
LA-UR-21-26448
Approved for public release; distribution is unlimited.

Title: Improved Verification and Validation Testing and Tools

Author(s): Rising, Michael Evan
Josey, Colin James
Kulesza, Joel A.

Intended for: 2021 MCNP(R) User Symposium, 2021-07-12/2021-07-16 (Los Alamos, New
Mexico, United States)

Issued: 2021-07-16 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

11Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Improved Verification and
Validation Testing and Tools

LA-UR-21-26448

Michael E. Rising, Colin J. Josey, and Joel A. Kulesza

Monte Carlo Codes Group (XCP-3)

2021 MCNP® User Symposium
July 12-16, 2021

22

Overview

• Primary goal of software testing
− The role of verification and validation

• Previously released V&V suites

• New Python-based framework

• Additional test suite(s)

33

Primary goal of software testing

• Test the code for correctness
• Correctness is defined with respect to some standard

− Comparison to another code (version)

− Comparison to (semi-)analytic results

− Comparison to experiment measurements

44

Primary goal of software testing

• Test the code for correctness
• Correctness is defined with respect to some standard

− Comparison to another code (version)
Behavioral testing done for every code change during development
Full end-to-end testing attempting to isolate behaviors / features

− Comparison to (semi-)analytic results
Ensuring the algorithms indeed solve the transport equation
Simplified problems and mock data used to isolate code / algorithm implementation

− Comparison to experiment measurements
Ensuring the combination of algorithms and data compare well to nature / reality
Applies only to application area being tested and compared

Current MCNP6
Testing Practices

55

Primary goal of software testing

• Test the code for correctness
• Correctness is defined with respect to some standard

− Comparison to another code (version)
Behavioral testing done for every code change during development
Full end-to-end testing attempting to isolate behaviors / features

− Comparison to (semi-)analytic results
Ensuring the algorithms indeed solve the transport equation
Simplified problems and mock data used to isolate code / algorithm implementation

− Comparison to experiment measurements
Ensuring the combination of algorithms and data compare well to nature / reality
Applies only to application area being tested and compared

Current MCNP6
Testing Practices

REGRESSION

VERIFICATION

VALIDATION

66

Role of Verification and Validation

• Verification
− Where analytical and semi-analytical solutions to the transport equation may exist, we

want to ensure that MCNP is solving the correct equations

• Validation
− Combination of code (MCNP) and nuclear data (ENDF/NJOY/ACE) work together to

produce results comparable to reality

• Full end-to-end tests exercising many separate features
(input parsing, problem setup, nuclear data usage & collision physics, transport &
random walk algorithm, tallying, dose/response functions, output, etc.)

• Long-standing reputation can be linked to extensive and robust V&V

77

Previously Released V&V Suites

MCNP6.2 Release
• Verification

− k-effective (VERIFICATION_KEFF)
− 3-D fixed-source streaming (KOBAYASHI)
− Variety of shielding problems (VERIFICIATION_SHLD_SVDM)

• Validation
− k-effective (VALIDATION_ CRITICALITY & VALIDATION_CRIT_EXPANDED)
− 3-D fixed-source neutron and photon problems (VALIDATION_SHIELDING)

Previous Releases
− High-energy physics (CEM & LAQGSM)

88

Previously Released V&V Suites

Limitations in previously released V&V suites
− Mixture of Makefile, Perl, Windows .bat scripts used to execute problems (ALL)

§ Missing execution scripts entirely (CEM & LAQGSM)

− Problems cannot be run directly without preprocessing or suite-specific XSDIR files
(CRITICALITY & CRIT_EXPANDED)

− Misleading suite not doing actual verification (SHLD_SVDM)

− Postprocessing results scripts inconsistent and/or missing (SHIELDING, CEM & LAQGSM)

− No job submission / cluster support (ALL)

− Plotting / visualization support missing, broken, or incomplete (ALL)

− Any sort of documentation requires manual intervention (ALL)

99

New Python-based Framework

• Consistency across suites

• Extensible to more suites and
problem types

• Automated for all steps
− Setup
− Execute
− Postprocess
− Document

• Requires Python3
• Runs on Linux, Mac OS, & Windows

description.json file

1010

New Python-based Framework

• Can be immediately used for any
version of the code
(input and data options must be considered)

• For developers
− Can test code and data frequently
− V&V reports are essential for a release

• For everyone else
− Can add application-specific V&V

suites
− Can support SQA needs

vnvstats /
|- README.md
|- support /

|- mcnpvnv.py (MCNP-specific V&V functionality)
|- vnv / (Generic V&V functionality)

|- README.md
|- __init__.py
|- benchcalc.py (Benchmark/experiment handling)
|- commandline.py (Command line parser and execution)
|- compare.py (Compare results from calculations/experiments)
|- plotndoc.py (Tabulation of results, plotting and documentation)
|- slurmin.py (Support SLURM submission and job execution)
|- tests /

|- validation /
|- criticality /

|- README.md
|- VnV.py (Drives criticality suite)
|- experiments / (Contains each benchmark model and description)

|- shielding /
|- lockwood /
|- ...

|- verification /
|- keff /
|- kobayashi /
|- ...

