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Particle track output (PTRAC) is used for advanced post-
processing of histories on an event-by-event basis

• PTRAC is often used for coincident and time-dependent detector analysis 
− The output data is fed into other post-processing software

• Examples uses include
− Advanced detector response simulations with DRiFT [1]
− Subcritical multiplicity counting

Subcritical BeRP Ball
Multiplicity Detectors
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PTRAC output is a list of events as they occurred in the 
code, for each history

• Output includes source, termination, collision, bank, and surface events
− With secondary particles, not ordered with physical time (LIFO)
− Reconstructing branching of histories is typically possible, but onerous

• Can filter which events are written based on history and event data 
− Limits the size of output files and memory usage

• Example input card

− Writes events with particle energy in [1,14] MeV, for histories that traversed cell 1
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For MCNP6.3 an HDF5 format is available that can be 
generated via parallel execution

• Simpler output structure makes the feature more accessible to users
− Reduces processing errors of legacy formats
− More flexible, so it can be extended in the future

• PTRAC simulations with HDF5 can be executed in parallel,
removing a computational bottleneck
− Even in serial, HDF5 PRAC is up to 10x faster for large problems

• Improved the interface for some features
− e.g., cell and surface event filters now read user IDs

• MCNP6.3 includes several PTRAC bug fixes detailed in release notes
− Two infrequently used features have also been deprecated
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MCNP6.3 with PTRAC can be executed in parallel
with detailed guidance given in the manual

• HDF5 PTRAC files can be produced with MPI, threads, or both
− MPI-parallel PTRAC requires an MPI enabled installation of HDF5
− Task (OpenMP) parallel PTRAC is available with any HDF5 build

• Each process buffers data into memory over multiple histories
periodically writing to disk 

• The memory usage can be very large 
− A `std::bad_alloc` error will appear if memory is exhausted

§ Inefficient memory swapping may occur instead
− This is mitigated with the FLUSHNPS option as detailed in next slide
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User must specify FLUSHNPS to control how much 
PTRAC data is buffered in memory between writes

• FLUSHNPS is the maximum number of histories between file writes
− User values of FLUSHNPS vary greatly with simulation and computer size

• An estimate of maximum memory usage is printed by MCNP6
− Only PTRAC usage, so must be balanced with problem size
− Writes may occur more frequently from other rendezvous 

• As a rule of thumb (for current hardware) use FLUSHNPS=100,000 and 
check the memory usage is < 2 GB, per computational resource
− Higher memory usage will not necessarily improve efficiency
− When in doubt, write more often than necessary
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There are a couple other things to remember 
specific to parallel PTRAC execution

• MPI parallel HDF5 will be slow or hang on most Network File Systems 
in ways that MCNP6 cannot detect
− Always try a quick initial run to verify that a file is written correctly
− Can use task-based parallelism on any file system

• For task-based parallelism, order of NPS in file is non-deterministic 
− A side-effect of how MCNP does shared memory parallelism
− Each history is independent, so this does not affect results

§ All events for each history are always ordered
− If you want to exactly reproduce the order of an equivalent serial simulation, 

the record log should be stably sorted by NPS
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The output file ptrac.h5 is binary, but there are many 
standardized toolsets for inspecting it
− h5ls and h5dump for terminal usage − HDFView for graphical exploration

• Each group (e.g., /ptrack/) is like a folder on your computer and each 
dataset is just an array of data that can be post-processed
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The new format has a flattened output structure
compared to the convoluted ASCII data

• Each dataset array lists all events for a particular type of event
− Have direct access to entire array for each event type

• The RecordLog dataset provides the event-by-event ordering of the entries in 
the event arrays, ordered by the history identifier NPS
− Similar to foreign keys of relational databases

• Each entry in a dataset is a compound data type
− Contains all particle data, e.g., x, y, z, energy, etc.
− Contains event specific data, e.g., collision type
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The RecordLog lists the order of the events
present in the other arrays
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Example problem: simplified subcritical pin cell lattice, 
with a spontaneous fission source in fuel

• 12% enriched uranium surrounded by water
− Reflective boundaries
− 238U Watt spectrum source, distributed over fuel volume
− K-effective for geometry is 0.96

• Goal: using PTRAC, plot fission sites by energy
− Note: example code snippets in slides are incomplete.

