
LA-UR-22-31848
Approved for public release; distribution is unlimited.

Title: The Intrinsic Source Constructor Package: Installation and Use

Author(s): Solomon, Clell Jeffrey Jr.
Bates, Cameron Russell
Kulesza, Joel A.
Marcath, Matthew James

Intended for: Report

Issued: 2022-11-08

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

The Intrinsic Source Constructor Package: Installation
and Use

Clell J. (CJ) Solomon Jr., Cameron R. Bates, Joel A. Kulesza, and Matthew J. Marcath

Los Alamos National Laboratory, X-Computational Physics Division

October 28, 2022

Contents
1 2.1.0 Release Notes 1

2 Installation 2
2.1 Overview and Requirements . 2
2.2 Building the ISC C++ Library and Utilities . 2
2.3 Building the ISC Python3 Extensions . 2
2.4 Installing the Python3 Extensions with pip . 3

3 SZA Identifiers 3

4 ISC’s Data Sets 4
4.1 Natural Abundance Files . 4
4.2 Radioactive Decay Files . 4
4.3 Particle Emission Files . 5

5 Standalone Utilities in the ISC Package 5
5.1 ISC’s mattool Utility . 6
5.2 ISC’s MCNP Intrinsic Source Constructor (misc) Utility . 7

6 The ISC Library 7
6.1 Classes for Managing Data Files . 7

6.1.1 The AbundanceFile and AbundanceLib Classes . 8
6.1.2 The DecayData, DecayFile, and DecayLib Classes . 9
6.1.3 The EmissionFileIndex, EmissionFile, and EmissionLib Classes 10

6.2 The DecayMaterial Class . 12
6.3 The EmissionSpectra and EmissionSpectrum Classes . 13

7 Putting it All Together 14

References 15

1 2.1.0 Release Notes
The main changes in the ISC 2.1.0 release are:

1

• CMake refactored for better Windows support (including multi-build)
• Exported target names in CMake are now in the isc namespace
• Headers moved into isc sub-directory
• Python deployment integrated into CMake build process
• ENDF-VIII.0 data libraries added
• Proton decay fixed (A was not decremented for daughter)
• Cf-252 neutron intensity reduced by a factor of 31.4 (branching ratio was calculated incorrectly

previously)
• Additional biasing features in MISC (noted in the updated MISC users guide which can be found in

utils/misc/userguide in the ISC source tree)

2 Installation
2.1 Overview and Requirements
The Intrinsic Source Constructor (ISC) library is a C++ software library bound to Python 3 via the Simplified
Wrapper and Interface Generator (SWIG version 3.0.7). The minimum requirements to build ISC as a C++
library are the following:

• a C++ compiler supporting C++11 features (most modern compilers support this standard)

• the CMake tool set version 3.14 or greater

Currently, the following compilers are supported:

• GCC 5.3.0 and above on Linux and macOS

• Apple Clang 7.3.0 and above on macOS

• Microsoft Visual Studio 2022 on Windows

Additionally, one must have Python 3 installed to build the Python bindings. CMake is not required should
one desire to build only the Python components.

2.2 Building the ISC C++ Library and Utilities
To build ISC, start by creating a directory to build it. Within the directory, run the following commands:

cmake -D CMAKE_INSTALL_PREFIX=[path to install] \
-D isc.python_install=Prefix [path to ISC source directory]

cmake --build . --config RelWithDebInfo
ctest --build-config RelWithDebInfo
cmake --install . --config RelWithDebInfo

This will configure, build, test, and install the ISC library, utilities, and Python bindings. Testing is optional
but recommended. One should confirm all tests pass prior to installation.

The two CMake variables CMAKE_INSTALL_PREFIX and isc.python_install control where components of ISC
are installed. The location for the library and the utilities is controlled by the variable CMAKE_INSTALL_PREFIX.

2.3 Building the ISC Python3 Extensions
Building and installing the ISC Python extensions is done by default but can be avoided using CMake by
adding the flag -Disc.python=OFF to the initial cmake command.

The Python binding install location is controlled by isc.python_install, which has three options:

2

• Global: This will install in the current global Python module directory, and is most useful for system-
wide installs or for Python virtual environments.

• User: This will will install in the current user’s Python module directory. This is most useful for
installing without administration privileges.

