the level of physics to be applied. Values of
0 through 4 are allowed. The definitions of the physics options chosen by the icc parameter
are listed below:

1) icc = 0: The Continuum Model
When icc = 0 is specified, the continuum is assumed to exist at all nuclear excitations

above the pairing gap for the residual nucleus. As a consequence, there is no line spec-
trum but rather only a continuous gamma energy distribution. All transitions, within the
continuum or from the continuum to the ground state, are assumed to be E1 transitions.

2) icc = 1: The Troubetzkoy (El) Model
For icc = 1, the Troubetzkoy model [121] is used. The nuclear energy levels specified in

the data library are used. The continuum is assumed to begin above the highest specified
level. However, all transitions, whether continuum-to-continuum, continuum-to-level, or
level-to-level, are assumed to be E1 transitions.

3) icc = 2: The Intermediate Model
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When icc = 2, the model employed is really a hybrid between models icc=0 and icc=3.
The nuclear levels, and their spins and parities, are obtained from the data library. The
continuum begins above the highest specified level. However, all levels above the lowest
that has unknown spin or parity are considered to also have unknown spin. All transitions
within or from the continuum, or that involve a level with unknown spin, are treated as El
transitions as in model 1 (icc=0). All transitions involving only states of known spin and
parity utilize the Weisskopf single particle transition model as in option 4 (icc=3).

4) icc = 3: The Spin-dependent Model
The icc = 3 option gives the full model as described above, with the exception that any

experimental branching ratios are ignored and a pure model calculation is performed for the
transition probabilities using the Weisskopf single particle transition estimates.

5) icc = 4: The Full Model with Experimental Branching Ratios
With icc = 4, the fill procedure described above is employed, including the use of library

specified branching ratios when available.
The default option is icc = 4, i.e., the use of the “Full Model.” Users can change the

value of the icc parameter with the second entry on the LEA card of the MCNP6 input
files. With the first entry of the same input card, ipht, users can control the use of the PHT
model: When ipht=1 (default), MCNP6 uses PHT and produces gammas, while if ipht =
0, PHT is not used and photons from π0 decays and from deexcitation of residual nuclei are
not produced, at all.

More details about the PHT model can by found in Refs. [18, 52].

5 Fission Reactions

A heavy excited compound nucleus does not only “evaporate” particles and light fragments,
but it also can fission. MCNP6 accounts for the possibility of fission of only nuclei with
Z ≥ 65 (when using the CEM03.03 or LAQGSM03.03 event generators; with other event
generators, fission is considered only for more heavy nuclei, as described below).

At present, MCNP6 uses with its high-energy event generators four different fission mod-
els:

1) An extension of the fission model used in GEM2 [99, 100, 101], based on the Atchison’s
model [20, 122], as implemented in LAHET [18]; this fission model is used by CEM03.03 and
LAQGSM03.03.

2) The RAL fission model developed by Atchison [20, 122], in its original version, as
implemented in LAHET [18]; this model considers a possibility to fission of excited nuclei
with Z ≥ 70 only, and can be used in MCNP6 with the Bertini INC [8] and ISABEL [9].

3) The ORNL fission model working only for nuclei with Z ≥ 91 and which can be used
in MCNP6 also only with the Bertini INC [8] and ISABEL [9].

4) The PROFI fission model [141] (works only for Z ≥ 70) from the ABLA evapora-
tion/fission code [7] used in MCNP6 only with INCL4.2+ABLA.

All these fission models are briefly reviewed in the following subsections.
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5.1 Fission Reactions in CEM03.03 and LAQGSM03.03

The fission model used in GEM2 is based on Atchison’s model [20, 122] as implemented
in LAHET [18], often referred to in the literature as the Rutherford Appleton Laboratory
(RAL) fission model, which is where Atchison developed it. In GEM2, there are two choices
of parameters for the fission model: one of them is the original parameter set by Atchison
[20, 122] as implemented in LAHET [18], and the other is a parameter set developed by
Furihata [99, 100].

5.1.1 Fission Probability

The Atchison fission model is designed to describe only fission of nuclei with Z ≥ 70. It
assumes that fission competes only with neutron emission, i.e., from the widths Γj of n, p,
d, t, 3He, and 4He, the RAL code calculates the probability of evaporation of any particle.
When a charged particle is selected to be evaporated, no fission competition is taken into
account. When a neutron is selected to be evaporated, the code does not actually simulate
its evaporation, instead it considers that fission may compete, and chooses either fission or
evaporation of a neutron according to the fission probability Pf . This quantity is treated by
the RAL code differently for the elements above and below Z = 89. The reasons Atchison
split the calculation of the fission probability Pf are: (1) there is very little experimental
information on fission in the region Z = 85 to 88, (2) the marked rise in the fission barrier
for nuclei with Z2/A below about 34 (see Fig. 2 in [122]) together with the disappearance
of asymmetric mass splitting, indicates that a change in the character of the fission process
occurs. If experimental information were available, a split between regions around Z2/A ≈ 34
would be more sensible [122].

1) 70 ≤ Zi ≤ 88. For fissioning nuclei with 70 ≤ Zi ≤ 88, GEM2 uses the original
Atchison calculation of the neutron emission width Γn and fission width Γf to estimate the
fission probability as

Pf =
Γf

Γf + Γn
=

1

1 + Γn/Γf
. (79)

Atchison uses [20, 122] the Weisskopf and Ewing statistical model [83] with an energy-
independent pre-exponential factor for the level density (see Eq. (67)) and Dostrovsky’s [13]
inverse cross section for neutrons, and estimates the neutron width Γn as

Γn = 0.352(1.68J0 + 1.93A
1/3
i J1 + A

2/3
i (0.76J1 − 0.05J0)), (80)

where J0 and J1 are functions of the level-density parameter an and sn(= 2
√
an(E −Qn − δ)),

J0 =
(sn − 1)esn + 1

2an
,

J1 =
(2s2

n − 6sn + 6)esn + s2
n − 6

8a2
n

.