See materials attached to presentation for full scripts

Fuel

Water
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PTRAC input card and memory usage message

• Ptrac input card for generating collision and source events

• This problem produces many collisions per history, so a relatively 
low value of FLUSHNPS was used:
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Use h5py to process ptrac.h5; plot fission sites by 
incident energy and load scatters by reaction ZAID
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Plot of fast ( > 1 MeV) and slow fission, as well as
location of scatters off of hydrogen
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Creating a histogram of the source spectra
is straightforward with direct access
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PTRAC files (HDF5 and legacy) can also be processed 
with the MCNPTools library

• MCNPTools is a collection of python and C++ post-processing software
− Will be posted to LANL Github around MCNP6.3 release

• While file formats in MCNP6 may change over time,
the MCNPTools interface will require minimal changes

• For PTRAC files, MCNPTools simplifies access to events 
in simulation order, for all histories
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Take-aways and future plans 

• MCNP6.3 has a new HDF5 format that can be executed in parallel
− Use MCNPTools or h5py to analyze results 

• The legacy formats are serial-only and deprecated
− We are not planning to support EVENT=CAP and COINC keywords. 

Please contact mcnp_help@lanl.gov if you need these features.

• Several helpful features are (hopefully) coming in the future
− Remove need for user-specified FLUSHNPS, in most cases
− Tracking the generation of secondary particles and their events
− Expanded MCNPTools support to help replace deprecated features (EVENT=CAP)
− Ability for continue runs and expanded filtering options
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Questions?

Contact: sbolding@lanl.gov
mcnp_help@lanl.gov

mailto:sbolding@lanl.gov
mailto:mcnp_help@lanl.gov


247/9/21
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Backup Content

• Attached to this document are the full scripts that can be used to generate the 
results shown.
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Accessing the fields of a compound dataset

• It can be a little tricky to get access to the available fields of a compound 
dataset, particularly in older versions of h5py:



import h5py
import matplotlib as mpl
#mpl.use('Agg') # For certain HPC backends
import matplotlib.pyplot as plt

# -------------------------------------------------------
# NOTE: rename this file to plot_ptrac.py. It could not
# be attached to the PDF unless it had extension .txt
#
# This file assumes you have a valid installation of
# MCNPTools available, and have ran a corresponding input
# file `pincell.txt` to produce a ptrac.h5 output file. It
# is also necessary to have h5py and matplotlib installed
# with the python distribution.
#
# To run: python3 plot_ptrac.py
#
# It is straightforward to extend the parsing in this file
# to other uses. If you do not have MCNPTools, the first
# part of the script will successfully complete, and the
# mcnptools code below it can be removed.
# -------------------------------------------------------

def plot_points(ax, points, color, label=None):
    """Plot several points over geometry"""
    x = [pair[0] for pair in points]
    y = [pair[1] for pair in points]
    ax.scatter(x,y,c=color,alpha=0.6,label=label)
    return

def plot_results_with_h5py():
    """Directly plot results in h5py"""
    ptrack_file = h5py.File('ptrac.h5', 'r')
    ptrack_grp  = ptrack_file['ptrack']

    # In older versions of h5py, it is a little tricky to access the 
datatype:
    print("What fields are available?: ", 
ptrack_grp["Collision"].dtype.fields.keys())

    # Plot the distribution of the source energies
    src_energies = [ data['energy'] for data in ptrack_grp["Source"] ]
    fig = plt.figure()
    ax  = fig.add_subplot(111)
    ax.hist(src_energies, bins = 25)
    ax.set_xlabel("Energy (MeV)")
    ax.set_ylabel("Number Samples")
    fig.savefig("energy_spectra.pdf", bbox_inches='tight')