• Prefix: This will install within CMAKE_INSTALL_PREFIX/lib, which is most useful for packaging and
maintaining multiple versions. The precise location is OS-dependent, but on Linux, the location
will likely be CMAKE_INSTALL_PREFIX/lib/pythonX.X/site-packages, where X.X corresponds to the
specific Python version used to build ISC. In this case, you will have to add the site-packages path
to the PYTHONPATH environment variable for Python to find the bindings. (Default)

Note that ISC will need to be rebuilt and re-installed whenever you upgrade your Python version, e.g., from
3.9.X to 3.10.X.

On Windows, only the Visual Studio 2022 build tools have been tested with CMake version 3.23.1 and Python
version 3.8 and 3.10. It is assumed that all of the aforementioned applications are in the %PATH% in either the
user or system environment variables.

Depending on the user’s Python installation, it is possible that minor tweaks, e.g., altering some compile or
link flags, to the setup.py.in file will be required. Builds of the Python bindings have been tested with
the Anaconda Python distribution (https://www.anaconda.com/products/distribution) and with the base
distribution from https://www.python.org/downloads.

2.4 Installing the Python3 Extensions with pip

The ISC release with the MCNP(R)1 code also ships with “Python Wheel” files to directly install pre-built
Python 3.10 bindings. The wheel files can be installed with pip using the following command:

pip install --prefix /path/to/install/dir isc-X.Y.Z-NNNNNN.whl

Above, /path/to/install/dir is the location where the ISC package should be installed, and, if it is omitted,
defaults to the install location of the Python installation. The X.Y.Z is the ISC version number and the
NNNNNN is a placeholder for information about the system for which the specific wheel file is built, e.g.,
win_amd64.

If the default installation location is not used, then, after the wheel successfully installs, the user will
need to ensure that their PYTHONPATH points to the installation—for Python version X.X this is typically
/path/to/install/dir/lib/pythonX.X/site-packages.

3 SZA Identifiers
Because long-lived isomeric states are important when evaluating intrinsic radiation sources, ISC uses an
SZA identifier to identify a particular isomer (Conlin et al. 2012). The S refers to the isomeric-state number
of the isomer. The isomeric state is not necessarily equivalent to the excitation level state as isomeric-state
numbers are only assigned to “long-lived” states. The Z refers to the atomic number of the isomer, and the
A refers to the mass number of the isomer. The SZA is then formed by the following formulation:

SZA = S × 1000000 + Z × 1000 + A (1)
1MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC, manager and

operator of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to
Triad National Security, LLC, including the use of the ® designation as appropriate. Any questions regarding licensing, proper
use, and/or proper attribution of Triad National Security, LLC marks should be directed to trademarks@lanl.gov.

3

With the formulation of Eq. 1, the SZA for 234m1Pa (an important isomer in the decay chain of 238U) is
1091235.

4 ISC’s Data Sets
The ISC package comes with three different sets of curated data:

1. Natural abundance and mass files—includes natural abundances and masses of isotopes
2. Radioactive decay files—contains half lives, branching ratios, and daughters for decay
3. Particle emission files—contains the emissions from a isotope per radioactive decay

The fundamental data was not produced by the authors, but, rather, has been formatted by the authors into
formats to be used with ISC. (This distinction is similar to how NJOY formats nuclear data to be used with
MCNP.)

The data files that ship with ISC are in the Extensible Markup Language (XML) format automatically
produced by serialization of data objects with the C++ Boost Serialization library. While XML is human
readable, the files produced in the serialization process are difficult (but not impossible) to navigate and
are not intended to be manipulated directly by users. Should users want to alter data in the files, it is
recommended that they employ the ISC library outlined in Section 6.

The file structure of ISC’s data files is important. All of the ISC utilities look for data in the directory pointed
to by the ISCDATA environment variable. This environment variable must be set on user’s systems for the
utilities to function. The ISC utilities will expect to find the natural-abundance, radioactive-decay, and particle-
emission-index (see Section 4.3) data files in the directory pointed to by the ISCDATA environment variable.
Subdirectories (named by particle-emission library) of the ISCDATA directory contain the particle-emission
data for a given SZA.

4.1 Natural Abundance Files
The natural abundance files contain information about isotope masses and natural abundances. These
files typically have extensions ending in .na.xml in the ISC package. Currently, the only available natural
abundance library that ships with ISC is the NIST library (Coursey et al.).