Note that the RAL model uses a fixed value for the level-density parameter an, namely

an = (Ai − 1)/8, (81)
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and this approximation is kept in GEM2 when calculating the fission probability according to
Eq. (79), although it differs from the GCCI parameterization (68) used in GEM2 to calculate
particle evaporation widths. The fission width for nuclei with 70 ≤ Zi ≤ 88 is calculated in
the RAL model and in the GEM as

Γf =
(sf − 1)esf + 1

af
, (82)

where sf = 2
√
af (E −Bf − δ) and the level-density parameter in the fission mode af is

fitted by Atchison to describe the measured Γf/Γn to be [122]:

af = an

(
1.08926 + 0.01098(χ− 31.08551)2

)
, (83)

and χ = Z2/A. The fission barriers Bf [MeV] are approximated by

Bf = Qn + 321.2− 16.7
Z2
i

Ai
+ 0.218

(
Z2
i

Ai

)2

. (84)

Note that neither the angular momentum nor the excitation energy of the nucleus are taken
into account in finding the fission barriers.

2) Zi ≥ 89. For heavy fissioning nuclei with Zi ≥ 89 GEM2 follows the RAL model
[20, 122] and does not calculate at all the fission width Γf and does not use Eq. (82) to
estimate the fission probability Pf . Instead, the following semi-empirical expression obtained
by Atchison [20, 122] by approximating the experimental values of Γn/Γf published by
Vandenbosch and Huizenga [123] is used to calculate the fission probability:

log(Γn/Γf ) = C(Zi)(Ai − A0(Zi)), (85)

where C(Z) and A0(Z) are constants depending on the nuclear charge Z only. The values
of these constants are those used in the current version of LAHET [18] and are tabulated in
Table 6 (note that some adjustments of these values have been done since Atchison’s papers
[20, 122] were published).

In this approach the fission probability Pf is independent of the excitation energy of the
fissioning nucleus and its angular momentum.

5.1.2 Mass Distribution

The selection of the mass of the fission fragments depends on whether the fission is sym-
metric or asymmetric. For a pre-fission nucleus with Z2

i /Ai ≤ 35, only symmetric fission is
allowed. For Z2

i /Ai > 35, both symmetric and asymmetric fission are allowed, depending
on the excitation energy of the fissioning nucleus. No new parameters were determined for
asymmetric fission in GEM2.

For nuclei with Z2
i /Ai > 35, whether the fission is symmetric or not is determined by the

asymmetric fission probability Pasy

Pasy =
4870e−0.36E

1 + 4870e−0.36E
. (86)
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Table 6: C(Z) and A0(Z) values used in GEM2

Z C(Z) A0(Z)
89 0.23000 219.40
90 0.23300 226.90
91 0.12225 229.75
92 0.14727 234.04
93 0.13559 238.88
94 0.15735 241.34
95 0.16597 243.04
96 0.17589 245.52
97 0.18018 246.84
98 0.19568 250.18
99 0.16313 254.00
100 0.17123 257.80
101 0.17123 261.30
102 0.17123 264.80
103 0.17123 268.30
104 0.17123 271.80
105 0.17123 275.30
106 0.17123 278.80
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Asymmetric fission. For asymmetric fission, the mass of one of the post-fission fragments A1

is selected from a Gaussian distribution of mean Af = 140 and width σM = 6.5. The mass
of the second fragment is A2 = Ai − A1.

Symmetric fission. For symmetric fission, A1 is selected from a Gaussian distribution of mean
Af = Ai/2 and two options for the width σM as described below.

The first option for choosing σM is the original Atchison approximation:

σM =

{
3.97 + 0.425(E −Bf )− 0.00212(E −Bf )

2,
25.27,

(87)

for (E−Bf ) below or above 100 MeV, respectively. In this expression all values are in MeV
and the fission barriers Bf are calculated according to Eq. (84) for nuclei with Zi ≤ 88. For
nuclei with Zi > 88, the expression by Neuzil and Fairhall [124] is used:

Bf = C − 0.36(Z2
i /Ai), (88)

where C = 18.8, 18.1, 18.1, and 18.5 [MeV] for odd-odd, even-odd, odd-even, and even-even
nuclei, respectively.

The second option in GEM2 for σM (used in CEM03.03 and LAQGSM03.03) was found
by Furihata [99, 100] as:

σM = C3(Z2
i /Ai)

2 + C4(Z2
i /Ai) + C5(E −Bf ) + C6. (89)

The constants C3 = 0.122, C4 = −7.77, C5 = 3.32 × 10−2, and C6 = 134.0 were obtained
by fitting with GEM2 the recent Russian collection of experimental fission-fragment mass
distributions [125]. In this expression, the fission barriers Bf by Myers and Swiatecki [126]
are used. More details may be found in Ref. [100].

5.1.3 Charge Distribution

The charge distribution of fission fragments is assumed to be a Gaussian distribution of mean
Zf and width σZ . Zf is expressed as

Zf =
Zi + Z ′1 − Z ′2

2
, (90)

where

Z ′l =
65.5Al

131 + A
2/3
l

, l = 1 or 2. (91)

The original Atchison model uses σZ = 2.0. An investigation by Furihata [100] suggests that
σZ = 0.75 provides a better agreement with data; therefore σZ = 0.75 is used in GEM2 and
in MCNP6.
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5.1.4 Kinetic Energy Distribution

The kinetic energy of fission fragments [MeV] is determined by a Gaussian distribution with
mean εf and width σεf .

The original parameters in the Atchison model are:

εf = 0.133Z2
i /A

1/3
i − 11.4,

σεf = 0.084εf .

Furihata’s parameters in the GEM, used by default in MCNP6, are:

εf =

{
0.131Z2

i /A
1/3
i ,

0.104Z2
i /A

1/3
i + 24.3,

(92)

for Z2
i /A

1/3
i ≤ 900 and 900 < Z2

i /A
1/3
i ≤ 1800, respectively, according to Rusanov et al.

[125]. By fitting the experimental data by Itkis et al. [127], Furihata found the following
expression for σεf

σεf =

{
C1(Z2

i /A
1/3
i − 1000) + C2,

C2,
(93)

for Z2
i /A

1/3
i above and below 1000, respectively, and the values of the fitted constants are

C1 = 5.70× 10−4 and C2 = 86.5. The experimental data used by Furihata for fitting are the
values extrapolated to the nuclear temperature 1.5 MeV by Itkis et al. [127]. More details
may be found in [100].

We note that Atchison has also modified his original version using recent data and pub-
lished [128] improved (and more complicated) parameterizations for many quantities and
distributions in his model, but these modifications [128] have not been included either in
LAHET or in GEM2 and are not used by MCNP6.

