
LA-UR-22-28935
Approved for public release; distribution is unlimited.

Title: The MCNPTools Package: Installation and Use

Author(s): Bates, Cameron Russell
Bolding, Simon R.
Josey, Colin James
Kulesza, Joel A.
Solomon, Clell Jeffrey Jr.
Zukaitis, Anthony J.

Intended for: Report

Issued: 2022-08-25

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

The MCNPTools Package: Installation and Use

Cameron R. Bates, Simon R. Bolding, Colin J. Josey, Joel A. Kulesza,
Clell J. (CJ) Solomon Jr., Anthony J. Zukaitis

August 2022

1 Introduction

MCNPTools is a C++ software library bound to Python (2 & 3) via the Simplified Wrapper and
Interface Generator (SWIG version 3.0.7). The minimum requirements to build MCNPTools as a
C++ library are the following:

• a C++ compiler supporting C++11 features

• the CMake tool set version 3.21 or above

• HDF5 version 1.10.2 or above

Currently, the following compiler options are tested and supported:

• GCC 8.3.0 and above on Linux and macOS

• MSVC 19.0 on Windows

• Apple Clang 7.3.0 and above on macOS

• Intel C++ Classic Compiler 18.0.5 and above

For the Python bindings, the following must be installed:

• Python 2.7 or newer

• Setuptools

• Pip

Builds of the Python bindings have been extensively tested with the Anaconda Python distribu-
tion (https://www.anaconda.com/products/individual), but have been cursorily tested with other
distributions as well.

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC, manager
and operator of Los Alamos National Laboratory. Any third party use of such registered marks should be properly
attributed to Triad National Security, LLC, including the use of the ® designation as appropriate. Any questions
regarding licensing, proper use, and/or proper attribution of Triad National Security, LLC marks should be directed
to trademarks@lanl.gov.

1

1.1 Installing MCNPTools from a Wheel

If you would like to install MCNPTools without building it yourself, you can do so by downloading a
wheel for your operating system. Then, run:

1 python -m pip install mcnptools-X.Y.Z-??????.whl

The ?????? is a placeholder for information about the system for which the specified wheel file is
built, and can include your OS and Python version. One can add the -user command to install in
your user Python modules if you do not wish to install system-wide, or -prefix [path] to select an
installation directory.

Note that MCNPTools will need to be re-installed whenever you upgrade your Python major version,
e.g., from 3.9.X to 3.10.X.

1.2 Building MCNPTools

Once your build environment is set up (see Section 1.2.1 for tips for getting HDF5 working), create
a directory to build MCNPTools. Within the directory, run the following commands:

1 cmake -D CMAKE_INSTALL_PREFIX=[path to install] -D mcnptools.python_install=User [

path to MCNPTools source directory]

2 cmake --build . --config Release

3 ctest --build-config Release

4 cmake --install . --config Release

This will configure, build, test, and install the MCNPTools library, utilities, and Python bindings.
Testing is optional but recommended. One should confirm all tests pass prior to installation.

The two CMake variables CMAKE_INSTALL_PREFIX and mcnptools.python_install control where com-
ponents of MCNPTools are installed. The location for the library and the utilities is controlled by the
variable CMAKE_INSTALL_PREFIX. The Python bindings will be placed at CMAKE_INSTALL_PREFIX/lib
and the utilities will be placed at CMAKE_INSTALL_PREFIX/bin.

The Python binding install location is controlled by mcnptools.python_install, which has three
options:

Global This will install in the current global Python module directory, and is most useful for
system-wide installs or for Python virtual environments. (Default)

User This will will install in the current user’s Python module directory. This is most useful for
installing without administration privileges.

Prefix This will install within CMAKE_INSTALL_PREFIX/lib, which is most useful for packaging and
maintaining multiple versions. The precise location is OS-dependent, but on Linux, the location
will likely be CMAKE_INSTALL_PREFIX/lib/pythonX.X/site-packages, where X.X corresponds
to the specific Python version used to build MCNPTools. In this case, you will have to add the
site-packages path to the PYTHONPATH environment variable for Python to find the bindings.

Note that MCNPTools will need to be rebuilt and re-installed whenever you upgrade your Python
version, e.g., from 3.9.X to 3.10.X.

2

1.2.1 Setting Up HDF5

Sometimes it is difficult for CMake to find a working HDF5 installation, and if it does, it may not
load all the necessary libraries.

CMake can find HDF5 in 3 different ways, in order of most reliable to least reliable:

1. By setting the HDF5_DIR environment variable to HDF5’s own CMake folder, located at <path
to HDF5 install>/share/cmake/hdf5. This folder may not be present if HDF5 was not built
using CMake.

2. Through finding the program h5cc in the current environment’s path.

3. By setting the HDF5_ROOT environment variable to <path to HDF5 install>.

2 MCNPTools Utilities

MCNPTools releases include binary utilities that facilitate common tasks or querying MCNP output
files. This section provides information regarding the use of these utilities. The usage information
presented can be obtained from all utilities by running the utility with the -h or --help options
specified.

2.1 lnk3dnt Utilities

2.1.1 l3d2vtk

The l3d2vtk utility converts LNK3DNT files to XML-based StructuredGrid VTK (.vts) files. This
can be particularly useful to MCNP users because a LNK3DNT file can be produced as MCNP
output that represents a discretized representation of the MCNP CSG, which can then visualized
interactively in a 3-D application.

By default, l3d2vtk produces no standard output and writes a lnk3dnt.vts file. If the --verbose

option is given, then status is output periodically as the conversion proceeds.

This utility functions for (x) (Cartesian), (r) (cylindrical), (r) (spherical), (x, y), (r, z), (r, θ), (x, y, z),
(r, z, θ) geometries. For large LNK3DNT files, this utility can become sensitive to the computer’s
stack size. However, large (∼ 100 million zone) 3-D Cartesian files have been successfully converted
and visualized interactively.

The execution options given via the help message is given in Listing 9.

2.1.2 l3dcoarsen

The l3dcoarsen utility coarsens a LNK3DNT file and produces a new LNK3DNT file. By default,
the resulting LNK3DNT file with have preserved material boundaries and the same number of
mixed-material zones as the original; however, the user may keep more or less mixed-materials in a
zone if desired.

The execution options given via the help message is given in Listing 10.

3

2.1.3 l3dinfo

The l3dinfo utility reports information about LNK3DNT files. By default, l3dinfo reports only
basic information about the LNK3DNT file: geometry, extents, etc. If the --full option is given,
then the material information will be read and reported in addition to the basic information.

The execution options given via the help message is given in Listing 11.

2.1.4 l3dscale

The l3dscale utility linearly scales the dimensions of a LNK3DNT file by a user-specified factor
and produces a new LNK3DNT file.

The execution options given via the help message is given in Listing 12.

2.2 mctal Utilities

2.2.1 mctal2rad

The mctal2rad utility converts MCNP image tally results (e.g., FIR, FIP, etc.) in a MCTAL file
into TIFF images. Accordingly, mctal2rad depends on libtiff being installed and available during
compilation. The output images can be created from only the direct detector contributions and the
results can be transposed and/or scaled logarithmically.

The execution options given via the help message is given in Listing 13.

2.2.2 mergemctals

The mergemctals utility statistically merges the results in multiple MCNP MCTAL files and produces
a single resulting MCTAL file.

mergemctals can also be compiled using Boost MPI so that MCTAL files can be merged in parallel.
All machines (e.g., back-end nodes of a cluster) performing parallel operations must have access to
the files to be merged.

The execution options given via the help message is given in Listing 14.

2.3 meshtal Utilities

2.3.1 mergemeshtals

The mergemeshtals utility statistically merges the results in multiple MCNP Type-B MESHTAL files
(i.e., those created with an fmesh card) and produces a single resulting MESHTAL file. mergemeshtals
only operates on column-formatted MESHTAL files.

mergemeshtals can also be compiled using Boost MPI so that the MESHTAL files can be merged in
parallel, though all machines (e.g., back-end nodes of a cluster) performing parallel operations must
have access to the files to be merged.