4.2 Radioactive Decay Files
The radioactive decay files contain information about a nuclide’s decay processes and include the following
information:

1. half-life (and error if available)
2. decay constant (redundant, and error if available)
3. branching ratios for decay paths (and errors if available)
4. daughter isotopes (except for spontaneous fission)

In the ISC package, the radioactive decay data files typically end in the extension .dk.xml. Currently, three
sets of radioactive decay data are available:

• endf6.dk.xml radioactive decay data from ENDF/B-VI.82

• endf7.dk.xml radioactive decay data from ENDF/B-VII.1

• endf8.dk.xml radioactive decay data from ENDF/B-VIII.0
2The ENDF/B-VI.8 data should not be used by most users. This evaluation of radioactive-decay data is known to have

errors. It is included with ISC for historical comparisons.

4

ISC follows the ENDF-6 format integer identifier convention for identifying decay mechanisms. These integer
identifiers and the corresponding decay mechanisms are summarized in Table 1.

Table 1. ENDF-6 format radioactive decay identifiers (M. Herman and A. Trkov 2009)

Identifier Decay Mechanism
1 β−—beta decay
2 e.c./β+—electron capture/positron emission
3 isomeric transition
4 α—alpha decay
5 n—neutron emission decay
6 SF—spontaneous fission
7 p—proton emission decay
10 unknown

As indicated in M. Herman and A. Trkov (2009), combinations of decay pathways can be indicated by
combining identifiers in a “F.S” format. Here “F” indicates the first decay pathway, and “S” indicates the
second decay pathway. Therefor, a decay identifier of 1.5 indicates β− decay followed by neutron emission.

4.3 Particle Emission Files
The particle-emission files contain the radioactive emissions of a given SZA. The particle-emission files identify
the emitted particle types using the ENDF-6 format radioactive particle emission integer types summarized
in Table 2.

Table 2. ENDF-6 format radioactive particle emission identifiers (M. Herman and A. Trkov 2009)

Identifier Radiation Type
0 γ—gamma rays
1 β−—beta rays
2 e.c./β+—electron capture/positron emission
4 α—alpha particles
5 n—neutrons
6 SF—spontaneous fission fragments
7 p—protons
8 e−—discrete electrons
9 x-rays and annihilation radiation

In the ISC package, the particle-emission files typically end in .{library}.xml where {library} indicates
the library that provided the emission data. For example, the ENDF/B-VII.1 radiative emissions from
238U would be found in the file 92238.endf7.xml. ISC’s utilities depend on the particle emission data
being located relative to the particle-emission index file. The index file contains the relative path to the
particle emission data from the index file. The index files are typically named for the emission library data
with a .idx.xml extension. For example, the particle-emission index file for the ENDF/B-VII.1 data is
endf7.idx.xml.

5 Standalone Utilities in the ISC Package
The ISC package comes with two binary utilities. This section describes those utilities. Usage information for
all utilities can be obtained by passing the -h or --help flags.

5

5.1 ISC’s mattool Utility
The mattool utility was written to facilitate breakdown of natural (S)ZAIDs into their isotopic components.
Given a set of (S)ZAIDs and associated fractions (be they atom or mass as specified by the user), mattool
produces a table of the isotopic and “Z-summed” (natural) atom and mass fractions. Additionally, if a atom
or mass density is supplied, then the other (atom or mass) density is also computed.

mattool’s usage information is as follows:

USAGE: mattool [--version] [--data data] [--natlib natlib] [--atomfracs]
[--massfracs] [--atomden atomden] [--massden massden]
<ZAID-Fractions [ZAID-Fractions ...]>

DESCRIPTION:

mattool takes ZAID and atom/mass fraction information and produces material
specification information

OPTIONS:

--version, -v : Print version information and exit

--data, -d : Set natural abundance library (default: nist.na.xml)

--atomfracs, -a : Specified fractions are atom fractions

--massfracs, -m : Specified fractions are mass fractions

--atomden : Specify atom density

--massden : Specify mass density

ZAID-Fractions : ZAID-fraction pairs

As an example, consider one wants to determine what the isotopic constituents of water (H2O) are. The
mattool execution line that would provide this information is

mattool -a 1000 2 8000 1

where the -a flag indicates that the 2 and 1 are the atom fractions (mattool will internally normalize the
values) of hydrogen (1000) and oxygen (8000), respectively. The output produced by this command follows:

zaid atom frac z atom sum mass frac z mass sum
======== ============= ============= ============= =============

