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Abstract

This paper reviews the kinematics of neutron elastic and inelastic scattering with moving
and stationary targets for contributions to Neutron Next-Event Estimators (NEEs). NEEs are
often used for simulating the response of detectors in locations that have few random walk
particles. Contributions to NEEs from collisions differ from sampling the outgoing particle state
in standard random walk collisions as the location of the estimator is fixed, thus fixing the
scattering angle between the incoming and outgoing directions. To calculate contributions to
NEEs, the outgoing energies and probabilities of scatter toward the estimator must be calculated.
This paper presents the most general case that encompasses elastic and inelastic scattering with
both moving and stationary targets. The moving target case is required for elastic scattering
with thermal motion due to the free gas thermal treatment approximation. The stationary target
equations are presented for comparison with equations presented in canonical Monte Carlo texts.



1 Background

A few of the canonical Monte Carlo texts provide some of the equations that govern contributions
to neutron next-event estimators (NEEs) due to scattering with stationary targets[1, 2]. These
texts only provide the final forms of the equations and don’t show the derivations. The kinematics
presented in descriptive physics texts are also generally limited to stationary targets[3]. More so,
there are no texts or papers that provide the equations needed for contributions to NEE due to
neutron scattering on moving targets. It is likely that a memo was prepared that described neutron
elastic scattering with a moving target for the implementation of contributions due to the free gas
thermal treatment in the MCNP®[4] code. However, if such a memo was written, its existence is
lost to history. The purpose of this paper is to document the equations describing such contributions
and to show that all cases can be covered by a single set of equations.

2 Neutron Next-Event Estimators

2.1 Introduction

The Next-Event Estimator (NEE), first described by Kalos[5], is a method of calculating the
particle fluence at a point in space. These estimators are called “point detectors” or just “detectors”
in the MCNP®[4] software. The NEE method is useful for calculating the response to detectors
located in regions that have few or no random walk particles. The same kinematics is used for
creating virtual particles for the DXTRAN variance reduction method in MCNP.

The NEE calculates the response at a point for each source and collision event. At each random
walk source or collision event, a pseudo-particle is created, which travels directly from the event to
the NEE location. The pseudo-particle properties (energy, statistical weight) are calculated from the
event. In the case of a scattering event, the pseudo-particle properties are calculated from kinematics.
The equation used to calculate the response of the NEE is:

S(R′, E′
l) =

w

2π(R−R′)2
h(µl, El → E′

l)exp

[
−
∫ R′

R
Σt(s, E

′
l)ds

]
(1)

Where R represents the location of the event, R′ is the location of the NEE, El is the energy of the
particle in the laboratory (LAB) frame prior to the event, E′

l is the LAB frame energy of the resulting
pseudo-particle calculated from kinematics for collisions, µl is the cosine of the pseudo-particle
LAB frame scattering angle (θ), h(µl, El → E′

l) is the probability of scattering into the cosine of
the scattering angle (µl) for the outgoing energy E′

l, Σt(s, E
′
l) is the total particle cross-section at

location s and energy E′
l, and w is the random walk particle’s statistical weight prior to collision.

In Eq. 1, the exponential represents the attenuation of the pseudo-particle between the source or
collision event and the next-event estimator location. The integral of the total cross-section between
the source or collision event to the NEE location is done by ray-casting through the geometry. A
notional diagram of the next-event estimator is provided in Figure 1.
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Figure 1: Notational diagram of a next-event estimator, with an incoming particle of energy El, unit
direction v̂l, statistical weight w, and time t. The random walk particle (solid-arrow) collides in
Cell 1. At the collision point a pseudo-particle (dashed-arrow) is used to calculate the response of
the NEE. The LAB frame scattering angle between the incoming particle direction (v̂l) and the
direction of the pseudo-particle (v̂′

l) toward the NEE is θ. The pseudo-particle is attenuated through
Cell 1 & 2.

2.2 Notation

This document describes the kinematics using three different frames of reference: 1) In the
laboratory frame of reference, denoted as the LAB frame, the particles move relative to the laboratory
or fixed geometry of the simulation. 2) The center-of-mass frame of reference (or more accurately the
center-of-momentum frame), denoted as the COM frame, is defined with the zero total momentum.
3) In the target-at-rest frame of reference, denoted as the TAR frame, the target has zero velocity.
Many texts only consider the kinematics of systems where the target has zero velocity in the LAB
frame, in such cases the LAB and TAR frames are equivalent. This case is also referred to as the
stationary target case.

The notation of the particle kinematic properties used in this document is provided in Appendix
A . The projectile is denoted by a lower case v and the target is denoted with an upper case V .
Vectors are denoted with bold typeface (such as v), a unit vector is denoted with hat notation
(v̂), and a scalar is denoted with normal type (v). A l subscript denotes the LAB frame (vl), a
c subscript denotes the COM frame (vc), and a t subscript denotes the TAR frame (vt). Prime
notation denotes a property after collision (such as v′

l) in contrast to a property before collision
which is denoted without a prime (vl). A is the ratio of the mass of the target to the projectile.

2.3 Quantities to Calculate from Kinematics

In order to solve the response of the NEE from Eq. 1, three primary quantities need to be
calculated: 1) The outgoing neutron energy in the LAB frame, E′

l. 2) The probability of scatter
toward the detector, h(µl;El → E′

l). 3) The scattering angle in the COM frame, ϕ, which is necessary
for accessing nuclear data provided in the COM frame.

The LAB frame scattering angle, θ, ( and thus the cosine of the LAB scattering angle, µl) is
readily calculated from the dot products of the projectiles’s incoming unit vector, v̂l, and outgoing
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Figure 2: Relationships between the final projectile velocity vectors in the COM (v′
c) and LAB (v′

l)
systems and velocity vector of the COM system relative to the LAB system (Vcm).

vectors, v̂′
l:

µl = cos θ = v̂l · v̂′
l (2)

And thus the θ or µl can be considered to be a fundamental quantity from the collision, along with
the incoming projectile energy, El.