    # Bin fission sites by incident neutron enery, and plot H scatters
    slow_fission_sites = []
    fast_fission_sites = []
    hydrogen_scatters  = []

    for entry in ptrack_grp["Collision"][1:1000000]: #load subset to 
reduce plotting strain
        xy = (entry['x'],entry['y'])
        if entry['reaction_type'] == 18: #MT number from ENDF format
            if entry['energy'] > 1: #MeV
                fast_fission_sites.append( xy )
            else:
                slow_fission_sites.append( xy )
        elif entry['reaction_type'] == 2 and entry['zaid'] == 1001:
            hydrogen_scatters.append( xy )

    # Plot the points of fast and slow fissions, as well as hydrogen 
scatters
    # simply to outline the geometry
    fig = plt.figure()
    ax  = fig.add_subplot(111)
    plot_points(ax, fast_fission_sites,'#1b9e77',label="Fast 
Fissions")
    plot_points(ax, slow_fission_sites,'#d95f02',label="Slow 
Fissions")
    plot_points(ax, hydrogen_scatters, '#7570b3', label="H Scatters")
    ax.set_xlabel("x (cm)")
    ax.set_ylabel("y (cm)")
    ax.legend(loc='upper right')
    ax.set_aspect(1)
    fig.savefig("h5py_plot.pdf", bbox_inches='tight')

    print("Number of fast fissions: 
{}".format(len(fast_fission_sites)))
    print("Number of slower fissions: 
{}".format(len(slow_fission_sites)))
    print("Number of scatters: {}".format(len(hydrogen_scatters)))

def plot_results_with_mcnptools():
    """Plot same results as before but with MCNPTools"""
    slow_fission_sites = []
    fast_fission_sites = []
    hydrogen_scatters  = []

    from mcnptools import Ptrac

    # Open in mcnptools
    pdata = Ptrac("ptrac.h5", Ptrac.HDF5_PTRAC)



    # Read in batches
    num_collisions = 0
    while True:

        # Read histories in iterations, until 3M collisions have been 
processed
        hists = pdata.ReadHistories(1000)
        if len(hists) == 0 or num_collisions > 3000000:
            break

        for h in hists: # history loop
            for e in range(h.GetNumEvents()): # event loop, per 
history
                event = h.GetEvent(e)
                xy = (event.Get(Ptrac.X), event.Get(Ptrac.Y))
                if event.Type() == Ptrac.COL:
                    num_collisions += 1
                    mt_number = event.Get(Ptrac.RXN) # See manual
                    if mt_number == 18:
                        if event.Get(Ptrac.ENERGY) > 1.0:
                            fast_fission_sites.append(xy)
                        else:
                            slow_fission_sites.append(xy)

    fig = plt.figure()
    ax  = fig.add_subplot(111)
    plot_points(ax, fast_fission_sites,'#1b9e77',label="Fast 
Fissions")
    plot_points(ax, slow_fission_sites,'#d95f02',label="Slow 
Fissions")
    plot_points(ax, hydrogen_scatters, '#7570b3', label="H Scatters")
    ax.legend(loc='upper right')
    ax.set_aspect(1)
    fig.savefig("mcnptools_plot.pdf", bbox_inches='tight')

plot_results_with_h5py()
plot_results_with_mcnptools()

# Display all the photos, a copy is also saved in the working 
directory
plt.show()



Reflected box of Uranium and neutron source
c >> Cell Cards
1  1000 -19.1   -10 -20 imp:n=1   $ Uranium Fuel
2  2000 -1.0     10 -20 imp:n=1   $ Water
3  0             20     imp:n=0   $ void

c >> Surface Cards
10 CZ   12.0
*20 RPP   -20. 20. -20 20 -20 20

c >> Data Cards
mode n
sdef pos=0 0 0 ext=d1 rad=d2 erg=d3 axs=0 0 1
si1 -20 20 $ uniform height
sp1  0  1  
si2  0 12.0         $ uniform in volume
sp2 -21 1
sp3 -3 0.648 6.81057    $ U238 spontaneous fission
c kcode 10000 1.0 10 50 $ For criticality calculation
nps 3000                $ For fixed source 
m1000  92235.70c  -0.12
       92238.70c  -0.88
m2000  1001.70c   2
       8016.70c   1
mt2000 lwtr.10t
print
c Write collision and source events for post processing
ptrac file=hdf5 flushnps=1000 event=col,src
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