1001 6.665900e-01 1.118727e-01
1002 7.666667e-05 6.666667e-01 2.571391e-05 1.118984e-01
8016 3.325233e-01 8.856949e-01
8017 1.266667e-04 3.585660e-04
8018 6.833333e-04 3.333333e-01 2.048165e-03 8.881016e-01

In the above output one notes that the atom and mass fractions of the individual isotopes are produced along
with their sums over atomic number (i.e., z atom/mass sum). Additionally, the mass (or atom) density could
have been specified on the command line as follows:

mattool -a 1000 2 8000 1 --massden 1.0

6

Adding the density produces the following addtional lines of output:

Mass Density: 1.000000e+00
Atom Density: 1.002839e-01

By default, mattool will used the isotopic natural abundances in the NIST database of natural abundances
(i.e., the nist.na.xml data file located in the directory at which the ISCDATA environment variable points).
While no other isotopic natural abundance files are currently provided, one could override the default by
specifying the full path to an alternate data file on the --data/-d flag.

5.2 ISC’s MCNP Intrinsic Source Constructor (misc) Utility
The misc utility is a standalone application to generate MCNP3 SDEF distributions. The misc utility reads
an input file and produces an output file with a summary of the calculation performed and a source file
containing an SDEF distribution that can be copied into an MCNP input or included in an MCNP input with
the READ card.

The usage of the misc utility is as follows:

USAGE: ./utils/misc/misc [--version] [infile]

DESCRIPTION:

./utils/misc/misc generates MCNP SDEF descriptions for radioactive material
descriptions

OPTIONS:

--version, -v : Print version information and exit

infile : MISC input file

Currently, all input for the misc utility is provided via the input file. Available inputs arguments are
documented in the MISC User Guide (C.J. Solomon 2012).

6 The ISC Library
This section will describe some of the many classes that are part of the ISC code package. A full description
at this juncture is not merited because the ISC class implementations are likely to change in the near future.
Additionally, the class methods documented herein are generally the “getter” methods (users interested in
changing data within data files are referred to the class header files for the “setter” methods). As mentioned
in the installation section, the ISC package is written in C++ and bound to Python, so most of the example
code will be presented in Python.

6.1 Classes for Managing Data Files
The ISC data files are managed through 4 classes, the “File” classes, that provide functionality for reading
and writing, but not accessing, the respective data. Access to data is provided through 3 additional classes,
the “Library” classes. For example, the DecayFile class can read and write radioactive decay data, but

3MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad National Security, LLC, manager and
operator of Los Alamos National Laboratory. Any third party use of such registered marks should be properly attributed to
Triad National Security, LLC, including the use of the ® designation as appropriate. Any questions regarding licensing, proper
use, and/or proper attribution of Triad National Security, LLC marks should be directed to trademarks@lanl.gov.

7

the DecayLib class is used to access the data and is typically constructed by passing it an instance of a
DecayFile class.

6.1.1 The AbundanceFile and AbundanceLib Classes

The AbundanceFile class has only two public methods of interest that are summarized in the following table:

Method Description
AbundanceFile(FILE,TYPE) construct AbundanceFile by passing file name FILE and TYPE

(defaults to XML).
Insert(SZA,MASS,ABUND) insert an entry into the data file for SZA with mass MASS and

abundance ABUND

The AbundanceLib has the following public member methods of interest

Method Description
AbundanceLib(ABUNDFILE) construct an abundance library object by passing it an instance of

an AbundanceFile object
GetMass(SZA) return the mass for the given SZA
GetAbundance(SZA) return the abundance for a given SZA
GetZs() return all atomic numbers with data in the AbundanceLib
GetIsosForZ(Z) return all the SZAs that exist in the AbundanceLib provided the

given Z
HasNaturals(Z) return true if the AbundanceLib has natural abundances for SZAs

with the given Z

The following example illustrates how to read abundance file data into an AbundanceFile class, construct an
AbundanceLib class from the abundance file, and query the naturally occurring SZAs of uranium.