If the probability of scatter is provided by the nuclear data in the LAB frame, the determination
of the probability of scatter toward the NEE, h(µl, El → E′

l), is straightfoward. However, the
probability of scatter as a function of angle is often provided in the COM frame and thus conversion
to the LAB frame is required. The conversion of the scattering probability from COM to LAB is
calculated from:

h(µl;El → E′
l) = h(µc;Ec → E′

c)
∂µc

∂µl
(3)

where h(µc;Ec → E′
c) is the COM frame nuclear data. Thus Ec, µc, and ∂µc/∂µl must calculated

from kinematics. For elastic scattering, E′
c will be calculated using conservation of energy. For

inelastic scattering, E′
c will be provided by the nuclear data. The derivations of equations for Ec,

E′
c, E

′
l, µc, and ∂µc/∂µl will be presented in the sections that follow.

3 Kinematics for the General Case of Neutron Scattering

The most general case will be presented first. The most general case is inelastic scattering with
a moving target. Although this case generally has little real application, it provides a singular set
of equations that can be used for both inelastic and elastic scattering as well as for stationary and
moving targets.

3.1 COM Scattering Angle

The conversion from the cosine of the LAB scattering angle, µl, to the cosine of the COM
scattering angle, µc, can be found from the vector relationship between the outgoing laboratory
frame velocity vector (v′

l), the outgoing center-of-mass frame velocity vector (v′
c), and the velocity

vector of the COM frame relative to the LAB frame (Vcm). Using the definition of the velocity of
the COM frame relative to the LAB frame:

v′
l = v′

c +Vcm (4)
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Figure 3: Relationships of the projectile and target velocity vectors (both initial and final) in the
LAB and COM frames for scattering with a moving target, which has a target to projectile mass
ratio of A.

This vector relationship is shown graphically in Figure 2. Translating (4) to the horizontal, which is
aligned along the direction of the COM frame results in:

v′l cos θ = v′c cosϕ+ Vcm (5)

However, Figure 2 and Eq. 5 are not useful without defining Vcm. Vcm is aligned in the direction
of incoming particle velocity, vl, in the special case of a stationary target, but is not the general
case of a moving target. A more complete diagram [6, 7], that defines Vcm for the moving target
case, is presented in Figure 3. In the moving target vector diagram, the basic diagram from Figure 2
represents the lower triangle. To denote the angles correctly, Eq. 5 must be re-written changing θ to
θ2 and ϕ to ϕ2:

v′l cos θ2 = v′c cosϕ2 + Vcm (6)

Or using µl,2 and µc,2 as shorthand for cos θ2 and cosϕ2 respectively:

v′lµl,2 = v′cµc,2 + Vcm (7)

Solving Eq. 7 for µc,2, the cosine of the scattering angle between the velocity vector of COM frame
relative to the LAB frame and the outgoing projectile vector in the LAB frame:

µc,2 =
1

v′c

(
v′lµl,2 − Vcm

)
(8)

From conservation of momentum V ′
cm = Vcm and the momentum of the COM system is equal to the

sum of the momentum of the projectile and target:

(A+ 1)V′
cm = (A+ 1)Vcm =

AVl + vl

A+ 1
(9)
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This vector relationship is depicted graphically as the entire upper triangle (above the horizontal
dotted line) in Figure 3. Rearranging (9) to solve for Vcm and V ′

cm:

V′
cm = Vcm =

AVl + vl

A+ 1
(10)

We can use Eq. 10 to define the equivalent energy (Ecm) of a neutron traveling at the speed of the
COM frame relative to the LAB frame.

Ecm =
1

2
(Vcm)2 (11)

Substituting (11) into (8) we obtain a general solution for the cosine of the COM scattering angle:

µc,2 =
1√
E′

c

[√
E′

lµl,2 −
√
Ecm

]
(12)

Alternatively, additional expressions for Ecm can be obtained using the law of cosines, using the
angle, α, between the initial target and projectile vectors:

Ecm =
1

2
(Vcm)2 =

1

2

1

(A+ 1)2
(
A2Vl

2 + vl
2 − 2AVlvl cosα

)
(13)

Converting to energy and using ET,l to denote the energy of the target in the LAB frame:

Ecm =
1

(A+ 1)2

(
A2ET,l

A
+ El − 2A

√
ET,l

A

√
El cosα

)
=

1

(A+ 1)2

(
AET,l + El − 2

√
AET,lEl cosα

)
(14)

OR in terms of the dot product of the initial target and projectile unit vectors:

Ecm =
1

2

1

(A+ 1)2

[
A2Vl

2 + vl
2 − 2AVlvl(V̂l · v̂l)

]
=

1

(A+ 1)2

[
AET,l + El − 2

√
AET,lEl(V̂l · v̂l)

]
(15)

3.2 The Outgoing Neutron Energy in the Laboratory Frame, E ′
l

Using the lower triangle in Figure 3 and the law of cosines we can derive an expression of the
outgoing neutron energy as a function of COM scattering angle, µc,2 (note that the angle between
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v′
c and Vcm is π − ϕ2):

E′
l =

1

2
v′l

2

=
1

2

[
v′c

2
+ Vcm

2 − 2v′cVcm cos(π − ϕ2)
]

=
1

2

[
v′c

2
+ Vcm

2 + 2v′cVcm cos(ϕ2)
]

=
1

2

[
v′c

2
+ Vcm

2 + 2v′cVcmµc,2

]
=
1

2

[
2E′

c + 2Ecm + 2
√

2E′
c

√
2Ecmµc,2

]
=E′

c + Ecm + 2
√

E′
c

√
Ecmµc,2 (16)

Substituting (12) for µc,2:

E′
l = E′

c + Ecm + 2���
√
E′

c

√
Ecm

(
1

���
√
E′

c

[
µl,2

√
E′

l −
√
Ecm

])
= E′

c + Ecm + 2
√
Ecm

[
µl,2

√
E′

l −
√
Ecm

]
= E′

c +���Ecm + 2
√
Ecm

√
E′

lµl,2 − �2Ecm

= E′
c + 2

√
Ecm

√
E′

lµl,2 − Ecm (17)

Rearranging in the form of a quadratic:

E′
l − 2

√
Ecm

√
E′

lµl,2 − E′
c + Ecm = 0 (18)