The execution options given via the help message is given in Listing 15.

4

2.3.2 meshtal2vtk

The meshtal2vtk utility converts MCNP XYZ (Cartesian) and/or RZT (cylindrical) MCNP mesh
tally results in a MESHTAL file into XML-formatted StructuredGrid VTK (.vts) files. These files
can then be viewed in scientific visualization applications such as ParaView or VisIt.

Data series are logically named according to any binning that exists, or if no binning, as Tally_Value
and Tally_Error. The user has the option of selecting only certain tallies with the TALLY parameter
shown below. If left unspecified, all tallies are processed. Each tally is given its own .vts file.

The execution options given via the help message is given in Listing 16.

3 Description of the MCNPTools Library

The true power of MCNPTools is in the ability for users to write their own custom tools and process
MCNP outputs without the need to parse MCNP output formats. Currently, three MCNP output
files can be read by MCNPTools and accessed in an object-oriented manner:

MCTAL files accessed via the Mctal class which in turn provides access to the MctalTally and
MctalKcode classes.

MESHTAL files accessed via the Meshtal class which in turn provides access to the MeshtalTally
class

PTRAC files accessed via the Ptrac class which in turn provides access to the PtracHistory class
which provides access to the PtracEvent class

Each of these three outputs will be discussed in more detail in the following subsections.

3.1 Accessing MCTAL Data with MCNPTools

MCNP MCTAL file data is accessed via three of MCNPTools’ classes:

Mctal class Provides object-oriented access to a MCTAL file.

MctalTally class Provides object-oriented access to a tally in a MCTAL file

MctalKcode class Provides object-oriented access to kcode outputs in a MCTAL file

Each class will be discussed in the following sections.

3.1.1 Mctal Class

To construct (create) an instance of the Mctal class, one simply passes the name of a MCTAL file to
the Mctal constructor, e.g.,

1 Mctal("mymctal")

The public methods available in the Mctal class are given in Table 1.

The most commonly used methods to access data in the MCTAL file are GetTallyList and GetTally

for tally data and GetKcode for k-eigenvalue data. With GetTallyList and GetTally, loops over the
tallies in the MCTAL file can be created to perform analyses. A Python example of such a loop
structure is given in Listing 1.

5

Table 1: Mctal Class Public Methods
Method Description

GetCode() Returns a string of the generating code name
GetVersion() Returns a string of the code version
GetProbid() Returns a string of the problem identification
GetDump() Returns an integer of the corresponding restart dump number
GetNps() Returns an integer of the number of histories used in the

normalization
GetRandoms() Returns an integer the number of random numbers used
GetTallyList() Returns a list/vector of tally numbers available in in the the

MCTAL file
GetTally(NUM) Returns a MctalTally class instance of tally number NUM

Listing 1: Mctal Class Use Example
1 # open the mctal file "mymctal"

2 mctal = mcnptools.Mctal("mymctal")

3

4 # loop over tallies

5 for tallynum in mctal.GetTallyList():

6 tally = mctal.GetTally(tallynum)

7

8 # now do something with the tally

3.1.2 MctalTally Class

The MctalTally class should only be created through calls to the GetTally method of the Mctal

class. The MctalTally class will provide information about the tally and the values of data contained
within the tally.

A Note on MCNP Tallies: MCNP tallies are essentially a nine-dimensional array with each index
of the array describing a bin structure of the tally. These bin structures are given in Table 2.

With these bin structures, the values and errors in a tally are uniquely identified by the indices
(f,d,u,s,m,c,e,t,pert).

The MctalTally class has the public class methods given in Table 3.

Often it is desirable to interrogate a tally value at the Tally Fluctuation Chart (TFC) bin—the bin
on which statistical analyses are performed. MCNPTools provides a defined constant TFC member
of the MctalTally class that can be used in place of a bin index for any of the (f,d,u,s,m,c,e,t)

bins. The Python code in Listing 2 illustrates how one would fill a list with tally values by iterating
over the energy bins of a tally (for brevity it is assumed the MCTAL file has been opened as object
mctal).

Note that the pert index has been omitted from the example above. The GetValue and GetError

methods will default to the unperturbed tally quantities if pert is omitted.

6

Table 2: MCNP Tally Array Indices
Name Identifier Description

facet f The facet of the tally, cell, surface, point number
direct/flagged d The flagged/unflagged contribution for cell/surface tallies or

the direct/scattered contribution for point detectors (this
dimension never exceeds 2)

user u The user bins established by use of an FT tally input or by use
of a TALLYX routine

segment s The segmenting bins established by use of an FS tally input
multiplier m The multiplier bins established by use of an FM tally input
cosine c The cosine bins established by use of an C tally input
energy e The energy bins established by use of an E tally input
time t The time bins established by use of a T tally input
perturbation pert The perturbation number established by use of PERT inputs

Table 3: MctalTally Class Public Methods
Method Description

ID() Return the integer tally number
GetFBins() Return a list/vector of the “facet” bins of the tally
GetDBins() Return a list/vector of the “direct/flagged” bins of the

tally
GetUBins() Return a list/vector of the “user” bins of the tally
GetSBins() Return a list/vector of the “segment” bins of the tally
GetMBins() Return a list/vector of the “multiplier” bins of the tally
GetCBins() Return a list/vector of the “cosine” bins of the tally
GetEBins() Return a list/vector of the “energy” bins of the tally
GetTBins() Return a list/vector of the “time” bins of the tally
GetValue(f,d,u,s,m,c,e,t,pert) Return the tally value identified by the indices

(f,d,u,s,m,c,e,t,pert)

GetError(f,d,u,s,m,c,e,t,pert) Return the tally relative error identified by the indices
(f,d,u,s,m,c,e,t,pert)

7

Listing 2: MctalTally Class Use Example
1 # get the tally of interest (say tally 834)

2 tally = mctal.GetTally(834)

3

4 # create an alias for the TFC bin

5 TFC = tally.TFC

6

7 # get the energy bins

8 ebins = tally.GetEBins()

9

10 #create lists for tally values and errors

11 values = list()

12 errors = list()

13

14 # iterate over the energy bins

15 for i in range(len(ebins)):

16 # f d u s m c e t

17 values.append(tally.GetValue(TFC, TFC, TFC, TFC, TFC, TFC, i, TFC))

18 errror.append(tally.GetError(TFC, TFC, TFC, TFC, TFC, TFC, i, TFC))

Table 4: MctalKcode Class Public Methods
Method Description

GetCycles() return the integer number of total kcode cycles
GetSettle() return the integer number of inactive kcode cycles
GetNdat() return the integer number of data elements in a kcode

entry
GetValue(QUANTITY, CYCLE) return the value of QUANTITY at the specified CYCLE

(default last)

3.1.3 MctalKcode Class

The MctalKcode class should be obtained only through calls to GetKcode() method of the Mctal

class. The MctalKcode class will provide information about the keff calculation as a function of cycle.
The MctalKcode class has the public methods given in Table 4.

The QUANTITY value that is passed into the GetValue method is a parameterized member constant
of the MctalKcode class. QUANTITY must be one of the following defined parameters within the
MctalKcode class namespace as given in Table 5.

The Python code in Listing 3 illustrates how to get the combined (collision/absorption/track-length)
value of keff and its standard deviation (for brevity it is assumed the MCTAL file has been opened
in object mctal).

