
LA-UR-23-30411
Approved for public release; distribution is unlimited.

Title: MCNP6.3 Executions in Parallel on Snow

Author(s): Armstrong, Jerawan Chudoung

Intended for: 2023 MCNP User Symposium, 2023-09-18/2023-09-21 (Los Alamos, New
Mexico, United States)

Issued: 2023-09-21 (rev.1)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security
Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government
retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government
purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of
Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does
not endorse the viewpoint of a publication or guarantee its technical correctness.

19/19/23
19/19/23Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

MCNP6.3 Executions in Parallel on Snow

Jerawan Armstrong

2023 MCNP User Symposium
September 18-21, 2023

LA-UR-23-30411

29/19/23

Outline

• Parallel Computing in MCNP6

• Test Problem I: Athena-I Model

• Test Problem II: CANDU Model

39/19/23

Parallel Computing in MCNP6

49/19/23

Three Options for Running MCNP6 in Parallel

• mpirun –np X mcnp6.mpi i=filename

• mcnp6 i=filename tasks N

• mpirun –np X mcnp6.mpi i=filename tasks N

“mpirun –np” should be replaced with “srun –n” on High
Performance Computing (HPC) machines using Slurm.

Which option should be used to run MCNP6 in parallel?

59/19/23

Parallel Computing

Parallel code implementation is strongly influenced by
a parallel computing system to be used.

TASKS option

MPIRUN option

Parallel codes implemented in MCNP6

Running Parallel Simulations

Parallel Codes
 (software)

Parallel Computers
 (hardware)

69/19/23

General Parallel Architecture

• CPUs may consist of one or more cores, a distinct execution unit with its own
instruction stream. CPU cores may be organized into one or more sockets
where each socket has its own distinct memory. When a CPU consists of
multiple sockets, memory sharing across sockets is usually supported by
hardware infrastructure [1].

• A symmetric multi processor (SMP) is a shared memory architecture where
multiprocessors share a single address space and have equal access to all
resources [1].

• A node is a standalone computer, consisting of CPU cores, memory, network
interfaces, etc. Nodes are networked together to form a supercomputer [1].

CPU

memory

CPU

memory

CPU

memory

CPU

memory

network

distributed memory

corecore

core core

memory

corecore

core core

memory

dual socket node

shared memory

inter-process communication (IPC)

79/19/23

MPI Parallel Computing in MCNP6
• Message Passing Interface (MPI) programming model was originally designed for

distributed memory architectures, but presently MPI programs may run on
distributed memory, shared memory, or hybrid (distributed-shared) memory
systems [2].
− Distributed memory: network-based memory access for physical memory that is not

common.
− Shared memory: all processors have direct access to common physical memory.
− Hybrid memory: shared memory nodes are linked to form a cluster, and network

communications are required to move data between nodes. A typical HPC machine is a
cluster of SMP nodes.

• A command line for MPI parallel computing in MCNP6: mpirun –np X
mcnp6.mpi i=test or mpiexe –n X mcnp6.mpi i=test
− MCNP checks X. For MPI parallel computing, X >=3. If X=1, 2, no MPI parallel

computing. 1 manager, and (X-1) worker tasks with 1 thread each

manager

worker1

worker2

worker3

MPI-3 was used in MCNP6.3

89/19/23

OpenMP Parallel Programming in MCNP6.3
• OpenMP is an API (Application Program Interface) for multi-threaded, shared

memory parallel programming.
− “A thread of execution is the smallest unit of processing that can be scheduled by an

operating system [3].

• OpenMP parallel programing in MCNP is specified by using compiler directives.

• A command line for an OpenMP parallel computing in MCNP6: mcnp6 i=test
tasks N

An OpenMP only option should not be used to run MCNP on multiple nodes
of HPC clusters.

99/19/23

Parallel Programming Improvements in MCNP6.3
Unstructured Mesh (UM) Feature

• Used MPI-3.

• Added OpenMP parallel directives in codes used for input processing.

• Rewrote codes used for parallel input processing.
− An MPI execution for UM input processing only option is allowed.

• Fixed MPI and OpenMP bugs.

109/19/23

Snow

• Snow is a LANL’s Commodity Technology System Phase I (CTS-1) cluster.
− 368 compute nodes, Intel Xeon Broadwell processor & Intel OmniPath interconnect.
− Each node has 36 CPU cores with 128GB memory (~3.5 GB/core) where cores are

grouped into 2 sockets.
− Each CPU core has two hyperthreads which are disabled.

• Snow uses the Slurm Workload Manager for resource allocation and scheduling,
work monitoring, queue management.

• How to run calculations in parallel on HPC machines is problem-dependent [4].