1 import isc # import the isc module
2

3 # open an abundance data file and convert it to an abundance library
4 abund_file = isc.AbundanceFile(os.path.join(iscdata,”nist.na.xml”))
5 abund_lib = isc.AbundanceLib(abund_file)
6

7 # get all U isotopes with data
8 u_isos = abund_lib.GetIsosForZ(92)
9 print(u_isos)

10

11 # get mass and abundance for each naturally occuring isotope
12 nat_u_isos = list()
13 for iso in u_isos:
14 # get mass and abundance for iso
15 mass = abund_lib.GetMass(iso)
16 abundance = abund_lib.GetAbundance(iso)
17 print("{:7d} {:7.3f} {:12.5e}".format(iso, mass, abundance))
18

19 # if abundances is non-zero add it to the list of naturally occurring isos
20 if(abundance > 0.0):

8

21 nat_u_isos.append(iso)
22 print(nat_u_isos)

6.1.2 The DecayData, DecayFile, and DecayLib Classes

The DecayData class contains information about the decay mechanisms of a given SZA. The useful public
methods of the DecayData class are as follows:

Method Description
GetZ() return atomic number of isomer for which this decay data applies
GetA() return mass number of isomer for which this decay data applies
GetS() return isomeric state number of isomer for which this decay data

applies
GetHalfLife() return the half life of this isomer in seconds
GetHalfLifeErr() return the uncertainty in the half life in seconds
GetDecayConst() return the radioactive decay constant in 1/seconds
GetDecayConstErr() return the uncertainty in the radioactive decay constant in 1/seconds
GetNumber() return the number of decay pathways
GetBranchingRatio(N) return the branching ratio of the Nth decay pathway
GetBranchingRatioErr(N) return the uncertainty in the branching ratio of the Nth decay pathway
GetDaughter(N) return the daughter of the Nth decay pathway
GetDecayType(N) returns the decay type (see Table 1) of the Nth decay pathway

The DecayFile class has the following public methods to read data from a file and insert data:

Method Description
DecayFile(FILE,TYPE) constructs a DecayFile class from file name FILE having type TYPE

(typically XML)
SetDecayData(SZA, DATA) set the radioactive decay data for SZA to a DecayData instance DATA

The DecayLib class has the following public methods to access data:

Method Description
DecayLib(DECAYFILE) construct a DecayLib class by passing it an instance of a DecayFile

class DECAYFILE
GetSZAs() return a list of SZAs for which there is data in the DecayLib class
GetDecayData(SZA) return a DecayData class of the decay data for the given SZA
GetAllDaughers(SZA) return a list of all the daughters of a given SZA

The following example illustrates how to open decay data from a file into the DecayFile class, convert the
DecayFile into a DecayLib, and query the DecayData for 137Cs.

1 import isc # import the isc module
2

3 # open a decay data file and convert it to a decay data library
4 decay_file = isc.DecayFile(os.path.join(iscdata,"endf7.dk.xml"))
5 decay_lib = isc.DecayLib(decay_file)
6

9

7 # get all the daughters of Cs-137
8 cs137_daughters = decay_lib.GetAllDaughters(55137)
9 print(cs137_daughters)

10

11 # get the decay data for Cs-137
12 cs137_decay_data = decay_lib.GetDecayData(55137)
13 print("Cs-137 half life = {:12.5e} s".format(cs137_decay_data.GetHalfLife()))
14

15 # loop over the number of decay pathways
16 for i in range(cs137_decay_data.GetNumber()):
17 # get daughter SZA is branching ratio
18 daughter = cs137_decay_data.GetDaughter(i)
19 branching_ratio = cs137_decay_data.GetBranchingRatio(i)
20 print("{:7d} {:12.5e}".format(daughter, branching_ratio))

NOTE: Many similar packages to ISC have treated decay of 137Cs as where the 662 keV emission comes
directly from 137Cs. In reality, the 662 keV emission comes from 137Cs’s daughter 137mBa. ISC treats these
daughters explicitly without assumption regarding secular equilibrium.

6.1.3 The EmissionFileIndex, EmissionFile, and EmissionLib Classes

The EmissionFileIndex class has the following public methods for users:

Method Description
EmissionFileIndex(FILE,TYPE) construct the EmissionFileIndex by passing in file name FILE and

type TYPE (typcially XML)
GetPath(SZA) return the path to the particle-emission data for SZA
HasPath(SZA) return true if the given SZA has a particle-emission file

The public methods of the EmissionFile class are the following:

Method Description
GetZ() return atomic number of isomer for which this emission data applies
GetA() return mass number of isomer for which this emission data applies
GetS() return isomeric state number of isomer for which this emission data

applies
GetDiscreteTypes() return a list of all particle types (see Table 2) for which there are

discrete emissions
GetContinuumTypes() return a list of all particle types (see Table 2) for which there are

continuum emissions
GetWattSpectrumTypes() return a list of all particle types (see Table 2) for which there are Watt

spectrum emissions
GetDiscreteNumber(PT) return the number of discrete emissions for particle type PT
GetDiscrete(PT,N) return the Nth discrete emission for particle type PT
GetContinuumNumber(PT) return the number of continuum emissions for particle type PT
GetContinuum(PT,N) return the Nth continuum emission for particle type PT
GetWattSpectrum(PT) return the Watt spectrum for particle type PT

The EmisionLib class has the following public methods:

10

Method Description
SetFromEmissionFile(FILE) set the emissions for an SZA from the emission file FILE
GetSZAs() return a list of SZAs in the emission library
GetSpectra(SZA) return the emission spectra for the given SZA

The following example demonstrates how to open emission files found in an EmissionFileIndex into
EmissionFile classes, add the EmissionFile data to an EmissionLib, and query data out of the
EmissionLib for 60Co.

1 # open an emission file index (contains relative paths to emission data files)
2 emission_index = isc.EmissionFileIndex(os.path.join(iscdata,"endf7.idx.xml"))
3 # initialize an empty emission library
4 emission_lib = isc.EmissionLib()
5

6 # loop over all SZAs and import the emission data
7 # NOTE: one need not load everything, only the things you need
8 for sza in emission_index.GetSZAs():
9 print("loading emission data for isotope {:d}".format(sza))

10 emission_file = isc.EmissionFile(os.path.join(iscdata,emission_index.GetPath(sza)))
11 emission_lib.SetFromEmissionFile(emission_file)
12

13 # get the emission spectra for Co-60
14 co60_spectra = emission_lib.GetSpectra(27060)
15

16 # get a list of isc particle types for which spectra exist
17 co60_particle_types = co60_spectra.GetParticleTypes()
18 print(co60_particle_types)
19

20 # loop over the particle types
21 for ptype in co60_particle_types:
22 if ptype == isc.ENDF_DECAY_GAMMA:
23 print("Co-60 emits gammas, ptype = {:d}".format(ptype))
24 elif ptype == isc.ENDF_DECAY_BETAM:
25 print("Co-60 emits beta-, ptype = {:d}".format(ptype))
26 elif ptype == isc.ENDF_DECAY_BETAP:
27 print("Co-60 emits beta+, ptype = {:d}".format(ptype))
28 elif ptype == isc.ENDF_DECAY_IT:
29 print("Co-60 has internal transition, ptype = {:d}".format(ptype))
30 elif ptype == isc.ENDF_DECAY_ALPHA:
31 print("Co-60 emits alphas, ptype = {:d}".format(ptype))
32 elif ptype == isc.ENDF_DECAY_ELECTRON:
33 print("Co-60 emits electrons, ptype = {:d}".format(ptype))
34 elif ptype == isc.ENDF_DECAY_XRAY:
35 print("Co-60 emits xrays, ptype = {:d}".format(ptype))
36

37 # get the gamma spectrum
38 co60_gammas = co60_spectra.GetSpectrum(isc.ENDF_DECAY_GAMMA)
39 print("The number of discrete emissions per decay is {:.3f}".format(\
40 co60_gammas.GetDNorm()))
41

42 # loop over all the discrete emissions

11

43 print("{:12s} {:12s}".format("energy","#/decay"))
44 for i in range(co60_gammas.GetDNumber()):
45 # get the emission energy and probability/decay
46 energy = co60_gammas.GetDEnergy(i)
47 intensity = co60_gammas.GetDIntensity(i)
48 print("{:12.5e} {:12.5e}".format(energy,intensity))

6.2 The DecayMaterial Class
The DecayMaterial class is the primary class used to construct a radioactive material and build its emissions.
To construct a DecayMaterial one must pass the constructor an AbundanceLib (so that natural isotopes can
be expanded, a list of SZAs, their corresponding fractions, a flag for whether the fractions are atom or mass
fractions, a density, and a flag for whether or not the density is an atom or mass density. The DecayMaterial
class has the following public methods:

Method Description
Age(ABUNDLIB, DECAYLIB, TIME) age the DecayMaterial using AbundanceLib ABUNDLIB and

DecayLib DECAYLIB for at time TIME in seconds
BuildSource(DLIB, ELIB,
EBREMS)

build the source description using data from DecayLib DLIB and
EmissionLib ELIB; if EBREMS is true, then electron emissions are
converted into bremsstrahlung emissions using a thick-target
bremsstrahlung model

