
LA-UR-23-30364
Approved for public release; distribution is unlimited.

Title: Reassessing the MCNP Random Number Generator

Author(s): Josey, Colin James

Intended for: MCNP User Symposium, 2023-09-18/2023-09-21 (Los Alamos, New Mexico,
United States)

Issued: 2023-09-12

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

Reassessing the MCNP Random Number
Generator
Colin Josey, XCP-3, Monte Carlo Group
MCNP Users Symposium
September 19, 2023

LA-UR-23-3NNNN

Managed by Triad National Security, LLC,for the U.S. Department of Energy’s NNSA. Sep 19, 2023

Introduction

The random number generators used within the MCNP code are key to the quality of
our results. The current generators are well-characterized and fast.

However, they:
• fail some random number tests,
• do not have all that many states, and
• require user configuration in many circumstances to ensure quality results.

This work was an investigation on if new generators could outperform our current
ones in the above aspects.

Sep 19, 2023 | 2

Current Generators

Sep 19, 2023 | 3

Linear Congruential Generators

All current MCNP generators take the form of a linear congruential generator (LCG):

Xn+1 = (a × Xn + c) mod m

• Maximum period of m, if a and c chosen with care
• One sequence for a given a, c, m
• O (log n) skip-ahead in sequence
• Quick implementation for m = 2p

• Least significant bits have short period

Sep 19, 2023 | 4

LCG Usage in MCNP - 1

MCNP has 7 generators, with periods 246 (gen 1), 261 (gen 5–7) and 263 (gen 2–4).

History initialization is performed by:
1. Setting the value X0 to the seed
2. Skipping ahead (stride × ih) where ih is the history index

Period Seed Strides

Sep 19, 2023 | 5

LCG Usage in MCNP - 2

Benefits:
• One seed changes all values
• Each history has n = stride random numbers
• No history depends on another for parallelism

Drawbacks:
• Stride must be selected to be sufficient for a problem

• Period overflow at
⌈

period
stride

⌉
histories

• Overrunning period reduces the “effective” stride
For generator 1, after 631 billion histories, each new history is within 1 of another.

• Changing seed just changes position in same sequence

Sep 19, 2023 | 6

Random Number Reuse

Multiple papers indicating that short strides (< 100) affect results:
• J. S. Hendricks, “Random Number Stride in Monte Carlo Calculations,” Los Alamos National Laboratory, Los

Alamos, NM, USA, Tech. Rep. LA-UR-90-1845, Nov. 1990.
• T. E. Booth, “Bad Estimates as a Function of Exceeding the MCNP Random Number Stride,” Los Alamos

National Laboratory, Los Alamos, NM, USA, Tech. Rep. LA-UR-14-23159, May 2014.
• A. R. Hakim and D. A. Fynan, “Challenges of Near Critical-Fixed Source Monte Carlo Simulations of CANDU-6

Reactor: Bundle Power Tally Bias and Error Autocorrelation from Exceeding Random–Number Stride,” in M&C
2023, Niagara Falls, ON, CA; Aug 13–17, 2023.

Does overrunning a large (152917) stride affect results?
Unknown, low probability. However, it would be nice to eliminate the question
altogether so users do not need to be aware of the generator.

Eliminating reuse requires generator state space to be larger than the product of the
maximum numbers used per history, the maximum histories, and the maximum
number of independent simulations.

Sep 19, 2023 | 7

Looking at Other Generators

Sep 19, 2023 | 8

What We Need

Target is a generator that:
• can handle parallel streams easily
• can generate longer parallel streams (stride ≫ 152917)
• can generate more parallel streams (histories ≫ 245)
• generates better quality bits
• performs similarly to, or faster than an LCG

Sep 19, 2023 | 9

Parallelism - Skip Ahead

Start histories uniformly in the sequence:

Index in Stride

St
ri

de

Sep 19, 2023 | 10

Parallelism - Brute Force

Random start state. Prob. of collision (p period, n histories, s values per history):

Preuse = 1 − (p − ns − 1)!
pn−1 (p − n (s + 1))!

Sep 19, 2023 | 11

Parallelism - Counter

Generator state contains a counter, guaranteeing n independent random numbers
per initial state:

Index in Sequence

Se
qu

en
ce

For some algorithms, sequences never intersect.