CPU
0-17

CPU
18-35

memory memory

High Speed IPC link

node A cluster of nodes

Intel Xeon
Broadwell
processor

Intel OmniPath Interconnect

node

119/19/23

Test Problem I: Athena-I Model

129/19/23

Athena-I Model

• An Athena-I experiment was designed
by the Air Force Institute of Technology
(AFIT) and conducted at the National
Ignition Facility (NIF).

• Hybrid geometry: constructive solid
geometry (CSG) & unstructured mesh
(UM) geometry; 1,107,965 linear
hexahedral elements & 43 parts.

• Fixed source problem, MODE n p

• NPS 1E8

• PRDMP 1E9 1E9 1 2 1E9

An Athena-I hexahedral
model was created by
Bradley Gladden [5].

139/19/23

Athena-I: MPI on Snow

6 runs: srun –n X mcnp6.mpi i=athena1_hex.txt

node cores
X

histories/
hr

computer time
[minutes]

wall clock time
[h:m:s]

1 36 59.72E6 3617.40 01:41:17

2 72 117.78E6 3669.43 00:41:53

4 144 238.23E6 3630.15 00:26.01

6 216 352.68E6 3679.99 00:17.55

8 288 471.41E6 3672.76 00:13.34

10 360 590.35E6 3668.59 00:10.58

X-1 MPI worker tasks with 1 thread each

CPU
0-17

CPU
18-35

36 cores per node

• After a job is submitted to
Slurm, it will be in the queue
before being executed on the
compute nodes.

• Goal: choose a number of

nodes that the queue time
and wall clock time are
minimized.

• Generally, the more nodes a
user requests, the more times
a job will be in the queue.

149/19/23

Athena-I: MPI on Snow

159/19/23

Athena-I: OpenMP on Snow Using a Single Node
3 runs on 1 node: mcnp6 i=athena1_hex.txt tasks N

N histories/hr computer time
[minutes]

wall clock time
[h:m:s]

9 28.74E6 1879.78 03:29:37

18 52.18E6 2070.23 01:44:44

36 104.04E6 2077.23 00:58:15

CPU
0-17

CPU
18-35

36 cores per node

169/19/23

Athena-I: OpenMP on Snow Using Multiple Nodes

A pure multithreading
(OpenMP) parallelization
option should only be used
on a single compute node.

3 runs: mcnp6 i=athena1_hex.txt tasks N

nodes cores
N

histories/hr computer time
[minutes]

wall clock time
[h:m:s]

1 36 104.04E6 2077.23 00:58:15

2 72 21.86E6 9882.51 03:35:17

4 144 15.76E6 13703.17 05:51:14

CPU
0-17

CPU
18-35

36 cores per node

179/19/23

Athena-I: Performance on 1 Compute Node

node cores histories/hr computer time
[minutes]

wall clock time
[h:m:s]

1 36 59.72E6 3617.40 01:41:17

srun –n 36 mcnp6.mpi i=athena1_hex.txt

mcnp6 i=athena1_hex.txt tasks 36
nodes cores histories/hr computer time

[minutes]
wall clock time

[h:m:s]

1 36 104.04E6 2077.23 00:58:15

• MPI+OpenMP may be a reasonable option for running this problem using
multiple nodes since the performance of OpenMP computing is better than
the performance of MPI computing on a single compute node.

In general, a user should use a pure MPI and OpenMP option on a
single node to check the performance. If the performance of
OpenMP computing is better than the performance of MPI
computing, then a hybrid (MPI+OpenMP) option could be used to
run the problem using multiple compute nodes.

189/19/23

Athena-I: MPI + OpenMP on Snow
4 runs: srun –n X mcnp6.mpi i=athena1_hex.txt tasks 36

nodes
X

cores histories/hr computer time
[minutes]

wall clock time
[h:m:s]

4 144 312.57E6 2088.76 00:19.56

6 216 515.03E6 2094.29 00:12:16

8 288 722.64E6 2087.11 00:08:57

10 360 929.94E6 2090.67 00:07:04

X-1 MPI worker tasks with 36 threads each

CPU
0-17

CPU
18-35

36 cores per node

For MPI parallel
computing in MCNP6,
X must be >= 3.

199/19/23

Athena-I: Wall Clock Time Comparison

209/19/23

Test Problem II: CANDU Model

219/19/23

CANDU Model
• Canadian Deuterium natural Uranium reactor

fuel bundle 37-element.

• Hybrid geometry: constructive solid geometry
(CSG) & unstructured mesh (UM) geometry;
2,716,982 linear tetrahedral and hexahedral
elements & 5 parts.
− 350,878 Tet elements & 2,366,104 Hex elements.
− Parts were grouped by materials; 1 Tet part and 4

Hex parts.

• The UM bundle is inside a CSG cell which is
reflected to representing a full core.

