LA-UR-24-28726

Approved for public release; distribution is unlimited.

Title: Upcoming Release of the US Nuclear Data Library ENDF/B-VIII.1

- Author(s): Neudecker, Denise
- Intended for: 2024 MCNP User Symposium, 2024-08-19/2024-08-22 (Los Alamos, New Mexico, United States) Web

Issued: 2024-08-13

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Upcoming Release of the US Nuclear Data Library ENDF/B-VIII.1

Denise Neudecker (for the CSEWG collaboration)

MCNP User Symposium August 19, 2024

LA-UR-24-xxxx

Questions/ Points addressed in the talk:

- What are evaluated nuclear data?
- What is new in ENDF/B-VIII.1?
- Where can I get the data from?

What are evaluated nuclear data?

Nuclear data are key input for MCNPs predictive simulations.

- The accuracy of MCNP predictions is in part determined by the accuracy of its input nuclear data.
- A large international community works towards providing nuclear data.

J. Spencer, J. Alwin, "Big Ten MCNP6 Unstructured Mesh Benchmark," LA-UR-19-25731 (2019).

The MCNP6[®] code makes use of nuclear data as key input for its predictive simulations used across a variety of application areas.

- Nuclear reactor physics
- Nuclear critical and subcritical experiments
- Criticality safety
- Nuclear diagnostics
- Survivability
- Intrinsic radiation
- Radiography

- Nuclear weapon effects and output
- Emergency response / nuclear threat assessments
- Nuclear safeguards and nonproliferation
- Radiation detection and analysis
- Medical and health physics

Nuclear data tabulate physics reaction mechanisms of the nucleus for many isotopes/ materials.

Example: neutron-induced fission on ²³⁹Pu

Fission cross-section=probability that fission happens

Average Prompt Neutron Multiplicity= Av. Number of outgoing neutrons

Prompt Fission Neutron Spectrum= Energy distribution of outgoing neutrons

Evaluated nuclear data are produced in a complex pipeline from basic science to applications.

There are a couple of talks on the nuclear data pipeline from LANL here (just a subset) ...

LOS Alamos

What is new in ENDF/B-VIII.1?

ENDF/B-VIII.1 is the upcoming U.S. nuclear data library assembled, V&Ved, released by CSEWG.

ENDF/B-VIII.1: Updated Nuclear Reaction Data Library for Science and Applications

G.P.A. Nobre,^{1,*} R. Capote,² M.T. Pigni,³ A. Trkov,⁴ C.M. Mattoon,⁵ D. Neudecker,⁶ D.A. Brown,¹ M.B. Chadwick,⁶ A.C. Kahler,⁶ N.A. Kleedtke,⁶ M. Zerkle,⁷ A.I. Hawari,⁸ C.W. Chapman,³ N.C. Fleming,⁸ J.L. Wormald,⁷ K. Ramić,³ Y. Danon,⁹ N.A. Gibson,⁶ P. Brain,⁹ M.W. Paris,⁶ G.M. Hale,⁶ I.J. Thompson,⁵ D.P. Barry,¹⁰ I. Stetcu,⁶ W. Haeck,⁶ A.E. Lovell,⁶ M.R. Mumpower,⁶ G. Potel,⁵ K. Kravvaris,⁵ G. Noguere,¹¹ J.D. McDonnell,³ A.D. Carlson,¹² M. Dunn,¹³ T. Kawano,⁶ D. Wiarda,³ I. Al-Qasir,^{14,3} G. Arbanas,³ R. Arcilla,¹ B. Beck,⁵ D. Bernard,¹¹ R. Beyer,¹⁵ J.M. Brown,³ O. Cabellos,¹⁶ R.J. Casperson,⁵ Y. Cheng,³ E.V. Chimanski,¹ R. Coles,¹ M. Cornock,¹⁷ J. Cotchen,⁷ J.P.W. Crozier,⁸ D.E. Cullen,^{2,†} A. Daskalakis,¹⁰ M.-A. Descalle,⁵ D.D. DiJulio,¹⁸ P. Dimitriou,² A.C. Dreyfuss,⁵ Ignacio Duran,¹⁹ R. Ferrer,²⁰ T. Gaines,¹⁷ V. Gillette,¹⁴ G. Gert,⁵ K.H. Guber,³ J.D. Haverkamp,¹⁰ M.W. Herman,⁶ J. Holmes,⁷ M. Hursin,²¹ N. Jisrawi,¹⁴ A.R. Junghans,¹⁵ K.J. Kelly,⁶ H.I. Kim,²² K.S. Kim,³ A.J. Koning,² M. Koštál,²³ B.K. Laramee,⁸ A. Lauer-Coles,¹ L. Leal,^{3,24} H.Y. Lee,⁶ A.M. Lewis,¹⁰ J. Malec,⁴ J.I. Márquez Damián,¹⁸ W.J. Marshall,³ A. Mattera,¹ G. Muhrer,¹⁸ A. Nev,¹⁰ W.E. Ormand,⁵ D.K. Parsons,⁶ C.M. Percher,⁵ B. Pritvchenko,¹ V.G. Pronyaev,¹⁹ A. Qteish,²⁵ S. Quaglioni,⁵ M. Rapp,¹⁰ J.J. Ressler,⁵ M. Rising,⁶ D. Rochman,²⁶ P.K. Romano,²⁷ D. Roubtsov,²⁸ G. Schnabel,² M. Schulc,²³ A.A. Sonzogni,¹ P. Talou,⁶ J. Thompson,¹⁰ T.H. Trumbull,¹⁰ S.C. van der Marck,²⁹ M. Vorabbi,^{1,30} C. Wemple,²⁰ K.A. Wendt,⁵ M. White,⁶ and R.Q. Wright^{3,†} ¹Brookhaven National Laboratory, Upton, NY 11973-5000, USA ²International Atomic Energy Agency, Vienna A-1400, PO Box 100, Austria ³Oak Ridge National Laboratory, Oak Ridge, TN 37831-6171, USA ⁴ Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia ⁵Lawrence Livermore National Laboratory, Livermore, CA 94551-0808, USA