Reset() reset the material zaids and fractions to the initial specification (i.e.,
that before any aging has been applied)

GetSZAs() return the list of SZAs in the material; if aging has been performed
this will include all daughters

GetAtomFrac(SZA) return the atom fraction of the given SZA
GetMassFrac(SZA) return the mass fraction of the given SZA
GetAtomDensity() return the atom density of the DecayMaterial
GetMassDensity() return the mass density of the DecayMaterial
GetSpectra() return an EmissionSpectra class containing emission spectra of all

particle types (see Table 2) from all SZAs
GetSpectra(SZA) return an EmissionSpectra class containing emission spectra of all

particle types (see Table 2) from the given SZA

The following example demonstrates how to construct a DecayMaterial for natural uranium, age it for 1
year, and obtain the emission spectra (for brevity it is assumed that AbundanceLib al, DecayLib dl, and
EmissionLib el are available):

1 # build the DecayMaterial using
2 # - the AbundanceLib to expand natural SZAs
3 # - the isc.DecayMaterial.ATOM flag to specify atom fractions
4 # - a density of 19
5 # - the isc.DecayMaterial.MASS flag to specify mass density
6 natu = isc.DecayMaterial(al, [92000], [1.0], isc.DecayMaterial.ATOM, 19.0, isc.DecayMaterial.MASS)
7

8 # age the natural uranium for 1 yr = 365.24 * 24 * 3600 = 31556736.0 s using specified
9 # AbundanceLib and DecayLib

10 natu.Age(al, dl, 31556736.0)
11

12 # build the source using specified DecayLib and EmissionLib

12

13 natu.BuildSource(dl, el)
14

15 # obtain the emission sepctra
16 spectra = natu.GetSpectra()
17

18 # reset the material to the un-aged state
19 natu.Reset()

6.3 The EmissionSpectra and EmissionSpectrum Classes
The EmissionSpectra class is a collection of particle types (see Table 2) with their corresponding
EmissionsSpectrum. An EmissionSpectrum consists of two pieces: 1. discrete emissions and 2. continuum
emissions. EmissionSpectra are most commonly obtained from calls to the GetSpectra() method of the
DecayMaterial class; in this case, all emission intensities are in units of #/cm3/s.

The public methods of the EmissionSpectra class are the following:

Method Description
GetParticleTypes() return a list of particle types (see Table 2) that have emissions
HasSpectrum(PT) return true if the particle type PT (see Table 2) has a spectrum
GetSpectrum(PT) return the emission spectrum for particle type PT (see Table 2)
ToMCNPTypes(BREMS2PHOT) return an EmissionSpectra class where the particle types are mapped

into MCNP particle types; if BREMS2PHOT is true, the bremsstrahlung
spectrum is added to the photon spectrum

Clear() clear the spectra

The EmissionSpectrum class has the following public methods:

Method Description
GetDNumber() return the number of discrete emissions in the spectrum
GetDEnergy(N) return the energy of the Nth discrete emission
GetDEnergyErr(N) return the uncertainty in the energy of the Nth discrete emission
GetDIntensity(N) return the intensity of the Nth discrete emission
GetDIntensityErr(N) return the uncertainty in the intensity of the Nth discrete emission
GetDDecayType(N) return the decay type (see Table 1) of the Nth discrete emission
GetCNumber() return the number of continuum emissions bins
GetCEnergy(N) return the energy of the Nth continuum emission bin
GetCIntensity(N) return the intensity of the Nth continuum emission bin
GetDNorm() return the total intensity of all discrete emissions
GetCNorm() return the total intensity of all continuum emissions

Continuing from the code listing example in Section 6.2 (assuming that the Reset() method wasn’t called)
the photon emission spectrum from natural uranium can be obtained as follows:

14 # obtain the emission spectra
15 spectra = natu.GetSpectra()
16

17 # gamma emission spectrum
18 gammas = spectra.GetSpectrum(isc.ENDF_DECAY_GAMMA)
19

13

20 # iterate over the discrete gamma emissions and print energies and intensities
21 # if the intensity is greater than 1/10000th of the total intensity
22 for i in range(gammas.GetDNumber()):
23 energy = gammas.GetDEnergy(i)
24 intensity = gammas.GetDIntensity(i)
25 if intensity > gammas.GetDNorm() / 10000:
26 print("{:12.5e} {:12.5e}".format(energy, intensity))

7 Putting it All Together
The following example illustrates how one could build a photon emission source for natural U, using the
internal thick-target bremsstrahlung model to convert electron emissions into photons.