Now we can solve for
√
E′

l with the standard quadratic formula (or a more accurate version as one
may alternatively choose [8]): √

E′
l1,2

=
−b±

√
b2 − 4ac

2a
where:

a = 1

b = −2
√

Ecmµl,2

c = −E′
c + Ecm (19)

Thus √
E′

l1,2
=

1

2

[
2
√
Ecmµl,2 ±

√
(2
√

Ecmµl,2)2 − 4(−E′
c + Ecm)

]
=
√
Ecmµl,2 ±

√
Ecmµ2

l,2 + E′
c − Ecm

=
√
Ecm

[
µl,2 ±

√
(µ2

l,2 − 1) +
E′

c

Ecm

]
(20)

Squaring both sides:

E′
l1,2 = Ecm

[
µl,2 ±

√
(µ2

l,2 − 1) +
E′

c

Ecm

]2
(21)
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We can simplify Eq. 21 by representing the discriminate with D2 and the square root of the
discriminate as D:

D =

√
(µ2

l,2 − 1) +
E′

c

Ecm
(22)

Now:

E′
l1,2 = Ecm [µl,2 ±D]2 (23)

3.3 The COM Scattering Angle

We need the COM scattering angle, µc (not just µc,2), in order to look up the scattering
probabilities from either tabular or functional data. Using the moving target vector diagram,
Figure 3, and applying the law of cosines we can develop an expression for µc (cosϕ) by calculating
the magnitude of the vector (c) between the starting points of vl and v′

l.

c2 =vl
2 + v′l

2 − 2vlv
′
l cos θ

=vl
2 + v′l

2 − 2vlv
′
lµl (24)

And similiar application of the law of cosines for the vector between the starting points of vc and v′
c.

c2 =vc
2 + v′c

2 − 2vcv
′
c cosϕ

=vc
2 + v′c

2 − 2vcv
′
cµc (25)

And combining

vl
2 + v′l

2 − 2vlv
′
lµl = vc

2 + v′c
2 − 2vcv

′
cµc (26)

Then converting to energy:

El + E′
l − 2

√
El

√
E′

lµl = Ec + E′
c − 2

√
Ec

√
E′

cµc (27)

Eq. 27 can be arranged to solve for µc:

−2
√
Ec

√
E′

cµc =El + E′
l − 2

√
El

√
E′

lµl − Ec − E′
c (28)

µc =
1

2
√
Ec

√
E′

c

(
Ec + E′

c + 2
√
El

√
E′

lµl − El − E′
l

)
(29)

All terms, except for one, on the left side of the equation are known. The incoming projectile energy
in the laboratory frame, El, is known from the pre-collision particle state. The outgoing laboratory
frame energy, E′

l, is given by Eq. 23. The outgoing energy in the center-of-mass frame, E′
c, is given

from the nuclear data for inelastic scattering or from conservation of energy for elastic scattering.
The remaining unknown term is the incoming projectile energy in the COM frame, Ec.
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3.4 The Incoming Projectile Energy in the COM frame, Ec

An expression for the incoming projectile energy in the COM frame, Ec, an be obtained from
defining a relationship between vc and vl, similar to Eq. 4:

vl =vc +Vcm (30)

Rearranging to solve for vc and substituting the equation for Vcm from Eq. 10:

vc =vl −Vcm

=vl −
AVl + vl

A+ 1

=
1

A+ 1
(vl[A+ 1]−AVl − vl)

=
A

A+ 1
(vl −Vl) (31)

Defining the TAR frame as the frame of reference with respect to the target, the initial velocity of
the projectile in the TAR frame is:

vt =vl −Vl (32)

Then the energy of the projectile in the TAR frame, Et, is:

Et =
1

2
vt

2 =
1

2
|vl −Vl|2 (33)

Thus we can define Ec for scattering with a moving target in terms of Et. From Eqs. 31 and 33 :

Ec =
1

2
vc

2

=
1

2

A2

(A+ 1)2
|vl −Vl|2

=
1

2

A2

(A+ 1)2
vt

2 (34)

Ec =
A2

(A+ 1)2
Et (35)

Now Eq. 29 can be cast to:

µc =
A+ 1

2A
√
Et

√
E′

c

(
A2

(A+ 1)2
Et + E′

c + 2
√
El

√
E′

lµl − El − E′
l

)
(36)
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In the case of a stationary target Et = El thus:

µc =
A+ 1

2A
√
El

√
E′

c

(
A2

(A+ 1)2
El + E′

c + 2
√
El

√
E′

lµl − El − E′
l

)
=
1

2

A+ 1

A

[
A2

(A+ 1)2

√
El√
E′

c

+

√
E′

c√
El

+ 2

√
E′

l√
E′

c

µl −
√
El√
E′

c

−
√
E′

l√
El

√
E′

l√
E′

c

]

=
1

2

A+ 1

A

[(
A2

(A+ 1)2
− 1

) √
El√
E′

c

+

√
E′

c√
El

+ 2

√
E′

l√
E′

c

µl −
√
E′

l√
El

√
E′

l√
E′

c

]

=
1

2

A+ 1

A

√
E′

c/
√
E′

l√
E′

c/
√
E′

l

[(
A2

(A+ 1)2
− 1

) √
El√
E′

c

+

√
E′

c√
El

+ 2

√
E′

l√
E′

c

µl −
√

E′
l√

El

√
E′

l√
E′

c

]

=
1

2

A+ 1

A

√
E′

l√
E′

c

[(
A2

(A+ 1)2
− 1

) √
El√
E′

l

+
E′

c√
ElE

′
l

+ 2µl −
√
E′

l√
El

]

=
1

2

A+ 1

A

[(
A2

(A+ 1)2
− 1

) √
El√
E′

c

+

√
E′

c√
El

+ 2µl

√
E′

l√
E′

c

−
E′

l√
E′

c

√
El

]
(37)

3.5 The Outgoing Neutron Energy in the COM Frame, E ′
c

For inelastic scattering, the outgoing neutron energy in the COM frame is provided by the
nuclear data in accordance with the Q value relationship given in Eq. 89 . In the case of elastic
scattering, the outgoing neutron energy is obtained from conservation of energy. Further discussion
on obtaining E′

c is found in later sections on inelastic and elastic scattering.