⁶Los Alamos National Laboratory, Los Alamos, NM 87545, USA

⁷Naval Nuclear Laboratory, West Mifflin, Pennsylvania 15122-0079, USA

⁸North Carolina State University, Department of Nuclear Engineering, Raleigh, North Carolina 27695

⁹Rensselaer Polytechnic Institute, Troy, NY 12180, USA

¹⁰Naval Nuclear Laboratory, Schenectady, New York 12301-1072, USA

¹¹CEA, DEN, DER, SPRC, Cadarache, 13108 Saint-Paul-lèz-Durance, France

¹²National Institute of Standards and Technology, Gaithersburg, MD 20899-8463, USA

Contributions to ENDF/B-VIII.1 come from U.S. national laboratories, universities, industry, international working groups (e.g., INDEN by the IAEA), international collaborators and many more.

Several sub-libraries were updated as part of ENDF/B-VIII.1:

- Neutrons including light elements (³He, ⁶Li, ⁹Be, ...), structural materials (⁵⁰⁻⁵⁴Cr, ^{54,56,57}Fe, ...), and fuels (^{233,235,238}U, ²³⁹Pu, ...).
- Neutron reaction covariances.
- Thermal Neutron Scattering Law (TSL) data for moderators (light water, nuclear/ reactor graphite, ...) and fuel (Plutonium dioxide, uranium carbide/ nitride, ...).
- Photo-nuclear sub-library.
- Charged-particle reaction sub-libraries.
- Fission-yield sub-libraries.
- Atomic sub-libraries.

Substantial changes in neutron sub-library are coming, many INDEN evaluations were adopted.

	Isotope	Change	Isotope	Change
	¹⁶ O	Small	³ He	Substantial
	¹⁸ O	Small	⁶ Li	Substantial
	19 F	Substantial	⁹ Be	Small
	^{28,29,30} Si	Substantial	⁵¹ V	Substantial
	⁵⁰⁻⁵⁴ Cr	Substantial	⁸⁸ Sr	Substantial
	⁵⁵ Mn	Small	¹⁰³ Rh	Substantial
	^{54,56,57} Fe	Substantial	^{140,142} Ce	Substantial
	^{63,65} Cu	Substantial	^{156,158,160-164} Dy	Substantial
	¹³⁹ La	Substantial	¹⁸¹ Ta	Substantial
	233	Substantial	¹⁹⁰⁻¹⁹⁸ Pt	Substantial
	238	Substantial	²⁰⁶⁻²⁰⁸ Pb	Substantial
	^{240,241} Pu	Substantial	²³⁴ U	Substantial
>	²³⁹ Pu	Substantial	²³⁶ U	Substantial

ATIONAL LABORATORY

INDEN (International Nuclear Data Evaluation Network) managed by the IAEA (Co-ordinators: Capote, Dimitriou, Schnabel) is an international project with contributors from around the world.

