
LA-UR-21-26562
Approved for public release; distribution is unlimited.

Title: Particle Track Output (PTRAC) Improvements, Parallelism, and
Post-Processing

Author(s): Bolding, Simon R.
Kulesza, Joel A.
Marcath, Matthew James
Rising, Michael Evan

Intended for: MCNP User Symposium 2021, 2021-07-12/2021-07-16 (Los Alamos, New
Mexico, United States)

Issued: 2021-07-12 (Draft)



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



17/9/21 17/9/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Particle Track Output (PTRAC) Improvements, 
Parallelism, and Post-Processing 

Simon Bolding, Joel Kulesza, Matthew Marcath, and Michael Rising

13 July 2021

LAUR -TODO



27/9/21

Outline

• PTRAC overview
• What is new in MCNP6.3?

− Parallel PTRAC 
− HDF5 format

• Post-processing with MCNPTools and Python
• Future changes



37/9/21

Outline

• PTRAC overview
• What is new in MCNP6.3?

− Parallel PTRAC 
− HDF5 format

• Post-processing with MCNPTools and Python
• Future changes



47/9/21 47/9/21

Particle track output (PTRAC) is used for advanced post-
processing of histories on an event-by-event basis

• PTRAC is often used for coincident and time-dependent detector analysis 
− The output data is fed into other post-processing software

• Examples uses include
− Advanced detector response simulations with DRiFT [1]
− Subcritical multiplicity counting

Subcritical BeRP Ball
Multiplicity Detectors



57/9/21

PTRAC output is a list of events as they occurred in the 
code, for each history

• Output includes source, termination, collision, bank, and surface events
− With secondary particles, not ordered with physical time (LIFO)
− Reconstructing branching of histories is typically possible, but onerous

• Can filter which events are written based on history and event data 
− Limits the size of output files and memory usage

• Example input card

− Writes events with particle energy in [1,14] MeV, for histories that traversed cell 1



67/9/21 67/9/21

For MCNP6.3 an HDF5 format is available that can be 
generated via parallel execution

• Simpler output structure makes the feature more accessible to users
− Reduces processing errors of legacy formats
− More flexible, so it can be extended in the future

• PTRAC simulations with HDF5 can be executed in parallel,
removing a computational bottleneck
− Even in serial, HDF5 PRAC is up to 10x faster for large problems

• Improved the interface for some features
− e.g., cell and surface event filters now read user IDs

• MCNP6.3 includes several PTRAC bug fixes detailed in release notes
− Two infrequently used features have also been deprecated



77/9/21

Outline

• PTRAC overview
• What is new in MCNP6.3?

− Parallel PTRAC 
− HDF5 format

• Post-processing with MCNPTools and Python
• Future changes



87/9/21 87/9/21

MCNP6.3 with PTRAC can be executed in parallel
with detailed guidance given in the manual

• HDF5 PTRAC files can be produced with MPI, threads, or both
− MPI-parallel PTRAC requires an MPI enabled installation of HDF5
− Task (OpenMP) parallel PTRAC is available with any HDF5 build

• Each process buffers data into memory over multiple histories
periodically writing to disk 

• The memory usage can be very large 
− A `std::bad_alloc` error will appear if memory is exhausted

§ Inefficient memory swapping may occur instead
− This is mitigated with the FLUSHNPS option as detailed in next slide



97/9/21 97/9/21

User must specify FLUSHNPS to control how much 
PTRAC data is buffered in memory between writes

• FLUSHNPS is the maximum number of histories between file writes
− User values of FLUSHNPS vary greatly with simulation and computer size

• An estimate of maximum memory usage is printed by MCNP6
− Only PTRAC usage, so must be balanced with problem size
− Writes may occur more frequently from other rendezvous 

• As a rule of thumb (for current hardware) use FLUSHNPS=100,000 and 
check the memory usage is < 2 GB, per computational resource
− Higher memory usage will not necessarily improve efficiency
− When in doubt, write more often than necessary



107/9/21 107/9/21

There are a couple other things to remember 
specific to parallel PTRAC execution

• MPI parallel HDF5 will be slow or hang on most Network File Systems 
in ways that MCNP6 cannot detect
− Always try a quick initial run to verify that a file is written correctly
− Can use task-based parallelism on any file system

• For task-based parallelism, order of NPS in file is non-deterministic 
− A side-effect of how MCNP does shared memory parallelism
− Each history is independent, so this does not affect results

§ All events for each history are always ordered
− If you want to exactly reproduce the order of an equivalent serial simulation, 

the record log should be stably sorted by NPS



117/9/21

The output file ptrac.h5 is binary, but there are many 
standardized toolsets for inspecting it
− h5ls and h5dump for terminal usage − HDFView for graphical exploration

• Each group (e.g., /ptrack/) is like a folder on your computer and each 
dataset is just an array of data that can be post-processed



127/9/21 127/9/21

The new format has a flattened output structure
compared to the convoluted ASCII data

• Each dataset array lists all events for a particular type of event
− Have direct access to entire array for each event type

• The RecordLog dataset provides the event-by-event ordering of the entries in 
the event arrays, ordered by the history identifier NPS
− Similar to foreign keys of relational databases

• Each entry in a dataset is a compound data type
− Contains all particle data, e.g., x, y, z, energy, etc.
− Contains event specific data, e.g., collision type



137/9/21 137/9/21

The RecordLog lists the order of the events
present in the other arrays



147/9/21

Outline

• PTRAC overview
• What is new in MCNP6.3?