3.6 Limits on the Range of Validity

An obvious limit is the outgoing particle energy in the COM frame, E′
c, must be positive. For

elastic scattering this is always true. For inelastic scattering this ensures that the minimum energy
for the threshold reaction is satisfied.

In order to prevent out-going energies with an imaginary solution from Eq. 21, D2 must be
greater than or equal to zero.

D2 ≥0 (38)

Thus from Eq. 22 for D:

µ2
l,2 − 1 +

E′
c

Ecm
≥0

µ2
l,2 ≥1− E′

c

Ecm
(39)

|µl,2| ≥
√
1− E′

c

Ecm
(40)
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So any NEE location’s that have cosine scattering angles such that Eq. 40 is not met will have a
zero contribution from the scatter event.

Another restriction is that the outgoing projectile speed (or square root of the energy) must be
positive. So from Eq. 20:

µl,2 ±
√
(µ2

l,2 − 1) +
E′

c

Ecm
> 0 (41)

Then the lower root (root with the − sign) only exists when the scattering angle is positive and
when:

µl,2 −
√

(µ2
l,2 − 1) +

E′
c

Ecm
>0

�
�µ2
l,2 >(

�
�µ2
l,2 − 1) +

E′
c

Ecm

1 >
E′

c

Ecm
(42)

Lower root (root with − sign) exists when: µl,2 > 0 AND Ecm >E′
c (43)

And the upper root (root with the + sign) only exists when:

µl,2 +

√
(µ2

l,2 − 1) +
E′

c

Ecm
> 0 (44)

This is true for all positive angles but places a limit on negative angles. Evaluating for negative
angles:

µl,2 +

√
(µ2

l,2 − 1) +
E′

c

Ecm
>0√

(µ2
l,2 − 1) +

E′
c

Ecm
>|µl,2| if µl,2 ≤ 0

(µ2
l,2 − 1) +

E′
c

Ecm
>µ2

l,2 if µl,2 ≤ 0

E′
c

Ecm
>1 if µl,2 ≤ 0

E′
c >Ecm if µl,2 ≤ 0 (45)

Upper root (root with + sign) exists when: µl,2 > 0 OR

(µl,2 < 0 AND E′
c > Ecm) (46)

These limits can be summarized as:

1. If |µl,2| <
√

1− E′
c/Ecm or E′

c ≤ 0, no roots are valid.

2. If E′
c > Ecm, only the root with the + sign is valid.

3. If E′
c < Ecm and µl,2 > 0, both roots are valid.
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3.7 Calculating the Probability of Scatter in the Laboratory Frame

The final quantity that we need is the probability of scattering into the LAB scattering angle
θ. To convert probabilities given in the COM frame of reference to the LAB frame of reference we
have to take the derivate of cosϕ, or µc, with respect to the LAB scattering angle cos θ, or µl. With
h(µl;E)lab and h(µc;E)cm representing the scattering probabilities in the LAB and COM frames of
reference respectively:

h(µl;E)lab∂µl = h(µc;E)cm∂µc

h(µl;E)lab = h(µc;E)cm
∂µc

∂µl
(47)

To get an expression for the COM cosine scattering angle, µc, from the LAB cosine scattering angle
(µl), the final COM energy (E′

c), and the COM frame energy (Ecm), we insert (23) into (12):

µc,2 =
1√
E′

c

[
µl,2

√
E′

l −
√
Ecm

]
=

1√
E′

c

[
µl,2

√
Ecm

[
µl,2 ±

√
(µ2

l,2 − 1) +
E′

c

Ecm

]
−
√
Ecm

]

=

√
Ecm√
E′

c

[
µl,2

[
µl,2 ±

√
(µ2

l,2 − 1) +
E′

c

Ecm

]
− 1

]

=

√
Ecm√
E′

c

[
µ2
l,2 − 1± µl,2

√
(µ2

l,2 − 1) +
E′

c

Ecm

]
(48)

The derivative of (48):

∂µc

∂µl
=

∂

∂µl

[√
Ecm√
E′

c

(
µl,2

2 − 1± µl,2

√
(µ2

l,2 − 1) +
E′

c

Ecm

)]

=

√
Ecm√
E′

c

2µl,2 ±

√(µ2
l,2 − 1) +

E′
c

Ecm
+ µl,2

1

2

2µl,2√
(µ2

l,2 − 1) + E′
c

Ecm


=

√
Ecm√
E′

c

2µl,2 ±

√(µ2
l,2 − 1) +

E′
c

Ecm
+

µ2
l,2√

(µ2
l,2 − 1) + E′

c
Ecm

 (49)

Substituting in D for the square root of the discriminate from (22):

∂µc

∂µl
=

√
Ecm√
E′

c

(
2µl,2 ±

[
D +

µ2
l,2

D

])

=

√
Ecm√
E′

c

1

D

(
2Dµl,2 ±

[
D2 + µ2

l,2

])
(50)
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The highest root is:

∂µc

∂µl
=

√
Ecm√
E′

c

1

D

(
2Dµl,2 +D2 + µ2

l,2

)
=

√
Ecm√
E′

c

1

D
(D + µl,2)

2

(51)

The lowest root is:

∂µc

∂µl
=

√
Ecm√
E′

c

1

D

(
2Dµl,2 −D2 − µ2

l,2

)
=−

√
Ecm√
E′

c

1

D

(
D2 − 2Dµl,2 + µ2

l,2

)
=−

√
Ecm√
E′

c

1

D
(D − µl,2)

2

(52)

We only need the absolute value of ∂µc

∂µl
so both roots can be written in a single expression as:

∂µc

∂µl
=

√
Ecm√
E′

c

1

D
(D ± µl,2)

2 (53)

From Eq. 23, E′
l1,2 = Ecm(µl,2 ±D)2 then:

(D ± µl,2)
2 =

E′
l

Ecm
(54)

So ∂µc/∂µl can be written in terms of outgoing neutron energy:

∂µc

∂µl
=

√
Ecm√
E′

c

1

D

E′
l

Ecm

=
E′

l√
Ecm

√
E′

c

1

D

∂µc

∂µl
=E′

l

1√
E′

cEcmD2
(55)

4 Stationary Target Kinematics

In the case of a stationary target, several expressions can be simplified. Ecm from Eq. 11 becomes:

Stationary Target: Ecm =
El

(A+ 1)2
(56)

12



The TAR frame energy, Et, from Eq. 33 becomes:

Stationary Target: Et = El (57)

And the expression for the scattering angle in the COM frame from Eq. 12 and noting µc,2 = µc and
µl,2 = µl for a stationary target:

Stationary Target: µc =
1√
E′

c

[√
E′

lµl −
√
El

A+ 1

]
(58)

Which is Eq. 5.10 of Carter and Cashwell[2].