11

Light-element example:¹⁹F changes improve simulations of integral experiments. From A. Trkov/ IAEA.

Updates:

- New elastic angular distribution below 2 MeV, above carried over from JENDL-5.0.
- Total and capture cross sections adopted from JENDL-5.0.
- First two inelastic level cross sections were updated.

Structural-material example: New ⁵⁰⁻⁵⁴Cr & ⁵⁶Fe improve simulations of crit k_{eff}.

<u>Updates:</u>

- ⁵⁰⁻⁵⁴Cr: model calculations extended to 65 MeV (for fusion applications), adopted selected capture resonance widths from BROND-3.1, modelextrapolation to unstable ⁵¹Cr.
- ⁵⁶Fe: Changes to elastic, inelastic and capture cross sections, resonance parameters from Perey and Perey from V.0.
- Validation shows improvements.
- More work planned for IX.0 such as providing new evaluated ⁵⁰⁻⁵⁴Cr covariances.

From A. Trkov/ IAEA.

Work by the INDEN collaboration (BNL, IAEA, etc.).

Fuel-isotope example: Substantial change to ²³⁹Pu via (inter)national contributions.

<u>Updates:</u>

1.2

0.9

0.8

0.7

0.6 0.1

PFNS / Maxwellian (T=1.42 MeV)

- New prompt neutron multiplicities (ORNL, INDEN, LANL)
- New cross sections in the RRR (ORNL).
- New cross sections in the fast (INDEN, LANL). •
- New PFNS from thermal-30 MeV (INDEN, LANL).
- Despite substantial changes, good performance • maintained in simulating critical assemblies.

ORNL eval. (M. Pigni).

LANL eval. (D. Neudecker) Including IL/ LLNL Chi-Nu and CEA PFNS data.

Outgoing Neutron Energy (MeV)

²³⁹Pu(n_{1.5 MeV},f)

os Alamos

Work by INDEN, LANL, LLNL. ORNL.

For Whisper users: New covariances provided among them for ²³⁹Pu, ²³⁴⁻²³⁶U, Ce, Pb, Ta, etc.!

For Whisper users: CSEWG tested covariances for VIII.1 more stringently but work remains.

Testing included:

- See if covariance could be processed via LANL's NJOY and ORNL's AMPX processing codes (i.e., formats are correct),
- Mathematical properties (positive semidefinite, -1 <= cor <= +1, covariance constraints,
- Are uncertainties within reasonable limits given standards and templates of expected measurement uncertainties (see:)?
- Forward-propagating uncertainties through integral testing uncertainties.

<u>To-Do:</u>

Los Alamos

- We still miss covariances for several isotopes and energy ranges,
- Discussion on uncertainties in RRR.
- Updates to newest standards.

Fissile material	<u>Fissile</u> material		PU		
Spectrum		FAST	INTER	MIXED	THERM
Number of Benchmarks		152	4	9	624
Experimental Uncertainty (pcm)		334	710	587	426
Total (<u>pcm</u>)	ENDF/B-VIII.1b4	931	551	536	645
	ENDF/B-VIII.0	921	1403	1055	1099
	ENDF/B-VII.1	436	565	459	625
			200		400
Cross-sections	ENDF/B-VIII.104	841	360	224	106
(with correlations)	ENDF/B-VIII.0	857	1368	983	998
	ENDF/B-VII.1	409	546	356	500
P1-elastic	ENDF/B-VIII.1b4	66	-	-	-
	ENDF/B-VIII.0	66	-	-	-
	ENDF/B-VII.1	-	-	-	-
nubar	ENDF/B-VIII.1b4	390	389	479	632
	ENDF/B-VIII.0	300	271	275	308
	ENDF/B-VII.1	76	88	114	168
PFNS	ENDF/B-VIII.1b4	27	25	53	59
	ENDF/B-VIII.0	117	106	265	297
	ENDF/B-VII.1	118	106	265	297

Table from Oscar Cabellos/ UPM.

Many new TSL were released by ESF, North Carolina State University, ORNL, etc.