3.2 Accessing MESHTAL Data with MCNPTools

MCNP column-formatted MESHTAL (type B, a.k.a, MCNP5 style mesh tallies from the fmesh card)
data is accessed through the following classes:

8

Table 5: MctalKcode Quantity Values
Method Description

COLLSION_KEFF estimated collision keff for this cycle
ABSORPTION_KEFF estimated absorption keff for this cycle
TRACKLENGTH_KEFF estimated track-length keff for this cycle
COLLISION_PRLT estimated collision prompt-removal lifetime for this cycle
ABSORPTION_PRLT estimated absorption prompt-removal lifetime for this cycle
AVG_COLLSION_KEFF average collision keff to this cycle
AVG_COLLSION_KEFF_STD standard deviation in the collision keff to this cycle
AVG_ABSORPTION_KEFF average absorption keff to this cycle
AVG_ABSORPTION_KEFF_STD standard deviation in the absorption keff to this cycle
AVG_TRACKLENGTH_KEFF average track-length keff to this cycle
AVG_TRACKLENGTH_KEFF_STD standard deviation in the track-length keff to this cycle
AVG_COMBINED_KEFF average combined keff to this cycle
AVG_COMBINED_KEFF_STD standard deviation in the combined keff to this cycle
AVG_COMBINED_KEFF_BCS average combined keff by cycles skipped
AVG_COMBINED_KEFF_BCS_STD standard deviation in the combined keff by cycles skipped
COMBINED_PRLT average combined prompt-removal lifetime
COMBINED_PRLT_STD standard deviation in the combined prompt-removal lifetime
CYCLE_NPS number of histories used in each cycle
AVG_COMBINED_FOM combined figure of merit

Listing 3: MctalKcode Class Use Example
1 # get the kcode data from the mctal file

2 kcode = mctal.GetKcode()

3

4 # get the average combined keff from the last cycle

5 keff = kcode.GetValue(MctalKcode.AVG_COMBINED_KEFF)

6

7 # get the standard deviation in combined keff

8 keff = kcode.GetValue(MctalKcode.AVG_COMBINED_KEFF_STD)

9

Table 6: Meshtal Class Public Methods
Method Description

GetCode() return a string of the generating code name
GetVersion() return a string the code version
GetProbid() return a string the problem id number
GetComment() return a string of the problem comment
GetNps() return the number of histories to which values are

normalized
GetTallyList() return a list/vector of tallies in the file
GetTally(NUM) return a MeshtalTally class instance for tally NUM

Listing 4: Meshtal Class Use Example
1 import mcnptools

2

3 # load the meshtal file mymeshtal

4 meshtal = mcnptools.Meshtal("mymeshtal")

5

6 # loop over all the tallies in the file

7 for tallynum in meshtal.GetTallyList():

8 # obtain the tally data

9 tally = meshtal.GetTally(tallynum)

10

11 # now do something with the tally

Meshtal provides object-oriented access to the MESHTAL file

MeshtalTally provides object-oriented access to tally data

Each class will be discussed in the following sections.

3.2.1 Meshtal Class

To construct (create) an instance of the Meshtal class, one simply passes the name of a MESHTAL
(type B) file to the Meshtal constructor, e.g.,

1 Meshtal("mymeshtal")

The public methods available for the Meshtal class are given in Table 6.

The most commonly used methods of the Meshtal class are GetTallyList() and GetTally. The
Python code in Listing 4 illustrates how to open a MESHTAL file with the Meshtal class, loop over
the tallies, and obtain the tally data

3.2.2 MeshtalTally Class

The MeshtalTally provides accessors for a tally in a MESHTAL file. The public methods of the
MeshtalTally class are given in Table 7.

10

Table 7: MeshtalTally Class Public Methods
Method Description

ID() return a list/vector of the tally id (number)
GetXRBounds() return a list/vector of the x/r bin boundaries
GetYZBounds() return a list/vector of the y/z bin boundaries
GetZTBounds() return a list/vector of the z/θ bin boundaries
GetEBounds() return a list/vector of the energy bin boundaries
GetTBounds() return a list/vector of the time bin boundaries
GetXRBins() return a list/vector of the x/r bin centers
GetYZBins() return a list/vector of the y/z bin centers
GetZTBins() return a list/vector of the z/θ bin centers
GetEBins() return a list/vector of the energy bins
GetTBins() return a list/vector of the time bins
GetVolume(I,J,K) return the volume of element at index (I,J,K)

GetValue(I,J,K,E,T) return the value at index (I,J,K) and optionally energy index
E and time index T

GetError(I,J,K,E,T) return the relative error at index (I,J,K) and optionally en-
ergy index E and time index T

If the energy-bin index is omitted from the GetValue or GetError method calls, then the total bin
will be used if present. Otherwise, the largest energy bin will be used. Similarly, if the time-bin
index is omitted from the GetValue and GetError method calls then the total bin will be used if
present. Otherwise the last time bin will be used.

The Python code in Listing 5 illustrates how to loop through spatial elements of a MeshtalTally

and query the values and errors at each element. For brevity it is assumed the MESHTAL file has
already been loaded into meshtal.

3.3 Accessing PTRAC Data with MCNPTools

MCNP particle track (PTRAC) data are organized such that the PTRAC file contains histories and
each history contains events—i.e., things that actually happened to particles. PTRAC data can be
read and processed with MCNPTools by use of the following classes:

Ptrac provides object-oriented access to PTRAC files and accesses PtracHistory classes

PtracHistory provides object-oriented access to histories within the PTRAC file and accesses
PtracEvents

PtracNPS provides object-oriented access to NPS information in a PtracHistory

PtracEvent provides object-oriented access to events and their data within a PtracHistory

The typical workflow when processing PTRAC files with MCNPTools is as follows:

1. Open the PTRAC file with the Ptrac class

2. Obtain histories in PtracHistory objects from the Ptrac class

11

Listing 5: MeshtalTally Class Use Example
1 # get the tally to process (e.g., tally 324)

2 tally = meshtal.GetTally(324)

3

4 xrbins = tally.GetXRBins()

5 yzbins = tally.GetYZBins()

6 ztbins = tally.GetZTBins()

7

8 # loop over xrbins

9 for i in range(len(xrbins)):

10 # loop over yzbins

11 for j in range(len(yzbins)):

12 # loop over ztbins

13 for k in range(len(ztbins)):

14 # print the value and error

15 print(i,j,k,meshtal.GetValue(i,j,k),meshtal.GetError(i,j,k))

3. Iterate over the events in PtracEvent objects from the PtracHistory class

Each of these classes is discussed in the sections that follow.

3.3.1 Ptrac Class

The Ptrac class opens and manages MCNP PTRAC files and supports legacy binary, ASCII, and
HDF5-formatted1 PTRAC files. To construct the PTRAC file class, simply pass the PTRAC file
name to the Ptrac constructor with the file type. For example, in Python one would use

1 Ptrac("myptrac", Ptrac.BIN_PTRAC)

to open a legacy binary PTRAC file,

1 Ptrac("myptrac", Ptrac.ASC_PTRAC)

to open an ASCII PTRAC file, and

1 Ptrac("myptrac", Ptrac.HDF5_PTRAC)

to open an HDF5-formatted PTRAC file.

If the file type is omitted, legacy binary is assumed.

The Ptrac class has only one method ReadHistories(NUM) which returns a list/vector of histories. If
NUM is omitted, then all the histories in the PTRAC file are read—this can be quite time consuming
and is generally not recommended. A typical to reading histories in Python is shown in Listing 6.

3.3.2 PtracHistory Class

The PtracHistory class provides access to the events within the history. The public class methods
are given in Table 8.

1HDF5-formatted PTRAC files are anticipated to be available in the next public release of the MCNP code.

12

Listing 6: Ptrac Class Use Example
1 # open the ptrac file (assuming legacy binary)

2 ptrac = mcnptools.Ptrac("myptrac")

3

4 # read history data in batches of 10000 histories

5 histories = ptrac.ReadHistories(10000)

6

7 # while histories has something in it

8 while histories:

9

10 # iterate over the histories

11 for h in histories:

12 # do something with the history data

13

14 # read in more histories, again a batch of 10000

15 histories = ptrac.ReadHistories(10000)

Table 8: PtracHistory Class Public Methods
Method Description

GetNPS() returns a PtracNPS class with NPS information
GetNumEvents() returns the number of events in the history
GetEvent(I) returns the Ith event in the history

A typical use of the PtracHistory class to obtain its events using Python is shown in Listing 7,
where it is assumed that a PtracHistory exists in the variable hist):

3.3.3 PtracNPS Class

The PtracNPS class contains information about the history. The public methods in the PtracNPS

class are given in Table 9.