To calculate the outgoing neutron energy solutions, E′
l1,2, for a stationary target we replace Ecm

from Eq. 56 into Eq. 21 and replace µl,2 with µl:

Stationary Target: E′
l1,2 =

El

(A+ 1)2

[
µl ±

√
(µ2

l − 1) + (A+ 1)2
E′

c

El

]2
(59)

This matches Eq. 5.14 of Carter and Cashwell for scattering with a stationary target. Now D from
Eq. 22 becomes:

Stationary Target: D =

√
(µ2

l − 1) + (A+ 1)2
E′

c

El
(60)

For a stationary target Et = El so Ec, from Eq. 35, becomes:

Ec =
A2

(A+ 1)2
El (61)

5 Inelastic Scattering

5.1 Inelastic Scattering with a Moving Target

For inelastic scattering the outgoing neutron energy, E′
c, is provided by the nuclear data. However,

conversion of the incoming projectile energy from the LAB frame to the COM frame ( in which the
data is usually provided) is usually done assuming a stationary target. Q-value relationships for the
moving target case, provided in Appendix B, show that the incoming particle energy must simply
be transformed into the TAR frame in order to determine the outgoing neutron energy, E′

c, from the
provided nuclear data. The energy of the projectile in the TAR frame, Et, is provided by Eq. 33.

For inelastic scattering with a moving target the equations governing the NEE response are the
most general case, Ecm from Eq. 11, Ec from Eq. 34, µc,2 from Eq. 12, E′

l from Eq. 23, D from
Eq. 22, µc from Eq. 29, and ∂µc/∂µl from Eq. 55.

5.2 Inelastic Scattering with a Stationary Target

For a stationary target Et = El. Thus, nuclear data lookup using El to obtain E′
c is straightfor-

ward.
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For inelastic scattering with a stationary target the equations governing the NEE response are
modified by the stationary target equations, Ecm from Eq. 56, Ec from Eq. 61, µc,2 from Eq. 58, E′

l

from Eq. 23 or Eq. 59, D from Eq. 60, µc from Eq. 29, and ∂µc/∂µl from Eq. 55.

5.2.1 Limits

To find the limits for inelastic scattering with a stationary target we evaluate Eq. 38 by
substitution Ecm for a stationary target from Eq. 56:

µ2
l,2 >1− E′

c

Ecm

>1− (A+ 1)2
E′

c

El
(62)

Finding the limit where the lower root exists by evaluating Eq. 43 by substitution Ecm for a
stationary target from Eq. 56:

Ecm >E′
c

El >(A+ 1)2E′
c (63)

Substituting Eq. 89 for E′
c from the definition of Q-Value and substituting El for Et for a stationary

target:

El >(A+ 1)2

[
Q

(
A

A+ 1

)
+ El

(
A

1 +A

)2
]

El >QA(A+ 1) + ElA
2

El(1−A2) >QA(A+ 1)

El(A
2 − 1) <−QA(A+ 1)

El <−QA
A+ 1

A2 − 1

El <−QA
A+ 1

(A+ 1)(A− 1)

El <−Q
A

A− 1
(64)

This is the upper limit of Case 3 of Eq. 5.14 of Carter and Cashwell.

6 Elastic Scattering

6.1 Elastic Scattering with a Moving Target

From conservation of energy for elastic scattering (both with a moving and stationary targets)
the outgoing projectile energy in the COM frame is equal to the incoming projectile energy.

E′
c =Ec (65)
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The LAB frame cosine scattering angle, µc,2, which is defined in Eq. 12, can be simplified for elastic
scattering by substituting Ec for E

′
c from in Eq. 35:

Elastic Moving Target: µc,2 =
1√
A2

(A+1)2
Et

[√
E′

lµl,2 −
√
Ecm

]
=
A+ 1

A

1√
Et

[√
E′

lµl,2 −
√
Ecm

]
(66)

And the LAB frame outgoing projectile energy for elastic scattering with a moving target follows
from Eq. 21 by substituting Ec for E

′
c and the substituting Eq. 35 for Ec:

Elastic Moving Target: E′
l1,2 = Ecm

[
µl,2 ±

√
(µ2

l,2 − 1) +
Ec

Ecm

]2

= Ecm

[
µl,2 ±

√
(µ2

l,2 − 1) +
A2

(A+ 1)2
Et

Ecm

]2
(67)

Evaluating the limit on the scattering angle by substituting Ec for elastic scattering from Eq. 35
into Eq. 38:

µ2
l,2 − 1 +

E′
c

Ecm
> 0

µ2
l,2 − 1 +

A2

(A+ 1)2
Et

Ecm
> 0 (68)

Finding the limit where the lower root exists by evaluating Eq. 43 with the substitution of E′
c for

elastic scattering from Eq. 35:

Ecm >E′
c

Ecm >
A2

(A+ 1)2
Et (69)

Lower root exists when: µl,2 > 0 AND Et <Ecm
(A+ 1)2

A2
(70)

6.2 Elastic Scattering with a Stationary Target

The COM cosine scattering angle defined in Eq. 66 can be simplified using Ecm (Eq. 56 ), Et

(Eq. 57 ), and µc,2 = µc for a stationary target:

Elastic Stationary Target: µc =
A+ 1

A

1√
El

[√
E′

lµl −
1

A+ 1

√
El

]
=

1

A

[√
E′

l√
El

(A+ 1)µl − 1

]
(71)
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And again substituting Ecm (Eq. 56 ), Et (Eq. 57 ), and µl,2 = µl for a stationary target into the
equation for the outgoing projectile energy in the LAB frame( Eq. 67):

Elastic Stationary Target: E′
l1,2 =

El

(A+ 1)2

[
µl ±

√
(µ2

l − 1) +
A2

(A+ 1)2
(A+ 1)2

El

El

]2

=
El

(A+ 1)2

[
µl ±

√
(µ2

l − 1) +A2

]2
(72)

This matches the expected result for elastic scattering with a stationary target from Eq. 3.14 of Lux
and Koblinger.