Moderator material	Moderator material	
Light water (94 temperatures!)	Beryllium-metal	
Beryllium metal with distinct effects	Beryllium oxide	
Calcium Hydride	FLiBe Molten Salt	
Nuclear/ Reactor Graphite (20%)	Crystalline Graphite	
Anhydrous Hydrogen Fluoride	Heavy Paraffinic Oil	
Silicon Carbide	Silicone Dioxide	
Polystyrene	Lucite	
Zirconium	Beryllium Carbide	
Zirconium Hydride	Lithium-7 Hydride and Deuteride	
Yttrium Hydride		

	Spec
Fuels	Liqui and o
Plutonium Dioxide Uranium Carbide	Sapp Cryst Filter
Uranium Metal	Magr
Uranium Nitride Uranium Dioxide	Filter Magr Fluor
Uranium Hydride	Filter Beryl
	Filter

Special Purpose

Liquid hydrogen and deuterium

Sapphire Single-Crystal Neutron Filter

Magnesium Oxide Neutron Filter

Magnesium Fluoride Neutron Filter

Beryllium Fluoride Neutron Filter

Part of IAEA2019 photonuclear data library used. (https://www-nds.iaea.org/photonuclear/)

220 isotopes included in the IAEA2019 Photonuclear Data Library that was part of an IAEA Co-ordinated Research Project (Co-Ordinator: V. Dimitriou).

Four categories:

- Structural, shielding, and bremsstrahlung target materials: Be, Al, Si, Ti, V, Cr, Fe, Co, Ni, Cu, Zn, Zr, Mo, Sn, Ta, W, and Pb.
- Biological materials: C, N, O, Na, S, P, Cl, and Ca;
- Fissionable materials: Th, U, Np, and Pu;
- Other materials: H, K, Ge, Sr, Nb, Pd, Ag, Cd, Sb, Te, I, Cs, Sm, and Tb.
- Potential diagnostic and therapeutic radionuclides.

Most of these files were adopted for VIII.1.

Previous US evaluations were retained unless new experimental data have been taken that support IAEA2019 work over previous libraries.

Work ongoing at LANL to be able to process these files (See W. Haeck's talk).

Charged-particle libraries provided for incident alphas, deuterons, p, tritons by LANL/ LLNL.

Where can I get the data from?

Where can I get the data: for plotting go to: https://www.nndc.bnl.gov/endf/

ENDF/B-VIII.1 coming soon (~September 2024)

Evaluated Nuclear Data File (ENDF) Database Version of 2023-08-25

Software Version of 2023-08-31

News & History

2023/08 Updated JENDL-5 Japanese evaluated nuclear data library (2021) Errata including update-13, August 10, 2023 [page] 2023/08 New library: INDEN-Aug2023 evaluations produced by International Nuclear Data Evaluators Network (coord. by the IAEA) [page] 2023/03 New software feature: plotting covariances of the average number of neutrons per fission MF31 [example] 2023/02 New software tool: EE-View - fast experimental-evaluated data viewer [about] \rightarrow go to SIG:[eeview1][eeview1]; DA:[eeview-da] 2022/10 New software feature: plotting covariances for angular distributions of secondary particles MF34 [example]

Core nuclear reaction database contain recommended, evaluated cross sections, spectra, angular distributions, fission product yields, photo-atomic and thermal scattering law data, with emphasis on neutron induced reactions. The data were analyzed by experienced nuclear physicists to produce recommended libraries for one of the national nuclear data projects (USA, Europe, Japan, Russia and China). All data are stored in the internationally-adopted ENDF-6 format maintained by CSEWG. See database summary [here].

Standard Request Examples: 1/2/3/4/5/6/7/ Go to: Advanced Request; ENDF-Database Explorer; EE-View; CS, CS1, DA

Parameters: Submit Reset	Libraries: O All O Selected Check Reset	∀ How to plot ¬
Target 📃 🐘	O	
Reaction 🗌 🔪	□ 1) ENDF/B-VIII.0 (USA,2018) ○ ★ Archival □ 2) JEFF-3.3 (Europe.2017) ○ ★ Derived	Current major nuclear
Quantity 🗌 🐘	3) JENDL-5 (Japan,2021)	
More Parameters	4) CENDL-3.2 (China,2020)	data libraries.
	5) BROND-3.1 (Russia,2016)	
Submit	6) TENDL-2021 (TALYS, 2021)	
	○ ¥ IAEA Project Libraries	

Partner side: https://www-nds.iaea.org/exfor/endf.htm

D ×

Where can I get the data in ACE format for MCNP. Go to: https://nucleardata.lanl.gov/

- Data will be processed with NJOY and tested with in-house capabilities as soon as released.
- Data in ACE format will be curated by XCP-5 LANL nuclear data team and then released on this homepage after testing.
- We will send a message to the MCNP forum.
- Questions? <u>nucldata@lanl.gov</u> or Q&A session on Wed.