For an HDF5 PTRAC file, the filtering cell, surface, tally, and value are not recorded in the PTRAC
file. Please contact an MCNP developer at mcnp_help@lanl.gov if this limitation proves prohibitive.

3.3.4 PtracEvent Class

The PtracEvent class contains information about the event. Different event types contain different
information about the event. The PtracEvent public class methods are given in Table 10.

Listing 7: PtracHistory Class Use Example
1 for i in range(hist.GetNumEvents()):

2 event = hist.GetEvent(i)

3

4 # now do something with the event

13

mailto:mcnp_help@lanl.gov

Table 9: PtracNPS Class Public Methods
Method Description

NPS() return the history number
Cell() return the filtering cell from CELL keyword (if present)
Surface() return the filtering surface from SURFACE keyword (if

present)
Tally() return the filtering tally from TALLY keyword (if present)
Value() return the tally score from TALLY keyword (if present)

Table 10: PtracEvent Class Public Methods
Method Description

Type() returns the event type: one of Ptrac::SRC (source),
Ptrac::BNK (bank), Ptrac::COL (collision), Ptrac::SUR (sur-
face crossing), or Ptrac::TER (termination)

BankType() returns the bank event type (only for Ptrac::BNK events)
Has(DATA) returns a Boolean indicating whether or not the data type

DATA is contained within the event
Get(DATA) returns the value of the requested data type DATA

The DATA types available for the Has and Get methods are part of the Ptrac name space and are
given in Table 12.

The Python code given in Listing 8 demonstrates how to find all collision events in a history and
print the energy (for brevity a PtracHistory instance is assumed to be in the hist variable).

The PTRAC bank type variable specifiers that are part of the Ptrac name space are listed in
Table 12.

The PTRAC termination types that are members of the Ptrac name space are listed in Table 13.

Listing 8: PtracEvent Class Use Example
1 #iterate over all events in the history

2 for i in range(hist.GetNumEvents()):

3 event = hist.GetEvent()

4

5 # check if the event is a collision event

6 if(event.Type() == Ptrac.COL):

7 # print the energy

8 print(event.Get(Ptrac.ENERGY))

14

Table 11: PtracEvent Data Types
Data Type Description

NODE node number
ZAID ZAID the particle interacts with
RXN reaction type (MT number)
SURFACE surface number
ANGLE angle of particle crossing the surface
TERMINATION_TYPE termination type
PARTICLE particle type
CELL cell number
MATERIAL material number
COLLISION_NUMBER collision number
X particle x coordinate
Y particle y coordinate
Z particle z coordinate
U particle direction cosine with respect to the x axis
V particle direction cosine with respect to the y axis
W particle direction cosine with respect to the z axis
ENERGY particle energy
WEIGHT particle weight
TIME particle time

15

Table 12: PtracEvent Data Types

Data Type Description

BNK_DXT_TRACK DXTRAN particle
BNK_ERG_TME_SPLIT Energy or Time splitting
BNK_WWS_SPLIT Weight-window surface crossing
BNK_WWC_SPLIT Weight-window collision
BNK_UNC_TRACK Forced-collision uncollided part
BNK_IMP_SPLIT Importance splitting
BNK_N_XN_F Neutrons from fission
BNK_N_XG Gammas from neutron production
BNK_FLUORESCENCE Fluorescence x-rays
BNK_ANNIHILATION Annihilation photons
BNK_PHOTO_ELECTRON Photo electrons
BNK_COMPT_ELECTRON Compton electrons
BNK_PAIR_ELECTRON Pair-production electron
BNK_AUGER_ELECTRON Auger electrons
BNK_PAIR_POSITRON Pair-production positron
BNK_BREMSSTRAHLUNG Bremsstrahlung production
BNK_KNOCK_ON Knock-on electron
BNK_K_X_RAY K-shell x-ray production
BNK_N_XG_MG Multigroup (n,xγ)
BNK_N_XF_MG Multigroup (n,f)
BNK_N_XN_MG Multigroup (n,xn)
BNK_G_XG_MG Multigroup (γ,xγ)
BNK_ADJ_SPLIT Multigroup adjoint splitting
BNK_WWT_SPLIT Weight-window mean-free-path split
BNK_PHOTONUCLEAR Photo-nuclear production
BNK_DECAY Radioactive decay
BNK_NUCLEAR_INT Nuclear interaction
BNK_RECOIL Recoil nucleus
BNK_DXTRAN_ANNIHIL DXTRAN annihilation photon from pulse-height tally variance reduction
BNK_N_CHARGED_PART Light ions from neutrons
BNK_H_CHARGED_PART Light ions from protons
BNK_N_TO_TABULAR Library neutrons from model neutrons
BNK_MODEL_UPDAT1 Secondary particles from inelastic nuclear interactions
BNK_MODEL_UPDATE Secondary particles from elastic nuclear interactions
BNK_DELAYED_NEUTRON Delayed neutron from radioactive decay
BNK_DELAYED_PHOTON Delayed photon from radioactive decay
BNK_DELAYED_BETA Delayed β− from radioactive decay
BNK_DELAYED_ALPHA Delayed α from radioactive decay
BNK_DELAYED_POSITRN Delayed β+ from radioactive decay

16

Table 13: PtracEvent Termination Types
Termination Type Description

TER_ESCAPE Escape
TER_ENERGY_CUTOFF Energy cutoff
TER_TIME_CUTOFF Time cutoff
TER_WEIGHT_WINDOW Weight-window roulette
TER_CELL_IMPORTANCE Cell importance roulette
TER_WEIGHT_CUTOFF Weight-cutoff roulette
TER_ENERGY_IMPORTANCE Energy-importance roulette
TER_DXTRAN DXTRAN roulette
TER_FORCED_COLLISION Forced-collision
TER_EXPONENTIAL_TRANSFORM Exponential-transform
TER_N_DOWNSCATTERING Neutron downscattering
TER_N_CAPTURE Neutron capture
TER_N_N_XN Loss to (n,xn)
TER_N_FISSION Loss to fission
TER_N_NUCLEAR_INTERACTION Nuclear interactions
TER_N_PARTICLE_DECAY Particle decay
TER_N_TABULAR_BOUNDARY Tabular boundary
TER_P_COMPTON_SCATTER Photon Compton scattering
TER_P_CAPTURE Photon capture
TER_P_PAIR_PRODUCTION Photon pair production
TER_P_PHOTONUCLEAR Photonuclear reaction
TER_E_SCATTER Electron scatter
TER_E_BREMSSTRAHLUNG Bremsstrahlung
TER_E_INTERACTION_DECAY Interaction or decay
TER_GENNEUT_NUCLEAR_INTERACTION Generic neutral-particle nuclear interactions
TER_GENNEUT_ELASTIC_SCATTER Generic neutral-particle elastic scatter
TER_GENNEUT_DECAY Generic neutral-particle particle decay
TER_GENCHAR_MULTIPLE_SCATTER Generic charged-particle multiple scatter
TER_GENCHAR_BREMSSTRAHLUNG Generic charged-particle bremsstrahlung
TER_GENCHAR_NUCLEAR_INTERACTION Generic charged-particle nuclear interactions
TER_GENCHAR_ELASTIC_SCATTER Generic charged-particle elastic scatter
TER_GENCHAR_DECAY Generic charged-particle particle decay
TER_GENCHAR_CAPTURE Generic charged-particle capture
TER_GENCHAR_TABULAR_SAMPLING Generic charged-particle tabular sampling

17

4 Acknowledgments

The authors acknowledge Mike Rising, David Dixon, and Jeff Bull for their review of MCNPTools
documentation and for testing it. Finally, the authors are grateful to the support provided by the
Advanced Simulation and Computing (ASC) Program to develop, maintain, and release MCNPTools.