5.1.5 Modifications to GEM2 in CEM03.03 and LAQGSM03.03

First, for CEM and LAQGSM, several observed uncertainties and small errors in the 2002
version of GEM2 received from Dr. Furihata were fixed. Then, GEM2 was extended to
describe fission of lighter nuclei, down to Z ≥ 65, and was modified [129] so that it provides
a good description of fission cross sections when it is used after the INC and preequilibrium
stages of CEM and LAQGSM.

If GEM2 would be merged with the INC and preequilibrium-decay modules of CEM or of
LAQGSM without any modifications, the new code would not describe correctly fission cross
sections (and the yields of fission fragments). This is because Atchison fitted the parameters
of his RAL fission model when it followed the Bertini INC [8] which differs from the ones of
CEM and LAQGSM. In addition, Atchison did not model preequilibrium emission. There-
fore, the distributions of fissioning nuclei in A, Z, and excitation energy E∗ simulated by
Atchison differ significantly from the distributions got with CEM and LAQGSM; as a conse-
quence, all the fission characteristics are also different. Furihata used GEM2 coupled either
with the Bertini INC [8] or with the ISABEL [9] INC code, which also differs from the INC
of CEM and LAQGSM, and did not include preequilibrium particle emission. Therefore the
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distributions of fissioning nuclei simulated by Furihata differ from those in CEM/LAQGSM
simulations, so the parameters adjusted by Furihata to work well with her INC are not
appropriate for CEM/LAQGSM. To get a good description of fission cross sections (and
fission-fragment yields) in CEM03.03 and LAQGSM03.03, at least two parameters in GEM2
had to be modified (see more details in [3, 91, 129, 130]).

The main parameters that determine the fission cross sections calculated by GEM2 are
the level-density parameter in the fission channel, af (or more exactly, the ratio af/an as
calculated by Eq. (83)) for preactinides, and parameter C(Z) in Eq. (85) for actinides. The
sensitivity of results to these parameters is much higher than to either the fission-barrier
heights used in a calculation or other parameters of the model. Therefore in Ref. [129]
was chosen to adjust only these two parameters in the CEM/LAQGSM+GEM2 merged
codes. The form of systematics (83) and (85) derived by Atchison were not changed in Ref.
[129]. Only additional coefficients both to af and C(Z) have been introduced, replacing af →
Ca×af in Eq. (83) and C(Zi)→ Cc×C(Zi) in Eq. (85); Ca and Cc were fitted to experimental
proton-induced fission cross sections covered by Prokofiev’s systematics [131] for both CEM
and LAQGSM. No other parameters in GEM2 have been changed. For preactinides, only
Ca was fitted. The values of Ca found in such a fit to Prokofiev’s systematics are close to
one and vary smoothly with the proton energy and the charge or mass number of the target.
This result provides some confidence in such a procedure, and allows to interpolate the values
of Ca for nuclei and incident proton energies not analyzed by Prokofiev. For actinides, as
described in [91, 130], both Ca and Cc have to be fitted. The values of Ca were found to
be also very close to one, while the values of Cc are more varied, but both of them change
smoothly with the proton energy and Z or A of the target, which again allows to interpolate
them for nuclei and energies outside Prokofiev’s systematics.

The fitted values of Ca and Cc were fixed in data blocks in the CEM/LAQGSM codes
and routines fitafpa and fitafac are used to interpolate to nuclei not covered by Prokofiev’s
systematics. It is believed that such a procedure provides a reasonably accurate fission cross-
section calculation, at least for proton energies and target nuclei not too far from the ones
covered by the systematics.

It should be mention that the situation with the fitting procedure of parameters Ca and
Cc is quite tricky, as it should be redone after all major improvements of other parts of the
codes describing INC, preequilibrium, or evaporation. This is a major minus of such types
of models like GEM2 that are based mostly on systematics of available experimental data
rather than on fundamental physics. (This was the main reason why development of new
improved evaporation and fission models for CEM and LAQGSM codes have been started
in Ref. [130], that would describe experimental data not worse than GEM2 but would be
based more on physics rather than on systematics of available data; this work is waiting
for funding and was not completed yet; so CEM and LAQGSM have to use still GEM2
at present.) Indeed, after making the major improvements to the INC and preequilibrium
parts of CEM and LAQGSM as described above, the mean values of the mass and charge
numbers, A and Z of the excited compound nuclei produced after the preequilibrium stage
of nuclear reactions and their mean excitation energy E∗ have changed slightly, which affects
the probability of heavy compound nuclei (especially preactinides) to fission. This means
that the procedure of fitting the Ca and Cc parameters which was performed in Ref [129] to
provide the best description by CEM2k and LAQGSM of fission cross sections was no longer
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correct. For the latest versions of CEM03.03 and LAQGSM03.03, a new similar fitting had
to be performed, ensuring that they describe as well as possible fission cross sections from
various reactions.

5.2 Fission Reactions Simulated with the Bertini INC and IS-
ABEL

When using the Bertini INC [8] or ISABEL [9], MCNP6 employs at the evaporation stages
of reactions, simulated usually with EVAP [14]-[17], either the RAL fission model (works
only for Z > 70) [20] or the ORNL fission model (works only for Z ≥ 91) [19, 132].

As mentioned above in the Evaporation section, Bertini INC and ISABEL can be also
used in MCNP6 with the ABLA evaporation model [7], if users chose ievap = 2 on the 7th
entry of the LEA MCNP6 input card. In this case, the fission model from ABLA will be
used (works only for Z ≥ 70). However, this option is not used often, ABLA is merged by
default in MCNP6 with INCL4.2 [6]; the fission model from ABLA is discussed separately,
in the next subsection.)

Note that the EVAP model invoking either RAL or the ORNL fission model can be used
also in the case of incident protons with energies below or of the order of only several tens
of MeV, when the MCNP6 users do not like to use data libraries (e.g., when the 3rd entry
on the phys:h MCNP6 input card is set to 0, i.e., requiring to use data libraries at energies
up to 0 MeV, that is, to not use at all data libraries).

Below, both the RAL and and the ORNL fission models are briefly reviewed.

5.2.1 The RAL Fission Model

The RAL fission model [20] was developed by Dr. Francis Atchison when he was working
at the Rutherford Appleton Laboratory (RAL). The model is often referred to in the lit-
erature by various names, “Rutherford laboratory,” “Dresner-Atchison,” “LAHET-Bertini,”
“Atchison” and others.