Sep 19, 2023 | 12

Choosing a Minimum State Space

Current simulations (276):
• stride = 226 Largest stride test problem
• histories = 240 Largest observed simulation
• simulations = 210 Enough to compute true variance to high precision

Future simulations (2128):
• stride = 248 6 orders of magnitude increase
• histories = 264 Maximum allowed in the code without extensive modifications
• simulations = 216 Enough to compute shapes of distributions

Largest theoretical (2225.6):
• stride = 264 Beyond any theoretical hardware capabilities
• histories = 297.6 Direct simulation of all neutrons in lifetime of reactor
• simulations = 264 Maximum allowed in the code without extensive modifications

Sep 19, 2023 | 13

Bit Quality

Cannot prove a generator good, just prove it bad (null hypothesis is generator is
random). So we use 2 test suites:

• TestU01 version 1.2.3, BigCrush
– 106 tests
– Performed on bits both forward and backward
– For 64-bit generators, performed on high and low bits
– For < 64-bit generators, used only high bits

• PractRand version 0.95-pre
– Extremely powerful series of statistical tests
– Tests powers of two bytes until correlation tests fail
– A “pass” is typically 32 TiB (1-4 days running)

Sep 19, 2023 | 14

Some1 Generator Options

1More were tested and not listed, such as Xoshiro256** and Chacha
Sep 19, 2023 | 15

Current 63-bit LCG

Period 263

Streams As used, 1.
Bits Output 63
Parallelism O (log n) skip-ahead

Storage 8 bytes
TestU01 Failures on 10 tests

PractRand Failed at 32 MiB
Time per Val 2.5 ns

Time Init. 115 ns

• Period insufficient
• Poor bit quality

Sep 19, 2023 | 16

Mersenne Twister (64-bit)

Period 219937 − 1
Streams 1

Bits Output 64
Parallelism For stride of 264,

Preuse > 10−10 at 29919.9

histories
Storage 2500 bytes
TestU01 Failures on 2 tests

PractRand Failed at 512 GiB
Time per Val 3.4 ns

Time Init. 643 ns

• Period significantly exceeds needs
• Requires vectorization for

performance
• Weak bit quality

Sep 19, 2023 | 17

PCG DXSM 128/64

Period 2128

Streams As used, 1.
Bits Output 64
Parallelism O (log n) skip-ahead

Storage 16 bytes
TestU01 Passed

PractRand Passed to at least 32 TiB
Time per Val 4.7 ns

Time Init. 165 ns

• 2128 is borderline
• Successor to NumPy’s default

generator
• Requires 128-bit math

implementation

Sep 19, 2023 | 18

SPECK-128/128

Period 2128

Streams 2128

Bits Output 128
Parallelism Incrementing counter

random access
Storage Up to 656 bytes
TestU01 Passed

PractRand Passed to at least 32 TiB
Time per Val 5.8 ns (12-round)

Time Init. 17.0 ns (12-round)

• High-perf cryptographic
counter-based generator

• Each seed yields a new sequence
• Requires vectorization and round

reduction for performance

Sep 19, 2023 | 19

SFC64

Period 264 min., 2255 expected
Streams 2192

Bits Output 64
Parallelism Incrementing counter

no random access
Storage 32 bytes
TestU01 Passed

PractRand Passed to at least 32 TiB
Time per Val 2.6 ns

Time Init. 23 ns

• Part of state is a counter
• Each seed yields a new sequence
• Very high performance
• Selected for further use

Sep 19, 2023 | 20

SFC64 in the Code

Sep 19, 2023 | 21

SFC64

tn = an + bn + n
an+1 = bn ⊕ shift right (bn,11)
bn+1 = cn + shift left (cn,3)
cn+1 = barrel shift (cn,24) + tn

tn output for generator.

• Added as Generator 8 for 6.3.1
• Plan to make default in 6.4

Sep 19, 2023 | 22

SFC64 Seeding

Seed is 192-bits:

Bits 1-64: User-defined Seed

Bits 65-96: Stream ID

Bits 97-128: Reserved

Bits 129-192: History ID

• Seed set, generator iterated 18 times to mix bits
• Every history is a unique sequence
• Every user-seed changes all history sequences to new ones
• Multiple generator streams can be used from the same user-seed

Sep 19, 2023 | 23

Summary

• New random generator 8, SFC64, for 6.3.1
• As fast or faster than 63-bit LCG to generate numbers
• Faster to initialize state
• Significantly higher output bit quality
• Significantly more states (2192 streams of 264)
• Eliminates the concept of strides and random number reuse
• No bad seed values

Sep 19, 2023 | 24

	Current Generators
	Looking at Other Generators
	SomeMore were tested and not listed, such as Xoshiro256** and Chacha Generator Options
	SFC64 in the Code