1 # This file uses ISC to generate photon emissions off of natural uranium
2

3 import os
4

5 import isc # import the ISC package
6

7 # assume the ISCDATA path variable is set to the ISC data directory
8 iscdata = os.getenv("ISCDATA")
9

10 # open abundance file and create abundance library
11 af = isc.AbundanceFile(os.path.join(iscdata, "nist.na.xml"))
12 al = isc.AbundanceLib(af)
13

14 # open decay file and create decay library
15 df = isc.DecayFile(os.path.join(iscdata, "endf7.dk.xml"))
16 dl = isc.DecayLib(df)
17

18 # open the emission file index and load all emission files into the
19 # emission library
20 el = isc.EmissionLib()
21 eidx = isc.EmissionFileIndex(os.path.join(iscdata,"endf7.idx.xml"))
22 for sza in eidx.GetSZAs():
23 ef = isc.EmissionFile(os.path.join(iscdata,eidx.GetPath(sza)))
24 el.SetFromEmissionFile(ef)
25

26 # create the natural uranium material at a density of 18.9 g/cc the natural SZA
27 # 92000 will be expaned automatically with the abundance library
28 natu = isc.DecayMaterial(al, [92000], [1.0], isc.DecayMaterial.ATOM, 18.9, isc.DecayMaterial.MASS)
29

30 # Age the material for 1 year to build in daughter
31 natu.Age(al, dl, 365.24 * 24 * 3600)
32

33 # Build the source spectrum
34 natu.BuildSource(dl, el, True) # covert electron-emission to bremsstrahlung
35

36 # get the gamma emissions
37 gammas = natu.GetSpectra().GetSpectrum(isc.ENDF_DECAY_GAMMA)
38

14

39 # print the discrete emission
40 for i in range(gammas.GetDNumber()):
41 print("{:12.5e} {:12.5e}".format(gammas.GetDEnergy(i), gammas.GetDIntensity(i)))
42

43 # get the bremsstrahlung
44 brems = natu.GetSpectra().GetSpectrum(isc.ENDF_DECAY_BREMS)
45

46 # print the bremsstrahlung continuum
47 for i in range(brems.GetCNumber()):
48 print("{:12.5e} {:12.5e}".format(brems.GetCEnergy(i), brems.GetCIntensity(i)))

References
C.J. Solomon. 2012. “MCNP Intrinsic Source Constructor (MISC): A User’s Guide.” Report LA-UR-12-20252.

Los Alamos National Laboratory.
Conlin, J. L., F. B. Brown, A. C. Kahler, M. B. Lee, D. K. Parsons, and M. C. White. 2012. “Version 2.0.0

of ACE Tables Header Format.” Report LA-UR-12-25177. Los Alamos National Laboratory.
Coursey, J. S., D. J. Schwab, J. J. Tsai, and R. A. Dragoset. “Atomic Weights and Isotopic Compositions with

Relative Atomic Masses.” NIST Physical Measurement Laboratory. https://www.nist.gov/pml/atomic-
weights-and-isotopic-compositions-relative-atomic-masses.

M. Herman and A. Trkov, ed. 2009. ENDF-6 Formats Manual.

15

https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses
https://www.nist.gov/pml/atomic-weights-and-isotopic-compositions-relative-atomic-masses

	2.1.0 Release Notes
	Installation
	Overview and Requirements
	Building the ISC C++ Library and Utilities
	Building the ISC Python3 Extensions
	Installing the Python3 Extensions with pip

	SZA Identifiers
	ISC’s Data Sets
	Natural Abundance Files
	Radioactive Decay Files
	Particle Emission Files

	Standalone Utilities in the ISC Package
	ISC’s mattool Utility
	ISC’s MCNP Intrinsic Source Constructor (misc) Utility

	The ISC Library
	Classes for Managing Data Files
	The AbundanceFile and AbundanceLib Classes
	The DecayData, DecayFile, and DecayLib Classes
	The EmissionFileIndex, EmissionFile, and EmissionLib Classes

	The DecayMaterial Class
	The EmissionSpectra and EmissionSpectrum Classes

	Putting it All Together
	References