18

A Help Messages for MCNPTools Utilities

Listing 9: l3d2vtk Help Message Output
1 USAGE: l3d2vtk [--version] [--verbose] <LNK3DNT> [OUTPUT]

2

3 DESCRIPTION:

4

5 l3d2vtk converts a LNK3DNT file into an XML-formatted StructuredGrid (.vts) VTK

6 file.

7

8 OPTIONS:

9

10 --version, -v : Print version and exit

11

12 --verbose, -V : Produce standard output giving status (Default: False)

13

14 LNK3DNT : LNK3DNT file name to convert

15

16 OUTPUT : Converted LNK3DNT output name (Default: lnk3dnt.vts)

17

18 AUTHOR: Joel A. Kulesza [jkulesza@lanl.gov]

19

Listing 10: l3dcoarsen Help Message Output
1 USAGE: l3dcoarsen [--version] [--novoid] [--ifact ifact] [--jfact jfact]

2 [--kfact kfact] [--maxmats maxmats] <LNK3DNT> [OUTPUT]

3

4 DESCRIPTION:

5

6 l3dcoarsen coarsens a LNK3DNT file mesh by specified factors

7

8 OPTIONS:

9

10 --version, -v : Print version and exit

11

12 --novoid, -n : Make voids material ’0’ rather than the assumed material

13 ’1’ (not recommended)

14

15 --ifact, -i : Factor by which to coarsen in the first mesh dimension

16

17 --jfact, -j : Factor by which to coarsen in the second mesh dimension

18 (if applicable)

19

20 --kfact, -k : Factor by which to coarsen in the third mesh dimension (if

21 applicable)

22

23 --maxmats, -m : Maximum umber of materials to keep include on the

24 coarsened LNK3DNT file (default: same as original)

25

26 LNK3DNT : LNK3DNT file name to coarsen

27

28 OUTPUT : coarsened LNK3DNT output name (Default: lnk3dnt.coarse)

29

30 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

20

Listing 11: l3dinfo Help Message Output
1 USAGE: l3dinfo [--version] [--full] <LNK3DNT [LNK3DNT ...]>

2

3 DESCRIPTION:

4

5 l3dinfo produces information about LNK3DNT files to stdout

6

7 OPTIONS:

8

9 --version, -v : Print version and exit

10

11 --full, -f : Produce a full listing of the LNK3DNT contents (can

12 greatly increase runtime)

13

14 LNK3DNT : LNK3DNT files about which to produce information

15

16 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

21

Listing 12: l3dscale Help Message Output
1 USAGE: l3dscale [--version] <LNK3DNT> <FACTOR> [OUTPUT]

2

3 DESCRIPTION:

4

5 l3dscale scales the dimensions of a LNK3DNT file

6

7 OPTIONS:

8

9 --version, -v : Print version and exit

10

11 LNK3DNT : LNK3DNT file to be scaled

12

13 FACTOR : Scaling factor to be applied to the file

14

15 OUTPUT : Output LNK3DNT file name [Default: LNK3DNT.scaled]

16

17 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

22

Listing 13: mctal2rad Help Message Output
1 USAGE: mctal2rad [--version] [--log] [--direct] [--transpose] <MCTAL>

2 [TALLY [TALLY ...]]

3

4 DESCRIPTION:

5

6 mctal2rad converts an image tally from an MCNP MCTAL file into a TIFF image

7

8 OPTIONS:

9

10 --version, -v : Print version and exit

11

12 --log, -l : Produce an image of the log of the MCTAL values

13

14 --direct, -d : Produce an image of the direct contribution

15

16 --transpose, -t : Transpose the image

17

18 MCTAL : MCTAL file containing one or more image tallies

19

20 TALLY : Tally number for which to produce the images

21

22 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

23

Listing 14: mergemctals Help Message Output
1 USAGE: mergemctals [--version] [--verbose] [--output output]

2 <MCTAL [MCTAL ...]>

3

4 DESCRIPTION:

5

6 mergemctals statistically merges multiple MCNP MCTAL files into a single MCTAL

7 file.

8

9 OPTIONS:

10

11 --version : Print version and exit

12

13 --verbose, -v : Increase output verbosity

14

15 --output, -o : Output MCTAL file name [Default: mergemctals.out]

16

17 MCTAL : MCTAL file names to be merged

18

19 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

24

Listing 15: mergemeshtals Help Message Output
1 USAGE: mergemeshtals [--version] [--verbose] [--output output]

2 <MESHTAL [MESHTAL ...]>

3

4 DESCRIPTION:

5

6 mergemeshtals statistically merges multiple MCNP MESHTAL files into a single

7 MESHTAL file.

8

9 OPTIONS:

10

11 --version : Print version and exit

12

13 --verbose, -v : Increase output verbosity

14

15 --output, -o : Output MESHTAL file name [Default: mergemeshtals.out]

16

17 MESHTAL : MESHTAL file names to be merged

18

19 AUTHOR: Clell J. (CJ) Solomon [csolomon@lanl.gov]

25

Listing 16: meshtal2vtk Help Message Output
1 USAGE: meshtal2vtk [--version] <MESHTAL> [TALLY [TALLY ...]]

2

3 DESCRIPTION:

4

5 meshtal2vtk converts mesh tallies from an MCNP MESHTAL file into XML-formatted

6 StructuredGrid (.vts) VTK files. This utility only works for XYZ (Cartesian)

7 and RZT (cylindrical) geometries.

8

9 OPTIONS:

10

11 --version, -v : Print version and exit

12

13 MESHTAL : MESHTAL file containing one or more mesh tallies

14

15 TALLY : Tally number for which to produce the VTK files

16

17 AUTHOR: Joel A. Kulesza [jkulesza@lanl.gov]

26

B C++ Examples

B.1 Mctal Example 1

Listing 17 opens the MCTAL file example_mctal_1.mcnp.mctal and extracts the energy bins and
energy-bin tally values for tally 4.

Listing 17: C++ Mctal Example 1
1 #include "mcnptools/McnpTools.hpp"

2 #include <iostream>

3 #include <vector>

4

5 int main() {

6

7 // construct the mctal class from mctal file "example_mctal_1.mcnp.mctal"

8 mcnptools::Mctal m("example_mctal_1.mcnp.mctal");

9

10 int tfc = mcnptools::MctalTally::TFC; // alias for -1

11

12 // get tally 4 from the mctal file

13 mcnptools::MctalTally t4 = m.GetTally(4);

14

15 // get the energy bins of tally 4

16 std::vector<double> t4_e = t4.GetEBins();

17

18 // loop over energy bin indices to store and print tally bin value

19 // using the TFC bin for all other bins

20 std::vector<double> t4_evals(t4_e.size()); // storage for tally values

21 for (unsigned int i = 0; i < t4_e.size(); i++) {

22 // f d u s m c e t

23 t4_evals[i] = t4.GetValue(tfc, tfc, tfc, tfc, tfc, tfc, i, tfc);

24 std::cout << t4_evals.at(i) << std::endl;

25 }

26

27 return 0;

28 }

27

B.2 Mctal Example 2

Listing 18 opens the MCTAL file example_mctal_2.mcnp.mctal and extracts the keff value and
standard deviation for the active cycles, i.e., from the last settle cycle through the last active cycle.