Evaluating the laboratory angle scattering limit described by Eq. 68 by substitution of Ecm (Eq.
56 ), Et (Eq. 57 ), and using µl = µl,2 for a stationary target:

µ2
l − 1 +

A2

(A+ 1)2
Et

Ecm
> 0

µ2
l − 1 +

A2

(A+ 1)2
El

El
(A+ 1)2 > 0

µ2
l − 1 +A2 >0 (73)

This implies that all angles are possible for elastic scattering on stationary targets for all isotopes
except for hydrogen. For hydrogen only positive scattering angles (µl > 0) are possible.

Likewise evaluating Eq. 70 by substitution of Ecm (Eq. 56 ) and Et (Eq. 57 ) for a stationary
target, defines the physical limit of the lower root of Eq. 72:

Et <Ecm
(A+ 1)2

A2

El <
El

(A+ 1)2
(A+ 1)2

A2

1 <
1

A2

Lower root exists when: µl > 0 AND A2 <1 (74)

This implies that the lower root of Eq. 72 does not exist except for cases where the projectile mass
exceeds the target mass, which is not generally applicable to neutron elastic scattering. The neutron
is slightly heavier than the proton (0.14%) but they are normally considered to have equivalent
masses for neutron transport applications.

6.3 Elastic Scattering with Stationary Hydrogen

Hydrogen is usually considered a special case for elastic scattering. Substituting of A = 1 for
hydrogen in the equation for the outgoing projectile energy in the LAB frame (Eq. 72) and noting
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that only the positive root can exist:

Elastic Stationary Hydrogen Target: E′
l =

El

(1 + 1)2

[
µl +

√
(µ2

l − 1) + 12
]2

=
El

4
[2µl]

2

= Elµ
2
l (75)

The COM cosine scattering angle defined in Eq. 71 can be simplified using Eq. 75 for E′
l/El and

substituting A = 1 for hydrogen:

Elastic Stationary Hydrogen Target: µc =
1

1

[√
E′

l√
El

(1 + 1)µl − 1

]
=2
√
µ2
l µl − 1

=2µ2
l − 1 (76)
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Appendix A Kinematic Notation

m is the mass of the projectile particle.

M is the mass of the target particle.

A is the ratio of the target mass to projectile mass = M/m.

vl is the initial particle velocity in the laboratory frame.

vl is the initial particle speed in the laboratory frame = |vl|.
v̂l is the initial particle velocity unit-vector in the laboratory frame = vl/vl.

El is the initial particle energy in the laboratory frame = mvl
2/2.

vc is the initial particle velocity in the center-of-mass frame.

vc is the initial particle speed in the center-of-mass frame = |vc|.
v̂c is the initial particle velocity unit-vector in the center-of-mass frame = vc/vc.

Ec is the initial particle energy in the center-of-mass frame = mvc
2/2.

vt is the initial particle velocity in the target-at-rest frame = vl −Vl .

vt is the initial particle speed in the target-at-rest frame = |vt|.
v̂t is the initial particle velocity unit-vector in the target-at-rest frame = vt/vt.

Et is the initial particle energy in the target-at-rest frame = mvt
2/2.

v′
l is the final particle velocity in the laboratory frame.

v′l is the final particle speed in the laboratory frame = |v′
l|.

v̂′
l is the final particle velocity unit-vector in the laboratory frame = v′

l/v
′
l.

E′
l is the final particle energy in the laboratory frame = mv′l

2
/2.

v′
c is the final particle velocity in the center-of-mass frame.

v′c is the final particle speed in the center-of-mass frame = |v′
c|.

v̂′
c is the final particle velocity unit-vector in the center-of-mass frame = v′

c/v
′
c.

E′
c is the final particle energy in the center-of-mass frame = mv′c

2
/2.

Vl is the initial target velocity in the laboratory frame.

Vl is the initial target speed in the laboratory frame = |Vl|.
V̂l is the initial target velocity unit-vector in the laboratory frame = Vl/Vl.

Vc is the initial target velocity in the center-of-mass frame.

Vc is the initial target speed in the center-of-mass frame = |Vc|.
V̂c is the initial target velocity unit-vector in the center-of-mass frame = Vc/Vc.
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V′
l is the final target velocity in the laboratory frame.

V ′
l is the final target speed in the laboratory frame = |V′

l|.

V̂
′
l is the final target velocity unit-vector in the laboratory frame = V′

l/V
′
l .

V′
c is the final target velocity in the center-of-mass frame.

V ′
c is the final target speed in the center-of-mass frame = |V′

c|.

V̂
′
c is the final target velocity unit-vector in the center-of-mass frame = V′

c/V
′
c .

Vcm is the initial center-of-mass frame velocity of the relative to the laboratory frame

= (vl +AVl)/(1 +A).

Vcm is the initial center-of-mass frame speed of the relative to the laboratory frame.

V̂cm is the initial center-of-mass frame unit-vector of the relative to the laboratory frame.

V′
cm is the final center-of-mass frame velocity of the relative to the laboratory frame = Vcm.

θ is the particle’s final scattering angle in the laboratory frame.

µl is the cosine of the particle’s final scattering angle in the laboratory frame = cos θ.

ϕ is the particle’s final scattering angle in the center-of-mass frame.

µc is the cosine of the particle’s final scattering angle in the center-of-mass frame = cosϕ.

π − ϕ is the target’s final scattering angle in the center of mass frame.

