
LA-UR-21-26855
Approved for public release; distribution is unlimited.

Title: MCNP6.2 Benchmarks: Scaling and Hardware Considerations

Author(s): Grieve, Tristan Sumner

Intended for: 2021 MCNP User Symposium, 2021-07-12/2021-07-16 (Los Alamos, New
Mexico, United States)

Issued: 2021-08-10 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

14/5/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 14/5/21

MCNP6.2 Benchmarks:
Scaling and Hardware Considerations

Avery Grieve

XCP-3 (Monte Carlo Codes)

2021 MCNP User Symposium

July 16, 2021

28/4/21

Sections

• Introduction to scaling types
⁃ Strong and Weak Scaling, Amdahl’s and Gustafson’s Law

• MCNP Benchmark Tests and Results
⁃ OMP, MPI results.
⁃ Scaling falloff with OMP overhead
⁃ Efficiency Metric

• Memory Benchmark
⁃ Xeon vs Ryzen

• Key Takeaways

34/5/21 34/5/21

Strong Scaling

• Strong scaling - The number of processors increases while the problem size
remains fixed

• For OMP threading:
− nps = 1e8 (constant)
− mcnp6 i=input tasks [threads]

• For MPI threading:
− nps = 1e8
− mpirun –n [threads] mcnp6.mpi i=input

§ For mpi, the threads are distributed according to sbatch/slurm parameters:
--nodes, --ntasks-per-node, etc

44/5/21[2] https://en.wikipedia.org/wiki/Amdahl%27s_law

[2]

Strong Scaling – Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl%27s_law

54/5/21 54/5/21

Weak Scaling

• Weak scaling - The number of processors increases proportionally to the
problem size

• For OMP threading:
− nps = [threads]*1e6
− mcnp6 i=input tasks [threads]

• For MPI threading:
− nps = [threads]*1e6
− mpirun –n [threads] mcnp6.mpi i=input

§ For mpi, the threads are distributed according to sbatch/slurm parameters:
--nodes, --ntasks-per-node, etc

64/5/21

Weak Scaling – Gustafson’s Law

[1]

[1] https://en.wikipedia.org/wiki/Gustafson%27s_law

https://en.wikipedia.org/wiki/Gustafson%27s_law

74/5/21 74/5/21

Test Metrics: fixed source problem

test input for metrics
100 0 2 -999 imp:p=1
200 1 -6.63 -2 imp:p=1
999 0 999 imp:p=0

2 rpp -10 10 -10 10 -2 2
999 so 100

mode p
nps 1e8
sdef par=2 pos=0 0 10 erg=1.3
m1 64157 3 13027 2 31000 3 08016 12
c f8:p 200
c e8 0 700i 1.4

Simply a GAGG(Ce) rectangular prism in
a vacuum with a photon source.

84/5/21 84/5/21

Test Metrics: K Code Problem

Lightly modified input from the MCNP
Criticality Class.

Longer input summarized:

3x2 array of cans containing plutonium-
nitrate solution.
Cans are ~12.5cm ID and ~12.8cm OD.

kcode 20000 1.0 50 150

Note: Weak scaling not performed on K
Code problem.

94/5/21

Strong Scaling Data At-A-Glance: Real Time

Several chips in center of pack:
Xeon Gold 5218, Ryzen 3970x,
Xeon E5-26xx, i9 9980X

Upper and lower outlier is the
same chip: ThunderX2 (ARM)

104/5/21

Strong Scaling Data At-A-Glance: Speedup

114/5/21

Strong Scaling Data At-A-Glance: Speedup (minus the
outliers)

124/5/21

Strong Scaling Performance Falloff

134/5/21

Weak Scaling Data At-A-Glance: Grind Time

144/5/21

Weak Scaling Data At-A-Glance: Speedup

154/5/21

Weak Scaling Data At-A-Glance: Speedup (minus the
outliers)

164/5/21

Metric – Strong Scaling

Best Performer
(Fixed Source)

Worst Performer
(Fixed Source)

Best Performer
(K Code)

Worst Performer
(K Code)

ThunderX2: 97.60 Ryzen 3970X:
43.49

ThunderX2: 90.89 Xeon E5-2695:
76.66

174/5/21

Metric – Weak Scaling

Best Performer (Fixed
Source)

Worst Performer
(Fixed Source)

ThunderX2: 96.19 Ryzen 3970X: 44.95

184/5/21 184/5/21

Membench: Memory benchmarking

• Membench is a simple memory benchmark available at
https://github.com/bkochuna/membench
− Created by a grad student in the late 90s, ”maintained” by Prof. Brendan Kochunas

at UMich.

• Used during University of Michigan NERS 570 course (scientific computing).

• Source lightly modified to set maximum write to 0.5 GB.

• Program measures cache and memory access times and memory structure
can be deduced from resulting graphs.

https://github.com/bkochuna/membench

194/5/21

Membench: Example Result

L1: 32KB,
~1ns

L2: 256KB,
~6ns

L1/L2/L3: 1K
line

L3: 45MB,
~12ns

Main
Memory
~25ns

204/5/21

Membench Results

Chip L1 Size, Line
length, Access
time

L2 Size, Line
length, Access
Time

L3 Size, Line length,
Access Time

Main
Memory
Access Time

Intel Xeon E5-2695v4 32K, 1K, ~1ns 256K, 1K, ~6ns 45M, 1K, ~12ns ~25ns

Intel i9-9980HK 512K, 1K, ~5ns 2M, 1K, ~8ns 16M, 1K, ~11ns ~20ns

Intel Xeon E5-2650v3 32K, 1K, ~2ns 2M, 1k, ~10ns 25M, 1K, ~15ns ~24ns

Intel Xeon Gold 5218 32K, 64B, ~2ns 1M, 256B, ~4ns 10M, 1K, ~8ns ~20ns

AMD Ryzen 3970X 2M, 1K, ~2ns 16M, 4K, ~8ns 128M, 1K, ~13ns ~18ns

Cavium ThunderX2 32K, 32B, ~2ns 256K, 64B, ~3ns 32M, 4K, ~15ns ~27ns

Xeon Gold 5218 and Ryzen 3970X are both 32c/64t chips at 2.3 and 3.7
GHz base clock respectively.. Let’s compare performance.

214/5/21

Xeon Gold 5218 vs Ryzen 3970X
clock speed vs cache speed

234/5/21 234/5/21

Key Takeaways

• Most off the shelf chips have similar performance (Xeon, AMD Threadripper
were comparable)

• Maximum performance (and efficiency) appears related to cache
performance, speed is most important.

• Scaling is better on “fatter” processors (Xeon vs Threadripper), but may be
irrelevant when maximum performance is considered

• MPI performance is better than OMP threading, if you have MCNP source,
compile with MPI.
− OMP good within socket or prior to hyperthreading, MPI better across sockets