Listing 18: C++ Mctal Example 2
1 #include "mcnptools/McnpTools.hpp"

2 #include <iostream>

3

4 int main() {

5

6 // construct the mctal class from the mctal file

7 // "example_mctal_2.mcnp.mctal"

8 mcnptools::Mctal m("example_mctal_2.mcnp.mctal");

9

10 // get the kcode data

11 mcnptools::MctalKcode kc = m.GetKcode();

12

13 // alias for average combined keff

14 unsigned int keff = mcnptools::MctalKcode::AVG_COMBINED_KEFF;

15 // alias for average combined keff standard deviation

16 unsigned int keff_std = mcnptools::MctalKcode::AVG_COMBINED_KEFF_STD;

17

18 // loop over ACTIVE cycles and print

19 for (unsigned int i = kc.GetSettle(); i < kc.GetCycles(); i++) {

20 std::cout << i << " " << kc.GetValue(keff, i) << " " << kc.GetValue(

keff_std, i)

21 << std::endl;

22 }

23

24 return 0;

25 }

28

B.3 Meshtal Example

Listing 19 reads tally 4 from MESHTAL file example_meshtal.mcnp.meshtal and prints the values
at a slice through the z index 5 (using 0 indexing).

Listing 19: C++ Meshtal Example
1 #include "mcnptools/McnpTools.hpp"

2 #include <iomanip>

3 #include <iostream>

4 #include <vector>

5

6 int main() {

7

8 // construct the meshtal class from meshtal file

9 // "example_meshtal.mcnp.meshtal"

10 mcnptools::Meshtal m("example_meshtal.mcnp.meshtal");

11

12 // get tally 4 from the meshtal file

13 mcnptools::MeshtalTally t4 = m.GetTally(4);

14

15 // get the x and y bin centers

16 std::vector<double> x = t4.GetXRBins();

17 std::vector<double> y = t4.GetYZBins();

18

19 // loop over x and y bins indices and print the tally value for

20 // z index of 5

21 std::cout << std::scientific << std::setprecision(5);

22 for (unsigned int i = 0; i < x.size(); i++) {

23 for (unsigned int j = 0; j < y.size(); j++) {

24 std::cout << std::setw(12) << t4.GetValue(i, j, 5);

25 }

26 std::cout << std::endl;

27 }

28

29 return 0;

30 }

29

B.4 Ptrac Example 1

Listing 20 opens the binary PTRAC file example_ptrac_1.mcnp.ptrac and prints the (x, y, z)
location and energy of bank events.

Listing 20: C++ Ptrac Example 1
1 #include "mcnptools/McnpTools.hpp"

2 #include <iomanip>

3 #include <iostream>

4 #include <vector>

5

6 int main() {

7

8 std::cout << std::scientific << std::setprecision(5);

9

10 // explicitly open the file as a binary ptrac

11 mcnptools::Ptrac p("example_ptrac_1.mcnp.ptrac", mcnptools::Ptrac::BIN_PTRAC);

12

13 // initialize counter

14 unsigned int cnt = 0;

15

16 // read histories in batches of 10000

17 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);

18 while (hists.size() > 0) {

19

20 // loop over all histories

21 for (unsigned int h = 0; h < hists.size(); h++) {

22 // loop over all events in the history

23 for (unsigned int e = 0; e < hists.at(h).GetNumEvents(); e++) {

24

25 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);

26

27 if (event.Type() == mcnptools::Ptrac::BNK) {

28 cnt += 1;

29 std::cout << std::setw(13) << cnt << std::setw(13)

30 << event.Get(mcnptools::Ptrac::X) << std::setw(13)

31 << event.Get(mcnptools::Ptrac::Y) << std::setw(13)

32 << event.Get(mcnptools::Ptrac::Z) << std::setw(13)

33 << event.Get(mcnptools::Ptrac::ENERGY) << std::endl;

34 }

35 }

36 }

37 hists = p.ReadHistories(10000);

38 }

39 return 0;

40 }

30

B.5 Ptrac Example 2

Listing 21 opens binary PTRAC file example_ptrac_2.mcnp.ptrac and prints the (x, y, z) location
and angle of surface crossings.

Listing 21: C++ Ptrac Example 2
1 #include "mcnptools/McnpTools.hpp"

2 #include <iomanip>

3 #include <iostream>

4 #include <vector>

5

6 int main() {

7

8 std::cout << std::scientific << std::setprecision(5);

9

10 // explicitly open the file as a binary ptrac

11 mcnptools::Ptrac p("example_ptrac_2.mcnp.ptrac", mcnptools::Ptrac::BIN_PTRAC);

12

13 // read histories in batches of 10000

14 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);

15 while (hists.size() > 0) {

16

17 // loop over all histories

18 for (unsigned int h = 0; h < hists.size(); h++) {

19 // loop over all events in the history

20 for (unsigned int e = 0; e < hists.at(h).GetNumEvents(); e++) {

21

22 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);

23

24 if (event.Type() == mcnptools::Ptrac::SUR) {

25 std::cout << std::setw(13) << event.Get(mcnptools::Ptrac::X) <<

std::setw(13)

26 << event.Get(mcnptools::Ptrac::Y) << std::setw(13)

27 << event.Get(mcnptools::Ptrac::Z) << std::setw(13)

28 << event.Get(mcnptools::Ptrac::ANGLE) << std::endl;

29 }

30 }

31 }

32

33 hists = p.ReadHistories(10000);

34 }

35

36 return 0;

37 }

31

C Python Examples

C.1 Mctal Example 1

Listing 22 opens the MCTAL file example_mctal_1.mcnp.mctal and extracts the energy bins and
energy-bin tally values for tally 4.

Listing 22: Python Mctal Example 1
1 from mcnptools import Mctal, MctalTally

2

3 # construct the mctal class from mctal file "python_example_mctal_1.mcnp.mctal"

4 m = Mctal("example_mctal_1.mcnp.mctal")

5

6 tfc = MctalTally.TFC

7 # alias for -1

8

9 # get tally 4 from the mctal file

10 t4 = m.GetTally(4)

11

12 # get the energy bins of tally 4

13 t4_e = t4.GetEBins()

14

15 # loop over energy bin indices to store and print tally bin value

16 # using the TFC bin for all other bins

17

18 # store the tally values with list comprehension

19 # f d u s m c e t

20 t4_evals = [t4.GetValue(tfc, tfc, tfc, tfc, tfc, tfc, i, tfc) for i in range(len(t4_e)

)]

21

22 # print the tally values

23 for i in range(len(t4_evals)):

24 print(t4_evals[i])

32

C.2 Mctal Example 2

Listing 23 opens the MCTAL file example_mctal_2.mcnp.mctal and extracts the keff value and
standard deviation for the active cycles, i.e., from the last settle cycle through the last active cycle.

Listing 23: Python Mctal Example 2
1 from mcnptools import Mctal, MctalKcode

2

3 # construct the mctal class from the mctal file "python_example_mctal_2.mcnp.mctal"

4 m = Mctal("example_mctal_2.mcnp.mctal")

5

6 # get the kcode data

7 kc = m.GetKcode()

8

9 # alias for average combined keff

10 keff = MctalKcode.AVG_COMBINED_KEFF

11 # alias for average combined keff standard deviation

12 keff_std = MctalKcode.AVG_COMBINED_KEFF_STD

13

14 # loop over active cycles and print

15 for i in range(kc.GetSettle(), kc.GetCycles()):

16 print(i, " ", kc.GetValue(keff, i), " ", kc.GetValue(keff_std, i))

33

C.3 Meshtal Example

Listing 24 reads tally 4 from MESHTAL file example_meshtal.mcnp.meshtal and prints the values
at a slice through the z index 5 (using 0 indexing).