MCNP6 uses the old, “standard” version of the RAL model, as developed originally by
Atchison in Ref. [20] and implemented by Prael in LAHET [18]. It was described in good
detail in the previous subsection, when discussing the the fission model from the GEM2
code by Furihata [99]–[101] adopted with some further modifications by CEM03.03 and
LAQGSM03.03, therefore this is not repeated here.

However, the main physical assumptions of the RAL model are listed below, following
mainly Ref. [122].

The logical flow of the overall particle-nucleus interaction with fission is shown in Fig.
13. To calculate a fission reaction with RAL, two things have to be known:

1) the fission probability, Pf , given by Eq. (79), and
2) the post-scission fragment nuclear state: charge, mass, and excitation and recoil ener-

gies (Z, A, E∗, and Trec).
The most important assumptions of RAL are:

• Fission competes at all stages of de-excitation (evaporation).

• Fission width depends only on the state of the nucleus and not on how it arrived there.
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• Only binary fission is accounted. In term of the calculational flow (see Fig. 13), this
means that fission is locked-off for the fission fragments.

• The mass split is always complete. The two fission fragments will conserve baryons
and charge. This means that “fission” neutrons come from either evaporation prior to
fission of from the evaporation from fission fragments.

• Fission for nuclei with Z < 70 is not considered.

More details on the RAL fission model used in MCNP6 can be found in the previous
subsection dedicated to fission by CEM03.03 and LAQGSM03.03 and in Refs. [20, 52, 122,
133].

5.2.2 The ORNL Fission Model

The ORNL fission model [19, 132] was developed at Oak Ridge National Laboratory to
describe fission of only heavy nuclei with Z ≥ 91 in competition with evaporation of particles
calculated by the Dresner code EVAP [14].

Just like in case of other fission models used by MCNP6, the fundamental basis of the
ORNL fission model is the statistical model of fission developed by Fong [134]. Basically,
the assumption is that the fission process is “slow” (i.e., the nucleus exists in an equilib-
rium state at any time), so the probability of a particular fission mode (state of the fission
fragments) is proportional to the density of quantum states at the time of splitting. From
the Fong theory, the fission mode probability is expressed as a function of eleven variables:
N(A1, A2, Z1, Z2, C,D, k, E,E1, j1, j2, ), where the subscripts denote the fission fragments;
A, Z, and j denote mass number, charge number, and angular momentum; and the remain-
ing are energy variables (C, Coulomb; D, deformation; k, translational; E, total; and E1,
excitation).

Different high-energy fission models differ in the approximations made in arriving at a
practical implementation of the above general expression and in the physical data used. To
a large extent the physical data that occur in the statistical model used by the ORNL fission
model have been derived from the experimental measurements of Epperson [135].

Following the work by Hahn and Bertini [136], the ORNL fission model uses an empirical
relation derived by Sikkeland et al. [137] to estimate the fission probability:

log10

(Γn
Γf

)
= −0.276Z +

{
5.46 + 0.14N for N ≤ 153,
19.23 + 0.05N for N > 153.

(94)

For odd-Z nuclei, 0.12 is added to this equation. It is also assumed that fission may be
neglected in nuclei with atomic numbers Z < 91 and that no fission occurs for excitation
energies Ef < 4 MeV.

The values of the relative kinetic energy of fission fragments and their mass numbers are
found from experimental and the Fong model considerations (see Ref. [132] for more details).
The angular distribution of fission fragments is assumed to be isotropic in the center-of-mass
(CM) system. The partition of the excitation energy between the two fission fragments is
determined using the Fong statistical model [134].
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The level density parameter used by the ORNL fission model in the evaporation and in
the fission process is based on formulation by LeCouteur and Lang [138] and is given as:

ai =
Ai
B0

[1 + y0(Ai − Zi)2/A2
i ] , (95)

where B0 and y0 are constants, taken to be independent of the deformation or excitation
energy. Their exact values are not known, developers of the ORNL fission model tried
different options for them (see, e.g. [19, 132, 139]); their “optimal” values where found to
be B0 = 10 and y0 = 1.5.

At the end of this subsection let us mention that because the RAL and the ORNL fission
models are different and use different values for the level density parameters, the multiplicity
of neutrons calculated by these models for a target, e.g., of 238U bombarded with protons
of intermediate energy of ∼ 1 GeV is also significantly different: It was found [139] that the
ORNL model predicts about 20% more neutrons than does RAL. This is a big difference
and it may be of importance for some applications on spallation neutron sources. Users of
MCNP6 should keep this in mind when chosing between the RAL and the ORNL models
for such applications.

More details on the ORNL fission model used in MCNP6 can be found in Refs. [19, 132,
139].

5.3 Fission Reactions Simulated with INCL4.2

As mentioned above, INCL4.2 is merged in MCNP6 only with the ABLA evaporation/fission
model. The fission model from ABLA is sometimes referred to in the literature as “Karl-
Hans Schmidt” (KHS), or “Schmidt”, or PROFI model. Many details on how the fission
channel is treated in ABLA including the influence of dissipative effects on fission at high
excitation energies can be found in Ref. [140, 141]. Here we recall only the main ideas of
the model following mainly [140, 141].

The asymptotic level-density parameter ã is calculated according to Ignatyuk et al. [86].
For the saddle-point deformation, the asymptotic level-density parameter ãf is approximately
4-5 (2-3) percent larger than ãn, at the ground-state deformation for nuclei with mass number
A ≈ 200 (230).

The fission barriers are calculated in a macroscopic-microscopic approach. The macro-
scopic part is calculated from the rotating finite-range liquid-drop model [142]. The ground-
state shell effects are calculated as the difference between the calculated ground-state atomic
mass excess and the corresponding macroscopic value from the finite-range liquid-drop model
[88]. The macroscopic part of the fission barrier is obtained by adding the ground-state shell
effect to the total fission barriers. Any shell effects at the saddle point are assumed to be
small and negligible.

The collective enhancement of the level density is calculated according to Eq. (76), with
rotational enhancement defined by Eq. (77) and vibrational enhancement, by Eq. (78).