− Parallel PTRAC 
− HDF5 format

• Post-processing with MCNPTools and Python
• Future changes



157/9/21

Example problem: simplified subcritical pin cell lattice, 
with a spontaneous fission source in fuel

• 12% enriched uranium surrounded by water
− Reflective boundaries
− 238U Watt spectrum source, distributed over fuel volume
− K-effective for geometry is 0.96

• Goal: using PTRAC, plot fission sites by energy
− Note: example code snippets in slides are incomplete.

See materials attached to presentation for full scripts

Fuel

Water



167/9/21

PTRAC input card and memory usage message

• Ptrac input card for generating collision and source events

• This problem produces many collisions per history, so a relatively 
low value of FLUSHNPS was used:



177/9/21

Use h5py to process ptrac.h5; plot fission sites by 
incident energy and load scatters by reaction ZAID



187/9/21

Plot of fast ( > 1 MeV) and slow fission, as well as
location of scatters off of hydrogen



197/9/21

Creating a histogram of the source spectra
is straightforward with direct access



207/9/21

PTRAC files (HDF5 and legacy) can also be processed 
with the MCNPTools library

• MCNPTools is a collection of python and C++ post-processing software
− Will be posted to LANL Github around MCNP6.3 release

• While file formats in MCNP6 may change over time,
the MCNPTools interface will require minimal changes

• For PTRAC files, MCNPTools simplifies access to events 
in simulation order, for all histories



217/9/21

Outline

• PTRAC overview
• What is new in MCNP6.3?

− Parallel PTRAC 
− HDF5 format

• Post-processing with MCNPTools and Python
• Future changes



227/9/21

Take-aways and future plans 

• MCNP6.3 has a new HDF5 format that can be executed in parallel
− Use MCNPTools or h5py to analyze results 

• The legacy formats are serial-only and deprecated
− We are not planning to support EVENT=CAP and COINC keywords. 

Please contact mcnp_help@lanl.gov if you need these features.

• Several helpful features are (hopefully) coming in the future
− Remove need for user-specified FLUSHNPS, in most cases
− Tracking the generation of secondary particles and their events
− Expanded MCNPTools support to help replace deprecated features (EVENT=CAP)
− Ability for continue runs and expanded filtering options



232/23/21

Questions?

Contact: sbolding@lanl.gov
mcnp_help@lanl.gov

mailto:sbolding@lanl.gov
mailto:mcnp_help@lanl.gov


247/9/21

Citations

1. “DRiFT – A Detector Response Function Toolkit for MCNP Output”, M.T. 
Andrews, et. al. Los Alamos National Laboratory, LA-UR-16-27166.



257/9/21

Backup Content

• Attached to this document are the full scripts that can be used to generate the 
results shown.



267/9/21

Accessing the fields of a compound dataset

• It can be a little tricky to get access to the available fields of a compound 
dataset, particularly in older versions of h5py:



import h5py
import matplotlib as mpl
#mpl.use('Agg') # For certain HPC backends
import matplotlib.pyplot as plt

# -------------------------------------------------------
# NOTE: rename this file to plot_ptrac.py. It could not
# be attached to the PDF unless it had extension .txt
#
# This file assumes you have a valid installation of
# MCNPTools available, and have ran a corresponding input
# file `pincell.txt` to produce a ptrac.h5 output file. It
# is also necessary to have h5py and matplotlib installed
# with the python distribution.
#
# To run: python3 plot_ptrac.py
#
# It is straightforward to extend the parsing in this file
# to other uses. If you do not have MCNPTools, the first
# part of the script will successfully complete, and the
# mcnptools code below it can be removed.
# -------------------------------------------------------

def plot_points(ax, points, color, label=None):
    """Plot several points over geometry"""
    x = [pair[0] for pair in points]
    y = [pair[1] for pair in points]
    ax.scatter(x,y,c=color,alpha=0.6,label=label)
    return

def plot_results_with_h5py():
    """Directly plot results in h5py"""
    ptrack_file = h5py.File('ptrac.h5', 'r')
    ptrack_grp  = ptrack_file['ptrack']

    # In older versions of h5py, it is a little tricky to access the 
datatype:
    print("What fields are available?: ", 
ptrack_grp["Collision"].dtype.fields.keys())