Listing 24: Python Meshtal Example
1 from mcnptools import Meshtal, MeshtalTally

2 from sys import stdout

3

4 # construct the meshtal class from meshtal file "python_example_meshtal.mcnp.meshtal"

5 m = Meshtal("example_meshtal.mcnp.meshtal")

6

7 # get tally 4 from the meshtal file

8 t4 = m.GetTally(4)

9

10 # get the x and y bin centers

11 x = t4.GetXRBins()

12 y = t4.GetYZBins()

13

14 # loop over x and y bins indices and print the tally value for

15 # z index of 5

16 for i in range(len(x)):

17 for j in range(len(y)):

18 stdout.write("{:12.5e}".format(t4.GetValue(i, j, 5)))

19 stdout.write("\n")

34

C.4 Ptrac Example 1

Listing 25 opens the legacy binary PTRAC file example_ptrac_1.mcnp.ptrac and prints the (x, y, z)
location and energy of bank events.

Listing 25: Python Ptrac Example 1
1 from mcnptools import Ptrac

2 from sys import stdout

3

4 # explicitly open the file as a binary ptrac

5 p = Ptrac("example_ptrac_1.mcnp.ptrac", Ptrac.BIN_PTRAC)

6

7 # initialize counter

8 cnt = 0

9

10 # read histories in batches of 10000

11 hists = p.ReadHistories(10000)

12 while hists:

13

14 # loop over all histories

15 for h in hists:

16 # loop over all events in the history

17 for e in range(h.GetNumEvents()):

18

19 event = h.GetEvent(e)

20

21 if event.Type() == Ptrac.BNK:

22 cnt += 1

23

24 stdout.write(

25 "{:13d}{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(

26 cnt,

27 event.Get(Ptrac.X),

28 event.Get(Ptrac.Y),

29 event.Get(Ptrac.Z),

30 event.Get(Ptrac.ENERGY),

31)

32)

33

34 hists = p.ReadHistories(10000)

35

C.5 Ptrac Example 2

Listing 26 opens legacy binary PTRAC file example_ptrac_2.mcnp.ptrac and prints the (x, y, z)
location and angle of surface crossings.

Listing 26: Python Ptrac Example 2
1 from mcnptools import Ptrac

2 from sys import stdout

3

4 # explicitly open the file as a legacy binary ptrac

5 p = Ptrac("example_ptrac_2.mcnp.ptrac", Ptrac.BIN_PTRAC)

6

7 # read histories in batches of 10000

8 hists = p.ReadHistories(10000)

9

10 while hists:

11

12 # loop over all histories

13 for h in hists:

14 # loop over all events in the history

15 for e in range(h.GetNumEvents()):

16

17 event = h.GetEvent(e)

18

19 if event.Type() == Ptrac.SUR:

20 stdout.write(

21 "{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(

22 event.Get(Ptrac.X),

23 event.Get(Ptrac.Y),

24 event.Get(Ptrac.Z),

25 event.Get(Ptrac.ANGLE),

26)

27)

28

29 hists = p.ReadHistories(10000)

36

C.6 Ptrac Example 3

Listing 27 opens HDF5 PTRAC file example_ptrac_3.mcnp.ptrac.h5 and prints information about
surface-crossing and termination events.

Listing 27: Python Ptrac Example 3
1 from mcnptools import Ptrac

2 from sys import stdout

3

4 # explicitly open the file as an HDF5 ptrack

5 p = Ptrac("example_ptrac_3.mcnp.ptrac.h5", Ptrac.HDF5_PTRAC)

6

7 # read histories in batches of 10000

8 hists = p.ReadHistories(10000)

9

10 while hists:

11

12 # loop over all histories

13 for h in hists:

14 print("History: ", h.GetNPS().NPS())

15 # loop over all events in the history

16 for e in range(h.GetNumEvents()):

17

18 event = h.GetEvent(e)

19

20 if event.Type() == Ptrac.SUR:

21 stdout.write(

22 "SUR: {:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(

23 event.Get(Ptrac.X),

24 event.Get(Ptrac.Y),

25 event.Get(Ptrac.Z),

26 event.Get(Ptrac.ANGLE),

27)

28)

29 elif event.Type() == Ptrac.TER:

30 stdout.write(

31 "TER: {:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(

32 event.Get(Ptrac.X),

33 event.Get(Ptrac.Y),

34 event.Get(Ptrac.Z),

35 event.Get(Ptrac.TERMINATION_TYPE),

36)

37)

38

39 hists = p.ReadHistories(10000)

37

	1 Introduction
	1.1 Installing MCNPTools from a Wheel
	1.2 Building MCNPTools
	1.2.1 Setting Up HDF5

	2 MCNPTools Utilities
	2.1 lnk3dnt Utilities
	2.1.1 l3d2vtk
	2.1.2 l3dcoarsen
	2.1.3 l3dinfo
	2.1.4 l3dscale

	2.2 mctal Utilities
	2.2.1 mctal2rad
	2.2.2 mergemctals

	2.3 meshtal Utilities
	2.3.1 mergemeshtals
	2.3.2 meshtal2vtk

	3 Description of the MCNPTools Library
	3.1 Accessing MCTAL Data with MCNPTools
	3.1.1 Mctal Class
	3.1.2 MctalTally Class
	3.1.3 MctalKcode Class

	3.2 Accessing MESHTAL Data with MCNPTools
	3.2.1 Meshtal Class
	3.2.2 MeshtalTally Class

	3.3 Accessing PTRAC Data with MCNPTools
	3.3.1 Ptrac Class
	3.3.2 PtracHistory Class
	3.3.3 PtracNPS Class
	3.3.4 PtracEvent Class

	4 Acknowledgments
	A Help Messages for MCNPTools Utilities
	B C++ Examples
	B.1 Mctal Example 1
	B.2 Mctal Example 2
	B.3 Meshtal Example
	B.4 Ptrac Example 1
	B.5 Ptrac Example 2

	C Python Examples
	C.1 Mctal Example 1
	C.2 Mctal Example 2
	C.3 Meshtal Example
	C.4 Ptrac Example 1
	C.5 Ptrac Example 2
	C.6 Ptrac Example 3

#include "mcnptools/McnpTools.hpp"
#include <iostream>
#include <vector>

int main() {

 // construct the mctal class from mctal file "example_mctal_1.mcnp.mctal"
 mcnptools::Mctal m("example_mctal_1.mcnp.mctal");

 int tfc = mcnptools::MctalTally::TFC; // alias for -1

 // get tally 4 from the mctal file
 mcnptools::MctalTally t4 = m.GetTally(4);

 // get the energy bins of tally 4
 std::vector<double> t4_e = t4.GetEBins();

 // loop over energy bin indices to store and print tally bin value
 // using the TFC bin for all other bins
 std::vector<double> t4_evals(t4_e.size()); // storage for tally values
 for (unsigned int i = 0; i < t4_e.size(); i++) {
 // f d u s m c e t
 t4_evals[i] = t4.GetValue(tfc, tfc, tfc, tfc, tfc, tfc, i, tfc);
 std::cout << t4_evals.at(i) << std::endl;
 }

 return 0;
}

#include "mcnptools/McnpTools.hpp"
#include <iostream>

int main() {

 // construct the mctal class from the mctal file
 // "example_mctal_2.mcnp.mctal"
 mcnptools::Mctal m("example_mctal_2.mcnp.mctal");

 // get the kcode data
 mcnptools::MctalKcode kc = m.GetKcode();

 // alias for average combined keff
 unsigned int keff = mcnptools::MctalKcode::AVG_COMBINED_KEFF;
 // alias for average combined keff standard deviation
 unsigned int keff_std = mcnptools::MctalKcode::AVG_COMBINED_KEFF_STD;

 // loop over ACTIVE cycles and print
 for (unsigned int i = kc.GetSettle(); i < kc.GetCycles(); i++) {
 std::cout << i << " " << kc.GetValue(keff, i) << " " << kc.GetValue(keff_std, i)
 << std::endl;
 }

 return 0;
}

#include "mcnptools/McnpTools.hpp"
#include <iomanip>
#include <iostream>
#include <vector>

int main() {

 // construct the meshtal class from meshtal file
 // "example_meshtal.mcnp.meshtal"
 mcnptools::Meshtal m("example_meshtal.mcnp.meshtal");