At low excitation energies, ABLA calculates the fission width using the known expression
proposed by Bohr and Wheeler [84] written in a simplified version [143] as:

ΓBWf =
1

2πρc(E)
Tfρf (E −Bf ) , (96)
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where ρf is the level density of transition states of the fissioning nucleus in the saddle
configuration (above the fission barrier), Bf is the height of the fission barrier and Tf is the
corresponding nuclear temperature.

However, during the last decades it was recognized that the description of the fission
probability for high excitation energies requires some essential modifications of the Bohr-
Wheeler approach. An appropriate way to account for the fission dynamics begins with
viewing fission as a diffusion process over the fission barrier, which is described by the corre-
sponding Fokker-Planck equation. In the quasi-stationary approximation Kramers obtained
the following equation for the fission width [144]:

ΓKf = ΓBWf

{[
1 +

( β

2ω0

)2
]1/2

− β

2ω0

}
= ΓBWf f

( β

2ω0

)
, (97)

where β is the reduced dissipation coefficient and ω0 is the frequency of the effective harmonic-
oscillator potential that osculates the fission barrier at the saddle point. In Kramers’ picture,
β corresponds to “the resistance to which the vibration of the nucleus is subject as a conse-
quence of the viscosity of nuclear matter” [144].

The formation of any large-amplitude collective motion similar to the fission process re-
quires some finite time. The dependence of this transient time τ on the dissipation coefficient
can be derived from two analytical solutions of the time-dependent Fokker-Planck equation
for the under-damped and the over-damped regimes, respectively:

τunder ' β−1 ln
10Bf

T
for

β

2ω1

� 1 , (98)

τover '
β

2ω2
1

ln
10Bf

T
for

β

2ω1

� 1 . (99)

Here ω1 is the frequency of the harmonic-oscillator potential osculating the potential energy
at the ground-state deformation.

Taking into account the transient time, the ratio of the widths for fission and neutron
emission may be written as:

Γf
Γn

=
ΓBWf
Γn

{[
1 +

( β

2ω0

)2
]1/2

− β

2ω0

}
exp
(
−τ(β)

τν

)
, (100)

where τν = ~/Γν is the mean life-time against neutron emission. If emission of protons and α-
particles is included as well, as is in the version of ABLA used by MCNP6, the corresponding
mean life-time for particle emission is defined as

τν =
1

1/τn + 1/τp + 1/τα
. (101)

Properties of fission fragments, i.e. masses, atomic numbers, excitation and kinetic
energies, are calculated in ABLA based on a macro-microscopic approach and the separability
of compound-nucleus and fragment properties on the fission path. The original description
of the fragment-formation model – PROFI – was published in Refs. [141, 145, 146]. Bellow
we provide only the main ideas of PROFI, following mainly Ref. [141].
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The population of the fission channels is assumed to be basically determined by the
statistical weight of transition states above the potential-energy landscape near the fission
barrier. PROFI assumes that the mass-asymmetric degree of freedom at the fission barrier is
on average uniquely related to the neutron number N of the fission fragments. The numbers
of protons and neutrons are considered to be strictly correlated.

For a given excitation energy E, the yield Y (E,N) of fission fragments with neutron
number N is calculated by the statistical weight of transition states above the conditional
potential barrier:

Y (E,N) =

E−V (N)∫
0

ρN(U)dU

NCN∑
N=0

E−V (N)∫
0

ρN(U)dU

, (102)

where V (N) is the height of the conditional potential barrier for a given mass-asymmetric
deformation, ρN is the level density for an energy U above this potential and NCN is the
neutron number of the fissioning (compound) nucleus.

Yields of fission fragments with neutron number N corresponding to the symmetric and
asymmetric fission channels can be obtained from the expressions:

Ymac(E
∗
0 , N) ≈ exp

(
2
√
ãEmac(E∗0 , N)

)
, (103)

Ysh,i(E
∗
0 , N) ≈ exp

(
2
√
ãEsh,i(E∗0 , N)

)
− Ymac(E∗0 , N) , (104)

where E∗0 is the excitation energy above the macroscopic potential at symmetry (NCN/2)
and Ymac stands for the symmetric channel and Ysh,i for one of the asymmetric channels. In
Eq. (104) the contribution of the symmetric channel is subtracted in order to avoid double
counting. The asymptotic level-density parameter is calculated as ã = A/8.

The effective excitation energies above the macroscopic potential (Emac) and above the
shell-corrected potential (Esh,i) to be inserted in Eqs. (103) and (104) are calculated as:

Emac(E
∗
0 , N) = E∗0 − Cmac(NCN/2−N)2 , (105)

Esh,i(E
∗
0 , N) = Emac(E

∗
0 , N)− δUi(E∗0 , N) . (106)

In these expressions δUi(E
∗
0 , N) is the value of the shell-correction-parabolic function

parameterized in Ref [141]. The energy dependence of this shell correction is described
according to the analytical description of Ref. [147].

δUi(E
∗
0 , N) = (δUi + Csh,i(Nsh,i −N)2) exp(−γε) . (107)

The curvatures, 2Cmac and 2Csh,i, are calculated as described in Ref. [141]. The factor γ

is calculated as ã/(0.4A
4/3
CN) as proposed in Ref. [148] and ε = Emac+Csh,i(Nsh,i−N)2 + δUi.

Expanding expressions (103) and (104), we obtain in a first approximation that the
neutron-dependent statistical weight of each fission channel can be expressed as a Gaussian
function:

Ymac(E
∗
0 , N) ≈ exp (Smac) exp

(
−(NCN/2−N)2

σ2
mac

)
, (108)
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Ysh,i(E
∗
0 , N) ≈ exp (Ssh,i) exp

(
−(Nsh,i −N)2

σ2
sh,i

)
− Ymac(E∗0 , N) , (109)

with
Smac = 2

√
ãE∗0 , (110)

Ssh,i = 2
√
ã[Emac(E∗0 , N)− δUi(E∗0 , N)] , (111)

and the widths of these Gaussian functions are given by:

σ2
mac =

1

2

√
E∗0√

ãCmac
, (112)

σ2
sh,i =

1

2

√
Emac(E∗0 , N)− δUi(E∗0 , N)√

ãCsh,i exp (−γε)
. (113)

The neutron-to-proton ratio is assumed to be given by the unchanged charge density
(UCD) of the fissioning nucleus. For the asymmetric channels, a polarization of |∆Z| = 0.5
is included to approximately reproduce the measured neutron-to-proton ratio:

Z(N) = N
ZCN
NCN

±∆Z , (114)

where the different signs correspond to the light (+) and the heavy (-) fragment. The width
in proton number for fixed neutron number σZ|N is calculated by using the following formula:

σ2
Z|N =

1

2

√
Emac(E∗0 , N)√
ÃCZ|N

+ σ2
0 , (115)

where the term σ0 = 0.4 is used to take into account the influence of quantum fluctuations
not considered in the statistical picture, and the curvature 2CZ|N is calculated in a touching-
sphere configuration for a symmetric split as:

CZ|N =
d2V

dZ2

∣∣∣∣
N

= B(Z + 1, N) +B(Z − 1, N)− 2B(Z,N)

− e2

r2
0

[
(Z + 1)(Z − 1)

(A+ 1)1/3 + (A− 1)1/3
− Z2

2A1/3

]
, (116)

with e the electron charge, r0 = 1.22 fm the radius parameter, and B(Z,N) representing
the macroscopic binding energy of a nucleus with Z protons and N neutrons. The element
yields are modulated by an even-odd effect with the variation of this effect as a function of
the fissility parameter is given by:

δp = exp(29.86− 0.74Z2
CN/ACN) , (117)

and the energy dependence is obtained as:

δp(E) =

{
δp if 0� E � E1 ,

δp exp
(
−E−E1

T

)
if E > E1 ,

(118)
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where T = 1 MeV and E1 = VB + 2∆, with VB the height of the fission saddle point and ∆
the pairing gap calculated as ∆ = 12/

√
ACN .

Consecutive evaporation from the excited fission fragments is included, too. The excita-
tion energy of the fragments is taken as the sum of the excitation energy above the barrier
and the intrinsic excitation energy Edis on the way from the fission barrier to scission. The
latter is parameterized in the following way:

Edis = 3.53(Z2
CN/ACN − 34.25) . (119)

The final excitation energy is attributed to the fission fragments proportionally to their mass
values.

More details about the fission model used in MCNP6 by the ABLA evaporation/fission
code can be found in publications [7, 52, 116, 140, 141, 145, 146] and references therein.

6 Fermi Break-up Reactions

As a rule, after the fast INC stage of nuclear reactions, a much slower evaporation/fission
stage follows, with or without taking into account an intermediate preequilibrium stage
between the INC and the evaporation/fission. Such a picture is well grounded in cases of
heavy nuclei, as both evaporation and fission models are based on statistical assumptions,
requiring a large number of nucleons. Naturally, in case of light nuclei with only a few
nucleons, statistical models are much less justified. The nature of light nuclei is such that
their unique nuclear structure must be taken into account in any model calculation, as the
effects of their structures are not masked by the statistical behavior caused by a large number
of nucleons. In addition, such light nuclei like carbon and oxygen exhibit considerable alpha-
particle clustering, not accounted by evaporation/fission models. This is why in the case of
light excited nuclei, their deexcitation is often calculated using the so called “Fermi breakup”
model, suggested initially by Fermi [21], and subsequently used by, among other, Zhdanov
and Fedotov [149] and Gradsztajn et al. [150].

MCNP6 uses two versions of the Fermi breakup model, both discussed briefly below.

6.1 Fermi Breakup Reactions in CEM03.03 and LAQGSM03.03

After calculating the coalescence stage of a reaction, CEM03.03 and LAQGSM03.03 move
to the description of the last slower stages of the interaction, namely to preequilibrium
decay and evaporation, with a possible competition of fission for nuclei with Z ≥ 65. But
if the residual nuclei have atomic numbers with A < 13, CEM03.03 and LAQGSM03.03
use the Fermi breakup model [21] to calculate their further disintegration instead of using
the preequilibrium and evaporation models. CEM03.03 and LAQGSM03.03 use the Fermi
breakup model also during the preequilibrium and/or evaporation stages of reactions, when
the residual nucleus gets an atomic number with A < 13 after the emission of several particles
or/and light fragments.

Finally, CEM03.03 and LAQGSM03.03 use the Fermi breakup model also to disintegrate
the unstable fission fragments with A < 13 that can be produced in very rare cases of very
asymmetric fission.
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All formulas and details of the algorithms of the version of the Fermi breakup model used
in CEM and LAQGSM, as developed in the former group of Prof. Barashenkov at the Joint
Institute for Nuclear Research (JINR), Dubna, Russia can be found in Ref. [151].

All the information needed to calculate the breakup of an excited nucleus is its excitation
energy U and the mass and charge numbers A and Z. The total energy of the nucleus in
the rest frame will be E = U + M(A,Z), where M is the mass of the nucleus. The total
probability per unit time for a nucleus to break up into n components in the final state (e.g.,
a possible residual nucleus, nucleons, deuterons, tritons, alphas, etc.) is given by

W (E, n) = (V/Ω)n−1ρn(E), (120)

where ρn is the density of final states, V is the volume of the decaying system and Ω = (2π~)3

is the normalization volume. The density ρn(E) can be defined as a product of three factors:

ρn(E) = Mn(E)SnGn. (121)

The first one is the phase space factor defined as

Mn(E) =

∫ +∞

−∞
· · ·
∫ +∞

−∞
δ

(
n∑
b=1

~pb

)
δ

(
E −

n∑
b=1

√
p2 +m2

b

)
n∏
b=1

d3pb, (122)

where ~pb are fragment momenta. The second one is the spin factor

Sn =
n∏
b=1

(2sb + 1), (123)

which gives the number of states with different spin orientations. The last one is the permu-
tation factor

Gn =
k∏
j=1

1

nj!
, (124)

which takes into account identical particles in the final state (nj is the number of components

of j-type particles and k is defined by n =
∑k

j=1 nj). For example, if we have in the final
state six particles (n = 6) and two of them are alphas, three are nucleons, and one is a
deuteron, then G6 = 1/(2!3!1!) = 1/12. For the non-relativistic case, the integration in Eq.
(122) can be evaluated analytically (see, e.g., Ref. [151]) and the probability for a nucleus
to disintegrate into n fragments with masses mb, where b = 1, 2, 3, . . . , n is