Velocity Relations

Vcm = vl − vc ; Vcm = Vl −Vc

Vcm = v
′
l − v

′
c ; Vcm = V

′
l −V

′
c

Vcm = vl − vc = Vl −Vc = v
′
l − v

′
c = V

′
l −V

′
c

vt = vl −Vl = vc −Vc
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Appendix B Q-Value Relationships for Moving Targets

As Q-value expressions are generally derived using a stationary target, we need to re-visit
the Q-value equations to see if the energy of the projectile can simply be transformed into the
target-at-rest (TAR) frame.

To express the Q-value we express the reaction with the following notation:

A + a → C → B+ b (77)

Where the incident projectile is denoted as “a”, the target nucleus is denoted as “A”, the compound
nucleus is denoted as “C”, the emitted particle is “b”, and the residual nucleus is denoted as “B”.

We can express the Q value as the difference between the entrance channel energy (ϵa) and exit
channel energy (ϵb):

Q = ϵb − ϵa (78)

The entrance channel energy is the kinetic energy of the incident projectile and the target particle
in the center-of-mass frame

ϵa = Ea,c + EA,c (79)

We can replace the energies with the speed of the incident particle in the center-of-mass frame,
vc, and the velocity of the target nucleus in the center-of-mass frame, Vc.

ϵa =
1

2
vc

2 +
1

2
AVc

2 (80)

Defining the velocity of the COM system with respect to the LAB frame from the total momentum
of the center-of-mass system:

Vcm(1 +A) = AVl + vl

Vcm =
AVl + vl

1 +A
(81)

Using vc = vl −Vcm and Vc = Vl −Vcm and replacing the velocity in the center-of-mass frame
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in (80):

ϵa =
1

2
|vl − Vcm|2 + 1

2
A|Vl − Vcm|2

=
1

2

(
|vl −

AVl + vl

1 +A
|
)2

+
1

2
A

(
|Vl −

AVl + vl

1 +A
|
)2

=
1

2(A+ 1)2
|vl(A+ �1)− (AVl +��vl)|2 +

1

2(A+ 1)2
A|Vl(��A+ 1)− (���AVl + vl)|2

=
1

2(A+ 1)2
|vlA−AVl|2 +

1

2(A+ 1)2
A|Vl − vl|2

=
A2

2(A+ 1)2
|vl −Vl|2 +

A

2(A+ 1)2
|Vl − vl|2

=
A

2(A+ 1)2
(
A|vl −Vl|2 + |Vl − vl|2

)
=

A

2(A+ 1)2
|vl −Vl|2(A+ 1)

=
A

2(A+ 1)
|vl −Vl|2 (82)

And using the TAR frame projectile energy from Eq. 33, the entrance channel energy, ϵa, becomes:

ϵa = Et
A

A+ 1
(83)

This provides some comfort for the use of the fluid-frame energy in place of the laboratory-frame
energy as we would for a stationary target, as the entrance channel energy for the target-at-rest
(TAR) case is

ϵa,TAR = El
A

A+ 1
(84)

Likewise defining the exit channel energy:

ϵb = Eb,cm + EB,cm

ϵb =
1

2
v′c

2
+

1

2
AV ′

c
2

(85)

By definition the momentum of the center-of-mass system is zero:

v′
c = AV′

c (86)

ϵb =
1

2
v′c

2
+

1

2
A
v′c

2

A2

ϵb = E′
c(1 +

1

A
)

Aϵb = E′
c(A+ 1)

ϵb = E′
c

(A+ 1)

A
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ϵb = E′
c

A+ 1

A
(87)

Substitution (83) and (87) into the expression for Q:

Q = ϵb − ϵa

Q = E′
c

A+ 1

A
− Et

A

1 +A
(88)

Solving for E′
c:

E′
c

A+ 1

A
= Q+ Et

(
A

1 +A

)

E′
c = Q

(
A

A+ 1

)
+ Et

(
A

1 +A

)2

(89)
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Appendix C Python for NEE Contributions due to Neutron Scat-
tering

1 import math

2 import numpy as np

3
4 def square( value ):

5 return value*value

6
7 def squareMagnitude( vector ):

8 return np.sum( np.power(vector , 2 ) )

9
10 def normalize( vector ):

11 return np.divide( vector , math.sqrt( squareMagnitude(vector) ) )

12
13 def neutronMolarMass ():

14 return 1.00866491597

15
16 # neutron rest mass energy in MeV from ( http :// physics.nist.gov/cgi -bin/cuu/Value?

mnc2mev ) in Units [MeV]. Standard Uncertainty = 0.000 023 MeV

17 neutron_rest_mass_MeV = 939.565346 # [MeV]

18
19 # speed of light in a vaccume from ( http :// physics.nist.gov/cgi -bin/cuu/Value?c )

Units [cm/shake]. Exact , according to NIST

20 speed_of_light = 299.7924580 # [cm/shake]

21
22 # Returns the velocity of a neutron in cm/shake from neutron ’s energy in [MeV]

23 # neutron_speed_from_energy_const = speed_of_light * std::sqrt( 2.0 /

neutron_rest_mass_MeV ) ; // [MeV]

24
25 def speed( E, mass):

26 # Returns the velocity in cm/shake from neutron ’s energy in [MeV]

27 # assumes neutron to proton mass ratio is 1.0

28 return speed_of_light * math.sqrt( 2.0 * E / (mass*neutron_rest_mass_MeV) );

29
30 def energy( speed ):

31 if isinstance( speed , np.ndarray):

32 return 0.5* neutron_rest_mass_MeV * squareMagnitude(speed/speed_of_light)

33 else:

34 return 0.5* neutron_rest_mass_MeV * square(speed/speed_of_light)

35
36 def V_projectile(E_projectile):

37 return np.array( [ speed(E_projectile ,1.0) , 0.0, 0.0] )

38
39 def V_target(E_target , mu_target , mass):

40 V_speed = speed(E_target , mass)

41 return np.array( [ V_speed*mu_target , V_speed*math.sqrt(1-square(mu_target)) ,

0.0] )

42
43 def energy_target( speed , mass ):

44 return 0.5* neutron_rest_mass_MeV*mass * square(speed/speed_of_light)

45
46 def V_cm(E_l , E_target , mu_target , mass):