 // get tally 4 from the meshtal file
 mcnptools::MeshtalTally t4 = m.GetTally(4);

 // get the x and y bin centers
 std::vector<double> x = t4.GetXRBins();
 std::vector<double> y = t4.GetYZBins();

 // loop over x and y bins indices and print the tally value for
 // z index of 5
 std::cout << std::scientific << std::setprecision(5);
 for (unsigned int i = 0; i < x.size(); i++) {
 for (unsigned int j = 0; j < y.size(); j++) {
 std::cout << std::setw(12) << t4.GetValue(i, j, 5);
 }
 std::cout << std::endl;
 }

 return 0;
}

#include "mcnptools/McnpTools.hpp"
#include <iomanip>
#include <iostream>
#include <vector>

int main() {

 std::cout << std::scientific << std::setprecision(5);

 // explicitly open the file as a binary ptrac
 mcnptools::Ptrac p("example_ptrac_1.mcnp.ptrac", mcnptools::Ptrac::BIN_PTRAC);

 // initialize counter
 unsigned int cnt = 0;

 // read histories in batches of 10000
 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);
 while (hists.size() > 0) {

 // loop over all histories
 for (unsigned int h = 0; h < hists.size(); h++) {
 // loop over all events in the history
 for (unsigned int e = 0; e < hists.at(h).GetNumEvents(); e++) {

 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);

 if (event.Type() == mcnptools::Ptrac::BNK) {
 cnt += 1;
 std::cout << std::setw(13) << cnt << std::setw(13)
 << event.Get(mcnptools::Ptrac::X) << std::setw(13)
 << event.Get(mcnptools::Ptrac::Y) << std::setw(13)
 << event.Get(mcnptools::Ptrac::Z) << std::setw(13)
 << event.Get(mcnptools::Ptrac::ENERGY) << std::endl;
 }
 }
 }
 hists = p.ReadHistories(10000);
 }
 return 0;
}

#include "mcnptools/McnpTools.hpp"
#include <iomanip>
#include <iostream>
#include <vector>

int main() {

 std::cout << std::scientific << std::setprecision(5);

 // explicitly open the file as a binary ptrac
 mcnptools::Ptrac p("example_ptrac_2.mcnp.ptrac", mcnptools::Ptrac::BIN_PTRAC);

 // read histories in batches of 10000
 std::vector<mcnptools::PtracHistory> hists = p.ReadHistories(10000);
 while (hists.size() > 0) {

 // loop over all histories
 for (unsigned int h = 0; h < hists.size(); h++) {
 // loop over all events in the history
 for (unsigned int e = 0; e < hists.at(h).GetNumEvents(); e++) {

 mcnptools::PtracEvent event = hists.at(h).GetEvent(e);

 if (event.Type() == mcnptools::Ptrac::SUR) {
 std::cout << std::setw(13) << event.Get(mcnptools::Ptrac::X) << std::setw(13)
 << event.Get(mcnptools::Ptrac::Y) << std::setw(13)
 << event.Get(mcnptools::Ptrac::Z) << std::setw(13)
 << event.Get(mcnptools::Ptrac::ANGLE) << std::endl;
 }
 }
 }

 hists = p.ReadHistories(10000);
 }

 return 0;
}

from mcnptools import Mctal, MctalTally

construct the mctal class from mctal file "python_example_mctal_1.mcnp.mctal"
m = Mctal("example_mctal_1.mcnp.mctal")

tfc = MctalTally.TFC
alias for -1

get tally 4 from the mctal file
t4 = m.GetTally(4)

get the energy bins of tally 4
t4_e = t4.GetEBins()

loop over energy bin indices to store and print tally bin value
using the TFC bin for all other bins

store the tally values with list comprehension
f d u s m c e t
t4_evals = [t4.GetValue(tfc, tfc, tfc, tfc, tfc, tfc, i, tfc) for i in range(len(t4_e))]

print the tally values
for i in range(len(t4_evals)):
 print(t4_evals[i])

from mcnptools import Mctal, MctalKcode

construct the mctal class from the mctal file "python_example_mctal_2.mcnp.mctal"
m = Mctal("example_mctal_2.mcnp.mctal")

get the kcode data
kc = m.GetKcode()

alias for average combined keff
keff = MctalKcode.AVG_COMBINED_KEFF
alias for average combined keff standard deviation
keff_std = MctalKcode.AVG_COMBINED_KEFF_STD

loop over active cycles and print
for i in range(kc.GetSettle(), kc.GetCycles()):
 print(i, " ", kc.GetValue(keff, i), " ", kc.GetValue(keff_std, i))

from mcnptools import Meshtal, MeshtalTally
from sys import stdout

construct the meshtal class from meshtal file "python_example_meshtal.mcnp.meshtal"
m = Meshtal("example_meshtal.mcnp.meshtal")

get tally 4 from the meshtal file
t4 = m.GetTally(4)

get the x and y bin centers
x = t4.GetXRBins()
y = t4.GetYZBins()

loop over x and y bins indices and print the tally value for
z index of 5
for i in range(len(x)):
 for j in range(len(y)):
 stdout.write("{:12.5e}".format(t4.GetValue(i, j, 5)))
 stdout.write("\n")

from mcnptools import Ptrac
from sys import stdout

explicitly open the file as a binary ptrac
p = Ptrac("example_ptrac_1.mcnp.ptrac", Ptrac.BIN_PTRAC)

initialize counter
cnt = 0

read histories in batches of 10000
hists = p.ReadHistories(10000)
while hists:

 # loop over all histories
 for h in hists:
 # loop over all events in the history
 for e in range(h.GetNumEvents()):

 event = h.GetEvent(e)

 if event.Type() == Ptrac.BNK:
 cnt += 1

 stdout.write(
 "{:13d}{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(
 cnt,
 event.Get(Ptrac.X),
 event.Get(Ptrac.Y),
 event.Get(Ptrac.Z),
 event.Get(Ptrac.ENERGY),
)
)

 hists = p.ReadHistories(10000)

from mcnptools import Ptrac
from sys import stdout

explicitly open the file as a legacy binary ptrac
p = Ptrac("example_ptrac_2.mcnp.ptrac", Ptrac.BIN_PTRAC)

read histories in batches of 10000
hists = p.ReadHistories(10000)

while hists:

 # loop over all histories
 for h in hists:
 # loop over all events in the history
 for e in range(h.GetNumEvents()):

 event = h.GetEvent(e)

 if event.Type() == Ptrac.SUR:
 stdout.write(
 "{:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(
 event.Get(Ptrac.X),
 event.Get(Ptrac.Y),
 event.Get(Ptrac.Z),
 event.Get(Ptrac.ANGLE),
)
)

 hists = p.ReadHistories(10000)

from mcnptools import Ptrac
from sys import stdout

explicitly open the file as an HDF5 ptrack
p = Ptrac("example_ptrac_3.mcnp.ptrac.h5", Ptrac.HDF5_PTRAC)

read histories in batches of 10000
hists = p.ReadHistories(10000)

while hists:

 # loop over all histories
 for h in hists:
 print("History: ", h.GetNPS().NPS())
 # loop over all events in the history
 for e in range(h.GetNumEvents()):

 event = h.GetEvent(e)

 if event.Type() == Ptrac.SUR:
 stdout.write(
 "SUR: {:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(
 event.Get(Ptrac.X),
 event.Get(Ptrac.Y),
 event.Get(Ptrac.Z),
 event.Get(Ptrac.ANGLE),
)
)
 elif event.Type() == Ptrac.TER:
 stdout.write(
 "TER: {:13.5e}{:13.5e}{:13.5e}{:13.5e}\n".format(
 event.Get(Ptrac.X),
 event.Get(Ptrac.Y),
 event.Get(Ptrac.Z),
 event.Get(Ptrac.TERMINATION_TYPE),
)
)

 hists = p.ReadHistories(10000)