W (E, n) = SnGn

(
V

Ω

)n−1
(

1∑n
b=1mb

n∏
b=1

mb

)3/2
(2π)3(n−1)/2

Γ(3(n− 1)/2)
E(3n−5)/2, (125)

where Γ(x) is the gamma function.
The angular distribution of n emitted fragments is assumed to be isotropic in the c.m. sys-

tem of the disintegrating nucleus and their kinetic energies are calculated from momentum-
energy conservation. The Monte-Carlo method is used to randomly select the decay channel
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according to probabilities defined by Eq. (125). Then, for a given channel, the code calcu-
lates kinematic quantities for each fragment according to the n-body phase space distribution
using the Kopylov’s method [152]. Generally, the Fermi breakup model considers formation
of fragments only in their ground and those low-lying states which are stable for nucleon
emission. However, several unstable fragments with large lifetimes: 5He, 5Li, 8Be, 9B, etc.
were considered as well by the initial version of the Fermi breakup model code as described
in Ref. [151]. The randomly chosen channel will be allowed to decay only if the total kinetic
energy Ekin of all fragments at the moment of breakup is positive, otherwise a new simulation
will be performed and a new channel will be selected. The total kinetic energy Ekin can be
calculated according to the equation:

Ekin = U +M(A,Z)− ECoulomb −
n∑
b=1

(mb + εb), (126)

where mb and εb are masses and excitation energies of the fragments, respectively, and
ECoulomb is the Coulomb barrier for the given channel. It is approximated by

ECoulomb =
3

5

e2

r0

(
1 +

V

V0

)−1/3
(
Z2

A1/3
−

n∑
b=1

Z2
b

A
1/3
b

)
, (127)

where Ab and Zb are the mass number and the charge of the b-th particle of a given channel,
respectively. V0 is the volume of the system corresponding to normal nuclear density and
V = kV0 is the decaying system volume (k = 1 is assumed in the CEM/LAQGSM codes).

Thus, the Fermi breakup model we use has only one free parameter, V or V0, the volume
of the decaying system, which is estimated as follows:

V = 4πR3/3 = 4πr3
0A/3, (128)

where r0 = 1.4 fm.
There is no limitation on the number n of fragments a nucleus may break up into in this

version of the breakup model, in contrast to implementations in other codes, such as n ≤ 7
in LAHET [18] discussed in the next subsection.

In comparison with its initial version as described in [151], the Fermi breakup model
used in CEM03.02 and LAQGSM03.02 has been modified [153] to decay the unstable light
fragments that were produced by the original code. As mentioned above, the initial routines
that describe the Fermi breakup model were written more than twenty years ago in the group
of Prof. Barashenkov at JINR, Dubna, and unfortunately had some problems. First, those
routines allowed in rare cases production of some light unstable fragments like 5He, 5Li, 8Be,
9B, etc. as a result of a breakup of some light excited nuclei. Second, they allowed very
rarely even production of “neutron stars” (or “proton stars”),i.e., residual “nuclei” produced
via Fermi breakup that consist of only neutrons (or only protons). Lastly, those routines
could even crash the code, due to very rare cases of division by 0. All these problems of the
Fermi breakup model routines were addressed and solved in CEM03.02 [153]; the changes
were then put in LAQGSM03.02 [153]. Several observed bugs were also fixed. However, even
after solving these problems and after implementing the improved Fermi breakup model into
CEM03.02 and LAQGSM03.02 [153], these event generators still could produce some unstable
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products via very asymmetric fission, when the excitation energies of those fragments were
below 3 MeV so they were not checked and disintegrated with the Fermi breakup model. The
analysis performed in Ref. [5] had shown that such events could occur very rarely, in less than
0.0006% of all simulated events, so that production of such unstable nuclides affects by less
than 0.0006% the other correct cross sections calculated by CEM03.02 and LAQGSM03.02.
However, these unstable nuclides are not physical and should be eliminated. This was the
reason why a universal checking of all unstable light products has been incorporated into
the following generation of CEM and LAQGSM models, CEM03.03 and LAQGSM03.03.
Such unstable products are forced to disintegrate via Fermi breakup independently of their
excitation energy. The latest versions of the CEM03.03 and LAQGSM03.03 event generators
do not produce any such unstable products.

Examples of results by CEM03.03 and LAQGSM03.03 for different nuclear reactions
where the Fermi breakup mechanism is important and simulated, together with more relevant
details and references can be found in Refs. [1, 3, 5].

6.2 Fermi Breakup Reactions Simulated with the Bertini INC,
ISABEL, or INCL4.2

The version of the Fermi breakup model used in MCNP6 with the Bertini INC, ISABEL, or
INCL4.2 originates from LAHET [18] and is described briefly in Refs. [154, 155, 156, 158,
159].

The general physics ideas of this modification of the Fermi breakup model are the same
or very similar to the version of the model used by CEM03.03 and LAQGSM03.03 discussed
in the previous subsection, therefore this is not repeated here. However, this version of the
Fermi breakup model differs in several important features and implementations from the one
used by CEM03.03 and LAQGSM03.03, like:

1) Perhaps the most significant feature of this version of the Fermi breakup model is that
particle-unstable states are allowed as intermediate states, thus permitting sequential decay
processes.

2) Two-body breakup channels use a Coulomb barrier penetration factor approximated
from Coulomb wave functions, while multi-particle modes use a breakup threshold adjusted
for Coulomb energy.

3) Two-body breakup of levels with known spin and parity are restricted to conserve par-
ity and isospin and are inhibited by neutral particle angular momentum barrier penetration
factors.

4) Only up to seven-body breakup modes are allowed.
Experimental data are used for mass excesses and for the excitation energies, spins, and

isospins, and parities of nuclear levels.
The real employment of this version of the Fermi breakup model in MCNP6 also differ

from the one used with CEM03.03 and LAQGSM03.03: By default, MCNP6 uses it with the
Bertini INC, ISABEL, or INCL4.2 when the atomic mass of excited nuclei, A, is A ≤ 13,
and also for 14 ≤ A ≤ 20 in cases when the excitation energy is below 44 MeV. But MCNP6
users can change this default option with the 5th entry on the LCA MCNP6 input card,
ifbrk: If to use ifbrk = 0, Fermi breakup model will be used only for nuclei with A ≤ 5.
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More details about this version of the Fermi breakup model can be found in Refs. [154,
155, 156, 158, 159].

7 Coalescence Reactions

The coalescence model is used in MCNP6 only with the CEM03.03 and LAQGSM03.03
event generators. Its aim is to describe production of very energetic light fragments that
would not come from other reaction mechanisms. In addition, the coalescence mechanism of
nuclear reactions contributes also to some production of intermediate-, and even low-energy
light fragments, improving the general predictive power of the CEM and LAQGSM models
accounting for such reactions.