• KCODE problem; MODE n
− KCODE 100000 1.0 30 150

• PRDMP 1E10 1E10 1 2
− Use default 5th entry (dmmp=0), writing TFC

entries 10 times total.

A CANDU model was created by
Esteban Gonzalez [6].

229/19/23

CANDU: MPI on Snow
6 runs: srun –n X mcnp6.mpi i=candu_hex.txt

node cores
X

histories/hr computer time
[minutes]

wall clock time
[h:m:s]

1 36 2.10E6 15319.81 07:15:13

2 72 3.90E6 16379.02 04:01:49

4 144 6.37E6 19659.16 02:32.15

6 216 8.38E6 22763.50 01:58.45

8 288 10.48E6 24094.55 01:37:14

10 360 11.35E6 27792.20 01:31:56

X-1 MPI worker tasks with 1 thread each

CPU
0-17

CPU
18-35

36 cores per node

239/19/23

CANDU: MPI on Snow

249/19/23

CANDU: OpenMP and MPI+OpenMP on Snow

• The performance of OpenMP computing was worse than the performance of
MPI computing on a single compute node.

• When using an OpenMP option on a single compute node (mcnp6
i=candu_hex.txt tasks 36), the calculation was not finished in 12 hours.
− Only 9 cycles were finished in 12 hours.

• The hybrid (MPI + OpenMP) option should not be used to run this
problem using multiple nodes.
− Using srun –n 8 mcnp6.mpi i=candu_hex.txt tasks 36, only 64 cycles were finished in

12 hours.
− Using srun –n 10 mcnp6.mpi i=candu_hex.txt tasks 36, only 84 cycles were finished

in 12 hours.

259/19/23

Conclusions
• Three options to run MCNP6 in parallel: MPI, OpenMP, MPI+OpenMP

− Which option to use depends on a computer to be used and a problem to be run.
• MPI option:

− Works on distributed memory, shared memory, or hybrid (distributed + shared) memory
architectures.

− Scalable. Using more compute nodes may reduce walk clock times.
• OpenMP option:

− Works on shared memory architectures.
− Should not be used to run on multiple compute nodes of distributed memory machines.
− Not scalable. It is very rare to have a large shared memory computer.

• MPI+OpenMP option:
− Works on hybrid (distributed + shared) memory architectures.
− Should not be used for a problem where the performance of OpenMP option is worse

than the performance of MPI option.
• Should perform two short runs to compare the performances of pure MPI and

OpenMP calculations before using a hybrid (MPI+OpenMP) option on multiple
compute nodes.

• Should use PRDMP card for parallel runs.

269/19/23

Questions?

279/19/23

References

1. https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-
tutorial

2. https://hpc-tutorials.llnl.gov/mpi
3. https://hpc-tutorials.llnl.gov/openmp
4. https://researchcomputing.princeton.edu/support/knowledge-base/scaling-

analysis
5. Bradley Gladden et al. “Athena-I CUBIT Journal Files”, Tech. rep. LA-UR-23-

28395. Los Alamos NM, USA: Los Alamos National Laboratory, Jul. 2023.
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-
28395

6. Esteban Gonzalez et al. “MCNP6.3 Unstructured Mesh Verification: GodivaR
and CANDU Models”, Tech. rep. LA-UR-22-33091. Los Alamos NM, USA: Los
Alamos National Laboratory, Dec. 2022.
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-22-
33091

https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc.llnl.gov/documentation/tutorials/introduction-parallel-computing-tutorial
https://hpc-tutorials.llnl.gov/openmp
https://hpc-tutorials.llnl.gov/openmp
https://researchcomputing.princeton.edu/support/knowledge-base/scaling-analysis
https://researchcomputing.princeton.edu/support/knowledge-base/scaling-analysis
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-28395
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-23-28395
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-22-33091
https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-22-33091

289/19/23

Legal Notice

MCNP® and Monte Carlo N-Particle® are registered trademarks owned by Triad
National Security, LLC, manager and operator of Los Alamos National Laboratory
for the U.S. Department of Energy. Any third party use of such registered marks
should be properly attributed to Triad National Security, LLC, including the use of
the ® designation as appropriate. Any questions regarding licensing, proper use,
and/or proper attribution of Triad National Security, LLC marks should be directed
to trademarks@lanl.gov. For the purposes of visual clarity, the registered
trademark symbol is assumed for all references to MCNP within this document.

mailto:trademarks@lanl.gov

299/19/23

Parallel Computer Memory Architectures

Shared Memory

Uniform Memory Access (UMA)

Non-Uniform Memory Access (NUMA)

Distributed Memory

Hybrid Distributed-Shared Memory

source: https://hpc.llnl.gov

