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Executive summary

• Formation and avalanche multiplication of runaway electrons (REs) during a 

disruption can cause catastrophic damage to a magnetic fusion reactor.

• Using MCNP simulations, we advance a stand-off runaway termination 

scheme to eliminate REs prior to final impact.

• Case 1: Ne shattered pellet injection

− Already proposed on ITER for other disruption mitigation tasks.

− Find moderate scattering rates (~20%) but minimal energy absorption, RE elimination.

− Ne pellet lifetime ~5x RE orbital period → best case 49% termination.

− Ne probably will not solve this problem for us.

• Case 2: W particulate injection

− Not yet considered but a promising candidate, compatible material for ITER/SPARC.

− Find elimination rates >99% at all energies, ~20% energy loss per collision.

− Estimated particulate lifetime ~103x RE orbital period → worst case 98% termination.

− Gamma radiation is undesirable, but not a problem for RE termination.
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Disruptions in tokamaks and resulting damage to 

plasma-facing components

Runaway wall impact during a 

vertical displacement event (VDE).

A.D. Marin et al, Fus. Sci. Technol. (2033).

Thermal Quench (TQ):

Particle and energy 

loss to divertor and 

first wall.

Current Quench (CQ):

EM energy deposition 

induces current driven 

mechanical stresses.

Runaway Electrons (RE):

Localized energy loss 

and catastrophic damage 

at first wall.
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Shattered pellet injection (SPI) and the ITER disruption 

mitigation system (DMS)

SPI offers higher density and delivery 

rate versus MGI, with superior particle 

assimilation and vessel safety compared 

to injecting a single large pellet.

Cryogenic D-Ne shattered pellet exiting an 

injection system at 250 m/s (ORNL, 2021).

D. Shiraki, 2019.
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The problem: constraints on runaway avoidance may be 

insurmountable for existing mitigation schemes

• Runaways are arguably the most 

dangerous/expensive consequence 

− Can destroy cooling systems, etc.

• Require CQ duration between 50 and 

150 ms to prevent damage to VV.

• However, plasma power balance 

may preclude runaway avoidance!

− In short: need 𝐸∥ < 𝐸av to prevent RE 

avalanche. Since resistivity 𝜂 ∝ 𝑇𝑒
Τ−3 2

 
this requires reheating the plasma.

− But higher 𝑇𝑒 means longer CQ.

𝑡 < 50 ms: Eddy 

currents from rapid 

change in EM flux.

𝑡 > 150 ms: Halo 

currents as plasma 

contacts wall and 

drives wall current.

C. McDevitt et al, Nucl. Fusion (2023).
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The solution: Stand-off runaway termination by solid 

particulate injection

• A last-ditch defense is needed to 

prevent catastrophic damage from 

runaway final impact.

• One option: armor or limiter at the 

predicted impact position.

− Replacing it every time = $$$$...

• Better option: particulate 

injection into the RE path.

− Scatter REs across broad surface 
area or absorb them entirely.

− Sacrificial particulates are easier to 
replace than melted wall plates.

− We already have injectors…

• We compare pellets/particulates of 

Ne and W using MCNP.

BAD BETTER
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MCNP simulation setup

• Treat particulate geometry as cylinder, 𝐿 = 𝐷 = 1 mm.

• MODE P E with EL03 and EPRDATA14 libraries.

• Condensed history method for electrons

− 10 keV cutoff for electrons to use single-event method.

− Lower cutoffs 100 eV for electrons, 10 eV for photons.

• Incident energies: 1.0, 1.6, 2.5, 4.0, 6.3, 10.0 MeV.

− 1,048,576 (220) histories per energy.

• Three types of tallies used:

1. Flux of electrons exiting the pellet, resolved by cosine, 
energy, and physical origin (FT TAG);

▪ Energy bins: logarithmic, 10 per decade.

▪ Cosine bins: linear, 200 bins in increments of 0.01.

2. Flux of photons exiting the pellet with same bins; and

3. Volumetric energy deposition into the pellet fragment as 
a function of position in cylindrical coordinates, 𝐸𝐷 𝑟, 𝑧 .

▪ Modified code for knock-on and Auger generation to deposit 
energy at particle origin – WARNING: this increases runtime!

Examples of 

output data.
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Primary RE energy/cosine for Ne pellets @ 1-10 MeV

Energy and angle-resolved exit fluxes of primary/incident runaway 

electrons colliding with a Ne pellet fragment with indicated initial energy.
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Trends for energy and angle-resolved exit flux 

distributions from Ne pellet fragments

• Ne pellet fragments do not induce significant energy loss from incident REs.

− 54% of incident REs with 𝐸 = 1 MeV lose 20% or more of their energy.

− But overall, the energy loss is negligible, and RE termination is nonexistent.

• Ne pellet fragments induce substantial pitch-angle scattering of incident REs.

− For reference: scattering is defined as Δ𝜃 ≥ 5.7° (i.e., Δ cos 𝜃 ≥ 0.01).

− Ne is effective at scattering REs out of the beam (i.e., broaden the impact surface).

RE energy loss and termination RE scattering
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Energy deposition distribution for Ne pellets @ 1-10 MeV

Volumetric energy deposition distributions from incident runaway 

electrons into Ne pellet fragments with indicated initial energy.
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Observations and trends for energy deposition 

distributions into Ne pellet fragments

• Magnitude of Δ𝐸dep is nearly constant (~7% change) over the energy range.

− Stopping power, −𝑑𝐸/𝑑𝑥, is nearly constant at these energies.

• Distribution is nearly uniform, rounds off a bit at lower energies.