When the cascade stage of a reaction is completed, CEM03.03 and LAQGSM03.03 use
the coalescence model described in Refs. [22, 41] to “create” high-energy d, t, 3He, and 4He by
final-state interactions among emitted cascade nucleons, already outside of the target nucleus.
In contrast to most other coalescence models for heavy-ion-induced reactions, where complex-
particle spectra are estimated simply by convolving the measured or calculated inclusive
spectra of nucleons with corresponding fitted coefficients, CEM03.03 and LAQGSM03.03
use in their simulations of particle coalescence real information about all emitted cascade
nucleons and do not use integrated spectra. These models assume that all the cascade
nucleons having differences in their momenta smaller than pc and the correct isotopic content
form an appropriate composite particle. This means that the formation probability for, e.g.
a deuteron is

Wd(~p, b) =

∫ ∫
d~ppd~pnρ

C(~pp, b)ρ
C(~pn, b)δ(~pp + ~pn − ~p)Θ(pc − |~pp − ~pn|), (129)

where the particle density in momentum space is related to the one-particle distribution
function f by

ρC(~p, b) =

∫
d~rfC(~r, ~p, b). (130)

Here, b is the impact parameter for the projectile interacting with the target nucleus and
the superscript index C shows that only cascade nucleons are taken into account for the
coalescence process. The coalescence radii pc were fitted for each composite particle in
Ref. [41] to describe available data for the reaction Ne+U at 1.04 GeV/nucleon, but the
fitted values turned out to be quite universal and were subsequently found to satisfactorily
describe high-energy complex-particle production for a variety of reactions induced both
by particles and nuclei at incident energies up to about 200 GeV/nucleon, when describing
nuclear reactions with different versions of LAQGSM [4, 5, 153] or with its predecessor, the
Quark-Gluon String Model (QGSM) [42]. These parameters are:

pc(d) = 90 MeV/c; pc(t) = pc(
3He) = 108 MeV/c; pc(

4He) = 115 MeV/c . (131)

As the INC of CEM is different from those of LAQGSM or QGSM, it is natural to expect
different best values for pc as well. Recent studies have shown (see e.g., Refs. [1, 3] and
references therein) that the values of parameters pc defined by Eq. (131) are also good for
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CEM03.03 for projectile particles with kinetic energies T0 lower than 300 MeV and equal to
or above 1 GeV. For incident energies in the interval 300 MeV < T0 ≤ 1 GeV, a better overall
agreement with the available experimental data is obtained by using values of pc equal to
150, 175, and 175 MeV/c for d, t(3He), and 4He, respectively. These values of pc are fixed
as defaults in CEM03.03. If several cascade nucleons are chosen to coalesce into composite
particles, they are removed from the distributions of nucleons and do not contribute further
to such nucleon characteristics as spectra, multiplicities, etc.

In comparison with the initial version [22, 41], in CEM03.03 and LAQGSM03.03, several
coalescence routines have been changed and have been tested against a large variety of mea-
sured data on nucleon- and nucleus-induced reactions at different incident energies. Many
examples with results by CEM03.03 and LAQGSM03.03 for reactions where the contribution
from the coalescence mechanism is important and can be easily seen may be found in Refs.
[3, 40, 47].

Note that the latest versions of the INCL code, e.g., INCL4.3 [160], INCL4.4 [70], and
INCL++ [161], also consider (in different ways) the coalescence of nucleons in the very
outskirts of the nuclear surface into light fragments during the INC stages of reactions.
MCNP6 does not have yet these latest versions of INCL implemented into the code, therefore
details of their coalescence model are not discussed here.
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[92] M. Veselský, “Production Mechanism of Hot Nuclei in Violent Collisions in the Fermi
Energy Domain,” Nucl Phys. A705 (2002) 193–222; M. Veselský, Š. Šáro, F. P.
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Shell Structure and Pairing Correlations on the Nuclear State Density,” Z. Phys. A
308 (1982) 215–225.

[114] W. D. Myers and W. J. Swiatecki, “The Nuclear Droplet Model for Arbitrary Shapes,”
Ann. Phys. 84 (1974) 186–210.

[115] Stanley Cohen and Wladyslaw J. Swiatecki, “The Deformation Energy of a Charged
Drop: Part V: Results of Electronic Computer Studies,” Ann. Phys. 22 (1962) 406–437.
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Figure 6: Example of eight angular distributions of π0 from γp→ π0p as functions of Θπ
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at photon energies from 260 MeV to 1.4 GeV. The dashed lines show the old approximations
of the Dubna INC [30] while the solid lines are the new approximations incorporated into
LAQGSM03.03 (and into CEM03.03). References to experimental data shown by different
symbols may be found in Ref. [29]. 84
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Figure 7: Mid-rapidity spectra of π+, π−, K+, K−, p, and p̄ produced in ultra-relativistic
p + p interactions at

√
s = 200 GeV (Tp = 21314 GeV) calculated with values of the

parameter σ⊥ = 2.0 GeV/c (solid histograms) and σ⊥ = 1.0 GeV/c (dashed histograms)
in the transverse momentum distribution of the constituent quarks of the QGSM compared
with the recent RHIC data [46] (symbols).
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Figure 8: “∆” charge exchange in ISABEL (adopted from Ref. [61].)

Figure 9: An example of ISABEL event (adopted from Ref. [61].)
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Figure 10: Schematic illustration of the main features of the INCL4.2 model (adopted from
Ref. [70].)

Figure 11: Illustration of the r − p correlations introduced in the generation of the target
initial state in INCL4.2 (adopted from Ref. [70].)
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Figure 12: Time variation of the average value of a few physical quantities, within the
INCL4.2 model. The panels refer, in a clockwise order, starting from the upper left, to the
excitation energy, the average kinetic energy of the ejectiles, the asymmetry of the participant
momentum distribution, and the time derivative of the excitation energy, respectively. The
results correspond to collisions of 1-GeV protons with Pb nuclei with an impact parameter
of 4 fm. The arrows indicate the chosen stopping time. (Adopted from Ref. [6].)
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Figure 13: The logical flow for evaporation including fission in RAL. (Adopted from
Ref. [122].)
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