    # Plot the distribution of the source energies
    src_energies = [ data['energy'] for data in ptrack_grp["Source"] ]
    fig = plt.figure()
    ax  = fig.add_subplot(111)
    ax.hist(src_energies, bins = 25)
    ax.set_xlabel("Energy (MeV)")
    ax.set_ylabel("Number Samples")
    fig.savefig("energy_spectra.pdf", bbox_inches='tight')



    # Bin fission sites by incident neutron enery, and plot H scatters
    slow_fission_sites = []
    fast_fission_sites = []
    hydrogen_scatters  = []

    for entry in ptrack_grp["Collision"][1:1000000]: #load subset to 
reduce plotting strain
        xy = (entry['x'],entry['y'])
        if entry['reaction_type'] == 18: #MT number from ENDF format
            if entry['energy'] > 1: #MeV
                fast_fission_sites.append( xy )
            else:
                slow_fission_sites.append( xy )
        elif entry['reaction_type'] == 2 and entry['zaid'] == 1001:
            hydrogen_scatters.append( xy )

    # Plot the points of fast and slow fissions, as well as hydrogen 
scatters
    # simply to outline the geometry
    fig = plt.figure()
    ax  = fig.add_subplot(111)
    plot_points(ax, fast_fission_sites,'#1b9e77',label="Fast 
Fissions")
    plot_points(ax, slow_fission_sites,'#d95f02',label="Slow 
Fissions")
    plot_points(ax, hydrogen_scatters, '#7570b3', label="H Scatters")
    ax.set_xlabel("x (cm)")
    ax.set_ylabel("y (cm)")
    ax.legend(loc='upper right')
    ax.set_aspect(1)
    fig.savefig("h5py_plot.pdf", bbox_inches='tight')

    print("Number of fast fissions: 
{}".format(len(fast_fission_sites)))
    print("Number of slower fissions: 
{}".format(len(slow_fission_sites)))
    print("Number of scatters: {}".format(len(hydrogen_scatters)))

def plot_results_with_mcnptools():
    """Plot same results as before but with MCNPTools"""
    slow_fission_sites = []
    fast_fission_sites = []
    hydrogen_scatters  = []

    from mcnptools import Ptrac

    # Open in mcnptools
    pdata = Ptrac("ptrac.h5", Ptrac.HDF5_PTRAC)



    # Read in batches
    num_collisions = 0
    while True:

        # Read histories in iterations, until 3M collisions have been 
processed
        hists = pdata.ReadHistories(1000)
        if len(hists) == 0 or num_collisions > 3000000:
            break

        for h in hists: # history loop
            for e in range(h.GetNumEvents()): # event loop, per 
history
                event = h.GetEvent(e)
                xy = (event.Get(Ptrac.X), event.Get(Ptrac.Y))
                if event.Type() == Ptrac.COL:
                    num_collisions += 1
                    mt_number = event.Get(Ptrac.RXN) # See manual
                    if mt_number == 18:
                        if event.Get(Ptrac.ENERGY) > 1.0:
                            fast_fission_sites.append(xy)
                        else:
                            slow_fission_sites.append(xy)

    fig = plt.figure()
    ax  = fig.add_subplot(111)
    plot_points(ax, fast_fission_sites,'#1b9e77',label="Fast 
Fissions")
    plot_points(ax, slow_fission_sites,'#d95f02',label="Slow 
Fissions")
    plot_points(ax, hydrogen_scatters, '#7570b3', label="H Scatters")
    ax.legend(loc='upper right')
    ax.set_aspect(1)
    fig.savefig("mcnptools_plot.pdf", bbox_inches='tight')

plot_results_with_h5py()
plot_results_with_mcnptools()

# Display all the photos, a copy is also saved in the working 
directory
plt.show()



Reflected box of Uranium and neutron source
c >> Cell Cards
1  1000 -19.1   -10 -20 imp:n=1   $ Uranium Fuel
2  2000 -1.0     10 -20 imp:n=1   $ Water
3  0             20     imp:n=0   $ void

c >> Surface Cards
10 CZ   12.0
*20 RPP   -20. 20. -20 20 -20 20

c >> Data Cards
mode n
sdef pos=0 0 0 ext=d1 rad=d2 erg=d3 axs=0 0 1
si1 -20 20 $ uniform height
sp1  0  1  
si2  0 12.0         $ uniform in volume
sp2 -21 1
sp3 -3 0.648 6.81057    $ U238 spontaneous fission
c kcode 10000 1.0 10 50 $ For criticality calculation
nps 3000                $ For fixed source 
m1000  92235.70c  -0.12
       92238.70c  -0.88
m2000  1001.70c   2
       8016.70c   1
mt2000 lwtr.10t
print
c Write collision and source events for post processing
ptrac file=hdf5 flushnps=1000 event=col,src


	parallel_ptrac_guide
	plot_ptrac
	pincell