47 v = V_projectile( E_l )

48 V = V_target(E_target , mu_target , mass)

49 P = np.multiply(V, mass)

50 return np.add(P,v)/(mass +1.0)

51
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52 def e_t_min(Q_value , M):

53 return -Q_value *(M+1.0)/M

54
55 def e_cm(E_l , E_target , mu_target , mass):

56 return energy( V_cm(E_l , E_target , mu_target , mass) )

57
58 def e_t(E_l , E_target , mu_target , mass):

59 v = V_projectile( E_l )

60 V = V_target(E_target , mu_target , mass)

61 V_diff = np.subtract(v,V)

62 return energy( V_diff )

63
64 def e_l_from_e_t(E_t , E_target , mu_target , mass):

65 V_speed = speed(E_target , mass)

66 V_x = V_speed*mu_target

67 V_y = V_speed*math.sqrt(1-square(mu_target))

68 E_y = energy( V_y )

69 E = E_t - E_y

70
71 V_diff_speed = speed(E, 1.0)

72 return energy( V_diff_speed + V_x )

73
74 def e_c_prime(E_t , Q_value , M):

75 return square(M/(M+1.0))*E_t + Q_value*M/(M+1.0)

76
77 def e_t_max(E_l , E_target , mu_target , Q_value , M):

78 energy_cm = e_cm(E_l , E_target , mu_target , M)

79 return (energy_cm - Q_value*M/(M+1.0)) / square(M/(M+1.0))

80
81 def mu_lab_2(E_l , E_target , mu_target , mu_lab , mass):

82 unit_V_cm = normalize( V_cm(E_l , E_target , mu_target , mass) )

83 unit_v_prime = np.array( [ mu_lab , math.sqrt (1.0- square(mu_lab)) , 0.0] )

84 return np.dot( unit_v_prime , unit_V_cm)

85
86 def min_scattering_angle(E_l , E_target , mu_target , Q_value , A_value ):

87 energy_TAR = e_t(E_l , E_target , mu_target , A_value)

88 energy_cm = e_cm(E_l , E_target , mu_target , A_value)

89 energy_c_prime = e_c_prime(energy_TAR , Q_value , A_value)

90 ratio = energy_c_prime / energy_cm

91 if ratio > 1.0:

92 return 1.0

93 return math.sqrt(1 - energy_c_prime / energy_cm)

94
95 def D2(E_l , E_target , mu_target , mu_lab , Q_value , A_value ):

96 energy_TAR = e_t(E_l , E_target , mu_target , A_value)

97 if e_t_min( Q_value , A_value) > energy_TAR:

98 return [0.0, 0.0]

99
100 energy_cm = e_cm(E_l , E_target , mu_target , A_value)

101 energy_c_prime = e_c_prime(energy_TAR , Q_value , A_value)

102 mu_LAB_2 = mu_lab_2(E_l , E_target , mu_target , mu_lab , A_value)

103 mu_LAB_2_squared = square( mu_LAB_2 )

104 return (mu_LAB_2_squared - 1.0) + energy_c_prime / energy_cm

105
106 def energy_and_probability_pos(E_l , E_target , mu_target , mu_lab , Q_value , A_value )

:

107 energy_TAR = e_t(E_l , E_target , mu_target , A_value)

108 if e_t_min( Q_value , A_value) > energy_TAR:

109 #print( "returning because e_t_min > energy_TAR" )
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110 return [0.0, 0.0]

111
112 energy_cm = e_cm(E_l , E_target , mu_target , A_value)

113 energy_c_prime = e_c_prime(energy_TAR , Q_value , A_value)

114 mu_LAB_2 = mu_lab_2(E_l , E_target , mu_target , mu_lab , A_value)

115 mu_lab_2_squared = square( mu_LAB_2 )

116 Dsquared = (mu_lab_2_squared - 1.0) + energy_c_prime / energy_cm

117
118 if Dsquared <= 0.0:

119 #print( "returning because Dsquared < 0.0, E_l=", E_l , " energy_c_prime =",

energy_c_prime , " energy_TAR =", energy_TAR )

120 return [0.0, 0.0]

121
122 if mu_LAB_2 < 0.0 and energy_c_prime <= energy_cm:

123 #print( "returning because mu_LAB_2 < 0.0 and energy_c_prime <= energy_cm"

)

124 return [0.0, 0.0]

125
126 energy = energy_cm*square( mu_LAB_2 + math.sqrt( Dsquared ) )

127 prob = energy / math.sqrt( energy_c_prime * Dsquared * energy_cm )

128 return [ energy , prob]

129
130 def energy_and_probability_neg(E_l , E_target , mu_target , mu_lab , Q_value , A_value )

:

131 energy_TAR = e_t(E_l , E_target , mu_target , A_value)

132 if e_t_min( Q_value , A_value) > energy_TAR:

133 #print( "returning because e_t_min > energy_TAR" )

134 return [0.0, 0.0]

135
136 energy_cm = e_cm(E_l , E_target , mu_target , A_value)

137 energy_c_prime = e_c_prime(energy_TAR , Q_value , A_value)

138 mu_LAB_2 = mu_lab_2(E_l , E_target , mu_target , mu_lab , A_value)

139 mu_LAB_2_squared = square( mu_LAB_2 )

140 Dsquared = (mu_LAB_2_squared - 1.0) + energy_c_prime / energy_cm

141
142 if Dsquared <= 0.0:

143 #print( "returning because Dsquared < 0.0, E_l=", E_l , " energy_c_prime =",

energy_c_prime , " energy_TAR =", energy_TAR )

144 return [0.0, 0.0]

145
146 if mu_LAB_2 < 0.0:

147 #print( "returning because mu_LAB_2 < 0.0" )

148 return [0.0, 0.0]

149
150 if energy_cm < energy_c_prime:

151 #print( "energy_cm < energy_c_prime" )

152 return [0.0, 0.0]

153
154 energy = energy_cm*square( mu_LAB_2 - math.sqrt( Dsquared ) )

155 prob = energy / math.sqrt( energy_c_prime * Dsquared * energy_cm )

156 return [ energy , prob]
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