Directory structure

1111

New Python-based Framework

• List
− Query test suite for available test problems

python VnV.py list

criticality $ python VnV.py list
All available tests in validation criticality:
BAWXI2
BIGTEN
FLAT23
FLAT25
FLATPU
FLSTF1
GODIVA
GODIVR
HISHPG
ICT2C3
IMF03
IMF04
JEZ233
JEZ240
JEZPU
LST2C2
ORNL10
ORNL11
PNL2
PNL33
PUBTNS
PUSH2O
SB25
SB5RN3
STACY36
THOR
TT2C11
UH3C6
UMF5C2
ZEBR8H
ZEUS2

1212

New Python-based Framework

• Setup
− Creates a calculation tree of benchmarks selected

python VnV.py setup --calcdir_name testA

− Example of calculation tree with only listed benchmarks
python VnV.py setup --calcdir_name testB BIGTEN FLAT25 GODIVA

1313

New Python-based Framework

• Execution
− Runs all problems in existing calculation directory

python VnV.py execute --calcdir_name testA

− Builds command line from execution_info group

− Option examples:
--executable_name mcnp6
--jobs 2 concurrent execution
--ntrd 8 threads for each job
--nmpi 4 ranks for each job

description.json file

1414

New Python-based Framework

• Execution Submission
− Submits all problems in existing calculation directory via slurm/sbatch

python VnV.py execute_slurm --calcdir_name testA

− Option examples:
--nodes 1 node allocation
--time 120 time allocation in minutes
--stride 8 jobs per sbatch job submitted
--wait wait for execution to complete before proceeding

--pre_cmd commands to run before and/or after MCNP
--post_cmd execution within sbatch submission script

1515

New Python-based Framework

• Postprocessing
− Reads calculation output files and processes

results into calculation description.json
python VnV.py postprocess \
--calcdir_name testA

− Adds calculation_data and calculation_info
objects to JSON file
§ experiment_data and calculation_data directly

comparable

− All suites will likely postprocess MCNP results
differently

− Using MCNPTools wherever possible

1616

New Python-based Framework

• Documentation
− Retrieves experiment and simulation

results from calculation description.json
and prepares documentation
python VnV.py document \
--calcdir_name testA

− Results are tabulated into text and
LaTeX form

− Plots are generated into PNG outputs

− Between LaTeX text, tables, and PNG
plots, a V&V report is nearly done

HEU Calculation Benchmark Results

Exp. k-eff Exp. unc. Calc. k-eff Calc. unc.
ZEUS2 0.9997 0.0008 0.997547 0.000704
UH3C6 1.0000 0.0047 0.995685 0.000771
FLAT25 1.0000 0.0030 1.003410 0.000610
TT2C11 1.0000 0.0038 1.000900 0.000754
GODIVA 1.0000 0.0010 0.998775 0.000624
GODIVR 0.9985 0.0011 0.998897 0.000729
ORNL10 1.0015 0.0026 1.000050 0.000357

IEU Calculation Benchmark Results

Exp. k-eff Exp. unc. Calc. k-eff Calc. unc.
BIGTEN 0.9948 0.0013 0.99523 0.000474
ICT2C3 1.0017 0.0044 1.00352 0.000711
IMF03 1.0000 0.0017 1.00186 0.000637
IMF04 1.0000 0.0030 1.00818 0.000647

...

1717

New Python-based Framework

• Nominal workflow
− Setup, execute, postprocess, and

document a suite of test problems

python VnV.py setup \
--calcdir_name MCNP63_VV

python VnV.py execute \
--calcdir_name MCNP63_VV

python VnV.py postprocess \
--calcdir_name MCNP63_VV

python VnV.py document \
--calcdir_name MCNP63_VV

Note: this is under active development and some changes may occur before official release

1818

Additional Test Suite(s)

• Beyond the actual MCNP input files, two ingredients are required to create a
new suite:

− description.json files, each benchmark (easy)
§ execution_info : maps to MCNP command line options/arguments and input/output files
§ experiment_data : benchmark results used to compare to calculation results

− VnV.py script, each suite (medium/hard)
§ list : same for all test suites
§ setup : same for all test suites (except where additional options are wanted, see bonus slide)
§ execute : same for all test suites
§ execute_slurm : same for all test suites
§ postprocess : unique to every test suite
§ document : unique to every test suite

This is likely where the most time
is spent getting each suite setup

1919

Additional Test Suite(s)

• Finished incorporating Lockwood validation test suite
− Electron transport energy deposition

§ Condensed history algorithm
§ Single event electrons

− Several materials
− 334 separate MCNP inputs
− Reasonably computationally expensive

(need cluster / high performance computing)

• Resurrecting LAQGSM and CEM
validation test suites
− No Makefile or other scripts to execute

code and/or postprocess results
− Gaining experience through old tests,

documentation and trail of bread crumbs…

2020

Summary

• All MCNP team supported V&V test suites are now developed in a separate
repository from the MCNP source code within a Python-based framework
− Python tools and scripts
− Benchmark inputs and description JSON files

• This entire framework will be distributed with the upcoming MCNP6.3 release

• Most V&V test suites distributed with MCNP6.2 will be distributed in new
framework

• New V&V test suites are done or being worked on for the MCNP6.3 release

• Looking forward to feedback and potential contributions

212/23/21

Questions?

Contact: mrising@lanl.gov

2222

Suite specific command line options

• Easy to add command line options in VnV.py scripts for each individual suite
command_args["setup"].add_argument(

"--data",
type=str,
choices=["endf66", "endf70", "endf71", "endf80"],
default="endf71",
help="Data library to use, default endf71",

)

• Criticality and Rossi-alpha suites have --data option for setup step:

python VnV.py setup --calcdir_name test_endf71 --data endf71
python VnV.py setup --calcdir_name test_endf80 --data endf80

• Separate calculation tree for each --data option selected

