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Strong Scaling

• Strong scaling - The number of processors increases while the problem size 
remains fixed

• For OMP threading:
− nps = 1e8 (constant)
− mcnp6 i=input tasks [threads]

• For MPI threading:
− nps = 1e8
− mpirun –n [threads] mcnp6.mpi i=input

§ For mpi, the threads are distributed according to sbatch/slurm parameters: 
--nodes, --ntasks-per-node, etc
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[2]

Strong Scaling – Amdahl’s Law

https://en.wikipedia.org/wiki/Amdahl%27s_law
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Weak Scaling

• Weak scaling - The number of processors increases proportionally to the 
problem size

• For OMP threading:
− nps = [threads]*1e6
− mcnp6 i=input tasks [threads]

• For MPI threading:
− nps = [threads]*1e6
− mpirun –n [threads] mcnp6.mpi i=input

§ For mpi, the threads are distributed according to sbatch/slurm parameters: 
--nodes, --ntasks-per-node, etc
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Weak Scaling – Gustafson’s Law

[1]

[1] https://en.wikipedia.org/wiki/Gustafson%27s_law

https://en.wikipedia.org/wiki/Gustafson%27s_law
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Test Metrics: fixed source problem

test input for metrics
100 0 2 -999 imp:p=1
200 1 -6.63 -2 imp:p=1
999 0 999 imp:p=0

2 rpp -10 10 -10 10 -2 2
999 so 100

mode p
nps 1e8
sdef par=2 pos=0 0 10 erg=1.3
m1 64157 3 13027 2 31000 3 08016 12
c f8:p 200
c e8 0 700i 1.4

Simply a GAGG(Ce) rectangular prism in 
a vacuum with a photon source.
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Test Metrics: K Code Problem

Lightly modified input from the MCNP 
Criticality Class.

Longer input summarized:

3x2 array of cans containing plutonium-
nitrate solution. 
Cans are ~12.5cm ID and ~12.8cm OD. 

kcode 20000 1.0 50 150

Note: Weak scaling not performed on K 
Code problem.
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Strong Scaling Data At-A-Glance: Real Time

Several chips in center of pack: 
Xeon Gold 5218, Ryzen 3970x, 
Xeon E5-26xx, i9 9980X

Upper and lower outlier is the 
same chip: ThunderX2 (ARM)
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Strong Scaling Data At-A-Glance: Speedup
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Strong Scaling Data At-A-Glance: Speedup (minus the 
outliers)
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Strong Scaling Performance Falloff
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Weak Scaling Data At-A-Glance: Grind Time
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Weak Scaling Data At-A-Glance: Speedup
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Weak Scaling Data At-A-Glance: Speedup (minus the 
outliers)
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Metric – Strong Scaling

Best Performer 
(Fixed Source)

Worst Performer
(Fixed Source)

Best Performer
(K Code)

Worst Performer
(K Code)

ThunderX2: 97.60 Ryzen 3970X: 
43.49

ThunderX2: 90.89 Xeon E5-2695: 
76.66 
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Metric – Weak Scaling

Best Performer (Fixed 
Source)

Worst Performer
(Fixed Source)

ThunderX2: 96.19 Ryzen 3970X: 44.95
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Membench: Memory benchmarking

• Membench is a simple memory benchmark available at 
https://github.com/bkochuna/membench
− Created by a grad student in the late 90s, ”maintained” by Prof. Brendan Kochunas

at UMich.

• Used during University of Michigan NERS 570 course (scientific computing). 

• Source lightly modified to set maximum write to 0.5 GB.

• Program measures cache and memory access times and memory structure 
can be deduced from resulting graphs.

https://github.com/bkochuna/membench
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Membench: Example Result

L1: 32KB, 
~1ns

L2: 256KB, 
~6ns

L1/L2/L3: 1K 
line

L3: 45MB, 
~12ns

Main 
Memory 
~25ns
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Membench Results

Chip L1 Size, Line 
length, Access 
time

L2 Size, Line 
length, Access 
Time

L3 Size, Line length, 
Access Time

Main 
Memory 
Access Time

Intel Xeon E5-2695v4 32K, 1K, ~1ns 256K, 1K, ~6ns 45M, 1K, ~12ns ~25ns

Intel i9-9980HK 512K, 1K, ~5ns 2M, 1K, ~8ns 16M, 1K, ~11ns ~20ns

Intel Xeon E5-2650v3 32K, 1K, ~2ns 2M, 1k, ~10ns 25M, 1K, ~15ns ~24ns

Intel Xeon Gold 5218 32K, 64B, ~2ns 1M, 256B, ~4ns 10M, 1K, ~8ns ~20ns

AMD Ryzen 3970X 2M, 1K, ~2ns 16M, 4K, ~8ns 128M, 1K, ~13ns ~18ns

Cavium ThunderX2 32K, 32B, ~2ns 256K, 64B, ~3ns 32M, 4K, ~15ns ~27ns

Xeon Gold 5218 and Ryzen 3970X are both 32c/64t chips at 2.3 and 3.7 
GHz base clock respectively.. Let’s compare performance.
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Xeon Gold 5218 vs Ryzen 3970X 
clock speed vs cache speed



234/5/21 234/5/21

Key Takeaways

• Most off the shelf chips have similar performance (Xeon, AMD Threadripper
were comparable)

• Maximum performance (and efficiency) appears related to cache 
performance, speed is most important.

• Scaling is better on “fatter” processors (Xeon vs Threadripper), but may be 
irrelevant when maximum performance is considered

• MPI performance is better than OMP threading, if you have MCNP source, 
compile with MPI.
− OMP good within socket or prior to hyperthreading, MPI better across sockets