− Implies nearly uniform vaporization of Ne pellets rather than outside-in ablation.

• We can estimate pellet lifetime, 𝜏pel, from volume-averaged energy deposition:

𝜏pel =
Φre

𝜙re
, Φre =

𝐸coh𝑁𝐿

Δ𝐸dep
, 𝜙re =

𝑗re

𝑒

− For Ne (𝐸coh = 0.02 eV/atom), 𝜏pel is on the order of ~0.7 µs.

− RE orbit time 𝜏orbit ≈ Τ2𝜋𝑅0 𝑐 = 0.13 µs.

− Ne pellets survive for about five RE orbits before fully vaporizing.
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Discussion: Ne pellet efficacy for RE mitigation

• Consider 10 MeV REs orbiting ITER:

− 20% of REs incident on pellet scatter out.

− Estimate ~20% of RE beam area is intersected 
by SPI fragments in the cloud.

− 3x upper port barrels at Δ𝜃𝜙 = 120° positions.

▪ Optimistic assumption: all used for Ne pellets.

− 𝜏pel/𝜏orbit ~5 RE orbits before vaporization.

− Thus, each RE will collide with 𝑁col~3 Ne pellet 
fragments before complete vaporization.

▪ Neglects numerous details of the ablation process.

• Neglecting multiple-scattering effects:

𝐹scat ≈ 1 − 1 − 𝑓scat
𝑁col = 1 − 0.803 = 49%

• Ne SPI is insufficient for stand-off final 

termination of runaways!

− We need a better material.

S. Jachmich, 2022
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What about tungsten?

What are the requirements for injected material for RE final termination?

• High stopping power, usually means high-Z.

− Higher than Ne (𝑍 = 10); D2 injection probably won’t cut it.

• Survive long enough to fully terminate RE beam, usually means high 𝐸coh.

− This is a problem for heavier rare gases like Ar, Kr which have higher Z but still have 
extremely low 𝐸coh.

• No materials issues from material deposition at first wall and divertor.

− No undesirable alloys, defect formation, surface chemistry, oxide formation, 
precipitates…

− ITER (and SPARC) will be all-tungsten, so W is a natural choice here as well.

 ∴ W sounds like a good choice here.
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Primary RE energy/cosine for W pellets @ 1-10 MeV

Energy and angle-resolved exit fluxes of primary/incident runaway 

electrons colliding with a W particulate with indicated initial energy.
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Trends for energy and angle-resolved exit flux 

distributions from W pellet fragments

• W particulates are highly effective in both scattering and termination views.

− For all incident energies, >99% of REs are either scattered or terminated.

− Lower-energy REs cannot penetrate through the particulate

▪ This is why we see a lot of backscattering, as electron transport approaches a diffusive limit.

• Gamma radiation could pose a challenge.

− Gamma radiation flux is a factor of ~20-25× that from Ne pellet fragments.

− Potentially a serious concern as gamma ray interactions could produce more 
relativistic electrons (runaway reseeding).

RE energy loss and termination RE scattering Gamma ray 

emission!!
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Energy deposition distribution for W pellets @ 1-10 MeV

Volumetric energy deposition distributions from incident runaway 

electrons into W particulates with indicated initial energy.
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Observations and trends for energy deposition 

distributions into W pellet fragments

• Magnitude of energy deposition varies nonlinearly with RE energy.

− Nearly linear for 𝐸~1 MeV, approaching asymptote as 𝐸 → 10 MeV.

− Higher-energy REs still leave with a lot of energy.

− Lower-energy REs terminate near the front of the pellet or backscatter.

• Distribution is rounded at higher energies but becomes flat and shifts toward 

the front (bottom) of the pellet fragment with lower energies.

− This implies that W pellets will ablate from front to back under RE flux.

▪ We are curious about the possibility of rocket forces…

• For W (𝐸coh = 8.90 eV/atom), we estimate the pellet lifetime 𝜏pel to be on the 

order of ~100 µs.

− Varying by about a factor of 2 either way with energy.

− W pellets can survive ~103 RE orbits before fully ablating.

• This is more than sufficient to fully dissipate the RE beam…

• Need to evaluate the effect of gamma radiation – see next slide!
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Gamma radiation impact on runaway termination

• Gamma rays can re-seed runaways by three mechanisms:

1. Compton scattering of free plasma electrons to high energies.

▪ Completely negligible – mean free path is of order 109 m, far larger than any device size.

2. Interaction with other nearby W particulates.

▪ Most salient effect, order of 1-5% additional runaways under typical conditions.

▪ Minimal impact in practice due to broad exit energy and angular distributions.

3. Interaction with the first wall.

▪ Very negligible – three orders of magnitude (10-3) smaller effect than (2).

About 1-5% 

additional 

runaways
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Conclusions

• MCNP simulations are a useful and necessary tool to model RE mitigation by 

pellet or particulate injection in early stages before complete ablation.

• Ne pellet injection looks not quite good enough to mitigate the RE beam even 

with optimistic estimates.

− 20% scattering at 10 MeV is not enough for the extremely short pellet lifetime

− The picture is better at lower energies, but we need to terminate the whole beam.

• W pellet injection is capable of terminating the RE beam by scattering and 

absorption/termination of REs.

− High efficiency and long lifetime compared to Ne.

− High secondary radiation fluxes are not a pressing concern for RE reseeding.

Critical outcomes:

1. “Tungsten shotgun” concept as a viable RE final termination scheme.

2. Establish a radiation-materials interactions basis for future plasma physics 

simulations (i.e., RE orbits after RE-particulate collision).
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